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Recent progress on nonlinear properties of parity-time (PT -) symmetric systems is com-
prehensively reviewed in this article. PT symmetry started out in non-Hermitian quan-
tum mechanics, where complex potentials obeying PT symmetry could exhibit all-real
spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic
circuits, and many other physical fields, where a judicious balancing of gain and loss
constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT

systems then gave rise to a wide array of new phenomena which have no counterparts
in traditional dissipative systems. Examples include the existence of continuous families
of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -
symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton
dynamics, and many others. In this article, nonlinear PT -symmetric systems arising
from various physical disciplines are presented; nonlinear properties of these systems
are thoroughly elucidated; and relevant experimental results are described. In addition,
emerging applications of PT symmetry are pointed out.
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I. INTRODUCTION

Symmetries are the most fundamental properties of na-
ture, which are responsible for many physical phenom-
ena we observe. Not long ago it was suggested by Ben-
der and Boettcher (1998) that parity (P) and time (T )

symmetries can be responsible for purely real spectra of
non-Hermitian operators. While examples of such opera-
tors were known for a long time, the discovery of Bender
and Boettcher (1998) had profound significance, because
it suggested a possibility of PT -symmetric modification
of the conventional quantum mechanics which considers
observables as Hermitian operators in the Hilbert space
L2. This idea was further developed by Mostafazadeh
(2002a,b) who introduced and explored a general class
of pseudo-Hermitian operators with special symmetries
and purely real spectra. These works have since stim-
ulated intensive research on PT -symmetric operators.
Developments on this front are nicely covered in a se-
ries of reviews (Bender, 2005, 2007; Makris et al., 2011;
Mostafazadeh, 2010) and special issues in J. Phys. A
(2006, 2008, 2012).

The concept of PT symmetry has gone far beyond
quantum mechanics and has spread to many branches
of physics. Ruschhaupt, Delgado, and Muga (2005) no-
ticed that if a medium where a light pulse propagates
has an even refractive index profile and odd gain-loss
landscape, then one can construct an optical analog of
PT -symmetric quantum mechanics. The real explosion
of the PT -symmetric optics and photonics started af-
ter the works by El-Ganainy et al. (2007); Makris et al.
(2008); and Musslimani et al. (2008a) who suggested and
elaborated paraxial PT -symmetric optics. Moreover, El-
Ganainy et al. (2007) established the concept of PT -
symmetric waveguide optics, by showing that discrete
optics provides a simple but nontrivial framework for the
study of PT -symmetric systems. The PT -symmetric op-
tical theories were soon confirmed in a series of experi-
ments (Feng et al., 2011; Guo et al., 2009; Regensburger
et al., 2012; Rüter et al., 2010). Extension of PT sym-
metry to other branches of physics then quickly followed.

These developments suggested further extension of the
theory to include nonlinearity, which is inherent in many
fields of physics and is responsible for a wide variety of
new phenomena. This study was initiated in nonlinear
optics with linear PT -symmetric potentials by Mussli-
mani et al. (2008a). Later on optical systems with non-
linear PT -symmetric potentials were also explored (Ab-
dullaev et al., 2011a; Miroshnichenko, Malomed, and
Kivshar, 2011). Presently the first experimental stud-
ies of nonlinear PT -symmetric physics are already avail-
able (Peng et al., 2014a; Wimmer et al., 2015). From
a practical point of view, important applications of PT
symmetry, such as single-mode PT lasers (Feng et al.,
2014; Hodaei et al., 2014) and unidirectional reflectionless
PT -symmetric metamaterial at optical frequencies (Feng
et al., 2013) have also emerged.

Why are PT systems interesting for physics beyond
quantum mechanics? There are a number of reasons.
One reason is that PT systems, being dissipative in na-
ture, exhibit many properties of conservative systems,
such as all-real linear spectra and existence of nonlinear
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steady states with continuous ranges of energy values.
Such hybrid properties make PT systems physically very
novel. Another reason is that PT systems offer some ex-
citing applications, such as those mentioned in the pre-
vious paragraph. A third reason is that, loss was always
considered to be a detrimental physical effect in the past.
PT symmetry makes loss useful, which is physically very
enlightening. Finally, gain and loss can be varied in time,
opening new possibilities for flexible control and steering
of physical processes.
In this review we describe recent developments on

nonlinear PT -symmetric systems. Even though re-
views on linear PT theories and non-Hermitian quan-
tum mechanics have been written (see Bender (2007) and
Mostafazadeh (2010) for instance) a comprehensive re-
view on nonlinear PT -symmetric systems is still lacking.
More importantly, the field of nonlinear PT systems has
been developing very rapidly, and a large body of knowl-
edge has been obtained just in the past few years. Thus
it is timely to write a review on this subject.1

II. NON-HERMITIAN OPERATORS WITH REAL

SPECTRA

In this section, we overview the main concepts in
the theory of PT -symmetric (and, more generally, non-
Hermitian) linear operators. We do not intend to cover
all available results of this extremely vast field, but rather
to systematize the material relevant for description of
nonlinear systems presented in the subsequent sections.
For comprehensive reviews on non-Hermitian operators
in physics and mathematics, in addition to the works
listed in the Introduction we also mention the reviews by
Cannata, Dedonder, and Ventura (2007); Daley (2014);
Garcia, Prodan, and Putinar (2014); Muga et al. (2004);
and Rotter (2009), as well as the monograph of Moiseyev
(2011).

A. Definition and basic properties

Let ψ(r, t) be a complex-valued wavefunction of a
quantum particle. Evolution of ψ(r, t) in space r and
time t is governed by the Schrödinger equation

i
∂ψ

∂t
= Hψ(r, t), (1)

where the linear operator H acts in a Hilbert space
L2(RD) endowed with an inner product 〈ψ, φ〉 =∫
RD ψ

∗(r, t)φ(r, t)dr, where D is the space dimension,

1 After submission of this review we became aware of the work of
Suchkov et al. (2016) which addresses PT symmetry in optical
applications.

the asterisk stands for complex conjugation, and (unless
stated otherwise) we consider the units where ~ = m = 1
with m being the mass of the particle.
For a given linear operator H , the Hermitian conjuga-

tion H† is defined by the relation 〈H†ψ, φ〉 = 〈ψ,Hφ〉
for any two functions ψ and φ in H(RD). An operator H
is said to be Hermitian (or self-adjoint) if H† = H , i.e.,
〈Hψ, φ〉 = 〈ψ,Hφ〉 (a mathematically rigorous definition
of the Hermiticity (Reed and Simon, 1980) additionally
requires the operator H to be densely defined, i.e., the
domain of H must be a dense subset of L2(RD); for the
sake of simplicity, we assume that this requirement holds
for any operator we consider).
The spectrum of any Hermitian operator is purely real,

while the converse is not true, i.e., Hermiticity is suffi-
cient for reality of the spectrum but not necessary.
The two fundamental discrete symmetries in physics

are given by the parity operator, P , defined as

Pψ(r, t) = ψ(−r, t), (2)

and by the time reversal operator, T , defined in Wigner’s
sense as (Wigner, 1959)

T ψ(r, t) = ψ∗(r,−t). (3)

The operator T is antilinear, i.e., T (λψ + φ) = λ∗T ψ +
T φ, for any vectors ψ, φ and a complex number λ. Ad-
ditionally,

P2 = T 2 = I, [P , T ] = 0, (4)

where I is the identity operator.
An operator H is said to be PT symmetric if

[PT , H ] = 0. (5)

Using (4), definition (5) can be rewritten as H =
PT HPT .
Rapidly growing interest in PT -symmetric opera-

tors was triggered by the seminal work of Bender and
Boettcher (1998) where a connection between PT sym-
metry and reality of the spectrum was pointed out. To
emphasize this connection, Bender and Boettcher (1998)
introduced the notion of unbroken PT symmetry. PT
symmetry of a PT -symmetric operator H is said to be
unbroken if any eigenfunction of H is at the same time
an eigenfunction of the PT operator. In this case, the
relation Hψ = Eψ implies the existence of λ such that
PT ψ = λψ. From (4) it follows that there exists a real
constant ϕ such that λ = eiϕ, i.e., any eigenvalue of the
PT operator is a pure phase (Bender, Boettcher, and
Meisinger, 1999).
Unlike Hermiticity, PT symmetry is not sufficient for

the spectrum to be purely real. However, it becomes suf-
ficient when combined with the requirement for the PT
symmetry to be unbroken. Indeed, let E be an eigenvalue
of H with the eigenfunction ψ, i.e., Hψ = Eψ. Applying
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the PT operator to both sides of this equation and utiliz-
ing (4), one obtains H(PT ψ) = E∗(PT ψ). Then, if the
PT symmetry of H is unbroken, Hψ = E∗ψ, and hence
the eigenvalue E is real. Since this procedure is applied
to every eigenvalue of H we conclude that the spectrum
of H is purely real.
If the unbroken PT symmetry does not hold, then the

PT symmetry is said to be broken. The broken PT sym-
metry is typically associated with the presence of com-
plex eigenvalues in the spectrum of H .

Unlike Hermiticity, PT symmetry does not ensure the
completeness of eigenvectors of the operator. Even if
the spectrum of a PT -symmetric operator H is entirely
real, the set of eigenfunctions of H may not constitute a
complete basis. The typical scenarios when the eigenvec-
tors lose their completeness correspond to the presence
of an exceptional point (see Kato (1966) and Moiseyev
and Friedland (1980) and Sec. II.B) or a spectral singu-
larity (see Sec. X.A). These features are not exclusive
to PT -symmetric operators and can be encountered for
more general non-Hermitian operators as well.
The described connection between the PT symmetry

and reality of the spectrum does not involve the defini-
tion (2) of the parity operator, but rather relies on prop-
erties (4) and the fact that T is antilinear. Therefore, one
can also consider the generalized parity operator P (Ben-
der, Berry, and Mandilara, 2002; Mostafazadeh, 2003b,
2008), with P being an arbitrary unitary linear operator:
P†P = PP† = I. Then properties (4) also imply that P
is self-adjoint, i.e., P† = P .

Now we consider a few examples.

a. PT -symmetric parabolic potentials. A Schrödinger op-
erator with a complex potential U(x),

H = − d2

dx2
+ U(x), U(x) = V (x) + iW (x), (6)

is PT symmetric if U∗(x) = U(−x), i.e., its real and
imaginary parts are even and odd, respectively:

V (x) = V (−x), W (x) = −W (−x). (7)

The simplest example of such a potential is the complex
parabolic potential (Bender and Jones, 2008; Kato, 1966;
Znojil, 1999)

U(x) = (x− iα)2, α ∈ R. (8)

Its eigenvalues and eigenfunctions are

En = 2n+ 1, ψn(x) = Hn(x− iα)e−(x−iα)2/2, (9)

where n = 0, 1, . . ., andHn(x) is the nth Hermite polyno-
mial. Thus the PT symmetry of the parabolic potential
is unbroken for any α (that is En are real for all α).

FIG. 1 Real eigenvalues of potential (10) for different N .
Adapted from Bender and Boettcher (1998).

b. Bender–Boettcher potential. Generalizing a conjecture
of Bessis and Zinn-Justin, Bender and Boettcher (1998)
investigated the spectrum of the potential

U(x) = −(ix)N . (10)

For 1 < N < 4, the eigenvalue problem is posed on the
real axis and the potential acquires the form U(x) =
−|x|N exp{i sign (x)πN/2}. If 0 < N ≤ 1 or N ≥ 4,
then the problem must be posed on a contour lying in
the complex plane.
Numerical results of Bender and Boettcher (1998) on

the spectrum of this potential [Fig. 1] show that for
N ≥ 2 the spectrum is real and positive [a rigorous
proof of this fact belongs to Dorey, Dunning, and Tateo
(2001)]. At the lower boundary of this region, N = 2,
this potential becomes a real parabolic potential. When
1 < N < 2 one observes a finite number of real positive
eigenvalues and an infinite number of complex conjugate
pairs of eigenvalues. As N approaches 1 from above, the
lowest real eigenvalue approaches infinity, and for N < 1
there are no real eigenvalues. Thus PT symmetry is un-
broken for N ≥ 2, but becomes spontaneously broken as
parameter N crosses the PT -symmetry breaking thresh-
old Ncr = 2.

c. Two-level PT -symmetric system. Consider now a
Hamiltonian defined by a 2 × 2 matrix (Bender, Berry,
and Mandilara, 2002)

H =

(
iγ κ
κ −iγ

)
= κσ1 + iγσ3, (11)

where γ ≥ 0 and κ ≥ 0 are real parameters and hereafter
we use the conventional notations for the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (12)

Hamiltonian (11) acts in a Hilbert space which consists
of two-component column vectors ψ = (ψ1, ψ2)

T (here-
after the superscript T stands for the matrix transpose),
with complex entries ψ1,2, and the inner product is de-
fined as 〈ψ, φ〉 = ψ∗

1φ1 + ψ∗
2φ2. Hamiltonian (11) is PT
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symmetric with P = σ1 and T being the complex conju-
gation. The eigenvalues and eigenvectors of H are given
by

E1,2 = ±
√
κ2 − γ2, ψ(1,2) =

(
iγ/κ±

√
1− γ2/κ2

1

)
.

(13)
Thus PT symmetry is unbroken (the spectrum is all-real)
if γ ≤ κ and is broken (both eigenvalues are imaginary)
if γ > κ. At γ = κ, PT -symmetry breaking occurs.
At this point, the two eigenvalues collide, and the eigen-
vectors become linearly dependent. Thus PT -symmetry
breaking occurs at the point where the Hamiltonian is
a non-diagonal Jordan block. The respective algebraic
multiplicity of the eigenvalue is two, larger than its geo-
metric multiplicity of one. Such points in the parameter
space (γ, κ) are called exceptional points (Kato, 1966) or
branch points (Moiseyev and Friedland, 1980).

B. Exceptional points

Transition through an exceptional point is the most
typical scenario of PT symmetry breaking, which arises
also in a more general context of non-Hermitian physics
(Heiss, 2012; Moiseyev and Friedland, 1980; Rotter,
2009). Now we take a closer look at what happens at
an exceptional point by considering a (not necessarily
PT -symmetric) Hamiltonian (Heiss, 2012)

H(ǫ) =

(
E1 0
0 E2

)
+ iǫ

(
h11 h12
h21 h22

)
, (14)

where E1 and E2 are real. Eigenvalues of H(ǫ) are

E1,2(ǫ) =
1

2
[E1 + E2 + iǫ(h11 − h22)]

±1

2

√
[(h11 − h22)2 + 4h12h21](ǫ − ǫ1)(ǫ2 − ǫ), (15)

where

ǫ1,2 = [E1 − E2]/[2
√
h12h21 ∓ i(h11 − h22)]. (16)

For arbitrary parameters the spectrum of H(ǫ) contains
two distinct eigenvalues. However, at ǫ = ǫ1 [or ǫ = ǫ2]
the two eigenvalues coalesce, i.e., E1(ǫ1) = E2(ǫ1) [or
E1(ǫ2) = E2(ǫ2)]. At these points H(ǫ1,2) has only one
linearly independent eigenvector, which means that ǫ1
and ǫ2 are exceptional points.
These exceptional points may be complex numbers and

transition through an exceptional point requires varia-
tion of a complex parameter ǫ, i.e., is controlled by two
real parameters. We simplify the consideration by im-
posing the conditions h11 = h∗22, and h12h21 > 0 (each
of h12 and h21 may be complex). Then ǫ1,2 are real and
we consider real ǫ. For the sake of definiteness we also
set ǫ1 < ǫ2 and consider (h11 − h22)

2 + 4h12h21 < 0.
Then upon increase of ǫ from zero, eigenvalues E1,2(ǫ)

move toward each other along the real axis and collide
at ǫ = ǫ1. At this instant phase transition occurs. After
collision they move to the complex plane, then become
real again at ǫ = ǫ2 where they collide on the real axis
a second time. As ǫ approaches an exceptional point
functions E1,2(ǫ) display a typical square root behavior,
∼ √

ǫ− ǫ1,2. The described restoration of unbroken PT
symmetry is referred to as reentrant PT symmetry. It
is noted that reentrant PT symmetry resembles “bub-
bles of instability” in equilibria of Hamiltonian systems
(MacKay, 1987).
Exceptional points are inherently different from the de-

generacy of eigenvalues, which corresponds to the situa-
tion where two eigenvalues coalesce but their eigenvectors
remain linearly independent (i.e., the eigenvalue has a di-
agonal Jordan block). In our case, the simplest example
of degeneracy occurs when E1 = E2 and ǫ = 0.

C. PT symmetry and pseudo-Hermiticity

Although PT symmetry itself is not sufficient to guar-
antee the reality of the spectrum of a Hamiltonian H , it
ensures that complex eigenvalues (if any) always exist in
complex-conjugate pairs. Indeed, if E is a complex eigen-
value (with nonzero imaginary part) and ψ is the corre-
sponding eigenvector, then E∗ is also an eigenvalue with
eigenvector PT ψ. This, in particular, implies that in the
finite dimensional case PT symmetry of a linear opera-
tor results in reality of all coefficients of the characteris-
tic equation of the Hamiltonian. Bender and Mannheim
(2010) proved that the converse is also correct: if all the
coefficients of the characteristic polynomial are real, then
the corresponding Hamiltonian is PT symmetric.
A necessary and sufficient condition for the spectrum

of a non-Hermitian Hamiltonian to be purely real can
be formulated in terms of a more general property called
pseudo-Hermiticity (Lee and Wick, 1969; Mostafazadeh,
2002a). A Hamiltonian H is said to be η-pseudo-
Hermitian if there exists a Hermitian invertible linear
operator η such that

H† = ηHη−1. (17)

It is clear that if η is the identity operator, then definition
(17) is equivalent to Hermiticity, i.e., pseudo-Hermiticity
is a generalization of Hermiticity. In many cases, pseudo-
Hermiticity can also be considered as a generalization of
PT symmetry. For example, if H is a symmetric matrix
Hamiltonian, then PT symmetry impliesHP−PH∗ = 0,
and henceH† = H∗ = PHP , i.e., the pseudo-Hermiticity
of H . As another example, the Schrödinger operator (6)
with complex potential (7) is P-pseudo-Hermitian.
An immediate corollary of the pseudo-Hermiticity is

that the quantity Q = 〈ηψ, ψ〉 is invariant under the
time evolution (1) generated by the Hamiltonian H , i.e.,
dQ/dt ≡ 0 (Mostafazadeh, 2002a). In the case of the
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Schrödinger operator (6)–(7) this leads to a conserved
quantity (Bagchi, Quesne and Znojil, 2001)

Q =

∫ ∞

−∞

ψ(x, t)ψ∗(−x, t) dx. (18)

Solombrino (2002) introduced a possibly more general
concept of weak pseudo-Hermiticity which does not re-
quire the operator η in (17) to be Hermitian. When-
ever one considers only diagonalizable operators with
discrete spectrum, the class of all pseudo-Hermitian op-
erators coincides with the class of all weakly pseudo-
Hermitian operators. Moreover, in this case (weak)
pseudo-Hermititicy is equivalent to the presence of an
antilinear symmetry, such as PT symmetry: a diago-
nalizable operator H with discrete spectrum is (weakly)
pseudo-Hermitian if and only if there exists an invertible
antilinear operator Ω such that Ω2 = I and [H,Ω] = 0
(Mostafazadeh, 2002c; Solombrino, 2002).
Notion of the pseudo-Hermiticity allows one to formu-

late necessary and sufficient conditions for a a Hamilto-
nian to possess a purely real spectrum. Let us consider
the case of the discrete spectrum, and let a Hamilto-
nian have a complete set of biorthonormal eigenvectors
{|ψn〉, |φn〉} defined by (Faisal and Moloney, 1981)

H |ψn〉 = En|ψn〉, H†|φn〉 = E∗
n|φn〉,

〈φn|ψn〉 = δn,m,
∑

n |ψn〉〈φn| = I.

Then the following theorem holds.

Theorem 1 (Mostafazadeh (2002b)) Let H be a
Hamiltonian that acts in a Hilbert space, has a discrete
spectrum, and admits a complete set of biorthonormal
eigenvectors {|ψn〉, |φn〉}. Then the spectrum of H is
real if and only if there is an invertible linear oper-
ator O such that H is OO†-pseudo-Hermitian: H =
(OO†)H†(OO†)−1.

To illustrate the application of Theorem 1, consider the
PT -symmetric operator (11). It possesses a complete set
of biorthonormal eigenvectors unless ǫ = γ/κ = 1. Since
at ǫ < 1 the spectrum of H is real, Theorem 1 guaran-
tees that there exists the operator O such that H is η-
pseudo-Hermitian with η = OO†. Notice that although
H is P-pseudo-Hermitian, this cannot be used in The-
orem 1, because the parity operator P = σ1 does not
admit the representation P = OO† (this can be verified
straightforwardly). Therefore there must exist another
operator η 6= P when the spectrum of H is purely real.
By straightforward algebra one finds that

η =
1

ǫ2

(
1 iǫ

−iǫ 1

)
, O =

1

ǫ

(
0 i√

1− ǫ2 ǫ

)
.

Theorem 1 also indicates that no such operators exist in
the broken PT -symmetry case of ǫ > 1.
It is noted that PT symmetry is not necessary for a

non-Hermitian operator to have a real spectrum. Nixon

and Yang (2016a) showed that if an operator H satisfies
a weaker symmetry relation H†η = ηH for some opera-
tor η (not necessarily invertible), then under some mild
conditions on the kernel of η, complex eigenvalues of H
(if any) always come in conjugate pairs, and a real spec-
trum is often possible. Imposing this symmetry relation
on the Schrödinger operator (6) for differential operators
η, wide classes of non-PT -symmetric complex potentials
with all-real spectra were constructed (Nixon and Yang,
2016a). For an arbitrary real function w(x), one such
class of potentials is U(x) = −w2(x) − iw′(x) (see also
(31) in Sec. II.F), and another class is

U(x) = −
(
1

4
w2 +

w′2 − 2w′′w + c

4w2

)
− iw′, (19)

where c is a free real parameter. The latter class of
potentials generalizes the earlier result of Andrianov et
al. (1999) who discovered potentials (19) with nega-
tive c using the supersymmetry technique (addressed in
Sec. II.E).

D. Real spectrum and effect of perturbations

Since PT symmetry ensures that complex eigenvalues
appear as complex-conjugate pairs, one can expect that
if PT symmetry is unbroken and the real eigenvalues are
“well-separated” from each other, then the reality of the
spectrum is “robust” against sufficiently small pertur-
bations. While this intuitive expectation is not always
correct, in many situations it is indeed true. In particu-
lar, this happens if a perturbed PT -symmetric operator
is “close” to a self-adjoint operator (Caliceti, Cannata,
and Graffi, 2006; Caliceti, Graffi, and Sjöstrand, 2005).
Let us consider a Hermitian operator H0 perturbed as
H(ǫ) = H0+ǫH1, where ǫ is a real parameter. We also re-
quire operators H0 and H1 to be pseudo-Hermitian with
the same operator η,

H†
0 = ηH0η

−1, H†
1 = ηH1η

−1, (20)

where η2 = I (for PT -symmetric operators, η is a par-
ity operator P). Then according to the following theo-
rem, the spectrum of H(ǫ) is real provided that ǫ is small
enough.

Theorem 2 (Caliceti, Graffi, and Sjöstrand (2005))
Let H0 be a self-adjoint positive operator in a
Hilbert space. Let H0 have only discrete spectrum
{0 ≤ λ0 < λ1 < · · · < λn < · · · }, where each eigenvalue
λj is simple, and δ = infj≥0[λj+1 − λj ]/2 > 0. Let also
H0 and H1 satisfy (20), and H1 be continuous. Then
the spectrum of H(ǫ) is real if ǫ ∈ R and |ǫ| < δ/‖H1‖.

Here the operator norm is defined in the usual way:
‖H1‖ = sup{‖H1f‖; ‖f‖ = 1}, and the operator H0 is
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said to be positive if 〈H0ψ, ψ〉 ≥ 0 for any ψ from the
Hilbert space (Reed and Simon, 1980).

Theorem 2 guarantees the existence of a large class
of pseudo-Hermitian operators with real spectra con-
structed as perturbations of a given Hermitian opera-
tor, provided the spectrum of the unperturbed opera-
tor is bounded below and its eigenvalues are “well sep-
arated”. As a simple example, consider the Schrödinger
operator with a harmonic potential H0 = −d2/dx2 + x2

and PT -symmetric perturbation H1 = iW (x), with
W (x) = −W (−x) and W (x) ∈ L∞(R) (recall that the
L∞-norm is defined as ‖W‖L∞ = supx∈R

|W (x)|). Then
δ = 1 and the spectrum of H0 + ǫH1 is real at least
for |ǫ| < 1/‖W‖L∞. A similar result is obtained for the
power-law potentials V (x) = x2m with polynomial per-
turbations iW (x), provided that the odd degree m′ of
polynomialsW (x) is less than m−1 (Caliceti and Graffi,
2005).

E. Supersymmetry and real spectra

The concept of supersymmetry (SUSY) was first intro-
duced in quantum field theories and high-energy physics
(see Cooper, Khare, and Sukhatme (1995) and the refer-
ences therein). Subsequently, SUSY was utilized in quan-
tum mechanics to construct analytically solvable poten-
tials. This construction is based on the factorization of
the Schrödinger operator into the product of two first-
order operators (Infeld and Hull, 1951). Switching the
order of these two first-order operators gives another
Schrödinger operator with a new potential (called the
partner potential) which shares the same spectrum as the
original potential (except possibly a single discrete eigen-
value). Extending the idea of SUSY, parametric fam-
ilies of complex potentials with all-real spectra can be
constructed (Andrianov et al., 1999; Bagchi et al., 2001;
Cannata, Junker, and Trost, 1998; Khare and Sukhatme,
1989; Miri et al., 2013).

Let us employ the idea of SUSY to construct com-
plex potentials with all-real spectra, following Khare and
Sukhatme (1989); Miri et al. (2013); and Yang (2014b).
To this end, we consider the Schrödinger operator (6)
and assume that U(x) has purely real spectrum. Let E1

and ψ1 be an eigenvalue and its eigenfunction of H , i.e.,
(H −E1)ψ1 = 0. We first factorize the linear operator in
this equation as

H − E1 = A−A+, A± = ± d

dx
+ Y (x), (21)

where function Y (x) is obtained from the requirement
A+ψ1 = 0, which yields Y (x) = −ψ1,x/ψ1.

Now we switch operators A+ and A− on the right side
of (21). This leads to a new Schrödinger operator defined

by Hp − E1 = A+A−, i.e.,

Hp = − d2

dx2
+ Up(x) with Up = U + 2Yx. (22)

Up is the partner potential of U and has the same spec-
trum as U (with the only possible exception of E1), since
operators A+A− and A−A+ share the same spectrum.
The partner potential Up is real or PT symmetric if

U is so. In order to obtain a non-PT -symmetric po-
tential with all-real spectrum, we build a new factor-
ization for the partner potential: Hp − E1 = Ã+Ã−,

with Ã± = ± d

dx
+ Ỹ (x). Equating both factorizations

for Hp − E1, we obtain the relation Ỹx + Ỹ 2 = Yx + Y 2

which is a Riccati equation for Ỹ . Decomposition Ỹ =
Y + 1/f leads to a linear equation fx − 2Y f = 1 which
can be readily solved. This yields

Ỹ (x) = − d

dx
ln(ψ̃1), ψ̃1(x) =

ψ1(x)

c+
∫ x

0
[ψ1(ξ)]2dξ

, (23)

where c is an arbitrary complex constant. For this new
Up factorization, its partner potential is defined through

H̃−E1 = A−A+ and is given by Ũ = Up−2Ỹx. Utilizing

the Up and Ỹ in formulas (22) and (23), this Ũ potential
is found to be

Ũ(x) = U(x)− 2
d2

dx2
ln

[
c+

∫ x

0

[ψ1(ξ)]
2dξ

]
. (24)

For generic values of the complex constant c, Ũ is com-
plex and not PT symmetric. In addition, its spectrum
is identical to that of U . Hence if U has an all-real
spectrum, so does Ũ . The potential Ũ is referred to as
the superpotential; it represents a family of potentials
parametrized by c.
Now we give two explicit examples of non-PT -

symmetric superpotentials (24) with all-real spectra. The
first one is constructed from the parabolic potential
U(x) = x2 and its first eigenmode of E1 = 1 with

ψ1 = e−x2/2. Then the superpotential (24) reads

U(x) = x2 − 2
d2

dx2
ln

[
c+

∫ x

0

e−ξ2dξ

]
, (25)

see Fig. 2(a). The spectrum of this superpotential (for
any c) is {1, 3, 5, . . .}, i.e., is all-real.
In the second example, the superpotential (24) is

built from the PT -symmetric periodic potential U(x) =
−V 2

0 e
2ix and its Bloch mode ψ(1) = I1(V0e

ix) with eigen-
value E1 = 1. Here V0 is a real constant, and In is the
modified Bessel function. The resulting periodic super-
potential (24) reads

U(x) = −V 2
0 e

2ix − 2
d2

dx2
ln

[
c+

∫ x

0

I21 (V0e
iξ)dξ

]
, (26)
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FIG. 2 (a) Superpotential (25) with c = 1 + i; (b) Periodic
superpotential (26) with c = 0.5− 2i and V0 = 1.

see Fig. 2(b). The diffraction (dispersion) relation of this
superpotential (for all c values) is the same as that of the
original potential U(x) = −V 2

0 e
2ix, i.e., E = −(k+2m)2,

where k is in the first Brillouin zone, k ∈ [−1, 1], and m
is any non-negative integer.
If U(x) is a localized real potential, then SUSY allows

to construct localized complex superpotentials (24) with
all-real spectra (Miri et al., 2013; Yang, 2014b).

F. Soliton theory and PT -symmetric potentials

Nonlinear integrable equations solvable by the inverse
scattering transform technique play a special role in
physics and mathematics. Some of those equations, like
the Korteweg-de Vries (KdV) equation

ut − 6uux + uxxx = 0, (27)

and the nonlinear Schrödinger (NLS) equation

iψt + ψxx + g|ψ|2ψ = 0 (28)

with g being a real constant, constitute fundamental
models describing a large variety of physical phenom-
ena (Ablowitz and Segur, 1981; Dodd et al., 1982; Fad-
deev and Takhtadjan, 1987; Lamb, 1980; Novikov et al.,
1984). The starting point of the inverse scattering trans-
form is the representation of a nonlinear equation as a
compatibility condition for two linear equations (the so-
called Lax pair). Wadati (2008) noticed that the Lax
representation offers a way to construct a wide class of
PT -symmetric (as well as complex asymmetric) poten-
tials with purely real spectra. Indeed, let us consider the
modified Korteweg-de Vries (mKdV) equation

wt + 6w2wx + wxxx = 0 (29)

for the real function w(x, t), where x ∈ R is the spa-
tial coordinate, and t > 0 is time. We will consider de-
caying functions: lim|x|→∞w(x, t) = 0. Equation (29)
is the compatibility condition for the Zakharov-Shabat
(ZS) spectral problem (Zakharov and Shabat, 1971)

φ1x + iζφ1 = w(x, t)φ2, φ2x − iζφ2 = −w(x, t)φ1, (30)

where ζ is the spectral parameter, and the linear system

φ1t = 2iζ(w2 − 2ζ2)φ1 + (2iζwx − 2w3 − wxx + 4ζ2w)φ2,

φ2t = (2iζwx + 2w3 + wxx − 4ζ2w)φ1 − 2iζ(w2 − 2ζ2)φ2.

Then the new function φ = φ2 − iφ1 solves the linear
Schrödinger equation Hφ = Eφ, where H is given by (6)
with potential (Lamb, 1980, Sec. 2.12)

U(x, t) = −w2(x, t) − iwx(x, t), (31)

and E = −ζ2. Here time t plays the role of a parame-
ter. If w(x, t) is an even function, the potential U(x, t) is
PT symmetric; for general real w(x, t), this potential is
complex and asymmetric.
Discrete eigenvalues of the ZS problem (30) are ei-

ther purely imaginary or situated symmetrically with re-
spect to the imaginary axis. Its continuous spectrum
is the real axis. Thus from any solution w(x, t) of the
mKdV equation (29) that possesses purely imaginary
discrete eigenvalues of (30), one can obtain a complex
potential U(x, t) defined by (31), with purely real spec-
trum. Further, we notice that w(x, t) depends on the
parameter t, while the spectrum of the ZS problem does
not depend on t. This means that t can be consid-
ered as a “deformation” parameter, and w(x, t) gener-
ates a family of deformable potentials U(x, t) with real
spectra. As an example, we present a PT -symmetric
potential obtained from the two-soliton solution of the
mKdV equation, with ζ1,2 = iη1,2/2, where 0 < η1 < η2.
It is generated by the function (here t = 0, and not
indicated) (Wadati, 2008; Wadati and Ohkuma, 2008)
w(x) = 2ǫ∆g(x)/f(x), where ∆ = (η1 + η2)/(η1 − η2),
g = η1 cosh(η2x) + η2 cosh(η1x),

f = cosh[(η2 + η1)x] +
4ǫ2η1η2

(η1 − η2)2
+∆2 cosh[(η2 − η1)x],

and has the form

U(x) = −4∆2 (g/f)
2 − 2iǫ∆(g/f)x . (32)

By changing η1,2 or ǫ one can modify the potential shape
without violating the reality of the spectrum.
In addition we notice that the potentials of the form

(31) were also discussed in the earlier literature in the
context of supersymmetry (Andrianov et al., 1999; Bal-
antekin, Seger, and Fricke, 1991; Unanyan, 1992) and in
application to neutrino physics (Balantekin, Fricke, and
Hatchell, 1988; Nötzold, 1987).

III. PT SYMMETRY IN NONLINEAR PHYSICS

Rapidly growing interest in PT symmetry and particu-
larly in its interplay with other physical phenomena, such
as periodicity, discreteness, or nonlinearity, is stimulated
by possibilities of extending the paradigm far beyond its
quantum mechanical applications. In this section, we re-
view suggestions on implementation of PT symmetry in
physical systems of different natures.
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A. Optics

Paraxial optics vs. quantum mechanics. The Schrödinger
equation (1) with the Hamiltonian (6)

iΨt +Ψxx−U(x)Ψ = 0 (33)

has direct mathematical analogy with the theory of op-
tical wave propagation under the paraxial approxima-
tion (El-Ganainy et al., 2007; Makris et al., 2008; Mus-
slimani et al., 2008a). To introduce this analogy, we con-
sider propagation of a linear monochromatic TE wave
Eeiω0t with frequency ω0, in a waveguide confined to the
(x, z) plane, i.e., bounded in the domain −ℓ ≤ y ≤ ℓ,
where 2ℓ is the waveguide width, by parallel claddings
(say, by Bragg mirrors). The field diffraction in such
a waveguide is described by the Helmholtz equation
∇2E + k20n

2(x)E = 0, where k0 = ω0/c. Let the re-
fractive index of the medium be weakly modulated along
the x-direction, i.e., n(x) = n0 + n1(x), where n0 is
the constant component, and |n1(x)| ≪ n0 describes the
modulation. In the paraxial approximation (i.e., under
small diffraction angles) the field can be represented as
E = ψ(ξ, ζ)φ(y)eiβz , where β is the propagation con-
stant, φ(y) describes the transverse distribution of the
field and solves the equation d2φ/dy2 + k20n

2
0φ = β2φ

subject to the continuity boundary conditions at y = ±ℓ
(determined by the cladding), and ψ(ξ, ζ) solves Eq. (33)
where U(x) = n0n1(x)/k

2
0 and the independent variables

were re-named as ζ = k0z → t and ξ = k0x→ x/
√
2.

Thus variation of the dielectric permittivity −ε(x) =
−n2(x), in optical applications plays the role of a po-
tential in the Schrödinger equation, and non-Hermitian
quantum mechanics can be emulated by optical media
with the refractive index or permittivity [cf. (7)]

n(x) = n∗(−x), or ε(x) = ε∗(−x). (34)

Modeling pulse propagation through a PT -layer. A simple
model for refractive index (34) is provided by two cells
with a gas of two-level atoms described by the Lorentz
model. It was used by Ruschhaupt, Delgado, and Muga
(2005) for description of pulse propagation through a
PT -symmetric layer inserted in a waveguide confined by
two metallic plates parallel to the (x, y)-plane and hav-
ing distance 2a between them. If the atomic popula-
tion in the left cell (−ℓ < x < 0) is inverted, and in
the right cell (0 < x < ℓ) the atoms are in the ground
state, then the dielectric permittivity for a monochro-
matic beam with central frequency ω reads (Chiao, 1993)
ε = 1 − f(x)ω2

p/(ω
2 − ω2

0 + 2iγω), where f(x) = −1 for
x ∈ (−ℓ, 0) (cell with gain), f(x) = 1 for x ∈ (0, ℓ)
(cell with loss) and zero for |x| > ℓ, ωp and ω0 are the
plasma and resonance frequencies, respectively, and γ

is the damping constant. Assuming that the pulse fre-
quency is close to the resonant one, i.e. ω−ω0 ≪ γ, and
that the plasma frequency is small enough, ωp ≪ γ, the
system can be shown to obey Eq. (33) with the complex
potential U(x) ≈ −iω2

pf(x)/4γ (where distance is mea-
sured in units of a/π). Accounting also for the real part
of the dielectric permittivity such step-like potential can
be re-written as

U =





V0 + iγ x ∈ (−ℓ, 0), (gain)
V0 − iγ x ∈ (0, ℓ), (absorption)
0 |x| > ℓ, (vacuum)

(35)

with V0 and γ being real positive constants.

Discrete optics. Interplay between gain and loss in wave
scattering attracted additional attention due to sugges-
tions on constructing nonreciprocal optical devices (Po-
ladian, 1996). In Greenberg and Orenstein (2004); Kul-
ishov et al. (2005a,b) this problem was considered for
a guiding medium with a periodic modulation of the
real and imaginary parts of the refractive index, U =
δc cos(2β0x) + iδs sin(2β0x), where δc and δs are the
depths of modulaions, and β0 = 2π/Λ is defined by
the lattice period Λ. Lin et al. (2011) considered this
phenomenon, termed as unidirectional invisibility, for
the particular PT -symmetric configuration. In the pres-
ence of weak constant absorption γ̃, i.e., when U(x) →
U(x) + iγ̃, one can employ the two-mode approximation

ψ(x, t) ≈ [q1(x)e
iβx+ q2(x)e

−iβx]e−iβ2t, where q1(x) and
q2(x) are slowly varying amplitudes of the forward and
backward propagating waves. Using this ansatz in the
paraxial equation (33), in the leading order one obtains
[cf. (11)]

i
dq

dx
= Hq, q =

(
q1
q2

)
, H =

(
−iγ κ12
κ21 iγ

)
, (36)

where γ = γ̃/(2β), κ12 = (δs − δc)e
2ibx/4β, κ21 = (δs +

δc)e
−2ibx/4β, and b = β0 − β is the phase mismatch.

System (36) is also known as the simplest model for
stationary propagation of light in an optical coupler with
gain and loss (Chen, Snyder, and Payne, 1992). In-
deed, if one considers the real part of the dielectric per-
mittivity (34) to have two localized and well separated
maxima, then U(x) has the form of a double-well po-
tential in quantum mechanics. The field in (33) can
be searched in the form (Landau and Lifshitz, 1977)
Ψ = [q1(z)E1(x) + q2(z)E2(x)]e

iβz , where E1,2(x) are
the field distributions localized in the vicinity of the po-
tential minima. Then by straightforward algebra one can
show that q1,2 solve the system (36) with properly defined
matrix elements.
The link between (36) and (33), yet in a different set-

ting where each of the two arms of a coupler has bal-
anced gain and loss, was established by El-Ganainy et
al. (2007), who recognized the relevance of the model for
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FIG. 3 (Color online) Left panel: details of two-waveguide
layered structure which includes the Cr stripe and features
complex refractive index; right panel: scanning electron mi-
croscopy picture of the finalized device. Adapted from Guo
et al. (2009).

PT -symmetric optics. If PT symmetry is unbroken, a
medium with balanced gain and loss allows for station-
ary propagation of light, while the light undergoes atten-
uation or amplification if the PT symmetry is broken.
Moreover, since the existence of an exceptional point,
and hence the transition between different propagation
regimes, do not require the exact balance between gain
and loss [Sec. II.B], one can introduce the concept of a
passive PT -symmetric coupler (Guo et al., 2009). In-
deed, consider an imbalanced generalization of Eqs. (36),

iq̇1 = −iγ1q1 + κq2 iq̇2 = iγ2q2 + κq1, (37)

where γ1 6= γ2. Hereafter an overdot stands for the
derivative with respect to an evolution variable, which
can be either the propagation distance or time, de-
pending on the context. By substitution q1,2(z) =
q̃1,2(z) exp[(γ2 − γ1)z/2] one verifies that q̃1,2 solves (36)
with γ = (γ1 + γ2)/2 and κ12 = κ21 = κ, thus re-
ducing the dissipative system (37) to a PT -symmetric
one. Propagation of a 1.55µm–wavelength beam in a
passive coupler fabricated on a multilayer AlxGa1−xAs
hetero-structure with one nonlossy waveguide and an-
other waveguide with controlled absorption was used in
the experiment of Guo et al. (2009) (see Fig. 3), where
transition between broken and unbroken PT symmetries
was observed for the first time. Later, PT -symmetry
breaking was observed experimentally in different physi-
cal settings, such as the microwave billiard (implemented
in a microcavity) (Bittner et al., 2012) and polarization
of the electromagnetic radiation interacting with a meta-
surface (Lawrence et al., 2014).
PT -symmetry phase transition in a coupler with gain

and loss was observed by Rüter et al. (2010). In the ex-
perimental setup two waveguides were created in a pho-
torefractive Fe-dopped Lithium niobate substrate. The
loss was determined by excitations of electrons from
Fe2+-centers, while gain was created by the pump light
through the two-wave mixing determined by the concen-
tration of Fe3+centers. The model was described by
Eqs. (37). Having the loss coefficient γ1 fixed at the
level γ1 = 3.3 cm−1 and increasing the gain coefficient γ2,
Rüter et al. (2010) observed spontaneous PT -symmetry
breaking as shown in Fig. 4.
System (36) also reveals other important effects ob-

servable in media with balanced gain and loss. Kulishov

FIG. 4 (Color online) Measured density distribution (upper
panels) and relative phase difference between the two compo-
nents (lower panels) of the PT -symmetric coupler in unbroken
(a) and broken (b) PT symmetries. Below the PT -symmetry
breaking threshold the phase difference lies in the interval
[0, π], depending on the magnitude of gain, while above the
threshold this value is fixed at π/2. Reprinted by permission
from Macmillan Publishers Ltd: [Nature Physics] (Rüter, C.
E., K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M.
Segev, and D. Kip, 2010, Observation of parity-time symme-
try in optics. Nat. Phys. 6, 192–195), copyright 2010.

et al. (2005a) found that a finite medium with periodi-
cally modulated complex refractive index (or a coupler)
of length L possesses distinct transmission and reflection
properties depending on whether the light is applied at
z = 0 or at z = L. This unidirectional propagation,
which was also studied for the PT -symmetric configura-
tion (Lin et al., 2011), is described by the entries Mij of
the transfer matrix M(L) defined through the relation
q(L) =M(L)q(0). In particular, defining the left (right)
transmission and reflection coefficients tL(R) and rL(R)

by the conditions q2(L) = 0 (q1(0) = 0), one obtains

tL = tR =
1

M22
, rL = −M21

M22
, rR =

M12

M22
. (38)

The difference in light propagation from the left and right
can be described by the contrast ratio C = (|rL|2 −
|rR|2)/(|rL|2 + |rR|2) (Feng et al., 2013). For the sys-
tem (36) with β0 = β one obtains C = 2δ/(1 + δ2),
where δ = δs/δc. C achieves unity at δ = 1. This phe-
nomenon was observed in the experiments of Feng et al.
(2011, 2013) at wavelength of 1.55 µm using Si waveg-
uides with periodic dissipation implemented by the em-
bedded Ge/Cr structures. In order not to violate the
Lorentz reciprocal theorem (see e.g. Haus (1984)), the
prediction on differences in the left and right propaga-
tions of a given mode is explained by excitation of the
orthogonal modes, when the input channel is changed to
the opposite one (Fan et al., 2012b).

Nonlinearity. As soon as optical applications are consid-
ered, accounting for nonlinearity becomes a natural step.
Considering light propagation in a Kerr-type medium,
where the refractive index is a function of the field inten-
sity, n(x, |ψ|2) = n(x)+n2|ψ|2, Eq. (33) is generalized to
the NLS equation with a potential U(x), i.e.,

iΨt + Ψxx−U(x)Ψ + g|Ψ|2Ψ = 0, (39)
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FIG. 5 (Color online) Mapping of the pulse propagation in
loops consisting of dispersion compensating fibers into a 2D
lattice corresponding to (a) locally PT -symmetric and (b)
globally PT -symmetric settings. Red and blue segments cor-
respond to pulses traveling during the paths with gain and
with losses. Alternating gain and losses are shown by purple
rings in (b). From Wimmer et al. (2015).

where g = n0n2/k
2
0 is the nonlinear coefficient which can

be either positive (focusing medium) or negative (defo-
cusing medium). Equation (39) with focusing nonlin-
earity and a PT -symmetric periodic potential was in-
troduced by Musslimani et al. (2008a). The nonlinear
generalization of the coupler model (36), i.e., a nonlinear
PT -symmetric dimer

iq̇0 = −iγq0 + κq1 + χ|q0|2q0,
iq̇1 = iγq1 + κq0 + χ|q1|2q1, (40)

was introduced by Ramezani et al. (2010) and Sukho-
rukov, Xu, and Kivshar (2010).

Synthetic photonic lattices. An idea of experimental im-
plementation of a fully discrete (discrete “time-space”)
PT -symmetric lattice was proposed by Miri et al.
(2012b) and Regensburger et al. (2012). Such a synthetic
lattice is created in the time-domain. It is produced by
two fiber loops having slightly different lengths and cou-
pled by a 50% coupler illustrated in Fig. 5. If the gain
and loss are held constant in each loop, then the lattice
is locally PT symmetric, i.e., symmetric with respect to
the P inversion (n → −n) combined with the complex
conjugation for a fixed value of m. If gain and loss alter-
nate on every other round trip the synthetic lattice obeys
global PT symmetry, with the above P operator and T -
operator inverting m → −m with simultaneous complex
conjugation.
Pulses, whose fields are denoted by umn and vmn , travel

in shorter and longer loops, respectively (Regensburger
et al., 2011). Here the upper index m stands for the
time interval as measured in round trips. The subindex
n denotes the position of a single pulse during one cycle.
The nonlinearity of the fibers leads to phase accumula-
tion proportional to the pulse intensities. The system
evolution is modeled by the nonlinear map (Wimmer et

al., 2015)

um+1
n =

√
Gu/2

(
umn+1 + ivmn+1

)
e

iΓ
2 |um

n+1+ivm
n+1|2eiφn ,

vm+1
n =

√
Gv/2

(
vmn−1 + iumn−1

)
e

iΓ
2 |vm

n−1+ium
n−1|2 ,

(41)
where gain and loss factors Gu,v characterize the pulse
amplitudes at the coupler output. The phase function
φn, controlled by the phase modulator in the experiment,
is the imposed phase shift governing the PT -symmetric
potential (in addition to the phase shift π/2 generated
by the coupler, which is also accounted for). The case
Gu,v = 1 and φn = 0 corresponds to the conservative
case. The described synthetic network allowed Wim-
mer et al. (2015) to report the first observation of PT -
symmetric lattice solitons (see Sec. IV.E below).

PT symmetry introduced by time management. The idea
of inducing PT symmetry by time management can be
developed further by inclusion of non-autonomous gain-
and-loss coefficients θ(t) in the classical linear oscilla-
tor (Tsironis and Lazarides, 2014):

q̈ + 2θ(t)q̇ + ω2
0q = 0. (42)

If θ(t) is periodic, θ(t + T ) = θ(t), and acquires posi-
tive and negative values, e.g., θ = γ for 0 ≤ t < T/2
and θ = −γ for T/2 ≤ t < T , then the system can
feature bounded or unbounded dynamics, depending on
the choice of parameters ω0 and γ, which resembles PT -
symmetric behavior.

B. PT lasers

One of the most important applications of PT symme-
try is in the design of new single-mode lasers. Laser cav-
ities typically support a large number of closely spaced
modes, which is undesirable since it leads to mode com-
petition, random fluctuations, worse monochromaticity
and worse laser quality. Recently it was demonstrated
experimentally that utilizing the concepts of PT symme-
try and PT -symmetry breaking, new laser devices with
enhanced single-mode operations and greater tunability
can be realized (Feng et al., 2014; Hodaei et al., 2014).
The basic idea is that, by strategically designing gain and
loss to obey PT symmetry, almost all of the modes in the
laser cavity can be neutralized, except for a single lasing
mode which amplifies. Hence single-mode operation is
achieved.
In the experiment by Feng et al. (2014), the PT -

symmetric microring resonator was designed with 500-
nm-thick InGaAsP multiple quantum wells (MQWs) on
an InP substrate [Fig. 6(a)]. InGaAsP MQWs have
a high material gain coefficient around 1500 nm. The
gain/loss modulation, satisfying an exact PT symmetry
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FIG. 6 (Color online) (a) Schematic of the PT microring
laser. The diameter and width of the microring resonator
are 8.9 µm and 900 nm, respectively. (b) Multimode lasing
spectrum observed from the typical microring WGM laser,
showing a series of lasing modes corresponding to different
azimuthal orders. (c) Single-mode lasing spectra of the PT
microring lasers operating at the m = 53 and m = 55 az-
imuthal orders. Adapted from Feng, L., Z. J. Wong, R. Ma,
Y. Wang, and X. Zhang, 2014, Single-mode laser by parity-
time symmetry breaking. Science 346, 972–975. Reprinted
with permission from AAAS.

operation, was periodically introduced using additional
Cr-Ge structures on top of the InGaAsP MQW along
the azimuthal direction (ϕ):

∆n =





ngain = −in′′

[
lπ
m < ϕ <

(l+ 1
2
)π

m

]
,

nloss = in′′
[
(l+ 1

2
)π

m < ϕ < (l+1)π
m

]
,

(43)

where n′′ denotes the index modulation in only the imag-
inary part; m is the azimuthal order of the desired
whispering-gallery mode (WGM) in the microring; and
l = 0, 1, 2, . . . , 2m− 1 divides the microring into 2m pe-
riods. Due to the rotational symmetry of the microring,
PT -symmetry breaking in this resonator is threshhold-
less, i.e., it occurs even if the strength of gain/loss mod-
ulation is infinitesimal.
In the absence of the Cr/Ge gain-loss modulation (43),

a typical multimode lasing spectrum with different WGM
azimuthal orders was observed [Fig. 6(b)]. But under this
PT -symmetric index modulation, a single lasing mode
was obtained [Fig. 6(c)]. The location of this single mode
and its power efficiency are close to those without the
gain-loss modulation [Fig. 6(b)].
In a different experiment by Hodaei et al. (2014),

a single-mode PT laser was demonstrated by utilizing
two adjacent microrings, one with gain and the other
with loss (the active ring was based on InGaAsP quan-
tum wells), see Fig. 7. In this case, due to linear cou-
pling between the two microrings, PT -symmetry break-
ing has a gain/loss threshold, which is equal to the cou-
pling constant between the rings. Thus when the gain-
loss contrast is increased beyond this coupling constant,
PT -symmetry breaking occurs, and an amplifying lasing
mode appears.
The experimental results are summarized in Fig. 7.

When there is only one active ring, or both rings are ac-
tive, a familiar multimode lasing spectrum was observed
[Fig. 7(a)]. But when the two rings are placed in PT

FIG. 7 (Color online) (a) Spectrum obtained from an evenly
pumped pair of microrings. (b) The intensity pattern shows
that both resonators equally contribute. (c) Single-moded
spectrum under PT -symmetric conditions. (d) Lasing ex-
clusively occurs in the active resonator. Adapted from Ho-
daei, H., M.-A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, 2014, Parity-time-symmetric microring
lasers. Science 346, 975–978. Reprinted with permission from
AAAS.

configuration, a single dominant spectral peak appears,
resulting in single-mode operation [Fig. 7(c)].

In both experiments, the laser design was based on a
linear model by assuming a steady lasing state with a
certain gain coefficient. But it should be recognized that
lasing itself is an intrinsically nonlinear process. Non-
linear modeling of these PT -laser devices in the broken
phase is an important open question. Below the PT -
symmetry breaking threshold such ring structures sup-
port stable nonlinear vortex modes (Kartashov, Konotop,
and Torner, 2015).

C. Atomic gasses

Atomic media are intrinsically dissipative. However, it
was suggested by Scully (1991) and Fleischhauer et al.
(1992) and shown experimentally by Zibrov et al. (1996)
that by using destructive interference in the imaginary
part of the dielectric susceptibility it is possible to ob-
tain sufficiently large real refractive indices at small ab-
sorption. This is achievable in a gas of multilevel atoms
subject to two far-off-resonant control fields (Proite et
al., 2008; Yavuz, 2005) or in a mixture of isotopes of two
Λ-atoms (O’Brein et al., 2001; Simmons et al., 2012).

The respective atomic schemes use two Raman reso-
nances, one of which results in gain and another leads
to absorption. The imaginary part of probe-field sus-
ceptibility becomes a non-monotonic function of the fre-
quency with positive (gain) and negative (absorbing) do-
mains. Moreover, real and imaginary parts of the sus-
ceptibility can be designed respectively as even and odd
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FIG. 8 (Color online) (a) Isotopes of Λ-atoms and Raman
transitions. (b) A geometry for the atomic cell and fields
applied. (c) Locally parabolic (Hang et al., 2013) and (d) two-
channel (Hang et al., 2014) spatial distributions of the real
(solid line) and imaginary (dashed line) parts of the refractive
index.

functions of probe-field frequency (O’Brein et al., 2001;
Proite et al., 2008; Simmons et al., 2012; Yavuz, 2005).
For a monochromatic beam the change ω → −ω can be
viewed as the time inversion which, when accompanied
by the spatial symmetry, can lead to the PT -symmetric
refractive index.
Hang, Huang, and Konotop (2013) considered a

scheme shown in Fig. 8(a,b). A ground (|g, s〉), lower
(|a, s〉), and excited (|e, s〉) atomic states of two isotopes
(s = 1, 2) with densities N1,2 are coupled by two strong
control fields and by a probe field with the half Rabi fre-
quencies Ω1,2 and Ωp, respectively. All fields are far-off
resonance, i.e., ∆s ≫ Ωs, where ∆s = ωe,s − ωa,s − ωc is
the one-photon detuning, ~ωl,s (l = g, a, e) is the energy
of the state |l, s〉 and ωp (ωc) is the center frequency of
the probe (control) field. The first scheme (s = 1, δ1 > 0)
exhibits two-photon absorption for the probe field, while
the second one (s = 2, δ2 < 0) provides two-photon gain.
The mixture of isotopes is loaded in an atomic cell

with Bragg cladding [Fig. 8(b)]. Spatial modulation
of the susceptibility is achieved by a continuous-wave
laser field (Stark field) ES(x) cos(ωSt) with the ampli-
tude ES and frequency ωS. Such field originates x-
dependent shifts of the one-photon detunings ∆s(x) =
∆s − (αe,s − αg,s)E

2
S(x)/(4~).

The susceptibility for the probe field is computed from
the density-matrix formalism (O’Brein et al., 2001):

χp(x)

χ0
=

δ1 − iγag
(δ1 +∆1 − iγeg)(δ1 − iγag)− |Ω1|2

−η |Ω2|2(∆2 + iγag)
−1

(δ2 +∆2 − iγeg)(δ2 − iγag)− |Ω2|2
. (44)

Here χ0 = N1d
2
eg,1/(ε0~), and η = N2d

2
eg,2/N1d

2
eg,1 char-

acterizes the ratio between the densities, ε0 is the vac-
uum permittivity, deg,s stands for the dipole moment of
the transition between the ground and excited states of

the sth system, and γij are dephasing rates at transitions
i↔ j.

A refractive index satisfying PT symmetry conditions
(34) can be obtained numerically using an optimiza-
tion procedure (Hang, Huang, and Konotop, 2013). As
an example, implementation of this algorithm in a gas
of rubidium isotopes yields PT -symmetric permittivity
χp ≈ 10−3(7.5 cos ξ + i0.394 sin ξ), where ξ = 2πx/λS
and λS is the Stark field wavelength.

The cell confines atoms in space and can be used to
cut undesirable deviations from the PT symmetry. This
allows for construction of refractive indexes of differ-
ent shapes, such as parabolic (Hang, Huang, and Kono-
top, 2013) and double-hump (Hang et al., 2014), see
Fig. 8(c,d). The described ideas were further generalized
through the use of more sophisticated atomic schemes,
like four-level atoms (Li, Dou, and Huang, 2013), as well
as involving nonlinear effects (Hang et al., 2013, 2014).
Effect of nonlinearity on the PT -symmetry phase tran-
sition in finite-size systems with various profiles of the
complex refractive index were studied by Walasik, Ma,
and Litchinitser (2015).

D. Plasmonic waveguides

The model (37) appears to be suitable for descrip-
tion of plasmonic waveguides. Such systems possess
intrinsic Joule’s loss due to metallic components. On
the other hand, they can be combined with gain mech-
anisms achieved by plasmon amplification using stim-
ulated emission of radiation (Bergman and Stockman,
2003) or with dielectric active media. These ideas were
proposed by Benisty et al. (2011) and Lupu, Benisty,
and Degrion (2013), who suggested to use long range
surface plasmon polariton waveguides based on metallic
layers. Strongly confined guidance can be achieved using
schemes of hybrid dielectric-plasmonic waveguides illus-
trated in Fig. 9.

The first device [Fig. 9(a)] is a long-range plasmonic
waveguide working at the 1.55 µm wavelength. The pro-
totypical unit (Degiron et al., 2013) has an Au lossy
stripe 36 nm × 4.6µm cross-section and SU8 stripe with
gain of the 1.5µm× 2µm cross-section embedded in
a transparent layer of benzocyclobutene-based polymer
(BCB). The Au stripe and SU8 waveguide are separated
by the distance d = 2.5µm. The antisymmetric and sym-
metric modes, which are almost TM-polarized, are shown
in the upper and lower panels, respectively.

The second hybrid model [Fig. 9(b,c,d)] consists of
two waveguides, each representing a high-index (nH) sol-
gel inverse rib optical waveguide linked to a gold (or
silver) metallic plate through the low-refractive-index
(nL) filling (Benisty and Besbes, 2010). The field (at
λ = 633 nm) in the waveguide is concentrated at the tip
end (the domain marked by red color and the transverse
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FIG. 9 (Color online) (a) Antisymmetric and symmetric
modes in a long-range plasmonic waveguide. The color map
shows y-electric field components of the modes. (b) Cross-
section of a single hybrid waveguide. (c) and (d) Even and
odd modes in coupled waveguides, respectively. Adapted
from Benisty et al. (2011).

width b). The figure shows calculations performed for the
lossy structure. Gain can be introduced by pumping the
high-index material in a limited region of the sole inverse
rib and is expected to be on the order of 500 cm−1. Al-
ternately, the gain can be provided by adding organic el-
ements to the structure (Benisty et al., 2011) such as op-
tically pumped polymer with dye (Noginov et al., 2008).

Multilayered plasmonic waveguides can be made of
identical parallel metallic plates separated by dielectrics.
To ensure PT symmetry, the dielectric layers should have
alternating gain and loss (from the two sides of the metal-
lic layer). Such a structure was theoretically studied by
Alaeian and Dionne (2014a), where the calculations were
performed for Ag, as a lossless metal, whose dielectric
permittivity is given by ǫAg = 1 − (ωp/ω)

2, and TiO2

layers as dielectric slabs with n = 3.2 ± ik, where k is
tunable gain or loss. A stack of five layers of length
150 nm and width 30 nm was considered, operating at
subwavelength frequencies of (transverse-magnetic) TM
polarized plasmons. In the absence of gain and loss, the
metamaterial exhibits negative index response resulting
in negative diffraction. When PT symmetry is imposed,
the authors numerically obtained several effects including
double negative refraction, unidirectional invisibility, and
reflection and transmission coefficients whose moduli si-
multaneously exceed unity. A detailed study of spectral
characteristics of this stack was performed by Alaeian
and Dionne (2014b). A general analysis of PT sym-
metry in subwavelength guiding optical systems, based
on the full system of Maxwell’s equations, rather than
the paraxial approximation, was given by Huang et al.
(2014). In particular, it was found that, on the subwave-
length scale, the broken PT symmetry may be restored,

FIG. 10 (Color online) (a) A PT -symmetric dimer of SSRs;
(b) schematic illustration of a 1D PT -metamaterial; (c) Do-
mains of broken and unbroken PT symmetry for the array
shown in (b); the phase transition line γPT is computed in
Sec. IV.B.3. Based on Lazarides and Tsironis (2013).

while the paraxial approximation misses this possibility.

E. Metamaterials and Transformation Optics

One-dimensional PT -symmetric metamaterial. Now we
turn to an idea of Lazarides and Tsironis (2013) on im-
plementation of PT symmetry in metamaterials (Smith,
Pendry, and Wiltshire, 2004). The simplest building
block for such systems, meta-atoms, is a planar highly
conductive split-ring resonator (SRR) (Sarychev and
Shalaev, 2004). A typical SRR is characterized by losses.
To compensate these losses, one can consider coupling
of a lossy SRR with one incorporating gain elements
[Fig. 10(a)]. Assembling such SRR dimers in an array,
one can build a PT -symmetric metamaterial [Fig. 10(b)].

Each SRR can be regarded as an RLC circuit with self-
inductance L, Ohmic resistance R, and capacitance C.
The nonlinearity can be introduced by a Kerr dielectric
(Zharov, Shadrivov, and Kivshar, 2003) with ε(|E|2) =
ε0

(
εℓ + α|E|2/E2

c

)
, where ε0 is the permittivity of the

vacuum, εℓ is the linear dielectric permittivity, Ec is a
characteristic electric field, and α = ±1 is the sign of
nonlinearity. The charge Qn of the nth SRR and capaci-
tance C = ε(|Eg|2)A/dg [where A is the area of SRR wire
cross section and dg the size of the gap, see Fig. 10(a)]
are related as C(Un) = dQn/dUn, where Un = dgEgn is
the voltage across the SRR’s gap (Lazarides, Eleftheriou,
and Tsironis, 2006). In the weakly nonlinear limit, Un

can be expressed by Un/Uc = qn − βq3n + O(q5n), where
qn = Qn/(CℓUc), Cℓ = ε0εℓA/dg is the linear capaci-
tance, Uc = dgEc, and β = α/(3εℓ) .

The SRRs interact with each other through the near
field due to magnetic dipole-dipole interactions [electric
coupling in the geometry shown in Fig. 10 can be ne-
glected (Hesmer et al., 2007)]. Then dynamical equations
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for the charges Qn and currents In read (n = 1, 2)

dQn

dt
= In, L

dIn
dt

− (−1)nRIn + Un =M
dI3−n

dt
+ En,

where M is the mutual inductance of the SRRs deter-
mining the strength of the coupling, En is the electro-
motive force induced in each SRR by the applied field,
and Un is expressed through qn as indicated above. It is
also taken into account that the first SRR (n = 1) has
losses described by the resistance R, while the second
SRR (n = 2) has gain which has the same strength as
losses, i.e., −R.
Using the dimensionless variable τ = t/

√
LCℓ and

defining γ = R
√
Cℓ/L > 0 and ǫn = En/Uc, one arrives

at the system

q̈1 + λq̈2 + q1 + γq̇1 = βq31 + ǫ1(τ),
λq̈1 + q̈2 + q2 − γq̇2 = βq32 + ǫ2(τ),

(45)

where q̇n = dqn/dτ .
In the linear limit (α = 0) and in the absence of the

external driving [ǫn(τ) ≡ 0], eigenfrequencies Ω (q1,2 ∝
eiΩτ ) of dimer (45) read

Ω2
± =

2− γ2 ±
√
4λ2 − 4γ2 + γ4

2(1− λ2)
. (46)

Considering λ2 < 1, which corresponds to a typical phys-
ical setting and ensures stable dynamics in the conserva-
tive case (i.e., at γ = 0), one finds that unbroken PT
symmetry (with real Ω±) corresponds to 0 ≤ γ ≤ γPT =√
2− 2

√
1− λ2, where γPT is the point of phase transi-

tion where the real eigen-frequencies Ω+ and Ω− coalesce.
At γ > 2 the dimer is unstable for arbitrary coupling λ.

Transformation Optics. Versatility of design of metama-
terials allowed for development of a new area of the
Transformation Optics. The idea (Leonhardt, 2006;
Pendry, Schurig, and Smith, 2006) consists in designing
a refractive index in a way to guide geometrical rays at
will, in particular, avoiding a chosen domain thus making
it invisible. The required refractive index can be con-
structed with help of an appropriate coordinate trans-
formation r′ = F(r) to Cartesian coordinates r′ where
electric and magnetic fields {E,H} are emitted by the
given sources {J,M}. Such coordinate transformation
results in transformations of the electric and magnetic
fields {E,H}, source current and magnetization {J,M},
and permittivity and permeability tensors {ε̂, µ̂}, which
can be obtained from the Maxwell equations (Castaldi et
al., 2013):

{E,H}(r) = ΛT (r) · {E′,H′}(r′), (47a)

{J,M}(r) = det[Λ(r)]Λ−1(r) · {E,H}(r′), (47b)

ε̂(r) = µ̂(r) = det[Λ(r)]Λ−1(r) · [Λ−1(r)]T , (47c)

where Λ = ∂(x′, y′, z′)/∂(x, y, z) is the Jacobian of the
transformation. In practice the so designed device per-
forms prescribed optical transformation of the rays in a
flat real space r with inhomogeneous perimittivity and
permeability to the homogeneous space r′.

Castaldi et al. (2013) extended these ideas for design-
ing PT -symmetric metamaterials. In the vectorial prob-
lem the requirement for PT symmetry can be reduced to
ε̂(r) = ε̂∗(−r) [or µ̂(r) = µ̂∗(−r)], which can be fulfilled if
the chosen transformation ensures Λ(r) = Λ∗(−r). Thus
the coordinate transformation must be complex. It turns
out, however, that in the described procedure a contin-
uous transformation r′ = F(r) leads to PT -symmetric
potentials having no spontaneous PT -symmetry break-
ing. Potentials with exceptional points can be designed
using suitable discontinuous transformations.

As a simple but important example consider the trans-
formation x′ = x, y′ = y and z′ = ib(1 ∓ z/d) where
Rez ≷ 0, Imz = 0+, and |z| ≤ d (Castaldi et al., 2013).
Then for the TM polarization the relevant nonzero com-
ponents of the tensors ε̂ and µ̂ are given by: εxx = µxx =
∓ib/d, and εzz = ±id/b. This transformation is partic-
ularly interesting for radiation emitted by a line-source
M ′

y = δ(x′)δ(z′ − ib) in Cartesian coordinates mapping
it in the real-space source My = δ(x)δ(z) in a medium
with complex permittivity. The real axis z′ = 0 is trans-
formed into the slab boundaries z = ∓d. The respective
metamaterial slabs can be fabricated by periodic stack-
ing of subwavelength layers of material constituents with
opposite-signed permittivities and permeabilities.

PT -symmetry breaking in polarization space. Turning now
to 2D metamaterials, we describe the direct observa-
tion of PT -symmetry breaking by Lawrence et al. (2014)
using THz time domain spectroscopy of the metasur-
faces as the one shown in Fig. 11. The authors ex-
plored the dependence of the transmitted field polar-
ization E = (Ex, Ey)

T eiωt on the metasurface proper-
ties defined by the Lorentzian dipoles p = (px, py)

T ,
px,y ∝ eiωt, oriented along perpendicular directions (cor-
responding to the geometry of the meta-molecules shown
in Fig. 11), resonating at the same frequency ω0, and
characterized by the decay rates γy < γx ≪ ω0. The link
between the field and the dipoles is given by the polariz-
ability matrix written as

Sp+Gxyσ1p− iΓσ3p = gE. (48)

Here S = δ+Gxx+i(γx+γy)/2, Γ = (γx−γy)/2, the real
coupling Gxy is the summation of retarded fields from all
x-oriented antennas acting on an y-oriented antenna, Gxx

is the summation of retarded coupling from all antennas
oriented along the same direction, δ = ω − ω0 is small
detuning from the resonance (δ ≪ 1), and g characterizes
polarizability.
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FIG. 11 (Color online) Upper panels: Polarizations corre-
sponding to unbroken and broken PT -symmetric phases and
to the exceptional point. Lower panel: Photograph of PT
symmetric metasurface on silicon substrate composed of 300
nm thick silver (yellow in the color version or light gray in the
grayscale version) and lead (turquoise in the color version or
dark gray in the grayscale version) SRRs. From Lawrence et

al. (2014).

The eigenstates of the polarizability matrix in the l.h.s.
of (48) are determined by the second matrix, which in its
turn has a typical structure of the PT -symmetric dimer
(the first term scales out the net dissipation; the con-
sidered system is passive). In the unbroken (2Gxy > Γ)
and broken (2Gxy < Γ) PT -symmetric phases the field is
elliptically polarized but has different orientation of the
axes as illustrated in Fig. 11, while at the exceptional
point (2Gxy = Γ) the polarization is circular. These pre-
dictions were confirmed experimentally by Lawrence et
al. (2014) on a number of metasurfaces, fabricated using
photolithography, with the separation between the silver
and lead SRRs in each unit cell varying from 2 to 20 µm.

F. Exciton-polariton condensates

Unlike atomic condensates existing at ultra-low tem-
peratures, where gain and losses are usually avoided, and
introducing PT symmetry requires special efforts (see
Sec. III.G, III.H), condensates of quasiparticles are ob-
tained in the exited states (at relatively high tempera-
tures) and must be supported by the pump since they are
usually subject to appreciable losses. Thus, on the one
hand, the balance between gain and losses is fundamen-
tal for supporting these condensates, and, on the other
hand, they are intrinsically nonlinear systems due to in-
teractions among quasiparticles. This readily suggests
that condensates of quasiparticles are natural candidates

FIG. 12 (Color online) (a) Semiconductor pillars pumped on
the one side form a polariton Josephson junction. (b) The
model for the junction: a continuous–wave laser excites high–
energy excitons pumping to the reservoir. A resonant laser
is used to create the required initial conditions. Adapted
from Lien et al. (2014).

for experimental implementation and exploration of the
nonlinear PT -symmetric systems.
Lien et al. (2014) suggested a setting for implemen-

tation of PT symmetry with an exciton-polariton con-
densate. The system consists of coupled micropillars
as shown in Fig. 12(a,b). The junction is described by
the Gross-Pitaevskii equation for the vectorial wavefunc-

tion Ψ = (Ψ1,Ψ2)
T
=

(√
N1e

iϕ1 ,
√
N2e

iϕ2

)T
: idΨ/dt =

HΨ, where

H ≡
(
E1 −J
−J E2

)
, Ej = ǫj + Vj + Uj|Ψj |2, (49)

j = 1, 2, ǫj are the single particle ground states, J charac-
terizes tunneling between the two sides, Uj is the strength
of the nonlinear interactions of quasi-particles, and the
local dispersion is ignored for the wave-functions of the
ground state. The effective potentials in a simplified form
are given by V1 = gNR/A + GP + i

2 (RNR − γ1) and

V2 = − i
2γ2, where R is a constant, γ1,2 are the decay

rates of the condensates, G corresponds to the interac-
tion of the condensate with high-energy excitons, the g
describes interaction between the condensate and reser-
voir polaritons, P is the pump of the first reservoir, and
NR is the population of the first reservoir whose dynam-
ics is determined from the equation

ṄR = P − γR1NR −RNR|ψ1|2 (50)

with γR being the reservoir decay; the population of the
second reservoir, which is not pumped, is neglected.
The model (49)-(50) admits stationary solutions (i.e.

Ψ ∝ e−2iΩt and NR constant) with real frequencies

Ω± = (E1 + E2)±
√
(E1 + E2)2 + 4J2, (51)

if a nonzero dc Josephson current 2J
√
N1N2 sin (∆ϕ),

where ∆ϕ = ϕ2−ϕ1 is the relative phase, balances pump
from the one side and loss from the other side. If the
pump also compensates the total loss, RNR = γ1 + γ2,
two analytical solutions can be derived. They exist sub-
ject to the condition J2 ≥ γ22/4, which determines the
unbroken PT -symmetric phase, while J2 = γ22/4 corre-
sponds to the exceptional point of the system.
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Chestnov et al. (2015) showed that PT symmetry of
the coupled exciton-photon system, which can be imple-
mented in a specific regime of pumping the exciton state
and depletion of the reservoir, enables permanent Rabi
oscillations of the condensate in the external magnetic
field. For a particular case of the acoustic phonon assisted
pumping RNα, where R is the pumping rate, α = ± cor-
responds to spin projection parallel (antiparallel) to the
external magnetic field, and N is the reservoir popula-
tion, the system of Boltzmann kinetic equation governing
the condensate, which is supposed to be at zero momen-
tum state, reads

2χ̇α = (RNα − γX)χα + 2iδαχα − 2iΩφα (52a)

2φ̇α = −γPφα − 2iΩχα (52b)

where φα and χα are the photonic and excitonic com-
ponents of the condensate wavefunction, γX and γP , are
the decay rates of excitons and polaritons, 2Ω is the Rabi
frequency, δ± = ωP − ωX −∆Z is the effective detuning
of the cavity mode and exciton frequency in the presence
of the Zeeman splitting ~∆Z . The evolution of the reser-
voir populations is described by (50) with NR replaced
by Nα.

The system (52) reveals PT symmetry if the photonic
gain compensates total loss: pX = γX +γP , and the Zee-
man splitting results in the zero effective detuning, i.e.
δα = 0. Then, neglecting variation of the pump pXNα on
the time scale of the Rabi oscillations, for pump below
some threshold value P < Pth, one obtains two eigenfre-
quencies of the condensate: ±ω0 = ±

√
4Ω2 − γ2P /4 for

the steady state solutions χ, φ ∝ e±iω0t. On the other
hand, at large P > Pth and provided the above conditions
for the PT symmetry hold, one can obtain permanently
oscillating regimes, where χ(t) = χ1e

iω0t + χ2e
−iω0t and

φ(t) = φ1e
iω0t + φ2e

−iω0t.

Finally, we mention that the non-Hermitian nature of
exciton-polariton condensates was explored experimen-
tally by Gao et al. (2015). A chaotic exciton-polariton
billiard was created, which exhibits multiple exceptional
points, crossing and anti-crossing of energy levels, mode
switching, and topological Berry phase, subject to proper
changes of system parameters.

G. Bose-Einstein condensates

Bose-Einstein condensates (BECs) represent another
promising area for theoretical and experimental study
of interplay between nonlinearity and phenomena origi-
nated by PT symmetry. Klaiman, Günther, and Moi-
seyev (2008) suggested to consider a BEC in a double-
well potential with atoms injected into one well and re-
moved from another well. Removal of the atoms can
be achieved in different ways: by applying laser radia-
tion or an electronic beam to ionize atoms (Barontini

et al., 2013; Gericke et al., 2008), using inelastic inter-
actions of atoms with the trap potential (Cannata, De-
donder, and Ventura, 2007; Muga et al., 2004), or by
stimulating transitions to higher levels with subsequent
removal of the excited atoms from the trap. Loading
of atoms ensuring exact compensation of the losses can
be implemented by an atomic laser (Robins et al., 2013)
or by some more sophisticated technique such as com-
bination of tilted potential wells (Kreibich et al., 2013).
Nonlinearity in BECs stems from two-body interactions
and in the mean-field approximation results in the cubic
term in the Gross-Pitaevskii equation (GPE) (Pitaevskii
and Stringari, 2003). To describe the removal or loading
of atoms within the framework of the mean-field model,
one can start with the Master Equation in the Lindblad
form (Barontini et al., 2013; Shchesnovich and Konotop,
2010; Witthaut et al., 2011) which shows excellent agree-
ment with the available experimental data (Barontini et
al., 2013). In 3D, GPE with loading and removal of atoms
reads

iΨt = −∆Ψ+ [V (r) + iW (r)]Ψ − g|Ψ|2Ψ, (53)

where g ∼ −as characterizes the strength of two-body
interactions (g > 0 and g < 0 correspond to negative and
positive scattering length as), V (r) and W (r) are the
real and imaginary parts of the external potential, and
the dimensionless units (~ = 2m = 1) are used. Model
(53) with a PT -symmetric double-well trap

V (r) = ω2
xx

2+y2+z2+v0e
−σx2

, W (r) = γxe−ρx2

(54)

with σ = 2ρ ln(v0σ/ω
2
x) (all parameters are positive)

was investigated by Dast et al. (2013a,b). Cartarius and
Wunner (2012) considered a 1D model with a double well
potential composed of two Dirac δ-functions.
An alternative description of PT -symmetric BEC

models can be developed from a non-Hermitian Bose-
Hubbard model, where the gain-loss coefficient γ is intro-
duced explicitly (Graefe et al., 2008; Graefe and Liverani,
2013; Graefe, Korsch, and Niederle, 2008):

H = iγ(a†2a2 − a†1a1) + v(a†1a2 + a†2a1) + c(a†1a1 − a†2a2)
2.

(55)

Here aj and a†j are the bosonic annihilation and creation
operators for the j-th mode, v is the tunneling rate, and
c is the strength of two-body interactions.

H. Spin-orbit coupled Bose-Einstein condensates

Now we consider a BEC of two states, |↑〉 and |↓〉,
belonging to the ground manifold and coupled with
an excited state by laser beams, like in the Λ-schemes
shown in Fig. 8(a). These can be hyperfine states |F =
1,mF = 0〉 and |F = 1,mF = +1〉 of 87Rb atoms (Lin,
Jiménez-Garćıa, and Spielman, 2011) or degenerate dark
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states (Dalibard et al., 2011). Such a system can em-
ulate the phenomenon of spin-orbit (SO) coupling in
condensed-matter physics (Galitski and Spielman, 2013;
Stanescu, Anderson, and Galitski, 2008) and gives rise to
a SO-coupled BEC, which was produced experimentally
by Lin, Jiménez-Garćıa, and Spielman (2011).
Let atoms in the |↓〉 ( |↑〉) state are removed from

(loaded into) the system with the rate γ > 0. In ab-
sence of two-body interactions the system Hamiltonian
reads (Kartashov, Konotop, and Zezyulin, 2014)

H = −1

2

∂2

∂x2
+ ωσ1 + iκσ1

∂

∂x
+ iγσ3 + V (x). (56)

Here κ is the strength of SO-coupling, V (x) is the exter-
nal trap potential, ω is the strength of linear coupling
from the Zeeman field, and we have added the injec-
tion and removal of atoms to the standard model (Lin,
Jiménez-Garćıa, and Spielman, 2011)
According to definitions (2) and (3), the Hamilto-

mian (56) acting in the Hilbert space of the vectors
Ψ = (Ψ↑,Ψ↓)

T is not PT symmetric. However, if we
define a charge (or pseudo-spin) operator C: CΨ(x, t) =
σ1Ψ(x, t), then [CPT , H ] = 0, i.e., H is CPT symmetric
[compare with (5)]. Interpreting the states |↑〉 and |↓〉 as
having negative and positive energies with respect to the
average chemical potential µ, one finds that C indeed
obeys properties of the charge operator: it exchanges
the states with positive and negative energies, C2 = 1,
[C,PT ] = 0; it has eigenvalues ±1 and changes the direc-
tion of currents [see Fig. 30 and discussion in Sec. V.I].
In Sec. III.A, σ1 was interpreted as the parity opera-

tor since it was obtained from P defined by (2). This
reflects ambiguity in definitions of symmetry operators.
In particular, one can consider H as PT -symmetric in a
more general sense, where P̃ = CP is a new parity oper-
ator. We also emphasize that the C operator used here
should not be confused with the C operator introduced
by Bender, Brody, and Jones (2002) as an observable
representing the signature of the PT -norm which allows
the definition of an inner product having positive-definite
signatures. Recently C-operator was discussed also in op-
tical context (Dana, Bahabad, and Malomed, 2015).
In the model (56), PT symmetry (or CPT symme-

try) is determined by two parameters: ω/γ and κ/(γℓ),
where ℓ is the characteristic scale of the wavefunction:
|∂Ψ↑,↓/∂x| ∼ |Ψ↑,↓|/ℓ. Thus a sufficiently broad mode
(ℓ≫ κ/γ) has effectively SO-decoupled components and
cannot balance gain and loss. Since, however, V (x) lim-
its the size of the SO-BEC (i.e., makes ℓ bounded), the
unbroken symmetry may exist even when the homoge-
neous condensate is unstable, i.e. an external potential
can control PT -symmetry breaking.
Properties of Hamiltonian (56) with a parabolic trap

V (x) = ν2x2/2 are illustrated in Fig. 13. At γ = 0 the
model is Hermitian and its the spectrum is real:

µn,± = ν(n+ 1/2)± ω − κ2/2, n = 0, 1, . . . (57)

FIG. 13 (Color online) (a) Spectrum (57) for ω = 0.5 and
κ = 2. Crossing eigenvalues occur at νm, m = 1, 2, . . .. (b)
Real parts of eigenvalues for γ = 0.2, ω = 0.5 and κ = 2,
which merge pairwise near νm, and the corresponding imagi-
nary parts become nonzero at the same time. (c) Domains of
unbroken (shadowed regions d0, d1, ...) and broken (white re-
gions) CPT symmetries shown in the plane (κ, ν) at γ = 0.2
and ω = 0.5. Dashed lines correspond to ν = νm. From
Kartashov, Konotop, and Zezyulin (2014).

At ν = νm, where νm = 2ω/m with m = 1, 2, . . ., the
spectrum contains an infinite number of double eigenval-
ues: µn−m,+ = µn,−, n = m,m+1, . . . [Fig. 13(a)]. When
γ is nonzero, these double eigenvalues become complex
leading to broken PT symmetry [Fig. 13(b)]. For fixed
κ PT symmetry is always broken in a sufficiently broad
trap (small ν) [Fig. 13(c)]. As ν grows, the domains of un-
broken symmetry (shadowed domains d0, d1, . . . ) appear
and alternate with the domains of broken symmetry. In
a sufficiently narrow trap (large ν) the CPT symmetry is
unbroken for all κ (domain d0). This stripe-like structure
is related to the presence of an infinite number of double
eigenvalues in the spectrum (57). In Fig. 13, values of ν
that correspond to the double eigenvalues are shown by
dashed vertical lines, which always belong to the region
of broken CPT symmetry and “separate” domains dm−1

and dm of unbroken symmetry.

I. Superconductivity

The Bender–Boettcher potential (10) withN = 1 turns
out to be relevant for the pattern formation of phase slip
centers in superconducting wires (Rubinstein, Sternberg,
and Ma, 2007) and in the theory of fluctuation supercon-
ductivity (Chtchelkatchev et al., 2012).
Considering a superconducting wire in the inter-

val [−L,L] along the x-axis, one can start with
the time-dependent complex Ginzburg-Landau equa-
tion (Ginzburg and Landau, 1950) for the order param-
eter Ψ. In the dimensionless form, the model reads

Ψt +HΨ+ |Ψ|2Ψ = 0, H = −∂2/∂x2 + iϕ− Γ. (58)

Here ϕ is the electric potential, 1/Γ ∝ (1−T/Tc)−1 is the
characteristic relaxation time of the order parameter, T
is the temperature, and Tc is the transition temperature.
The order parameter is subject to the zero boundary con-
ditions Ψ(±L) = 0 (this choice is not crucial). Potential
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ϕ induces constant current I, i.e., ϕ = −Ix (the Ohmic
resistivity is set to one).
The normal state corresponds to Ψ = 0, and thus

the phase transition can be characterized by solutions
of the linear version of Eq. (58). Setting L = 1 and
Ψ(x, t) = u(x)e(Γ−λ)t one obtains the eigenvalue prob-
lem (Rubinstein, Sternberg, and Ma, 2007):

uxx + ixIu = −λu, u(±1) = 0, (59)

which involves the PT -symmetric potential (10) with
N = 1. The normal state is unstable if Γ < Re [λ(I)]. At
I = 0, the spectrum is real and discrete: λn = π2n2/4,
n = 1, 2, . . .. The spectrum remains real for sufficiently
small I, which is guaranteed by Theorem 2. Increase
of I eventually results in collision of eigenvalues (with
the first collision occurring at Icr ≈ 12.31), followed by
emergence of complex eigenvalues.
The complex spectrum at I > Icr implies breaking of

the Cooper pairs. On the other hand, it leads to the
energy difference in the two lowest states resulting in
Josephson oscillations between them and consequently
in the symmetry breaking of the time averaged order pa-
rameter. These phenomena were described and experi-
mentally validated by Chtchelkatchev et al. (2012).

J. Magnetics

Gaididei (2013) suggested a way to implement a PT -
symmetric configuration in a double-wire magnetic struc-
ture in which a spin-polarized current j propagates
along the z-axis in positive and negative directions in
the first and second wires, respectively. The spin-
transfer torque efficiency function has the form εn,α =
ηΛ2/

[
(Λ2 + 1)− (−1)α(1− Λ2)Sz

n,α

]
, where Sν

n,α with
ν = x, y, z is the νth component of the spin vector Sn,α

of the nth site at the αth wire, η is the degree of spin po-
larization, α = 1, 2, and the parameter Λ > 1 describes
the mismatch between spacer and ferromagnet resistance
(Slonczewski, 2002; Sluka et al., 2011).
The magnetic energy of the system amounts to E =

E1 + E2 + E12, where

Eα = −J1
∑

n

Sn,α Sn+1,α − 1

2
A

∑

n

(
Sz
n,α

)2

(60)

is the magnetic energy of the αth wire with the last term
being the easy axis anisotropy (characterized by the con-
stant A), E12 = −J2

∑
n Sn,1 Sn,2 represents an interac-

tion between the wires, S
(z)
n,α is the z-component of the

spin Sn,α in the α-th wire, and J1,2 are the respective
exchange energies. The dynamics of the system is de-
scribed by the Landau-Lifshitz equation augmented with
spin-torque terms:

dSn,α

dt
= Sn,α × δE

δSn,α
+ (−1)αjεn,αSn,α ×

(
Sn,α × ẑ

)
,

(61)

where ẑ is a unitary vector along the z-direction. The
last term in Eq. (61) represents spin-torques which are
due to interaction with a spin-polarized current j.
Let us consider weak deviations of spins from the fer-

romagnetic stationary state Sn,α = (0, 0, 1). To this end
we introduce complex amplitudes ψn,α defined by

Sx
n,α =

(
ψn,α + ψ∗

n,α

)√
1− | ψn,α |2 ,

Sy
n,α = −i

(
ψn,α − ψ∗

n,α

)√
1− | ψn,α |2 ,

Sz
n,α = 1− 2 | ψn,α |2,

and consider the small amplitude (linear) limit
|ψn,α| ≪ 1. Using the Fourier transform ψn,j =

N− 1
2

∑
k

eikn+iωkt ψ̃k,j , where N is the number of spins

in the chain and ωk = (A + J2) + 4 J1 sin2(k/2) is the
dispersion relation of linear spin waves, one obtains a cou-
pled PT -symmetric system (36) with q = (ψ̃k,1, ψ̃k,2)

T ,
γ = jη/2, and κ12 = κ21 = J2.
The model can be generalized to the anti-ferromagnetic

case Sn,α = (0, 0, (−1)n), as well as to the continuum
limit.
Another model of two coupled ferromagnetic films, one

with gain and the other with loss placed in an exter-
nal magnetic field, was introduced by Lee, Kottos and
Shapiro (2014).

K. Electronic circuits

The concept of a passive PT -symmetric system (see
Sec. III.A) relies on the existence of an exceptional
point which separates qualitatively different dynamical
regimes. This phenomenon is well known for simplest
mechanical systems. Indeed, for a damped oscillator
ẍ + 2γẋ+ x = 0, the exceptional point occurs at γ = 1,
and it separates underdamped (γ < 1) and overdamped
(γ > 1) oscillations. A PT -symmetric generalization of
such a system corresponds to two coupled oscillators with
damping and gain:

ẍ+ 2γẋ+ x = −2κy, ÿ − 2γẏ + y = −2κx. (62)

This idea was suggested and experimentally implemented
using the RLC circuits by Schindler et al. (2011) [Fig. 14].
A mechanical realization of a dimer of oscillators was
reported by Bender et al. (2013b).
The scheme in Fig. 14(a) obeys Kirchhoff’s laws

ICn + IRn + ILn = 0, IRn = (−1)nΓω0Q
C
n ,

ω2
0Q

C
1 = İL1 + µİL2 , ω2

0Q
C
2 = İL2 + µİL1 ,

(63)

where I are Q are respectively currents and charges in
the amplified (n = 1) and lossy (n = 2) circuits with
capacitor (“C”), resistor (“R”) and inductor (“I”); ω0 =
1/

√
LC is the natural frequency of each isolated coil, µ =

M/L characterizes inductive coupling of the coils, and
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FIG. 14 (Color online) (a) Electronic PT -symmetric dimer.
The left circuit contains the gain element due to feedback
from a voltage-doubling buffer. (b) Theoretical (solid line)
and experimental (circles) values of the eigenfrequency ω
[open circles are reflections of the data with respect to the
Im(ω) = 0 axis]. Here ω0 = 2×105 s−1 and µ = 0.2. Adapted
from Schindler et al. (2011).

Γ =
√
L/C/R is the effective gain-loss parameter. An

overdot in (63) stands for the derivative with respect to
time t.
Model (62) follows directly from (63) with x = QC

2 ,
y = QC

1 , 2γ = Γ
√
1− κ2, κ = −µ, and the overdot for

derivative with respect to τ = ω0t/
√
1− κ2. Eigenfre-

quencies ω of Eq. (62), with x, y ∝ eiωt, are given by

ω2
± = 1− 2γ2 ± 2

√
κ2 − γ2 + γ4. (64)

Thus PT symmetry is unbroken if 0 ≤ γ ≤ γPT , where

γPT =
√
1/2−

√
1/4− κ2 is the phase transition point.

Unlike the case of a Schrödinger-type PT -symmetric
dimer, where increase in coupling favors unbroken sym-
metry [see (13)], here increase of |κ| eventually breaks
the PT symmetry. Figure 14(b) presents the compari-
son of theoretical and experimental results of Schindler
et al. (2011). For further theoretical studies of the model
see Bender et al. (2013a) and Nazari et al. (2014).
System (62) admits a Hamiltonian formulation with

the Hamiltonian (Bender et al., 2013a)

H = pq + γ(yq − xp) + (1 − γ2)xy + κ(x2 + y2). (65)

Time reversal and parity operators can be defined
as (Bender et al., 2013a)

T : x→ x, y → y, p→ −p, q → −q,
P : x→ −y, y → −x, p→ −q, q → −p.

Connection between the velocities and momenta is given
by

ẋ = ∂H/∂p = q − γx, ẏ = ∂H/∂q = p+ γy, (66)

while the second pair of Hamilton equations, ṗ =
−∂H/∂x and q̇ = −∂H/∂y, yields Eqs. (62).
Nonlinearity can be included in coupled circuits by

taking into account the internal currents in the electric-
circuit dimer. The resulting system is modeled by cou-
pled Van der Pol oscillators and features asymmetric
transport observed by Bender et al. (2013c).

FIG. 15 (Color online) Left column: the system composed
of two whispering-gallery-mode resonators coupled with each
other and with two fiber-taper waveguides. The resonators
are silica toroids of approximately 30µm radius. One micro-
cavity (µR1) is active due to E3+ dopants while the other
(µR2) is passive. The ions in the active microcavity are
pumped by the laser in 1.417 µm band providing gain in
1.55 µm band. The second, third and fourth columns show
different operating regimes of the coupler. The upper and
lower lines correspond to left and right incidence of light.
The fourth column illustrates non-reciprocity of light prop-
agation. Reprinted by permission from Macmillan Publishers
Ltd: [Nature Physics] (Peng, B., Ş. K. Özdemir, F. Lei, F.
Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Ben-
der, and L. Yang, 2014, Parity-time-symmetric whispering-
gallery microcavities. Nat. Phys. 10, 394–398), copyright
2014.

L. Micro-cavities

Coupled PT -symmetric oscillators (66) is a fairly gen-
eral model. In particular, it is possible to design an op-
tical scheme assuring asymmetric transport in analogy
with the coupled RLC-circuits considered above (Ben-
der et al., 2013c). Such a scheme extends the idea of
all-silicon passive optical diode with two passive micro-
cavities connected by an optical waveguide (Fan et al.,
2012a), to a configuration with mutually balanced active
and passive cavities. Experimental implementations of
PT -symmetric micro-cavities were reported by Peng et
al. (2014a) and Chang et al. (2014). The prototypical
experimental setup is illustrated in Fig. 15.
Nazari et al. (2014) suggested that the observed non-

reciprocity may reside in nonlinear Fano resonances
which can be captured by a model of a linear conserva-
tive array interacting with two nonlinear sites with gain
(“g”, placed at n = 0) and loss (“l”, placed at n = N):

iφ̇n = −C(φn−1 + φn+1)− Vgφgδn,0 − Vlφlδn,N ,

iφ̇g/l = −(E ∓ iγ)φg/l − χ|φg/l|2φg/l − Vg/lφ0/N .

Here φ are field amplitudes, C is the coupling constant
between the neighboring sites in the linear chain, E ∓ iγ
models eigenmodes of the two micro-resonators, and Vg,l
are the coupling coefficients between the chain and the
impurities. The nonlinear system interacts with the lin-
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ear one at sites φ0 and φN . The left incidence of a
monochromatic wave, with dispersion relation ω(q) =
2C cos(q) (φn,g,l = An,g,le

iωt), is characterized by the
reflection and transmission coefficients

rL = i
VgAg + VlAle

iqN

2C sin q
, tL = I + i

VgAg + VlAle
−iqN

2C sin q
,

where I is the input amplitude, and amplitudes Ag,l are
found from the system

(E − ω − iγ)Ag + χ|Ag|2Ag + Vg(I + rL) = 0,
(E − ω + iγ)Al + χ|Al|2Al + Vle

iqN tL = 0.
(67)

For the right incident wave, rR and tR are obtained from
the above expressions by the substitution γ → −γ and
Vg ↔ Vl.
The coupled active and passive micro-cavities can also

be studied in optomechanics, where they have promising
applications such as phonon lasers (Jing et al., 2014).
Micro-cavities driven by blue- and red-detuned laser
fields with mechanically connected movable mirrors were
studied in Xu et al. (2014).

M. Acoustics

Zhu et al. (2014b) extended the idea of PT symmetry
to propagation of sound waves. A linear acoustic wave
characterized by the pressure P (z, t) in a bulk medium
with z-dependent density ρ(z) and bulk modulus K(z)
is governed by the wave equation KPzz − ρPtt = 0.
In a general situation, dissipation of sound waves can
be described by a complex bulk modulus with negative
imaginary part. In the meantime, by including piezo-
electric elements connected with electric circuits (Popa
and Cummer, 2014), it is possible to implement gain el-
ements described by the positive imaginary part of K.
Thus, by combining the elements with gain and loss to
ensure propertiesK(z) = K∗(−z) and ρ(z) = ρ∗(−z), for
a monochromatic wave P ∝ eiωt one obtains the linear
Helmholtz equation

d2P

dz2
+ ω2U(z)P = 0, U(z) =

ρ(z)

K(z)
= U∗(−z). (68)

For a particular waveguide configuration of three gain
and three loss sections separated by five passive blocks,
such a medium can become unidirectionally transparent
for some frequencies (Zhu et al., 2014b).
Nonlinear phenomena in the sound wave propagation

can be accounted for by considering the complete strain
tensor, which remains an open problem.

IV. PT -SYMMETRIC DISCRETE LATTICES

In this section, we present detailed analysis of PT -
symmetric lattices. Motivated by physical applications

in Sec. III, our main attention will be on discrete nonlin-
ear Schrödinger (dNLS) – type equations, although other
nonlinear lattice models are also touched upon.

A. Formalism for discrete nonlinear systems

We focus on the most studied nonlinear networks
where a number of waveguides is either even or infi-
nite. For some details on arrays with an odd number of
waveguides see Li and Kevrekidis (2011); Li et al. (2012b,
2013a).
Mathematical description of the network is based on a

system of ordinary differential equations

iq̇ = Hq+ F (q)q, (69)

where q = q(z) = (q−N+1, ..., qN )T is a column-vector
of 2N elements, H is a 2N × 2N symmetric matrix ac-
counting for the linear coupling between sites, and F (q)
is a 2N × 2N matrix whose elements depend on the field
q. In this section, we consider cubic nonlinearity where
entries of matrix F (q) are given by

[F (q)]pj =
N∑

l,m=1−N

f lm
pj q

∗
l qm, p, j = −N + 1, . . . , N,

(70)
and f lm

pj are constant coefficients.
PT symmetry of H implies the following property: if

q(z) is a solution of the underlying linear system (i.e.,
the system with F (q) ≡ 0), then PT q(z) = Pq∗(−z) is
also a solution. This is not true for the nonlinear case in
general. If however the nonlinearity obeys the constraint

PF ∗(q) = F (Pq∗)P for all q, (71)

then the mentioned property holds also in the nonlinear
case (Kevrekidis, Pelinovsky, and Tyugin, 2013b; Li et
al., 2012b), and we say that the nonlinear system (69) is
PT symmetric.

B. Discrete configurations and their linear properties

1. Arrays with nearest-neighbor linear interactions

Let us start with an infinite array in which a waveg-
uide n is linked only with its two neighbors, waveguides
n − 1 and n + 1. The simplest PT -symmetric configu-
ration that allows for the balance between gain and loss
can be assembled using the following rule: if any site of
this network (say, qn) has gain (loss) characterized by γn,
then the site q−n+1 situated symmetrically with respect
to the “center” of the chain has loss (gain) characterized
by −γn, see Fig. 16(a). Generally speaking, linear cou-
pling between adjacent sites can also depend on the site
number. In Fig. 16 we showcase a particular case where
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FIG. 16 (a) Infinite PT -symmetric chain with alternating
coupling defined by κ, ǫ and gain-loss coefficients γ1, γ2.
(b) A clustered closed PT -symmetric chain of six sites. (c)
PT -symmetry breaking “phase diagram” of the open PT -
symmetric quadrimer (Zezyulin and Konotop, 2012b) which
corresponds to the network shown in (a) truncated at q−1 and
q2, with κ = ǫ = 1.

the network has alternating coupling which is equal to κ
between 2n-th and (2n+ 1)-th waveguides and equal to
ǫ between (2n − 1)-th and 2n-th waveguides. If κ = ǫ,
then the coupling becomes homogeneous.
Linear properties of the described array are determined

by a bi-infinite tridiagonal matrix H with entries (Peli-
novsky, Zezyulin, and Konotop, 2014)

Hn,m = cnδn+1,m + cn+1δn−1,m − (cn + cn+1 − iγn)δn,n,
(72)

where n and m run through all integers from −∞ to ∞,
cn = κ for even n and cn = ǫ for odd n, and the gain
and loss coefficients γn obey the property γn = −γ−n+1.
This lattice is PT symmetric with the parity operator
defined by [Pq(t)]n = q1−n(t).
Let us set the nonlinearity F (q) as

[F (q)]n,m =
[
(1− χn)|qn|2 + χn|q1−n|2

]
δn,m, (73)

where the real coefficients χn obey the relation χn =
χ1−n. The case with χn = 0 for all n corresponds to
on-site Kerr nonlinearity, while the limit χn = 1 for all n
means nonlinear coupling between the sites n and 1− n.
The above nonlinearity satisfies (71), i.e., the correspond-
ing nonlinear system is PT symmetric.
Problem (69) can also be rewritten in terms of qn(t)

as a generalized dNLS equation with gain and dissipa-
tion (Dmitriev, Sukhorukov, and Kivshar, 2010; Kono-
top, Pelinovsky, and Zezyulin, 2012)

iq̇n = cn(qn+1 − qn) + cn+1(qn−1 − qn) + iγnqn

+
[
(1− χn)|qn|2 + χn|q1−n|2

]
qn. (74)

Imposing additional boundary conditions, one can
transform the infinite system (74) into a finite array.

Assuming that n in (103) runs from −N + 1 to N for
a given N and imposing zero boundary conditions, i.e.,
q−N (t) ≡ qN+1(t) ≡ 0, we define an open chain of 2N
sites. Alternatively, one can impose periodic boundary
conditions, i.e., q−N = qN and q−N+1 = qN+1, thus
defining a closed chain (“necklace”) of 2N sites. An ex-
ample of the latter configuration is shown in Fig. 16(b).
The simplest case N = 1 corresponds to a nonlinear

PT -symmetric dimer

iq̇0 = q1 − iγq0 +
[
(1− χ)|q0|2 + χ|q1|2

]
q0,

iq̇1 = q0 + iγq1 +
[
χ|q0|2 + (1− χ)|q1|2

]
q1,

(75)

generalizing the model (40). In Eqs. (75), the linear cou-
pling is set to be equal to one, and subscripts 1 for γ and
χ are omitted.
Setting N = 2, we obtain an array of four waveg-

uides – a PT -symmetric quadrimer. Its properties are
much richer than the simplest dimer model (75). In-
deed, quadrimers allow one to distinguish between open
and closed geometries, to study effects of inhomogeneous
couplings and gain-loss coefficients, and to observe dif-
ferent types of broken PT symmetry (or degrees of PT
symmetry breaking in the terminology of Joglekar et al.
(2009) and Scott and Joglekar (2011)), such as “par-
tially” broken symmetry (two real eigenvalues and two
complex eigenvalues) and “fully” broken PT symmetry
(all four eigenvalues are complex). These features of PT -
symmetric quadrimers were systematically addressed by
Bendix et al. (2010); Li and Kevrekidis (2011); Li et al.
(2012b); and Zezyulin and Konotop (2012b). As a par-
ticular example, we consider an open quadrimer with ho-
mogeneous linear coupling κ = ǫ = 1 and arbitrary gain
and losses coefficients γ1,2 Zezyulin and Konotop (2012b),
i.e.,

H =




−iγ2 − 2 1 0 0
1 −iγ1 − 2 1 0
0 1 iγ1 − 2 1
0 0 1 iγ2 − 2


 . (76)

The PT -symmetry “phase diagram” for matrix H is
shown in Fig. 16(c). It features three different regions:
unbroken PT symmetry where the spectrum is purely
real (black region), “partially” broken PT symmetry
with two real and two complex eigenvalues (gray regions),
and “fully broken” PT symmetry where all eigenvalues
are complex (white regions). The boundaries separat-
ing different regions correspond to the exceptional points.
The phase diagram also contains four triple points where
the three regions meet. Another feature visible in the
phase diagram is the reentrant PT symmetry (say after
fixing γ1 = 1.2, the PT symmetry is broken at γ2 = 0
and is restored when γ2 increases).
In the case of arbitrary finite N , characterization of

regions of unbroken and broken PT symmetry is a non-
trivial problem. Detailed results on this front have been
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obtained for several particular cases. The first case is
a chain with alternating gain and loss: γn = (−1)n+1γ,
where γ is a constant. Such a chain can be considered
as N coupled identical dimers with inter-dimer coupling
given by κ and intra-dimer coupling given by ǫ. The
second case corresponds to a clustered chain with two
segments, one consisting of lossy sites and the other con-
sisting of active sites, i.e., γn = sign(n−1/2)γ [see exam-
ple in Fig. 16(b)]. Systematic study of symmetry break-
ing in these two chains with homogeneous linear coupling
(κ = ǫ = 1) was performed by Barashenkov, Baker, and
Alexeeva (2013) and Kevrekidis, Pelinovsky, and Tyugin
(2013b). It was found that PT symmetry is unbroken
when the parameter γ > 0 is below a threshold value
γPT . When γ > γPT the PT symmetry is broken. For
an open alternating (oa) chain and alternating necklace
(an) the symmetry-breaking thresholds are

γ
(oa)
PT = sin

π

2(2N + 1)
, γ

(an)
PT =

{
0, N is even
sin π

2N , N is odd
,

(77)
while for the open clustered (oc) chain and clustered
necklace (cn) only the asymptotic results at N → ∞
are available (Barashenkov, Baker, and Alexeeva, 2013):

γ
(oc)
PT = 8.95(2N + 1)−2 +O((2N + 1)−3), (78)

γ
(cn)
PT = 2.77N−2 +O(N−3). (79)

In all these cases, the region of unbroken PT -symmetry
shrinks to zero as N → ∞.
Another well-studied case is a chain with a PT -

symmetric impurity, i.e., having two “defect” sites γd =
−γ1−d = γ for some integer d (with all other sites having
no gain or loss). For such a chain γPT = 1 if d = 1 or
d = N , and γPT ∝ N−1 if 1 < d < N (Jin and Song,
2009; Joglekar et al., 2009; Scott and Joglekar, 2011).
Estimates for PT -symmetry breaking thresholds for

chains with arbitrary configurations of sites with gain and
losses can be obtained from the perturbation theory for
PT -symmetric operators (Caliceti, Graffi, and Sjöstrand,
2005). For example, for an open chain with homogeneous
coupling, we separate matrix H into real and imaginary
parts, i.e., H = H0 + iG where H0 is self-adjoint, and
a diagonal matrix iG defines a non-self-adjoint pertur-
bation. Then, by Theorem 2, the spectrum of H is real
if

max
1≤n≤N

|γn| ≤ 4 sin2
(
π(4N + 2)−1

)
. (80)

At largeN , this bound behaves as∼ π2(2N+1)−2, which
is close to (78) obtained for the open clustered chain.
Pelinovsky, Zezyulin, and Konotop (2014) also found

a sufficient condition for broken PT symmetry in a
disordered open chain with homogeneous coupling: for
ǫ = κ = 1, PT symmetry is broken if

∑N
n=1 γ

2
n > 2N−1.

This condition is sharp for N = 1. For the quadrimer

case (N = 2), this condition ensures that PT symmetry
is broken outside the circle γ21 + γ22 = 3. It is interest-
ing to notice that the triple points Tj in the diagram of
Fig. 16(c) lie exactly on this circle. Thus the condition
is not sharp since the regions with broken PT symmetry
can also be found inside the mentioned circle.

2. Infinite lattices with unbroken PT symmetry

The results (77)–(80) for the finite chains indicate that
PT symmetry tends to be more fragile as the number
of sites in the network increases, and the PT -symmetry
breaking threshold can approach zero in the limit N →
∞. This indeed happens in chains with PT -symmetric
disorder (Bendix et al., 2009) and in an infinite chain
with homogeneous coupling and alternating gain and loss
(Dmitriev, Sukhorukov, and Kivshar, 2010). Pelinovsky,
Kevrekidis, and Frantzeskakis (2013) demonstrated that
this situation is quite general and can be encountered
in different examples of infinite PT -symmetric networks
with extended gain and loss. There are however situa-
tions where an infinite linear lattice has a nonzero PT
symmetry breaking threshold. Some known examples are
listed below

a. An open chain with alternating coupling and dissipation.

If γn = (−1)nγ and alternating coupling is characterized
by the parameters κ and ǫ, as in Fig. 16(a), the linear
spectrum is real if γ ≤ γPT = |κ − ǫ| and is complex
otherwise (Dmitriev, Sukhorukov, and Kivshar, 2010).

b. An open chain with embedded defect. Consider now an
infinite chain from Fig. 16(a) with homogeneous coupling
κ = ǫ = 1 and an embedded finite PT -symmetric defect
in a form of a dimer, i.e., γ0 = −γ1 6= 0, and γn = 0 if
n 6∈ {0, 1}. Then PT symmetry is unbroken if |γ0,1| ≤
γPT =

√
2 (Kevrekidis, Pelinovsky, and Tyugin, 2013b;

Suchkov et al., 2012; Sukhorukov et al., 2012). Notice
that this PT -symmetry breaking threshold γPT =

√
2

is larger than that for the isolated dimer (γPT = 1). It
is also possible to consider a defect in a form of several
adjacent dimers, but the domain of the unbroken PT
symmetry gradually shrinks as the “width” of the defect
grows.
A different case when a pair of impurities ±γ are

separated by one or several conservative sites was ad-
dressed by Bendix et al. (2009), who found that the
PT -symmetry breaking threshold becomes exponentially
small as the distance 2d between the impurities tends to
infinity: γPT ≈ e−d.

c. Array of dimers. If gain and loss are alternating, γn =
(−1)nγ, then the open chain in Fig. 16(a) can be viewed
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FIG. 17 (Color online) 1D and 2D arrays of identical PT -
symmetric dimers. Inter- and intra-dimer couplings are char-
acterized by κ and C. Open red and filled blue circles corre-
spond to the sites with gain and losses, respectively. Based
on ideas of Bendix et al. (2010) (1D), Chen et al. (2014) (2D),
and D’Ambroise, Kevrekidis, and Malomed (2015) (1D, stag-
gered).

as an array of identical PT -symmetric dimers, where the
active site of each dimer is coupled to the lossy site of
the adjacent one. Bendix et al. (2010) proposed another
assembling of PT -symmetric dimers in an array which
possess unbroken PT symmetry even if all couplings are
equal. Such an array is illustrated in Fig. 17(1D). This
setup is described by the system

iu̇n = iγun + κvn + C(un−1 + un+1)− χ|un|2un,
iv̇n = −iγvn + κun + C(vn−1 + vn+1)− χ|vn|2vn,

(81)

where κ > 0 and C > 0 describe inter- and intra-
dimer couplings, and χ is the coefficient used to account
the effect of the Kerr nonlinearity. In the linear case
(χ = 0), the condition of unbroken PT symmetry for (81)
is γ ≤ γPT = κ, i.e., PT -symmetry breaking does not
depend on C (Bendix et al., 2010). The nonlinear system
with χ 6= 0 supports propagation os solitons (Suchkov et
al., 2011). Inverting gain and loss in a half of the chain
produces a model with the domain wall. Scattering of
linear waves in the latter system was studied by Suchkov
et al. (2012).

For a staggered modification shown in Fig. 17(1D, stag-
gered) with the orientations of the dimers alternating
between the adjacent sites, PT symmetry is unbroken
if γ ≤ γPT = κ − 2C, where κ,C, γ > 0 (D’Ambroise,
Kevrekidis, and Malomed, 2015).

3. Array of metamaterial dimers

Now we turn to a different type of an infinite PT -
symmetric chain – the model of 1D metamaterials which
consists of PT -symmetric dimers of SRRs discussed in
Sec. III.E [see Fig. 10(a,b)]. Assuming that n enumer-
ates the dimers (q2n−1, q2n) in the array, where odd and
even SRRs have loss and gain, respectively [Fig. 10(b)],
and neglecting electric coupling, the model describing the
metamaterial can be written in the following dimension-

less form (Lazarides and Tsironis, 2013)

λ′q̈2n + q̈2n+1 + λq̈2n+2 + q2n+1 + γq̇2n+1

+αq22n+1 + βq32n+1 = ǫ0 sin(Ωτ),
λq̈2n−1 + q̈2n + λ′q̈2n+1 + q2n − γq̇2n

+αq22n + βq32n = ǫ0 sin(Ωτ),

(82)

where λ′ and λ describe inter- and intra-dimer couplings.
It is assumed the driving force is the same for all SRRs
and has frequency Ω, and the nonlinearity is generalized
to include quadratic terms.
The dispersion relation for the array (82) in the lin-

ear limit (α = β = 0) and in the absence of the driv-
ing force (ǫ0 = 0) is readily found from the substitution
(q2n−1, q2n) ∼ (A,B) exp[i(2nk − Ωτ)] with constants A
and B (Wang and Aceves, 2013):

Ω2
k =

2− γ2 ±
√
γ4 − 4γ2 + 4(λ− λ′)2 + 16λλ′ cos2 k

2[1− (λ− λ′)2 − 4λλ′ cos2 k]
.

At λ′ = 0 (i.e., when all dimers are decoupled), this
formula recovers the eigenfrequencies of PT -symmetric
SRR dimer (46). In the case of equal coupling, λ = λ′,
PT symmetry of the array is broken. The most unstable
mode is the one with k = π/2 corresponding to out-of-
phase oscillating dimers (i.e., with π-phase shift for the
nearest SRRs). Thus PT -symmetry breaking occurs at

γPT =
√
2− 2

√
1− (λ− λ′)2 and γPT ∼ |λ−λ′| → 0 as

λ′ → λ. Domains of broken and unbroken PT -symmetric
phase are shown in Fig. 10(c).
Wang and Aceves (2013) considered the dynamics of

metamaterial dimers in the long-wavelength and small-
amplitude limits and derived coupled-mode equations
supporting Bragg soliton solutions (see Sec. VII.F).

C. Nonlinear stationary modes

An important class of solutions of Eq. (69) consists
of nonlinear stationary modes. They have the form
q(z) = e−iEzw, where E is a real parameter and w is
a z-independent vector solving the algebraic system

Ew = Hw + F (w)w. (83)

Notice that the equality F (w) = F (q) follows from (70).

1. Exact solutions and the main features of nonlinear modes

In some simple cases (like dimer or quadrimer models)
solutions of system (83) can be found explicitly. For the
PT -symmetric dimer (40), this system is

Ew0 = κw1 − iγw0 + |w0|2w0,
Ew1 = κw0 + iγw1 + |w1|2w1.

(84)

Using polar representations w0,1 = A0,1e
iφ0,1 , A0,1 ≥ 0,

one can see that in addition to the trivial solution A0 =
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A1 = 0, other nonlinear modes are determined by the
relations

A2
0 = A2

1 = E ±
√
κ2 − γ2, sin(φ1 − φ0) = γ/κ. (85)

This result reveals several features. First, there exist
two branches of nonlinear modes (corresponding to “+”
and “−” signs in (85)) when γ < κ. At the exceptional
point κ = γ, these two branches coalesce, and above the
phase transition (γ > κ), nonlinear modes do not exist.
Below the phase transition, these modes constitute two
continuous families : even if parameters of the model γ
and κ are fixed, one still can find a continuous set of
solutions by varying the free parameter E. Amplitudes
of the nonlinear modes tend to infinity as E increases.
On the other hand, amplitudes of the modes vanish at
E = ±

√
κ2 − γ2, which corresponds to the eigenvalues

of the linear problem. Therefore both solution families
bifurcate from the linear limit. Any nonlinear mode is
PT invariant (up to a gauge transformation w → wiθ),
i.e., PT w = w, which in the case at hand means w1 = w∗

0 .
Linear stability of a nonlinear mode is examined by

linearizing (69) in the vicinity of the stationary solution
w and evaluating eigenvalues of the resulting linear prob-
lem. For the dimer model, the branch corresponding to
the “−” sign is stable only if E2 ≤ 4(κ2 − γ2), while the
“+” branch is always stable (Li and Kevrekidis, 2011).
The example of a dimer showcases several prototyp-

ical properties of discrete nonlinear modes, but not all
of them. Indeed, for quadrimer models (N = 2) nonlin-
ear modes (including stable ones) can exist even if PT
symmetry of the underlying linear system is broken. Fur-
thermore, there exist nonlinear modes that do not bifur-
cate from the linear limit and in the limit E → ∞ some
families of nonlinear modes can disappear (Kevrekidis,
Pelinovsky, and Tyugin, 2013b; Li and Kevrekidis, 2011;
Li et al., 2012b, 2013c; Zezyulin and Konotop, 2012b).

2. Nonlinear modes as continuous families and isolated points

As emphasized above, nonlinear modes of the PT -
symmetric nonlinear dimer exist as continuous families.
This property is typical for conservative systems, but is
quite unusual for systems with gain and loss. On the
other hand, PT -symmetric arrays can also feature prop-
erties of dissipative systems (Akhmediev and Ankiewicz,
2005), i.e., they can admit another type of solutions
which are isolated points. For such solutions, E is no
longer a free parameter but is determined by the bal-
ance between dissipation and gain, i.e., by the system
parameters. This feature can be illustrated in a PT -
symmetric dimer with nonlinear gain and loss (Mirosh-
nichenko, Malomed, and Kivshar, 2011)

iq̇0 = κq1 − iγq0 + iΓ|q0|2q0 + |q0|2q0,
iq̇1 = κq0 + iγq1 − iΓ|q1|2q1 + |q1|2q1,

(86)

where in addition to linear gain and loss (γ ≥ 0) one also
has PT -symmetric nonlinear gain and loss characterized
by Γ ≥ 0. Looking for stationary nonlinear modes in the
form of q0,1 = A0,1e

iφ0,1e−iEz , one can classify possible
solutions into three groups (Chen et al., 2015; Duanmu et
al., 2013; Miroshnichenko, Malomed, and Kivshar, 2011):

a. Continuous families of PT -symmetric solutions. In this
case E is a free parameter, A2

0 +A2
1 6= γ/Γ, A0 = A1 are

determined from the equation

(1 + Γ2)A4
0 − 2(E + γΓ)A2

0 + γ2 + E2 − κ2 = 0,

and phases φ0,1 can be computed from A0.

b. Isolated asymmetric solutions. For solutions of this
type, E = γ/Γ, A2

0 6= A2
1, and A2

0 + A2
1 = γ/Γ. Notice

that these solutions have no counterparts in the dimer
model without nonlinear dissipation (Γ = 0), because
they require γ/Γ > 0 and exist only due to the competi-
tion between linear and nonlinear dissipation and gain.

c. Isolated PT -symmetric solutions. In this case, E is
determined from the equation (2ΓE − γ)2/(2κΓ)2 +

(γ/2κ)
2
= 1, and A2

0 = A2
1, A

2
0 + A2

1 = γ/Γ. These
modes exist only if both linear and nonlinear gain and
loss are present.
A similar classification of solutions can be elabo-

rated for quadrimers with nonlinear gain and loss (Li,
Kevrekidis, and Malomed, 2014).

3. Continuous families of discrete solitons

In a general case, families of nonlinear modes and their
stability analysis require numerical treatments. However,
in some limiting cases the problem can be investigated by
means of an asymptotic expansion or by the technique of
analytical continuation.

a. Bifurcation from the linear limit. If the underlying lin-
ear problem possesses a real eigenvalue, one can search
for a family of nonlinear modes of (83) bifurcating from
this eigenvalue. Let us consider the case when Ẽ is a
simple real eigenvalue of H and w̃ is the corresponding
eigenvector, i.e., Hw̃ = Ẽw̃. Up to a phase multiplier
eiϕ (see discussion in Sec. II), the eigenvector can be cho-
sen to be PT invariant, i.e., PT w̃ = w̃. This property
implies that the product 〈w̃∗, w̃〉 is real.
In the vicinity of the linear limit nonlinear modes bi-

furcating from the eigenstate w̃ can be searched using the
perturbation expansion (Zezyulin and Konotop, 2012b)

w = ǫw̃+ǫ3w(3)+o(ǫ3), E = Ẽ+ǫ2E(2)+o(ǫ2), (87)
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where ǫ is a small real parameter, ǫ ≪ 1. Coefficients
w(3) and E(2) of the expansions are to be determined.
Substituting expansions (87) into Eq. (83) and notic-

ing from Eq. (70) that F (w) = ǫ2F (w̃) + O(ǫ3),
one obtains the relation: E(2)w̃ = (H − Ẽ)w(3) +
F (w̃)w̃. This equation allows one to compute E(2) =
〈w̃∗, F (w̃)w̃〉/〈w̃∗, w̃〉. (Zezyulin and Konotop, 2012b,
2013) Bifurcation of a family of nonlinear modes is pos-
sible only if E(2) is real. Hence, bearing in mind that
〈w̃∗, w̃〉 is real, one obtains a necessary condition for
a family of nonlinear modes to bifurcate from a simple
eigenstate Ẽ: Im 〈w̃∗, F (w̃)w̃〉 = 0. If the nonlinearity
is PT symmetric, i.e., (71) holds, then this condition is
satisfied automatically.
Validity of formal perturbation expansions (87) for the

particular case of the open chain with Kerr nonlinear-
ity was proven by Kevrekidis, Pelinovsky, and Tyugin
(2013b) using the standard Lyapunov–Schmidt method.
Dohnal and Siegl (2015) developed a more general anal-
ysis and proved existence of nonlinear stationary modes
bifurcating from a simple eigenvalue in systems with
antilinear symmetry. Expansions (87), however, must
be modified if the eigenvalue Ẽ is not simple. Nonlin-
ear modes bifurcating from semi-simple eigenvalues (i.e.,
eigenvalues with equal algebraic and geometric multiplic-
ities) were addressed by Li et al. (2013c) and Zezyulin
and Konotop (2013). Bifurcations from double and triple
eigenvalues (with algebraic multiplicity larger than the
geometric one) were studied by Zezyulin and Konotop
(2013).

b. Anticontinuum limit. Existence of continuous fami-
lies can also be rigorously proven in the so-called anti-
continuum limit (ACL), developed in the seminal work of
MacKay and Aubry (1994) for a conservative dNLS equa-
tion. The method consists in continuation from the limit
of strong nonlinearity where the linear coupling can be
neglected and exact solutions of effectively decoupled os-
cillators can be found. The solution family is constructed
using analytical continuation.
This idea can be extended to infinite PT -symmetric

arrays (Konotop, Pelinovsky, and Zezyulin, 2012) as well
as to finite PT -symmetric chains and PT -symmetric de-
fects embedded in finite chains (Kevrekidis, Pelinovsky,
and Tyugin, 2013b; Pelinovsky, Zezyulin, and Konotop,
2014). As an example, let us consider the system (74)
with all coupling coefficients cn scaled to unity and zero
boundary conditions q−N = qN+1 = 0. Substitution
qn = wne

−i(E−2)z yields a system of algebraic equations
(−N + 1 ≤ n ≤ N):

Ewn = wn+1 + wn−1 + iγnwn +

+[(1− χn)|wn|2 + χn|w1−n|2]wn, (88)

with w−N = wN+1 = 0. Looking for PT -invariant
stationary modes, PT w = w, we obtain the relation

wn = w∗
1−n, which reduces Eq. (88) to the system of

N equations (1 ≤ n ≤ N)

Ewn = wn+1 + wn−1 + iγnwn + |wn|2wn, (89)

with boundary conditions w0 = w∗
1 and wN+1 = 0. No-

tice that coefficients χn are not present in Eqs. (89).
To enable the consideration of ACL, we rescale vari-

ables as E = 1/δ and wn = Wn/δ
1/2 with δ ≥ 0, and

rewrite (89) in the form

(1− |Wn|2)Wn = δ(Wn+1 +Wn−1 + iγnWn), (90)

where the boundary conditions now read W0 = W ∗
1 and

WN+1 = 0. In the limit δ → 0 (i.e., E → ∞), Eqs. (90)
become decoupled and can be solved analytically. The
solutions obtained for δ = 0 can then be analytically con-
tinued to the δ > 0 case by the implicit function theorem.
Using this approach, Pelinovsky, Zezyulin, and Konotop
(2014) proved that if the coefficients γ1, γ2, . . . , γN satisfy
constraints

∣∣∣∣∣

N∑

n=K

γn

∣∣∣∣∣ < 1 for all K = 1, 2, . . . , N, (91)

then in the limit E → ∞ there exist 2N unique PT -
invariant nonlinear modes such that

∣∣|wn|2 − E
∣∣ ≤ C for each n = 1, 2, . . . , N, (92)

where C is a positive E-independent constant.
The modes described by Eq. (92) are characterized by

unbounded amplitudes |wn|2 at all sites n = 1, 2, . . . , N
when E → ∞. They, however, do not exhaust all
possible nonlinear modes, and for a proper choice of
the coefficients γ1, γ2, . . . , γN one can also construct 2M

(M = 1, 2, . . . , N − 1) solutions whose amplitudes in the
limit of E → ∞ grow unbounded only at 2M central sites
but vanish for other 2N − 2M sites, i.e.,

∣∣|wn|2 − E
∣∣ ≤ C for all n = 1, 2, . . . ,M,

|wn|2 ≤ CE−1 for all n =M + 1,M + 2, . . . , N,

where again C is a positive constant which does not de-
pend on E.
Pelinovsky, Zezyulin, and Konotop (2014) proved that

under certain (not very restrictive) conditions on co-
efficients γ1, γ2, . . . , γN , system (88) admits altogether
2N+1 − 2 PT -invariant stationary solutions (unique up
to a gauge transformation) for all sufficiently large E.
ACL can also be used to classify linear stability of

nonlinear modes in the limit E → ∞. Stability can be
affected by the choice of nonlinear coefficients χn [re-
call that χn do not enter the stationary system (89)].
Pelinovsky, Zezyulin, and Konotop (2014) showed that
2N nonlinear modes that exist in the limit E → ∞ un-
der conditions (91) contain exactly one spectrally stable
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mode if χn < 1/2 for all n = 1, 2, . . . and exactly two
spectrally stable modes if χn = 1/2 for all n.

The ACL approach can also be used in infinite PT -
symmetric lattices to prove existence of discrete soli-
tons, i.e., nonlinear modes satisfying boundary condi-
tions |wn| → 0 as |n| → ∞ (Konotop, Pelinovsky, and
Zezyulin, 2012). Consider an infinite network (74) with
Kerr nonlinearity (χn = 0), alternating gain and loss
γn = (−1)nγ, and alternating coupling constants: cn = κ
for even n and cn = ǫ for odd n (n runs through all in-
tegers from −∞ to ∞). In this case, the ACL can be
introduced as the limit ǫ → 0, when the infinite chain
decouples into a set of identical PT -symmetric dimers.
Each dimer bears either the trivial zero solution or one
of the two non-zero solutions defined by Eq. (85). In
the simplest situation, only one dimer is exited (with a
nonzero amplitude) in the ACL, while all other dimers
have zero amplitudes. Using the implicit function theo-
rem, one can prove that the obtained configuration can
be continued analytically from the limit ǫ = 0 to ǫ > 0.
The obtained solution for ǫ > 0 represents a discrete
PT -symmetric soliton. Depending on the choice of sign
in Eq. (85), one can construct two types of solutions,
termed below as “+” solitons and “−” solitons. These
solitons can be continued to finite values of ǫ numerically,
up to a certain threshold value of ǫ at which the Jacobian
matrix of the implicit function theorem becomes degener-
ate and further continuation is not possible. An example
of the bifurcation diagram is shown in Fig. 18(a), where
the branch of “−” solitons terminates at some critical
value of ǫ, and power P =

∑
n |wn|2 of solitons van-

ishes. The branch of “+” solitons merges with another
branch of solitons designated as “− + −”. In the ACL,
solitons of the “− + −” branch reduce to the configu-
ration where all decoupled dimers bear zero amplitude,
except for three consecutive dimers, the central one hav-
ing amplitude (85) with the “+” sign and the two others
having the “−” sign. Solutions from the “+” branch
are stable for sufficiently small ǫ, but lose stability at
ǫ = κ − γ, i.e., at the point of PT symmetry breaking.
However, the (unstable) discrete solitons can be contin-
ued to the region of broken PT symmetry, and even up
to the case where κ = ǫ = 1 when the coupling becomes
homogeneous [Fig. 18(b)]. Stable solitons in the infinite
chain with homogeneous coupling can be also found if
the chain includes only a finite number of sites with gain
and loss (i.e., a PT -symmetric defect) (Kevrekidis, Peli-
novsky, and Tyugin, 2013b). If the defect consists of only
two sites, localized modes can be obtained analytically
(Dmitriev et al., 2011; Zhang et al., 2014).

4. Discrete compactons

Compactons were introduced by Rosenau (1994) and
Rosenau and Hyman (1993) as excitations whose field

FIG. 18 (Color online) (a) A diagram describing bifurcations
of discrete PT -symmetric solitons from the ACL which corre-
sponds to ǫ = 0. Solid blue and dashed red fragments corre-
spond to stable and unstable solitons, respectively. (b) Profile
of an unstable soliton on the homogeneous lattice ǫ = κ. Open
(red) and filled (blue) circles correspond to the sites with gain
and losses, respectively. For both panels, κ = 1, γ = 0.1 and
µ = 10. Adapted from Konotop, Pelinovsky, and Zezyulin
(2012).

FIG. 19 (Color online) (a) Array of waveguides that supports
discrete compactons. (b) Bifurcation diagram of branches of
compactons and solitons for κ = 1, κ̃ = 0.25, and χ = 1.
The point where the branches intersect is indicated by a dot.
Adapted from Yulin and Konotop (2013).

is concentrated on a finite support and is exactly zero
outside this region. Such objects cannot exist in sys-
tems with linear dispersion. However linear dispersion
can be completely suppressed in specially designed PT -
symmetric arrays of waveguides (Yulin and Konotop,
2013). Indeed let us consider an infinite network shown
in Fig. 19(a). It consists of lossy (un), active (vn), and
conservative (wn) waveguides. The coupling coefficients
are κ (real and positive) and κ1 = κ̃eiφ/2 with real κ̃ and
φ. Gain and loss are described by the single parameter
γ. The array is governed by the dynamical system

iu̇n = κvn − iγun + κ1(wn−1 + wn) + χ|un|2un,
iv̇n = κun + iγvn + κ∗1(wn−1 + wn) + χ|vn|2vn,
iẇn = κ1(un + un+1) + κ∗1(vn + vn+1) + χ|wn|2wn,

(93)

where χ is the coefficient of Kerr nonlinearity.
The linear dispersion relation is obtained by the ansatz

(un, vn, wn) = (u, v, w)ei(bz−kn) with χ = 0:

b3 − (κ2 − γ2)b− 8κ̃2[b cosφ+ γ sinφ+ κ] cos2(k/2) = 0.

In order to have a (linear) compacton, there must exist
a dispersion branch where the propagation constant b is
independent of k. This is possible if γ = −κ sinφ. Then
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there is a k-independent dispersion branch b = −κ cosφ
which describes the dipole mode with wdip = 0 and

udip = αvdip, α =
κ2 − κ̃2(1 + i cos k)

κ̃2(1 + i cos k)− κ2 cosφ
eiφ. (94)

This mode corresponds to the excitation of only one
“cell” (say at n = 0), i.e., represents a linear compacton.
In the presence of nonlinearity, one can construct a

continuous family of nonlinear solutions bifurcating from
the dipole mode (94). The nonlinear solutions persist as
compactons if one follows along the line γ = −κ sinφ.
Bifurcation diagram for nonlinear PT -symmetric com-
pactons with χ = 1 is illustrated in Fig. 19(b). Moving
along the bifurcation curve, one arrives at another bi-
furcation point (indicated by a red dot) where the com-
pacton branch intersects a branch of conventional non-
linear PT -symmetric modes. At this intersection point
the compacton and soliton coexist.

5. Vortices in closed arrays

A discrete circular array of N waveguides repre-
senting a system with rotational symmetry supports
vortex modes (Desyatnikov, Dennis, and Ferrando,
2011). These objects are characterized by the phase

∼ exp(i2πmn/N) with m = 1
2π

∑N
n=1 Arg(q

∗
nqn+1) being

the topological charge (TC) and n = 1, 2 . . .N being the
waveguide number. The charge-flipping transformation
m↔ −m can be viewed as complex conjugation or time
reversion. Discrete vortices persist in arrays with embed-
ded PT -symmetric defects similar to the one illustrated
in Fig. 20(a) (Leykam, Konotop, and Desyatnikov, 2013).
Interplay between nonlinearity and gain-loss breaks the
PT symmetry and thus degeneracy of the vortex modes.
Propagation of the monochromatic fields qn(z) (n =

1, ..., N) is governed by the system (χ = ±1)

iq̇1 + CqN + q2 − iγq1 + χ|q1|2q1 = 0,
iq̇n + qn−1 + qn+1 + χ|qn|2qn = 0,
iq̇N + Cq1 + qN−1 + iγqN + χ|qN |2qN = 0,

(95)

subject to the cyclic boundary conditions qn+N = qn.
The equations for linear stationary solutions qn =

wne
iβz can be cast in the general form βw = Hw, where

H = H0+iγH1, H0 is a matrix describing the array with-
out dissipation and loss, and H1 has the only nonzero
entries (H1)11 = (H1)NN = γ. H is PT symmetric, and
the PT -symmetry breaking threshold is γPT = |C − 1|
(Leykam, Konotop, and Desyatnikov, 2013; Sukhorukov
et al., 2012). Spectrum of the linear problem for a ring
with N = 4 is illustrated in Fig. 20(b). At γ = 0 vortex
modes only exist at C = 1, and they are degenerate (i.e.,
the modes with opposite TCs have the same energy). At
γ > 0 the degeneracy is broken and vortex branches with
|m| = 1 appear.
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FIG. 20 (Color online) (a) Array of N waveguides with one
active (n = 1) and one lossy (n = N) waveguide. Phase cir-
culation direction is indicated by anti-clockwise (red, m > 0)
and clockwise (blue, m < 0) arrows. (b) Linear propagation
constants β vs. C for a conservative (γ = 0, upper panel)
and PT -symmetric (γ = 0.2 < γPT , lower panel) ring of
N = 4 waveguides. Degenerate vortex modes occur at the
intersection marked by the black dot. Curves labeled with
“+1” and “−1” consist of the modes with the respective TC.
Stable (unstable) nonlinear modes of N = 3 ring are shown
with solid (dashed) lines for (c) C = 1.3, γ = 0.2 < γPT and
(d) C = 1.3, γ = 0.6 > γPT . TCs are indicated next to the
curves, m = +1 in red (purple), m = −1 in blue (brown), and
m = 0 in black (grey). Adapted from Leykam, Konotop, and
Desyatnikov (2013).

Typical families of nonlinear modes in an array with
N = 3 and C > 1 are shown in Fig. 20(c) and (d) for
unbroken and broken PT symmetries, respectively. For
γ < γPT nonlinear m = −1 modes bifurcate from the
linear modes, and a pair of m = +1 vortices is created
from a saddle-node bifurcation [Fig. 20(c)]. For γ > γPT

the m = −1 modes are destroyed, while the saddle-node
bifurcation for m = +1 remains [Fig. 20(d)].

Finally we notice that stable vortices as well as lift-
ing of their degeneracy was also reported in continuous
azimuthally modulated PT -symmetric rings (Kartashov,
Konotop, and Torner, 2015).

6. Solitons and vortices in coupled dNLS equations

PT -symmetric dimers in an infinite array (81) are de-
scribed by two coupled 1D dNLS equations, whose soliton
solutions were reported by Suchkov et al. (2011). A nat-
ural extension of that model is an infinite 2D array of
coupled dimers, i.e., in a plane as shown schematically in
Fig. 17(b). This leads to a model of coupled 2D dNLS
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FIG. 21 (Color online) Real (a) and imaginary (b) parts,
and the phase structure (c), of field um,n for a typical sta-
ble on-site PT -symmetric vortex soliton with (C, κ, γ) =
(−0.03,−1, 0.4). From Chen et al. (2014).

equations (Chen et al., 2014)

iu̇n,m = iγun,m + κvn,m + C∆(2)un,m − |un,m|2un,m,
iv̇n,m = −iγvn,m + κun,m + C∆(2)vn,m − |vn,m|2vn,m,

where ∆(2) is a 2D second-order difference operator, i.e.,
∆(2)un,m = un−1,m+un+1,m+un,m−1+un,m+1−4un,m.
If γ < κ (i.e., PT symmetry is unbroken), the system
admits solutions with vn,m = eiδun,m where

δ = − arcsin(γ/κ) or δ = π + arcsin(γ/κ), (96)

and un,m satisfies a single conservative 2D dNLS equation

iu̇n,m = κ cos(δ)un,m + C∆(2)un,m − |un,m|2un,m.

Each nonlinear mode of the latter equation yields two
solutions of the original system corresponding to two dif-
ferent δ in (96). A conservative 2D dNLS equation admits
on- and off-site vortex solitons characterized by nontriv-
ial phase circulations along a closed contour (Kevrekidis,
2009; Malomed and Kevrekidis, 2001). Their counter-
parts in the 2D PT -symmetric system were considered
by Chen et al. (2014), who found that off-site vortices
are unstable for almost any C, while on-site vortices can
be stable in a wide range of parameters. An example of
a stable PT -symmetric vortex is shown in Fig. 21.

D. Nonlinear dynamics of PT -symmetric arrays

1. Conservative vs. dissipative dynamics

PT -symmetric dynamical systems generally do not
conserve energy, which allows them to possess unbounded
solutions (which are forbidden in conservative discrete
lattices). The unbounded growth is a typical scenario of
evolution of an unstable PT -symmetric stationary mode
subjected to a small initial perturbation. Alternatively,
unstable PT -symmetric modes break up into long-lived
transient structures, but typically do not evolve to an at-
tractor (in this way PT -symmetric dynamics has some
features of conservative and Hamiltonian systems). If
the initial conditions correspond to a slightly perturbed
stable nonlinear mode, then the evolution also resem-
bles that in a conservative system, i.e., the amplitude

of the perturbation remains nearly constant. Numeri-
cal evidences of such behavior can be found in Li and
Kevrekidis (2011); Li et al. (2012b, 2013c); and Peli-
novsky, Zezyulin, and Konotop (2014) for finite lattices,
and in Kevrekidis, Pelinovsky, and Tyugin (2013b) and
Zhang et al. (2014) for infinite chains. Explanation
of this behavior might stem from the symplectic struc-
ture of the linear operator that describes evolution of
small perturbations of stationary states (Alexeeva et al.,
2012) (see Sec. V.A below). Despite absence of energy
conservation, PT -symmetric systems can conserve other
quantities (Ramezani et al., 2010) and admit a Hamilto-
nian representation. A variety of completely integrable
Hamiltonian PT -symmetric dimers were reported by
Barashenkov (2014); Barashenkov and Gianfreda (2014);
and Barashenkov, Pelinovsky, and Dubard (2015). In
fact, some of such systems have been known much earlier
outside the domain of the PT symmetry (Jørgensen and
Christiansen, 1993; Jørgensen, Christiansen, and Abou-
Hayt, 1993).
The best studied case corresponds to a finite PT -

symmetric open chain with Kerr nonlinearity and alter-
nating gain and loss. Kevrekidis, Pelinovsky, and Tyugin
(2013a) proved that solutions of the underlying configu-
ration exist globally (i.e., do not blow up in finite time)
for any initial condition. At the same time, there exist
initial conditions that evolve to exponentially growing
solutions, even if PT symmetry of the underlying linear
system is unbroken [see (77)]. More results on nonlinear
dynamics of PT -symmetric oligomers (including catego-
rization of different dynamical scenarios) can be found in
D’Ambroise, Kevrekidis, and Lepri (2012); D’Ambroise,
Malomed, and Kevrekidis (2014); Dmitriev et al. (2011);
Duanmu et al. (2013); Li and Kevrekidis (2011); Li et al.
(2012b, 2013a,c); Rodrigues et al. (2013); Suchkov et al.
(2012); Xu, Kevrekidis, and Saxena (2015); and Zhang
et al. (2014).
Dynamics of solitons in infinite PT -symmetric chains

was discussed by Dmitriev, Sukhorukov, and Kivshar
(2010) and Suchkov et al. (2011). Scattering on a
PT -symmetric defect embedded in an infinite conser-
vative chain was studied in D’Ambroise et al. (2014);
D’Ambroise, Kevrekidis, and Lepri (2012); Dmitriev et
al. (2011); Suchkov et al. (2012); and Zhang et al. (2014).
We also mention a possibility for the existence of con-

served quantities in PT -symmetric networks with an ar-
bitrary number of sites. Recall that any linear PT -
symmetric (and hence P-pseudo-Hermitian) system ad-
mits an integral of motion Q = 〈Pq, q〉 (see Sec. II.C).
This quantity is not conserved in a nonlinear system (69)
with generic nonlinearity F (q). However if the nonlinear
operator F (q) is pseudo-Hermitian, i.e.,

F †(q) = PF (q)P for any q, (97)

then the nonlinear system (69) also conserves the same
quantity Q (Zezyulin and Konotop, 2013). This observa-
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tion allows to construct nonlinear arrays with at least one
integral of motion. Notice that if PF ∗(q) = F (q)P for
all q and F (q) is a symmetric matrix, i.e., FT (q) = F (q)
for any q, then (97) automatically holds.

2. PT -symmetric dimer

Dynamics of the nonlinear dimer model (75) can be
conveniently described using Stokes variables

S0 = |q0|2 + |q1|2, S1 = q0q
∗
1 + q∗0q1,

S2 = i(q0q
∗
1 − q∗0q1), S3 = |q1|2 − |q0|2,

(98)

which satisfy the identity S2
0 = S2

1 + S2
2 + S2

3 . From
system (75) one obtains

Ṡ0 = 2γS3, Ṡ1 = (1− 2χ)S2S3,

Ṡ2 = 2S3−(1− 2χ)S1S3, Ṡ3 = 2γS0−2S2.
(99)

Conserved quantities, integrability and Hamiltonian struc-

ture. Ramezani et al. (2010) discovered that the PT -
symmetric dimer (75) with χ = 0 admits two inte-
grals of motion. Indeed, using the new variable r =√
S2
1 + S2

2/2, the first conserved quantity is found to be
ρ =

√
r2 − S1 + 1. The second constant of motion, J , is

obtained from the relation 2ρ sin[(J−S0)/(2γ)] = S1−2.
Pickton and Susanto (2013) used the integrals ρ and J
to construct the phase portrait and to classify the behav-
ior of all solutions of the system. Further, Barashenkov
(2014) found that the dimer model admits a Hamiltonian
representation, and the Hamiltonian

H = −2(
√
ρ2 + 1+ 2ρ sin θ coshPθ + γθ) (100)

is expressed in terms of polar coordinates ρ and θ, defined
as ρ sin θ = S1/2 − 1 and ρ cos θ = −S2/2, and momen-
tum Pθ, defined by the relations 2r sinhPθ = S3 and
2r coshPθ = S0 [since ρ is a conserved quantity, the con-
jugate momentum Pρ does not enter the Hamiltonian].
The Hamiltonian equations read

θ̇ =
∂H

∂Pθ
= −S3, Ṗθ = −∂H

∂θ
= 2

(
γ +

ρ cos θ

r
coshPθ

)
,

ρ̇ =
∂H

∂Pρ
= 0, Ṗρ = −∂H

∂ρ
= 2

ρ+ sin θ

r
coshPθ.

The PT -symmetric dimer (75) with χ = 1/2
is also integrable (Pelinovsky, Zezyulin, and Kono-
top, 2014). In this case substitution q0,1 =
p0,1 exp

[
1
2i

∫
(|p0|2 + |p1|2)dz

]
transforms the model into

a linear system: iṗ0 = −iγp0 + p1, iṗ1 = iγp1 + p0,
meaning that all solutions are bounded for γ < 1 and
generically unbounded for γ ≥ 1.

Global existence, bounded and unbounded solutions. Turn-
ing back to the general model (99) with arbitrary χ, one
concludes that solutions for any initial condition exist
globally as Gronwall’s inequality implies that S0(z) ≤
S0(0)e

2γ|z| for all z.

For χ = 0 and γ < 1, there exist sufficiently
small initial conditions with globally bounded solu-
tions (Kevrekidis, Pelinovsky, and Tyugin, 2013a). On
the other hand, for χ 6= 1/2 the system admits in-
finitely growing solutions, even in the case of un-
broken PT symmetry (Kevrekidis, Pelinovsky, and
Tyugin, 2013a; Pelinovsky, Zezyulin, and Konotop,
2014). For χ = 0, Barashenkov, Jackson, and Flach
(2013) found an exact unbounded solution: q0,1 =
exp {∓γ(z − z0)− i/γ sinh[2γ(z − z0)]}, where z0 is a
free parameter. For γ > 1, all trajectories are gener-
ically unbounded, except for initial conditions that lie
on the stable manifold of the saddle point q0 = q1 = 0
(Barashenkov, Jackson, and Flach, 2013).

Unidirectional propagation. A linear PT -symmetric cou-
pler displays non-reciprocal behavior characterized by
the field growth in the two arms (see Sec. III.A). The
nonlinearity changes the situation leading to effectively
unidirectional light propagation (Ramezani et al., 2010;
Sukhorukov, Xu, and Kivshar, 2010), i.e., to a light diode
functionality. More specifically, if the nonlinearity coef-
ficient χ exceeds some threshold value χth, the output
radiation almost entirely concentrates in the arm with
gain [the q1 component in (40)] independent of which
arm the input radiation is applied; while for the nonlin-
earity below the critical value, the output radiation is
distributed between the two arms. The critical nonlin-
earity, χth = 4 − 2πγ, was estimated from the heuristic
argument that for energy exchange to occur, there must
exist a maximum of S0, i.e., a point z where relations
Ṡ0 = 0 and S̈0 < 0 hold simultaneously (Ramezani et al.,
2010). Description of possible evolution scenarios can be
found in Sukhorukov, Xu, and Kivshar (2010).

3. Two coupled nonlinear oscillators

Now we turn to nonlinear generalizations of the cou-
pled oscillator model (62). These studies were initiated
by Cuevas et al. (2013), who considered periodic orbits
of the model

ẍ+2γẋ+x+2κy+x3 = 0, ÿ− 2γẏ+ y+2κx+ y3 = 0,

and showed that under the so-called rotating wave ap-
proximation, this model is reduced to the nonlinear PT -
symmetric dimer (40).

Another way to generalize the linear coupled oscilla-
tor model (62) is based on a nonlinear extension of the
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Hamiltonian (65):

H = pq+γ(yq−xp)+(1−γ2)xy+κ(x2+y2)+
∑

n,m

gnmx
nym,

(101)
which preserves the same Hamiltonian structure as de-
scribed in Sec. III.L for the linear case. By choosing
gnm = δn,1δm,3 + δn,1δm,3, one obtains the relation be-
tween momenta and velocities given by (66), as well as
the following dynamical equations (Barashenkov and Gi-
anfreda, 2014):

ẍ+ 2γẋ+ x+ 2κy + x3 + 3xy2 = 0,
ÿ − 2γẏ + y + 2κx+ y3 + 3yx2 = 0.

(102)

This system leads to a new integrable nonlinear PT -
symmetric dimer. It was derived by Barashenkov and
Gianfreda (2014) using a multiple-scale perturbation ex-
pansion under the scaling 2κ = 3Kǫ2 and 2γ = Γǫ2,
where ǫ ≪ 1 is a small parameter, and K,Γ = O(1).
Looking for a solution of (102) in the form of pertur-
bation expansions x = ǫx1 + ǫ3x3 + · · · and y = ǫy1 +
ǫ3y3+ · · · , and using the scaled time variables T2n = ǫ2nt
(n = 0, 1, ...), one obtains the leading order solution as
x1 =

√
Kq0e

iT0 +c.c., y1 =
√
Kq1e

iT0 +c.c., where q0,1
solve the equations

iq̇0 + q1 +
(
|q0|2 + 2|q1|2

)
q0 + q21q

∗
0 = −iΓq0,

iq̇1 + q0 +
(
|q1|2 + 2|q0|2

)
q1 + q20q

∗
1 = iΓq1.

(103)

Here the overdot denotes the derivative with respect to
τ = 3KT2/2, and gain and loss are characterized by
Γ = γ/(3K). System (103) is Hamiltonian, i.e., can be
obtained from the equations of motion iq̇0 = −∂H/∂q∗1
and iq̇1 = −∂H/∂q∗0 , with the Hamiltonian H as

H =
(
|q0|2 + |q1|2

)
(1 + q∗0q1 + q0q

∗
1) + iΓ (q∗1q0 − q∗0q1) .

(104)
The system also conserves the quantity S1 = q0q

∗
1 + q∗0q1

and is therefore integrable.
Another interesting feature of system (103) is the exis-

tence of stable nonlinear stationary modes for any value
of Γ, even for |Γ| > 1 when stable propagation of linear
waves is not possible. Another modification of a PT -
symmetric dimer with a similar property was reported
by Cuevas–Maraver et al. (2014). Moreover, it is pos-
sible to find a family of dimers for which all nonlinear
trajectories remain bounded, irrespectively of the value
of the gain-loss coefficient Γ (Barashenkov, Pelinovsky,
and Dubard, 2015). This phenomenon can be termed as
nonlinearity-induced PT -symmetry restoration.

4. Scattering on a PT -symmetric defect

An infinite conservative lattice with a PT -symmetric
defect supports propagation of linear modes which un-
dergo scattering by the defect (Dmitriev et al., 2011;

FIG. 22 (Color online) Two scenarios of discrete soliton scat-
tering on a PT -symmetric dimer defect. Panels (a) and (b)
feature the same model parameters, but different amplitudes
of the incident discrete soliton: A = 0.2 vs. A = 0.5. In
both panels, n runs from n = −75 to n = 75. Adapted from
Suchkov et al. (2012).

Suchkov et al., 2012). The simplest case corresponds to
a PT -symmetric dimer embedded in a conservative lat-
tice. It can be represented schematically by a chain in
Fig. 16(a), where all γn = 0 except for γ1 = γ, and all
coupling constants are equal: κ = ǫ = 1, except for the
one between q0 and q1 which is equal to some constant C.
If all couplings are equal, i.e., C = 1, the transmission
and reflection coefficients of a plane wave in the linear
limit χ = 0 incident from the left are

T (k) =
2ie−ik sink

e−2ik + γ2 − 1
, R(k) =

−γ2 + 2γ sin k

e−2ik + γ2 − 1
,

where real k is the Bloch wave number of the incident
wave.
Since |T (k)|2 and |R(k)|2 can be larger than unity, the

reflected and/or transmitted waves can be amplified af-
ter the scattering. This property is verified in the non-
linear case as well. Numerical study shows that the PT -
symmetric dimer defect can substantially amplify the in-
cident soliton (Suchkov et al., 2012). It was also found
that soliton scattering can occur without [Fig. 22(a)] or
with [Fig. 22(b)] excitation of an internal localized mode,
depending on the amplitude of the incident soliton. De-
fect modes localized on a nonlinear PT -symmetric dimer
were described in Zhang et al. (2014).
Asymmetric scattering of left and right incident plane

waves by nonlinear PT -symmetric defects embedded in
a linear conservative infinite chain was considered by
D’Ambroise, Kevrekidis, and Lepri (2012). Scattering by
a nonlinear defect embedded in a linear ladder configu-
ration, similar to that shown in Fig. 17(a), was described
by D’Ambroise et al. (2014).

5. PT -symmetric dimers with varying parameters

A practically relevant issue is the management of
nonlinear systems by means of varying parameters.
D’Ambroise, Malomed, and Kevrekidis (2014) investi-
gated numerically the effect of time-periodic gain on dy-
namics of the nonlinear dimer (40) with periodic coupling
κ = V0 + V1 cos(ωz). In the linear limit, such a system
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is characterized by the presence of parametric resonance,
and its long-term linear behavior is determined by the
Floquet multipliers. On the plane of parameters (V0, V1)
one can distinguish regions of stable and unstable dynam-
ics. The inclusion of nonlinearity significantly affects the
dynamics, i.e., the same initial data can be bounded in
the linear case and unbounded in the nonlinear case and
vice versa. Effect of varying gain-loss profile was investi-
gated by Battelli et al. (2015) and Horne et al. (2013).
Another question of practical relevance is the effect

of random modulations of system parameters which pre-
serve the PT symmetry only in average. Considering the
PT -symmetric dimer (40) with coupling κ + K(z) and
gain-loss coefficients γ+Γ1,2(z), where K(z) and Γ1,2(z)
are delta-correlated white noises, Konotop and Zezyulin
(2014a) demonstrated that the statistically averaged in-
tensity of the field in the coupler grows exponentially.
The growth occurs independently of whether the aver-
age PT symmetry is broken or not, but the broken PT
symmetry boosts the growth rate.
Stability regions for the model of coupled oscillators

(62) with periodically modulated gain-loss coefficients
were investigated by Psiachos, Lazarides, and Tsironis
(2014).

E. Observation of PT -synthetic solitons

Now we turn to the experimental observation of soli-
tons in PT -symmetric synthetic lattices reported by
Wimmer et al. (2015). The experimental setting was
briefly described in Sec. III.A (see Fig. 5). It is mod-
eled by the nonlinear map (41), meaning that the tem-
poral (i.e., evolution) coordinate (m in this case) is also
discrete.

Discrete solitons in lattices with local symmetry [see
Fig. 5(a)] are described by the model (41) with Gu =
1/Gv = G and φn = 0. Neglecting the nonlinearity in
the map (41) and using the ansatz (umn , v

m
n ) ∼ ei(Qn+θm),

one obtains the linear dispersion relation

θ = ± arccos
[
cos (Q− (i/2) lnG) /

√
2
]

(105)

illustrated in Fig. 23 (a). Although the imaginary part
of θ is not exactly zero in the infinite lattice, numerical
results of Wimmer et al. (2015) show that in the finite
lattice the eigenvalues remain real as long as the gain
does not exceed a certain critical value.
When nonlinearity is taken into account, increasing of

the input power leads to a formation of a discrete soliton,
as shown in Fig. 23(c). A stationary soliton is of the
form (umn , v

m
n ) = (Un, Vn)e

iθm and can be characterized
by the energy E =

∑
n

(
|Un|2 + |Vn|2

)
. One can identify

a family of stationary solitons which can be visualized on
the plane (θ, E), see Fig. 23(b).

FIG. 23 (Color online) Solitons in locally PT -symmetric lat-
tices. (a) The linear dispersion relation (105) with G = 1.1.
Black and red lines with labels “Re” and “Im” correspond
to real and imaginary part of θ, respectively. (b) Family of
solitons in gap of the spectrum (shaded blue domain) on the
diagram θ vs E. (c) Formation and propagation of a discrete
soliton as the input power P ≈ 120 mW. The colorbar shows
log10(intensity). Adapted from Wimmer et al. (2015).

FIG. 24 (Color online) Band-gap spectrum (106) for (a) the
broken PT symmetry at G = 1.4, φ0 = 0, and (b) unbroken
PT symmetry at G = 1.4, φ0 = 0.4π. Black and red lines
with labels “Re” and “Im” show real and imaginary parts of θ.
(c) Formation of a broad single-hump soliton for G = 1.4, and
φ0 = −0.4π. The colorbar shows log10(intensity). Adapted
from Wimmer et al. (2015).

Discrete solitons in lattices with global PT symmetry [see
Fig. 5(b)] are described by the map (41) where the phase
alternates as n varies according to the following rule:
φn = φ0 for mod(n + 3, 4) < 2, and φn = −φ0 other-
wise. The spectrum of the linear lattice in this case is
determined by the equation

cos(4Q) = 3 cos2(2θ) + 8 cosh (lnG) cos(φ0) cos(2θ)

+ cosh (2 lnG)− 4 sin2(φ0). (106)

The examples of the numerical solution of the obtained
equation are shown in Fig. 24(a,b). Formation and prop-
agation of a discrete soliton at large intensity of a broad
Gaussian pulse applied to the network input are shown
in Fig. 24(c).

V. PT -SYMMETRIC COUPLED NLS EQUATIONS

A. The model and its basic properties

Generalization of discrete PT -symmetric networks is
given by distributed couplers, modeled by two linearly
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coupled NLS equations with gain and loss

iψ1,z = −ψ1,xx − κψ2 + iγψ1 +
(
χ|ψ1|2 + χ̃|ψ2|2

)
ψ1,

iψ2,z = −ψ2,xx − κψ1 − iγψ2 +
(
χ̃|ψ1|2 + χ|ψ2|2

)
ψ2,
(107)

where all coefficients are real and we assume κ ≥ 0 and
γ ≥ 0. Following optical terminology, the terms with
χ and χ̃ are referred to as self-phase modulation (SPM)
and cross-phase modulation (XPM), respectively.
The model (107) is PT -symmetric with the parity op-

erator P = σ1. This means that for a given solution

ψ1,2(x, z) of (107) there exists a solution ψ
(PT )
1 (x, z) =

ψ∗
2(x,−z) and ψ

(PT )
2 (x, z) = ψ∗

1(x,−z).
Using substitution ψ1,2 ∼ eikx−ibz , we obtain the dis-

persion relation of the underlying linear system (χ = χ̃ =

0) as b = k2±
√
κ2 − γ2. Thus PT symmetry is unbroken

for γ ≤ κ, and γ = γPT = κ is the exceptional point.
In the context of optical applications, model (107) with

χ = 0 was introduced by Driben and Malomed (2011b)
for constant gain-and-loss coefficient γ, by Abdullaev et
al. (2011b) for a PT -symmetric defect with localized γ =
γ(z), and by Driben and Malomed (2011a) for periodic
γ(z) and κ(z). Pelinovsky, Zezyulin, and Konotop (2015)
proved that the Cauchy problem for (107) has a unique
global solution in the energy space (ψ1, ψ2) ∈ H1(R) ×
H1(R), with the H1 norm defined by ‖ψ‖2H1 =

∫
R
(|ψ|2 +

|ψx|2)dx. This global existence however does not rule
out the possibility of indefinitely growing total H1 norm,
‖ψ1‖H1 + ‖ψ2‖H1 . In the particular case of χ = χ̃, Eqs.
(107) represent a PT -symmetric extension of the exactly
integrable model introduced by Manakov (1973). In this
case, the system can be conveniently treated in terms of
integral Stokes variables [cf. (98)]

S0 =

∫

R

(
|ψ1|2 + |ψ2|2

)
dx, S1 =

∫

R

(ψ∗
1ψ2 + ψ∗

2ψ1)dx,

S2 = i

∫

R

(ψ∗
1ψ2 − ψ∗

2ψ1)dx, S3 =

∫

R

(
|ψ1|2 − |ψ2|2

)
dx,

which for χ = χ̃ solve equations

Ṡ0 = 2γS3, Ṡ1 = 0, Ṡ2 = −2κS3, Ṡ3 = 2γS0 + 2κS2,

where the overdot stands for the derivative with respect
to z. Thus the model conserves two quantities: S1 and
C = κS0 + γS2, which allows one to obtain a general
solution

S0 = κC/ω2 +A1 cos(2ωz) +A2 sin(2ωz), (108)

with ω =
√
κ2 − γ2 and constant C and A1,2. Hence

the total power S0(z) is bounded for γ < κ and gener-
ically unbounded otherwise. On the basis of numerical
simulations, Pelinovsky, Zezyulin, and Konotop (2015)
also conjectured that the H1 norm of all solutions in the
system with χ = χ̃ is also bounded for γ < κ.
Let us also point out that if γ ≤ κ, then substitution

ψ2 = eiδψ1, δ = arcsinγ/κ or δ = π − arcsin γ/κ (109)

reduces (107) to a single conservative NLS equation for
function ψ1(x, z) (Alexeeva et al., 2012; Bludov et al.,
2013; Driben and Malomed, 2011b):

iψ1,z = −ψ1,xx + (χ+ χ̃) |ψ1|2ψ1 − κ cos(δ)ψ1. (110)

B. Modulational instability

System (107) admits a solution in the form of a car-
rier wave (CW) background (Bludov, Konotop, and Mal-
omed, 2013)

ψcw
j = ρeikx−ibz+i(−1)jδ/2, b = k2 + ρ2(χ+ χ̃)− cos δ,

(111)
where k and ρ are constants. To study its linear stability,
we use the standard substitution,

ψj = ψcw
j + ρ

(
ηje

−i(βz−κx) + ν∗j e
i(β∗z−κx)

)
eikx−ibz ,

with |ηj |, |νj | ≪ 1. The linearization gives two branches
β1,2(κ) of the stability eigenvalues:

β1 = 2kκ± κ
√
κ2 + 2ρ2(χ+ χ̃), (112)

β2 = 2kκ±
√
(κ2 + 2 cos δ) (κ2 + 2 cos δ + 2ρ2(χ− χ̃)),

(113)
which feature several sources of modulational instability
(MI). One source of MI stems from Eq. (112) and corre-
sponds to

χ+ χ̃ < 0. (114)

This is the MI due to long-wavelength excitations; it is
not influenced by gain and loss and is present also in
a conservative system of NLS equations without linear
coupling. Another source of MI stems from Eq. (113):

cos δ < max{0, ρ2(χ− χ̃)}, (115)

and arises due to the linear coupling and is significantly
affected by the gain and loss.
Different origins of the MI manifest themselves through

different dynamical scenarios illustrated in Fig. 25. In
Fig. 25(a), XPM nonlinearity is focusing, and we observe
a “standard” scenario of MI which is very similar to its
Hamiltonian counterpart where the power is distributed
between the two waveguides. If the XPM is defocusing,
but condition (114) is satisfied, one observes relatively
fast power transfer from the lossy waveguide to the ac-
tive one, accompanied by fast growing peaks [Fig. 25(b)].
Such behavior is induced by the focusing SPM, and there-
fore is not significantly changed even when one passes
from the domain of parameters (114) [Fig. 25(b)] to the
one defined by (115) [not shown in Fig. 25]. The third
distinctive scenario of the MI takes place when both XPM
and SPM are defocusing [Fig. 25(c)]. In this case the MI
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FIG. 25 (Color online) Intensity evolution of the field com-
ponents |ψ1|2 and |ψ2|2 (left and right columns) of the plane
wave with ρ = 1.604, χ = 0.5, χ̃ = −1 (a), ρ = 0.76,
χ = −1.5, χ̃ = 1 (b), and ρ = 0.98, χ = 0.25, χ̃ = 1 (c).
For all panels, k = 0, δ = π/4. Adapted from Bludov, Kono-
top, and Malomed (2013).

occurs only due to the imbalance between the gain and
loss, induced by the nonlinearity and resulting in nearly
homogeneous growth (decay) of the field in the waveguide
with gain (loss) respectively.

C. Bright solitons

When a CW background is unstable, a system can ad-
mit solitonic solutions. Using substitution (109), one can
find a one-soliton exact solution which for χ̃ = 0 and
χ = −2 reads (Driben and Malomed, 2011b)

ψs
1= eiδ−ibz a

cosh(ax)
, ψs

2= e−ibz a

cosh(ax)
, (116)

where the propagation constant b = −a2 − cos δ, am-
plitude a > 0, and we set κ = 1. Equation (116)
actually describes two types of solutions which can be
termed symmetric (0 < δ < π/2) and antisymmetric
(π/2 < δ < π) in accordance with the respective con-
servative limits δ = 0 and δ = π (Wright, Stegeman,
and Wabnitz, 1989). Bright solitons in presence of SPM
and XPM, i.e., for nonzero χ and χ̃, were considered by
(Bludov et al., 2013).
Driben and Malomed (2011b) found that the symmet-

ric soliton is stable for

a2 < a2max = 2
√
1− γ2/3, (117)

which agrees with the known result for the conservative
case γ = 0 (Wright, Stegeman, and Wabnitz, 1989). At
γ > 0, condition (117) can be obtained from the linear
stability analysis (Alexeeva et al., 2012) which starts with
the substitution

ψ1 = ψs
1+e

iδ−ibz(p+q)/
√
2, ψ2 = ψs

2+e
−ibz(p−q)/

√
2,

where p = Re (p1(x)e
µz) + iRe (p2(x)e

µz), q =
Re (q1(x)e

µz)+ iRe (q2(x)e
µz), µ = ν− iω, and p1,2, q1,2

are complex functions. The linearization with respect to
p and q gives the eigenvalue problem

(L−cos δ)p+2γJq = µJp, (L+cos δ)q = µJq, (118)

where p = (p1, p2)
T , q = (q1, q2)

T , J = −iσ2 [see (12)],

L =

(
L+ 0
0 L−

)
, L± = − d2

dx2
− b− (4 ± 2)|ψs

2|2.

In fact, the stability analysis reduces to the second equa-
tion in (118), since the first equation has a bounded so-
lution p for any bounded q and µ 6= 0. The obtained
symplectic eigenvalue problem pertains to Hamiltonian
evolution, and thus scenarios of evolution of instabilities
are expected to be characteristic of conservative systems,
despite the presence of gain and loss.
For the soliton (116), by introducingX = ax, λ = µ/a2

and η = cos δ/a2, the second equation in (118) can be
rewritten as

(L− + η)(L+ + η)q1 = −λ2q1, (119)

where L± = −d2/dX2 +1− (4± 2)sech2X. For the sym-
metric soliton (116) with cos δ > 0, the lowest eigenvalue
of L− is zero, and hence L−+η is positive definite and the
inverse (L− + η)−1 exists. The symmetry of the eigen-
value problem (119) implies that if λ is an eigenvalue,
so are −λ and ±λ∗. Hence stability of the solitons re-
quires that the minimal eigenvalue expressed through the
Rayleigh quotient

−λ2 = min{〈q1, (L+ + η)q1〉/〈q1, (L− + η)−1q1〉}
must be positive. This occurs if the lowest eigenvalue
of the operator L+ + η, i.e., ν = −3 + η, is positive.
Recalling the definition of η one recovers (117).
Numerical studies of anti-symmetric solitons show that

all such solutions are unstable (Alexeeva et al., 2012;
Driben and Malomed, 2011b). However lifetimes of the
solitons with small amplitudes are exponentially long so
for some purposes they can be regarded as stable. Dy-
namics of unstable solitons, either symmetric or anti-
symmetric, is divided into two asymptotic regimes: un-
bounded growth and formation of breathers. Unbounded
growth typically occurs when amplitudes of unstable soli-
tons are sufficiently large.
While bright solitons (116) correspond to the most

fundamental localized excitations in nonlinear PT -
symmetric couplers, Li, Li, and Malomed (2014) demon-
strated that the model also supports stable propagation
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of “super-solitons” (Novoa et al., 2008), i.e., localized ex-
citations consisting of many identical solitons which fea-
ture Newton-cradle-like dynamics. Dynamics and sta-
bility os 2-soliton solution, i.e. the input ψ1(z = 0) =
eiδψ2(z = 0) = 2a

cosh(ax) , in a PT -symmetric coupler, as

well as switching of a 2-soliton initial pulse applied to
only one of the arms were considered by (Driben and
Malomed, 2012).

D. Breathers

In numerical studies of soliton stabilization at the ex-
ceptional point (see V.E.1), Driben and Malomed (2011a)
found breathers featuring persistent irregular oscilla-
tions. In further studies of bright solitons Alexeeva et
al. (2012), found two main scenarios of development of
instabilities: unbounded growth of a soliton amplitude
and emergence of periodic breather-like excitations. This
naturally poses a question on the existence of breathers
in PT -symmetric coupled NLS equations (107). We ad-
dress this question following Barashenkov et al. (2012),
for the case of χ = −2, χ̃ = 0, and κ = 1, in (107). First,
let us observe that the global rotation
(
q1
q2

)
= U

(
ψ1

ψ2

)
, U =

1

2 cos δ

(
eiδ −1
e−iδ 1

)
, (120)

where δ is defined by (109), transforms (107) into a new
system of two NLS-like equations without any linear dis-
sipation and coupling. In the limit of small amplitudes,
|q1,2| ≪ 1, the new system decouples into two linear equa-
tions: iqj,z = −qj,xx ± cos(δ)qj , where j = 1, 2. Thus at
small amplitudes one can look for a solution of the non-
linear problem in the form of a multiple-scale expansion

qj =
√
ǫe(−1)ji cos(δ)z

(
Aj + ǫA

(1)
j + · · ·

)
, (121)

where A
(n)
j depend on Z = ǫz, X =

√
ǫx, as well as the

rest of scale variables Zn = ǫn+1z andXn = ǫn+1/2x with
n = 1, 2, .... Substituting (121) into the nonlinear equa-
tions for q1,2, collecting all terms with the same power of
ǫ and eliminating the secular terms, one obtains

iAj,Z +Aj,XX + 2
(
|Aj |2 + 2|A3−j |2

)
Aj = 0, (122)

where j = 1, 2. This system has two obvious solu-
tions: (A1, 0) and (0, A2) which in terms of the original
functions ψ1,2 yield antisymmetric and symmetric bright
solitons. System (122) also admits vector solitons with
A1 = A2. Taking the latter solution and inverting rota-
tion (120), one obtains a breather

(
ψ1

ψ2

)
=

2a exp(ia2z)√
3 cosh(ax)

(
cos [cos(δ)z]

i sin [δ + cos(δ)z]

)
, (123)

where the amplitude amust be small enough (a ∼ ǫ1/2 ≪
1). The frequency of the breather in the leading order is

determined by cos(δ) =
√
1− γ2.

FIG. 26 (Color online) (a) Collision of anti-symmetric (ini-
tially left) and symmetric (initially right) solitons for γ = 0.5
and a = 0.3. A pair of breathers emerge from the collision.
(b) Inelastic collision of two breathers for γ = 0.3 and a = 0.3.
Adapted from Barashenkov et al. (2012).

Linear stability analysis and numerical simulations in-
dicate that breathers are stable. Moreover, breathers
appear to be rather common objects which are excited
when unstable solitons break up (Alexeeva et al., 2012),
after interaction of symmetric and antisymmetric soli-
tons [Fig. 26(a)], and after interaction of a soliton with
a defect (Bludov et al., 2014). Numerical studies of in-
teraction of breathers show appreciable inelastic effects
as illustrated in Fig. 26(b) (Barashenkov et al., 2012;
Rysaeva, Suchkov, and Dmitriev, 2014).

E. Solitons in couplers with varying parameters

1. Stabilization of a soliton at an exceptional point

The exceptional point of the linearized (χ = χ̃ = 0)
system (107) corresponds to γPT = κ. It is evident from
the substitution (109) that at this point symmetric and
antisymmetric solitons merge into the same solution with
ψ2 = iψ1 which appears to be unstable. However, by in-
troducing simultaneous periodic modulations of the gain,
loss and coupling, i.e., by considering the model

iψ1,z = −ψ1,xx + f(z)(ψ2 + iψ1) + χ|ψ1|2ψ1,
iψ2,z = −ψ2,xx + f(z)(ψ1 − iψ2) + χ|ψ2|2ψ2,

(124)

where f(z) describes the modulations, the soliton can be
stabilized. This fact was established by Driben and Mal-
omed (2011a) who studied numerically the case f(z) =
f0 sin(2πz/L), where f0 and L are the amplitude and pe-
riod of the modulation. It was found that the soliton can
indeed be stabilized, and can even become an attractor
with a significantly broad basin.

Existence of stable solitons at the exceptional point
was also reported by Li and Xie (2014) for the case where
the coupling constant is modulated periodically whereas
the dissipation is constant (or vice versa).
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FIG. 27 (Color online) (a) Symmetric soliton passing the de-
fect at κ0 = 2, ℓ = 1 (in this case ℓcr ≈ 7). Interaction of
anti-symmetric soliton with the defect at κ0 = 4, ℓ = 1.1 (b)
ℓ = 2.2 (c) and ℓ = 2.7 (d) (in this case ℓcr ≈ 3.4). In (b)
broadening is repeated with period ≈ 10 while the breather
period ≈ 0.8. In all panels the initial conditions are taken
in the form (116) with a = 1/

√
2, the defect is centered at

z = 0, and κmin = 1. Only the first component |ψ1|2 is
shown; behavior of |ψ2|2 is similar. Adapted from Bludov et

al. (2014).

2. Interaction of a soliton with an exceptional point

By modulating the coupling constant one can imple-
ment a situation where the coupled waveguides have pa-
rameters corresponding to the exceptional point or to the
broken PT symmetry only at a single point or on a finite
segment of the propagation distance. Such a localized
modulation of the coupling can be referred to as coupling
defect. Following Bludov et al. (2014), now we consider
the interaction of a bright vector soliton with a coupling
defect of the form κ(z) = κ0− (κ0 − κmin)e

−z2/ℓ2 , where
κmin and κ0 are the minimum and maximum of the cou-
pling, and ℓ is a defect-length parameter. We consider
system (107) in the absence of XPM (χ̃ = 0), set χ = −1,
and take γ = 1 without loss of generality. The introduced
defect is centered at z = 0, where the strength of cou-
pling κ(0) = κmin is the weakest. Thus when κmin = 1,
the exceptional point is achieved at z = 0. Far from
the defect the NLS equations are homogeneous, and thus
one can consider incidence of a soliton initially given by
(116) on the defect. Numerical simulations revealed var-
ious scenarios visualized in Fig. 27.

If the defect length ℓ exceeds some critical value
ℓcr(κmin) (which depends on κmin), then the soliton en-
ergy grows without bound after interaction with the de-
fect, i.e., the soliton cannot “overcome” the defect. If ℓ
is below ℓcr(κmin), then after passing the defect a sym-
metric soliton is transformed into a breather propagat-
ing along the homogeneous coupler [Fig. 27(a)]. When an
anti-symmetric soliton interacts with the coupling defect,
possible scenarios include emergence of (quasi-)breathers
with periodic broadening of the shape [Fig. 27(b)], split-
ting of a soliton into two outgoing breathers [Fig. 27(c)],
as well as splitting of the soliton into two breathers which
after some distance start moving towards each other

[Fig. 27(d)].

3. Soliton switching by a PT -symmetric defect

Now we turn to propagation of a soliton in a coupler
having constant coupling but localized gain-loss defects.
The problem is modeled by

iψ1,z = −ψ1,xx − ψ2 − iγ1(z)ψ1 − |ψ1|2ψ1

iψ2,z = −ψ2,xx − ψ1 − iγ2(z)ψ2 − |ψ2|2ψ2,
(125)

where coefficients γ1(z) and γ2(z) are arbitrary so far.

Soliton switching can be described by the Lagrangian
approach (see Pare and Florjanczyk (1990) for the con-
servative coupler). This approach relies on the ansatz
ψj = Aje

φj/ cosh(ax) [cf. (116)] where amplitudes
A1,2 and phases φ1,2 are considered as slow functions of
the propagation distance z. The Lagrangian equations
are (Abdullaev et al., 2011b)

Fz = −γ(1− F 2) + 2
√
1− F 2 sin(φ), (126a)

φz = δFQ− 2F cos(φ)/
√
1− F 2, (126b)

Qz = −γ1Q(1 + F )− γ2Q(1− F ). (126c)

Here F = (P1−P2)/(P1+P2) is the relative distribution
of the power [P1,2(z) =

∫∞

−∞ |ψ1,2|2dx] between the two
arms of the coupler, Q(z) = (P1(z) + P2(z))/(P1(0) +
P2(0)) is the total power normalized to the input one,
φ = φ1 − φ2 is the relative phase, and δ = aP0/3. Equa-
tions (126) are similar to those describing a coupler oper-
ating in the stationary regime (Abdullaev, Konotop, and
Shchesnovich, 2011). Thus one can expect various types
of dissipative dynamics of a soliton, reproducing light
propagation in the x-independent dimer model. One of
such effects, the switching of a soliton by a dissipative
defect localized on the distance interval [za, zb], is illus-
trated in Fig. 28(a). The input soliton is mainly concen-
trated in the dissipative arm (P1 ≫ P2), but the output
is concentrated in the active arm, resembling unidirec-
tional propagation described in Sec. IV.D.2. By adding
a new defect with inverted gain and loss the switching
can be repeated [see the inset of Fig. 28(a)].

Notice that PT symmetry is not necessary for switch-
ing since it can be achieved even in a purely dissipative
coupler [Fig. 28(b)]. Moreover, decay of the total power
can be strongly suppressed by increasing the strength of
the dissipative defect. This phenomena can be termed
to as macroscopic Zeno effect (Shchesnovich and Kono-
top, 2010) which is a macroscopic (meanfield) manifesta-
tion of the well-known quantum Zeno effect (Daley, 2014;
Facchi and Pascazio, 2008). Macroscopic Zeno effect in a
BEC subject to an ionizing electronic beam was experi-
mentally observed by Barontini et al. (2013).
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FIG. 28 (a) Soliton switching between arms by
the PT -symmetric segment γ2(z) = −γ1(z) =
Γ (arctan[5(z − za)]− arctan[5(z − zb)])

2 with Γ = 0.065,
za = 1.5, and zb = 3.0. In the inset of (a) a gain-loss segment
is added at z ∼ 10. The parameters were engineered in order
to keep Q(z) ≈ 1. (b) The same as in (a) but with only
dissipative segment included in the first arm (γ2(z) ≡ 0) and
with Γ = 0.135. The inset shows the relative phase. In both
panels ψ1(0) = 20 sech(10

√
2x) and ψ2(0) = 5 sech(5x/

√
2)

[i.e. F (0) = 3/5]. Adapted from Abdullaev et al. (2011b)

FIG. 29 (a) Vector Peregrine soliton (127) with ρ = 1, χ =
0.5, χ̃ = −1; (b) and (c) Intensities of the Peregrine solitons
for ρ = 1.604, χ = 0.5, χ̃ = −1, δ = π/4, initiated with
slightly perturbed initial conditions at z = zini = −4 The
shown scenario of the evolution corresponds to the scenario
of MI shown in Fig. 25(a). Adapted from Bludov et al. (2013).

F. Rogue waves

In the regime of MI, system (107) supports an-
other type of localized excitations known as rogue
waves (Kharif, Pelinovsky, and Slunyaev, 2009). Here
we are interested in deterministic rogue waves, which
are nonlinear excitations propagating on a nonzero back-
ground and localized in space and in time. The simplest
rogue-wave solution is the Peregrine soliton of the NLS
equation (Peregrine, 1983). In order to construct a coun-
terpart of the Peregrine soliton in the PT -symmetric cou-
pled NLS equations (107), one can employ the reduction
(109)–(110). Then if the condition of the MI (114) is
satisfied, the exact Peregrine soliton of Eqs. (107) reads
(Bludov et al., 2013)

ψj(x, z) = ρe(−1)jiδ/2−ibz ×
[
1− 4

(
1− 2i (χ+ χ̃) ρ2z

)

1− 2 (χ+ χ̃) ρ2x2 + 4 (χ+ χ̃)2 ρ4z2

]
.(127)

When |z| → ∞ or |x| → ∞, this solution approaches the
constant background given by Eq. (111) with k = 0.
The analytical solution (127) is illustrated in Fig. 29.

Direct numerical simulations on the dynamics of Pere-
grine soltions subject to different initial conditions were
performed by Bludov et al. (2013). In a generic situa-
tion due to the instability an emergence of a single peak
follows by the development of the modulational instabil-
ity, reflecting different scenarios corresponding to differ-
ent relations among the nonlinear parameters described
in Sec. V.B. An example of such evolution is shown in
Fig. 29(b,c).
System (107) also admits more complex rogue-wave

solutions called higher-order rogue waves. They can
be readily obtained from higher-order rogue waves of
the NLS equation through the reduction (109)–(110)
(Akhmediev, Ankiewicz, and Soto-Crespo, 2009; Dai and
Huang, 2014; Dubard et al., 2010; Guo, Ling, and Liu,
2012; Ohta and Yang, 2012).

G. Dark solitons

Dark solitons in coupled PT -symmetric NLS equa-
tions can exist if the CW background is stable (Blu-
dov, Konotop, and Malomed, 2013). Under substitu-
tion (109) we again obtain Eq. (110), but now we as-
sume χ + χ̃ > 0. Dark-soliton solutions of the NLS
equation are well known (Faddeev and Takhtadjan, 1987;
Tsuzuki, 1971). In the particular case of zero velocity,
the respective soliton (also known as black soliton) reads
ψds(x, z) = u0(x)e

−ibz , where

u0(x) = ρ tanh
(
ρ
√
(χ̃+ χ)/2 x

)
. (128)

As in the case of bright solitons (see Sec. V.C), the
linear stability of a slightly perturbed soliton (with per-
turbations ∝ eiλz) is reduced to two separate eigen-
value problems (Bludov, Konotop, and Malomed, 2013):
L1,2ψ = Λ1,2ψ, where Λ = λ2, and the and the operators
are defined by

L1 = (L+ − L)(L− + cos δ), L2 = (L− − cos δ)(L+ + L),

with L ≡ 2χu20 − cos δ and

L± = − ∂2

∂x2
− b+ [(2± 1)χ1 + χ]u20.

The dark soliton is linearly stable if all eigenvalues
Λ1,2 are real and positive. The eigenvalue problem for
L2 is the well-studied stability problem for the black
soliton in the conservative defocusing medium. It is
known that L+ + L is positive definite, and L− − cos δ
has only one negative eigenvalue and one zero eigen-
value (Barashenkov, 1996). It is also known that the
minimal eigenvalue of L2 is positive (Chen, 1996). Thus,
L2 does not give instability, and the analysis is reduced
to the study of operator L1.
Linear stability of PT -symmetric dark solitons was

studied by Bludov, Konotop, and Malomed (2013). Sta-
ble dark solitons are robust and their collision is almost
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elastic. If the system has a weak imbalance between gain
γ1 and loss γ2 in the two waveguides, dark solitons can
still survive for a long time.

H. Generalized PT -symmetric coupled NLS equations

The above studies do not exhaust rich dynamics gov-
erned by coupled PT -symmetric NLS equations, includ-
ing in particular resonant mode interactions in general
and peculiar four wave mixing, in particular (Wasak et
al., 2015). Furthermore, generlizations of the model itself
is possible, which is considered below in this section.

a. Circular arrays. As in Sec. IV where a dimer model
was generalized to PT -symmetric oligomers, two coupled
PT -symmetric NLS equations can be generalized to an
array of N waveguides. Barashenkov, Baker, and Alex-
eeva (2013) studied NLS equations assembled in open and
closed PT -symmetric arrays with alternating and clus-
tered gain-loss configurations (see Sec. IV.B.1). Here we
consider the alternating closed (necklace) configuration,
modeled by

iψn,z + ψn,xx + 2|ψn|2ψn + ψn−1 + ψn+1 = 2i(−1)nγψn,
(129)

with n = 1, ..., 2N , under boundary conditions ψ2N+1 =
ψ1 and ψ2N = ψ0. The PT -symmetry breaking thresh-
old of this system is not affected by the dispersive terms

ψn,xx. Therefore the linear waves are stable if γ < γ
(an)
PT

in (77). [Note that in a system with alternating disper-
sion, i.e., with alternating signs in front of the second
derivative, PT symmetry is always broken (Gupta and
Sarma, 2014b)].
If PT symmetry is unbroken, a solitonic solution can

be searched in the form ψn = eiφn+ia2zasech(ax), where
phases φn are determined from the relations

e−iϕn−1 + eiϕn = 2i(−1)nγ, ϕn = φn+1 − φn.

These equations yield φn = (−1)n arcsin γ+πn+φ, where
φ is a constant phase (appearing due to the phase invari-
ance of the system).

b. Multidimensional NLS equations and wave collapse. An-
other extension of the PT -symmetric coupler model is
coupled PT -symmetric multidimensional NLS equations
with more general nonlinearities, i.e.,

iψ1z = −∇2ψ1 − κψ2 − F1 (|ψ1|, |ψ2|)ψ1 + iγψ1,

iψ2z = −∇2ψ2 − κψ1 − F2 (|ψ1|, |ψ2|)ψ2 − iγψ2,
(130)

where x ∈ R
N , ∇ = (∂/∂x1, ...∂/∂xN), and Fj(·, ·) de-

scribe the nonlinearities.
Starting with the case of cubic nonlinearity F1 =

χ|ψ1|2 + χ̃|ψ2|2 and F2 = χ̃|ψ2|2 + χ|ψ1|2, we recall that

for focusing SPM and XPM (χ, χ̃ ≥ 0), solutions of a sin-
gle NLS equation with N ≥ 2 suffer finite-time blowup
for a wide range of initial conditions (Sulem and Sulem,
2000), even in the presence of linear dissipation (Tsut-
sumi, 1984). For the PT -symmetric system (130) with
critical dimensionality N = 2, no exact result on the
global existence or blow-up of the solution is available
for general coefficients κ, γ, χ and χ̃. However, a suf-
ficient condition for global existence can be formulated
in the particular case of γ < κ and χ = χ̃. In this
case, extending the arguments presented in Sec. V.A on
the 2D case, one can show that there exists a priori up-
per bound Smax = supz S0(z) < ∞ for the Stokes com-
ponent S0(z) = ‖ψ1‖2L2(R2) + ‖ψ2‖2L2(R2). The value of
Smax depends on the initial conditions. Using this fact,
Pelinovsky, Zezyulin, and Konotop (2015) showed that
if χ = χ̃ = 1 and the initial conditions satisfy the re-
quirement Smax < 1

2‖R‖2L2, then a global solution in
H1(R2) × H1(R2) does exist. Here, R = R(x) is the
(unstable) Townes soliton (Chiao, Garmire, and Townes,
1964), i.e., the localized positive solution of the 2D sta-
tionary problem ∇2R−R+R3 = 0.

Study of 2D bright solitons withing the framework of
(130) with focusing cubic nonlinearity and defocusing
quintic nonlinearity, i.e., Fj = |ψj |2−|ψj |4 (j = 1, 2), was
reported by Burlak and Malomed (2013). Using the sub-
stitution (109), the system is reduced to a single 2D NLS
equation whose radially symmetric solutions provide the
shapes for PT -symmetric solitons. It was found that the
2D solitons can be dynamically stable for γ < γC , where
γC is some critical value which depends on the coupling
strength. Solitons in a closed array of three 2D waveg-
uides with the cubic-quintic nonlinearity were studied by
Feijoo, Zezyulin, and Konotop (2015).

In the supercritical case N ≥ 3, the PT -symmetric
coupled NLS equations with cubic nonlinearity may un-
dergo finite-time blow-up, whose sufficient conditions
were established by Dias et al. (2014). Numerical studies
reveal that the model features different evolution scenar-
ios, including decay of the initial pulses, growth of the
solution in the active or lossy component, or both.

I. Localized modes in CPT -symmetric BECs

Following Kartashov, Konotop, and Zezyulin (2014) we
now turn to the NLS equations with gain and loss and
linear SO-type coupling discussed in Sec. III.H. The two-
body interactions can be approximated by almost equal
nonlinear coefficients [in an experiment the difference was
less than 1% (Lin, Jiménez-Garćıa, and Spielman, 2011)].
This leads to the coupled GPEs iΨt = HΨ−χ(Ψ†Ψ)Ψ,
where the linear Hamiltonian H is given by (56).

Stationary modes Ψ = e−iµtψ(x) can bifurcate from
the linear eigenstates. From properties of the under-
lying linear system, one can identify two fundamen-
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FIG. 30 (Color online) Families of nonlinear modes of a SO-
BEC in a parabolic trap V (x) = ν2x2/2 bifurcating from
n = 2 (a) linear modes for κ = 1, ν = 2, γ = 0.2, and ω = 0.5.
Solid blue (dashed red) curves correspond to stable (unstable)
modes. Here N =

∫∞

−∞
Ψ

†
Ψdx, and curves with labels Na

and Nr correspond to attractive and repulsive nonlinearities,
respectively. Circle in (a) correspond to a two-hump nonlinear
mode shown in (b). Adapted from Kartashov, Konotop, and
Zezyulin (2014).

tal (one-hump) nonlinear modes, two two-hump modes,
etc. The SO-coupling induces nonzero currents j↑↓ =
1
2i

(
Ψ∗

↑↓
∂Ψ↑↓

∂x − ∂Ψ∗
↑↓

∂x Ψ↑↓

)
, whose directions in the |↑〉 and

|↓〉 components coincide. At the same time, directions
of the currents in the two fundamental modes are op-
posite (the same being true for the two-hump modes,
three-hump modes, etc). Families of nonlinear modes
[see Fig. 30] consist of alternating intervals of stable and
unstable segments, and stable nonlinear modes exist for
both attractive and repulsive nonlinearities. Moreover,
stable nonlinear modes exist even if the CPT symmetry
of the linear problem is broken. CPT symmetry [specif-
ically, the property CPT σ3 = −σ3CPT ] implies that
the nonlinear modes have zero (pseudo-)magnetization:
M =

∫∞

−∞ Ψ†σ3Ψ dx = 0.

VI. NONLINEAR MODES IN COMPLEX POTENTIALS

In this section, we consider nonlinear modes supported
by complex potentials U(x) in the NLS equation (39).
More specifically, we focus on potentials which are either
localized, U(x) → 0, or unbounded, U(x) → ∞, as x →
±∞. Stationary nonlinear modes in this equation are of
the form Ψ(x, t) = ψ(x)eiµt, where µ is a real propagation
parameter and ψ(x) solves the equation

ψxx−U(x)ψ + g|ψ|2ψ = µψ, (131)

subject to the zero boundary conditions lim|x|→∞ ψ = 0.

If the underlying liner equation, i.e., Eq. (131) with
g = 0, admits a guided mode with a real propagation
constant, then a question of interest is the possibility for
nonlinear modes to bifurcate from that mode.

A. Localized potentials

Exact solutions. Starting with localized potentials, we
notice that linear spectra of some of them are available
analytically (Cooper, Khare, and Sukhatme, 1995; Zno-
jil, 2000). Moreover, many of such potentials admit exact
expressions for nonlinear modes. The first known exam-
ple corresponds to a PT -symmetric Scarff II potential

U(x) = −V1sech2x− iV2sechx tanh x, (132)

with V1 > 0 and V2 6= 0, which is a complexification of the
real Scarff II potential (Cooper, Khare, and Sukhatme,
1995). Spectrum of (132) was found analytically by
Ahmed (2001a,b) through a transformation of the cor-
responding Schrödinger equation to the Gauss hypergeo-
metric equation and by Bagchi and Quesne (2000, 2002)
using complex Lie algebras. If |V2| < Vcr = V1 + 1/4,
then the discrete spectrum consists of a sequence of real
eigenvalues. At |V2| = Vcr the real eigenvalues merge
pairwise and split into a complex-conjugate pairs as |V2|
exceeds Vcr, i.e., PT symmetry becomes broken.
The nonlinear model (131)-(132) admits an exact par-

ticular solution for the focusing (g > 0) and defocusing
(g < 0) nonlinearities at µ = 1 (Musslimani et al., 2008a;
Shi et al., 2011):

ψ =

√
V1 − (V2/3)2 − 2

g

exp [i(V2/3) arctan(sinhx)]

coshx
.

(133)
In (133) it is assumed that parameters V1,2 and g are cho-
sen so that the expression under the radical is positive.
The nonlinear mode (133) is PT symmetric, i.e.,

ψ(x) = ψ∗(−x). This mode belongs to a continuous
family of localized PT -symmetric modes (fundamental
solitons) which can be obtained numerically by varying
the propagation constant µ at fixed model parameters V1,
V2 and g. Numerical study of fundamental and multipole
solitons and their stability in the potential (132) was per-
formed for focusing (Musslimani et al., 2008a) and defo-
cusing (Chen, Hu, and Qi, 2014; Shi et al., 2011) Kerr
nonlinearities, as well as for nonlocal nonlinearity (Shi et
al., 2012).
PT -symmetric extension of the Rosen–Morse II po-

tential U(x) = −V1sech2x + iV2 tanhx is another po-
tential which admits explicit expressions for particular
nonlinear modes (Midya and Roychoudhury, 2013). No-
tice that in this case only the real part of the poten-
tial vanishes as x → ±∞, while the imaginary part ap-
proaches constant values. The linear spectrum of this
Rosen–Morse II potential was obtained by Lévai and
Magyari (2009). Explicit expressions for nonlinear modes
in a more sophisticated potential U(x) = −V1sech2x +
V 2
2 sech

4x + 4iV2sech
2x tanhx were reported by Mus-

slimani et al. (2008b) and generalized by Khare, Al-
Marzoug, and Bahlouli (2012) and Midya and Roychoud-
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hury (2014). More generally, potentials allowing for ex-
act solutions can be constructed systematically using the
“inverse engineering” approach (Abdullaev et al., 2010)
which consists in assuming the given field pattern and
finding a potential shape sustaining such a pattern, or
using the similarity transformation (Pérez-Garćıa, Tor-
res, and Konotop, 2006; Serkin and Hasegawa, 2000) re-
ducing a non-autonomous NLS equation (with a poten-
tial U(x, t) and time-depending coefficients) to the au-
tonomous NLS equation (39) (Chen, Dai, and Wang,
2014; Dai and Wang, 2014a,c; Dai, Wang, and Zhou,
2014).
Exact particular solutions are also available in multi-

dimensional PT -symmetric potentials [see also Sec. IX],
including 2D and 3D versions of Scarff and Rosen–Morse
potentials (Dai and Wang, 2014b,c; Dai, Wang, and
Zhou, 2014; Hu and Chen, 2014; Wang, Dai, and Wang,
2014a,b).
One more example admitting explicit nonlinear solu-

tions is PT -deformation of a parabolic potential (Midya,
2015)

U(x) = Ω2x2 − V0e
−2x2

+ iγxe−x2

. (134)

Numerical study of linear spectrum for the PT -
symmetric Gaussian potential [which corresponds to Ω =
0 in (134)] was performed by Ahmed (2001a), and non-
linear modes were computed numerically by Hu et al.
(2011) and Jisha et al. (2014b).
Kartashov, Malomed, and Torner (2014) demonstrated

that stable solitons in the defocusing nonlinearity can be
found in the absence of any real symmetric part, i.e.,
when U(x) = iγxe−x2

, provided that the nonlinearity is
spatially modulated, and its profile grows rapidly enough
as x → ±∞, e.g., g = g(x) = −(g1 + g2x

2)ex
2

. Ex-
istence of bright solitons in such self-defocusing nonlin-
earity can be explained by “nonlinearizability” of the re-
spective NLS equation at the soliton tails.

c. Scattering on a PT -symmetric defect. A localized PT -
symmetric potential can be viewed as a defect which
scatters an incident wave. For certain cases, including
the PT -symmetric Scarf II potential (132), the scat-
tering data for the linear problem can be found in an
explicit form (Cannata, Dedonder, and Ventura, 2007;
Lévai, Cannata and Ventura, 2001). In the nonlinear
setting, one can consider incidence of a soliton on a PT -
symmetric defect. Numerical study of soliton scattering
by (132) reveals several dynamical scenarios (Karjanto
et al., 2015; Nazari, Nazari, and Moravvej-Farshi, 2012).
They include swinging and self-trapping of the normally
incident soliton, as well as non-reciprocity of left- and
right-incidence. Asymmetric evolution of two simultane-
ously launched solitons on a PT -symmetric defect was
reported in Nazari et al. (2013). It was also found by Al
Khawaja et al. (2013) and Al-Marzoug (2014) that in a

FIG. 31 (Color online) Scattering of a soliton by the potential
U(x) = −V 2

0 sech(V0x) + iW0xsech(V0x) with V0 =W0 = −2.
(a) Almost perfect reflection of the soliton moving from the
left. (b) Almost perfect transmission of the soliton moving
from the right. In both cases the velocity of the incident
soliton is |v0| = 0.25, and the initial position is at |x0| = 10.
From Al Khawaja et al. (2013).

certain range of the parameters of the potential and the
incident soliton, one can observe a unidirectional soli-
ton flow, i.e., the soliton moving from the left to right
is almost perfectly reflected, while the soliton moving in
the opposite direction is almost perfectly transmitted [see
Fig. 31]. Unidirectional transmission, amplification and
destruction of gap solitons (supported by a real periodic
potential) on a PT -symmetric defect was also observed
by Abdullaev, Brazhnyi, and Salerno (2013).

B. Parabolic potential

Now we turn to stationary nonlinear modes of
Eq. (131) with a parabolic PT -symmetric potential (8).
Linear eigenmodes of this potential are given by µ̃n =
−(2n + 1), n = 0, 1, . . ., and the eigenfunctions ψ̃n(x)
can be expressed in terms of Hermite polynomials [see
Eqs. (9)]. We first look for small-amplitude nonlinear
modes bifurcating from the linear eigenstates ψ̃n(x). In
this case, the nonlinear modes can be constructed by an
asymptotic expansion

ψn(x) = εψ̃n + ε3ψ
(3)
n + o(ε3),

µ = µ̃n + gε2µ
(2)
n + o(ε2),

(135)

where ε≪ 1 is a small real parameter. Substituting this
expansion into Eq. (131) and collecting terms of order ε3

one obtains an equation for ψ
(3)
n :

(ψ(3)
n )xx − µ̃nψ

(3)
n − (x− iα)2ψ(3)

n = gµ(2)
n ψ̃n − g|ψ̃n|2ψ̃n.

The solvability condition (Fredholm alternative) for this
equation requires its right-side term to be orthogonal to
the kernel of the adjoint operator in the left hand side,

i.e., orthogonal to ψ̃∗
n. This allows one to compute µ

(2)
n

as (Yang, 2014b; Zezyulin and Konotop, 2012a):

µ(2)
n =

∫ ∞

−∞

ψ̃3
n(x)ψ̃

∗
n(x)dx

/∫ ∞

−∞

ψ̃2
n(x)dx. (136)
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FIG. 32 Families of nonlinear modes in the conservative (α =
0) and PT -symmetric (α = 1) parabolic potential (8) and
focusing (g = 1) and defocusing (g = −1) nonlinearities. Bold
segments on the power curves correspond to stable nonlinear
modes. Adapted from Zezyulin and Konotop (2012a).

For expansions (135) to be meaningful, µ
(2)
n must be real

[a similar constraint also arises for discrete systems in
Sec. IV.C.3.a]. When α = 0, eigenfunctions ψ̃n(x) are

real-valued, hence coefficients µ
(2)
n are positive for all n.

When α 6= 0, ψ̃n(x) are complex-valued. However, parity
of their real and imaginary parts ensures that the coeffi-

cient µ
(2)
n is still real for any n and α. Thus for each n

one can identify a continuous family of nonlinear modes
ψn(x) bifurcating from the nth linear eigenstate ψ̃n(x).

Further analysis of these nonlinear modes can be per-
formed numerically. The continuous families can be visu-
alized as curves gPn(µ), where Pn =

∫∞

−∞ |ψn|2dx is the
power of the nth mode, see Fig. 32. Each point above
(below) the axis gP = 0 corresponds to a nonlinear mode
under focusing (defocusing) nonlinearity. A striking dif-
ference between the two panels in Fig. 32 is coalescence of
nonlinear modes bifurcating from different linear eigen-
states, which does not occur in the conservative parabolic
potential (α = 0) (Kevrekidis et al., 2005; Kivshar,
Alexander, and Turitsyn, 2001), but becomes possible
in its PT -symmetric counterpart (α 6= 0) (Zezyulin and
Konotop, 2012a). This coalescence can be described in
terms of a saddle-node bifurcation (Gallo and Pelinosky,
2014). A similar scenario of collisions of nonlinear modes
can be observed if instead of the propagation constant
µ one varies parameters of the PT -symmetric potential.
Such collisions were observed in the PT -symmetric po-
tential (134) with V0 = 0 and varying values of γ at a
fixed propagation constant (Achilleos et al., 2012) [see
Fig. 33], in a PT -symmetric double-well potential (Car-
tarius et al., 2012; Dast et al., 2013a,b), and in a slab
waveguide with a piece-wise constant complex potential
(Tsoy, Tadjimuratov, and Abdullaev, 2012). In a way
this behavior is reminiscent of linear PT phase transi-
tion: cf. the PT -symmetry breaking diagram in Fig. 1.

FIG. 33 (Color online) The power P as a function of the
strength γ of the imaginary potential in (134) with V0 =
0. The bifurcation diagram shows the merging of differ-
ent solution branches through saddle-node bifurcations, Solid
(dashed) lines indicate dynamically stable (unstable) solu-
tions. Here, g = −1, Ω ≈ 0.07 and µ = −3. Adapted from
Achilleos et al. (2012).

C. Symmetry breaking of solitons

The continuous families of nonlinear modes discussed
above are PT -symmetric, i.e., satisfy PT ψ = ψ (up to
a phase shift ψ → ψeiθ, θ ∈ R). This observation raises
a question: can PT -symmetric systems admit continu-
ous families of non-PT -symmetric solitons? In conserva-
tive systems continuous families of asymmetric solutions
can exist due to symmetry-breaking bifurcations, where
asymmetric solitons bifurcate out from the base family of
symmetric solitons as the power (L2-norm) of symmet-
ric solitons exceeds a certain threshold. This symmetry-
breaking usually occurs in a double- (or multi-) well real
potential or in a periodic potential (Akylas, Hwang, and
Yang, 2012; Jackson and Weinstein, 2004; Kirr et al.,
2008; Malomed, 2013; Sacchetti, 2009; Yang, 2012). How-
ever, most of the studies of double-well and periodic PT -
symmetric potentials (Cartarius and Wunner, 2012; Car-
tarius et al., 2012; Dast et al., 2013a,b; Li et al., 2012a;
Mayteevarunyoo, Malomed, and Reoksabutr, 2013; Mus-
slimani et al., 2008a; Nixon, Ge, and Yang, 2012; Ro-
drigues et al., 2013) did not report non-PT -symmetric
nonlinear modes with real propagation constants. In-
deed, continuous families of non-PT -symmetric solitons
cannot be expected intuitively, since it is “difficult” for
those solitons to balance gain and loss. This intuition
is supported by mathematical analysis of Yang (2014a),
who showed that for non-PT -symmetric soliton families
to exist in a PT -symmetric potential, infinitely many
nontrivial conditions must be satisfied simultaneously,
which is generically impossible. However, in a general-
ized Wadati potential (31)

U(x) = −[w2(x) + αw(x) + iw′(x)], (137)

where w(x) is a real and even function and α a real con-
stant, symmetry breaking of solitons can occur, and con-
tinuous families of non-PT -symmetric solitons are possi-
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ble (Yang, 2014d). As an example, we consider

w(x) = A−e
−(x+x0)

2

+A+e
−(x−x0)

2

, (138)

where A± and x0 are constants. When A− = A+, this
function generates a PT -symmetric double-well poten-
tial U(x) plotted in Fig. 34(a). The linear spectrum of
this potential is all-real (see Sec. II.F) and contains three
positive isolated eigenvalues, the largest being ≈ 3.6614.
From this largest discrete eigenmode, a family of PT -
symmetric solitons bifurcates out. Under focusing non-
linearity (g = 1), the power curve of this solution fam-
ily is shown in Fig. 34(b), and the soliton profile at the
marked point ‘c’ is displayed in Fig. 34(c). At the prop-
agation constant µc ≈ 3.9287 of this base power branch,
a family of non-PT -symmetric solitons bifurcates out.
The power curve of this non-PT -symmetric family is also
shown in Fig. 34(b). At the marked point ‘d’ of the bi-
furcated power branch, the non-PT -symmetric solution
is displayed in Fig. 34(d). The most of the energy in this
soliton resides on the right side of the potential.
From Eq. (131) one can see that if ψ(x) is a solution,

so is ψ∗(−x). Thus for each of the non-PT -symmetric
solitons ψ(x) in Fig. 34(b), there is a companion soliton
ψ∗(−x) whose energy resides primarily on the left side of
the potential. Thus this symmetry-breaking bifurcation
is pitchfork-type.
Linear stability analysis shows that the base family of

PT -symmetric solitons is stable before the bifurcation
point (µ < µc) and becomes unstable when µ > µc due
to the presence of a real positive eigenvalue. However,
the bifurcated family of non-PT -symmetric solitons is
stable. To corroborate these linear stability results, in
Fig. 34(e,f) we show direct simulations of soliton evolu-
tions under initial 1% random-noise perturbations. It is
seen from Fig. 34(e) that the PT -symmetric soliton in
Fig. 34(c) breaks up and becomes non-PT -symmetric.
Upon further propagation, the solution bounces back
to almost PT -symmetric again, followed by another
breakup. In contrast, Fig. 34(f) shows that the asymmet-
ric soliton in Fig. 34(d) is stable against perturbations.
It is noted that this symmetry-breaking bifurcation

also occurs for many other potentials of the form (137),
including periodic potentials (Yang, 2014d).

D. Soliton families in asymmetric complex potentials

In a generic complex non-PT -symmetric potential
[U(x) 6= U∗(−x)], continuous families of solitons are not
expected even if U(x) has all-real linear spectra (Yang,
2014b). Indeed, let us suppose that U(x) is a complex po-
tential which admits a simple isolated real eigenvalue µ̃n,
with the corresponding localized eigenfunction ψ̃n(x). If
a soliton family bifurcates out from this linear eigenmode,
then in the small amplitude limit, one can expand these
solitons into a perturbation series analogous to (135) and,

FIG. 34 (Color online) (a) Inverted plot of the PT -symmetric
potential (137) generated by (138) with A− = A+ = 2,
x0 = 1.2, x0 = 1.2, and α = 1. (b) Power diagram for non-
linear modes with g = 1 (solid blue: stable solitons; dashed
red: unstable solitons). (c,d) PT -symmetric and asymmetric
solitons corresponding to the point ‘c’ and ‘d’ on the power
diagram with µ = 4.3; (e,f) Evolution of the solitons shown
in (c,d) under 1% random-noise perturbations. Adapted from
Yang (2014d).

following the analysis of Sec. VI.B, we recover that the
bifurcation of the continuous family from the real eigen-

value µ̃n is possible only if the coefficient µ
(2)
n defined by

Eq. (136) is real. As we saw in Sec. VI.B on the exam-
ple of a parabolic potential, if U(x) is PT symmetric,

the reality of µ
(2)
n is satisfied automatically. However,

for a generic complex potential U(x) this condition is

likely to fail. Moreover, reality of µ
(2)
n is only the first

condition for a soliton family to bifurcate out from a lin-
ear mode. As we pursue this perturbation calculation to
higher orders, infinitely many more nontrivial conditions
would need to be met (Yang, 2014b). This shows that
in a generic non-PT -symmetric potential U(x), soliton
families should not exist.
These generic arguments however do not apply if the

system has hidden symmetries. Tsoy, Allayarov, and Ab-
dullaev (2014) found numerically that continuous fami-
lies of nonlinear modes do exist in a one-hump asym-
metric Wadati potential (137) generated by w(x) =
η/ cosh[a(x)x], where η is a real constant, and a(x) is
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FIG. 35 (Color online) (a) Inverted plot of the asymmetric
potential U(x) for w(x) defined by (137)–(138) with A− =
2.3, A+ = 2, x0 = 1.5, and α = 0. (b) Power diagram for
nonlinear modes. Solid blue (dashed green) lines correspond
to defocusing (focusing) nonlinearity. (c) Intensity ρ2 and
current j = vρ2 for the nonlinear mode marked as “c” in
panel (b). Adapted from Konotop and Zezyulin (2014b).

a step function: a(x) = a− at x < 0, and a(x) = a+ at
x > 0, with a± being real unequal constants. Explana-
tion for this observation given by Konotop and Zezyulin
(2014b) consists in the existence of an additional con-
servation law. Indeed, using the polar representation for
the stationary nonlinear mode ψ(x) = ρ(x)ei

∫
v(x)dx, we

rewrite the stationary equation (131) with potential (137)
in the hydrodynamic form (without loss of generality, we
assume α = 0 in this subsection)

ρxx − µρ+ w2ρ+ gρ3 − v2ρ = 0,

2ρxv + ρvx + wxρ = 0.
(139)

It is straightforward to verify that these equations admit
a conserved quantity

I = ρ2x + ρ2(v +w)2 − µρ2 + gρ4/2, dI/dx ≡ 0. (140)

Due to existence of this integral of motion, for each
value of the propagation constant µ, all localized nonlin-
ear modes can be identified through a solution of a sys-
tem of two equations with two real unknowns (“shooting
constants”) which determine the asymptotic behavior of
ψ(x) at x→ ±∞. This observation allows to confirm the
existence of continuous families of nonlinear modes us-
ing a shooting-type argument: the number of constraints
(matching conditions at x = 0) is equal to the number of
available free parameters. Using this approach, Konotop
and Zezyulin (2014b) found families of nonlinear modes
in an asymmetric complex double-hump potential defined
by (138) with A− 6= A+, as illustrated in Fig. 35.
Bifurcation of soliton families from linear modes in

asymmetric complex potentials was also studied analyti-
cally by Nixon and Yang (2016b). Under a weak assump-
tion, it was shown that the stationary equation (131) ad-
mits a constant of motion if and only if the complex po-
tential U(x) is of Wadati-type (137). Using this constant
of motion, the soliton equation (139) was reduced to a
second-order equation for the amplitude of the soliton.
From this new soliton equation, it was shown by per-
turbation methods that continuous families of solitons

bifurcate out from linear eigenmodes. It was also found
that these results hold not only for the cubic nonlinear-
ity, but also for all nonlinearities of the form F (|Ψ|2)Ψ in
Eq. (39), where F (·) is an arbitrary real-valued function.

VII. NONLINEAR WAVES IN PERIODIC POTENTIALS

In this section, we review properties of solitons in 1D
and 2D PT -symmetric periodic potentials. For the 1D
case, we explore the NLS equation (39) with a potential
U(x) ≡ U1D(x), where U1D(x) is a periodic and PT -
symmetric function, while in 2D the model is

iΨt +Ψxx +Ψyy−U2D(x, y)Ψ + g|Ψ|2Ψ = 0, (141)

where U2D(x, y) is periodic in x and y and satisfies the
PT symmetry condition U∗

2D(x, y) = U2D(−x,−y).
Similar to their real-valued counterparts, PT -

symmetric periodic potentials feature band-gap spectra
(Bender, Dunne, and Meisinger, 1999; Jones, 1999). For
many familiar PT -symmetric periodic potentials, it has
been shown that when the imaginary component of the
potential is below a certain threshold, then all the spec-
tral bands lie on the real axis, and the spectrum of the
potential is all-real. Above this threshold, phase transi-
tion occurs, and complex eigenvalues appear (Makris et
al., 2011; Musslimani et al., 2008a; Nixon, Ge, and Yang,
2012). Sometimes, this threshold is zero, meaning that
complex eigenvalues exist for any imaginary strength of
the periodic potential (Musslimani et al., 2008b).
In PT -symmetric periodic potentials, special periodic

solutions can be found analytically (Abdullaev et al.,
2010; Musslimani et al., 2008b). Continuous families
of bright solitons were found numerically by Li et al.
(2012a); Nixon, Ge, and Yang (2012); and Zeng and
Lan (2012) in pure periodic potentials, and by Lu and
Zhang (2011) and Wang and Wang (2011) in a PT -
symmetric periodic potential with local defects. Some
of these soliton families bifurcate out from edges of
Bloch bands, while others do not. Above phase tran-
sition, these solitons are all unstable; but below phase
transition, they can be stable in certain parameter re-
gions. In addition to soliton families, distinctive linear
diffraction patterns were reported by Makris et al. (2010)
and Regensburger et al. (2012), and periodic bound
states were reported by Nixon, Zhu, and Yang (2012).
Localization-delocalization transition of light propagat-
ing in quasi-periodic PT -symmetric lattices was numer-
ically obtained by Hang et al. (2015).
In two dimensions, a distinctive pyramid diffraction

pattern was reported in both linear and nonlinear regimes
near phase transition (Nixon and Yang, 2013). In addi-
tion to the above results, other interesting phenomena,
such as nonreciprocal Bloch oscillations (Longhi, 2009b),
rectification and dynamical lozalization (Kartashov et
al., 2016), and unidirectional propagation discussed in
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Secs. III.A and IV.D.2, have also been found in linear
PT -symmetric periodic potentials.

A. Linear spectrum of periodic potentials

1D lattice. Spectral properties of one-dimensional
Schrödinger operators with complex periodic potentials
have been intensively studied (for a recent review see
Djakov and Mityagin (2006) and Makris et al. (2008)). In
particular, Gasymov (1980) considered the Schrödinger
operator H = −d2/dx2 + U1D(x), where

U1D(x) =

∞∑

n=1

une
inx,

∞∑

n=1

|un| <∞, (142)

is the 2π-periodic potential which becomes PT symmet-
ric if all coefficients un are real. It was proven that
the spectrum of H is real and fills the semi-axis [0,∞).
Eigenfunctions of H constitute a complete basis in a
properly defined linear space.
We illustrate typical properties of linear periodic PT -

symmetric lattices using as an example the potential in
the form

U1D(x) = −V0
[
cos2(x) + iW0 sin(2x)

]
. (143)

For this π-periodic lattice, V0 characterizes the strength
of the real component of the potential, andW0 6= 0 is the
relative magnitude of the imaginary component.
Linear modes of Eq. (33) with potential (143) are

Ψ(x, t) = ψ(x)e−iµt, ψ(x) = p(x; k)eikx, (144)

where ψ(x) is a Bloch mode solving the eigenvalue prob-
lem

µψ + ψxx + V0
(
cos2 x+ iW0 sin(2x)

)
ψ = 0, (145)

p(x; k) is a π-periodic function in x, k is the wavenumber
in the irreducible Brillouin zone (BZ) −1 ≤ k ≤ 1, and
µ is the propagation constant. Function µ = µ(k) is the
diffraction (or dispersive) relation, and all admissible val-
ues of µ constitute the Bloch bands. Dispersion relations
µ = µ(k) for three values of W0 are displayed in Fig. 36.
At W0 = 0.4, PT symmetry is unbroken, and the Bloch
bands are all-real and separated by gaps. At W0 = 1/2
(the exceptional point), all Bloch bands touch each other
and gaps disappear. When W0 > 1/2, PT symmetry is
broken, and complex eigenvalues appear in Bloch bands.
At W0 = 1/2, one can introduce the variable trans-

formation ξ = i
√
V0/2 e

ix which reduces (145) to the
Bessel’s equation,

ξ2ψξξ + ξψξ +
(
ξ2 − µ− V0/2

)
ψ = 0, (146)

whose solution is ψ(x) = Jk(i
√
V0/2 eix), where k =

±
√
µ+ V0/2 (Bender, Dunne, and Meisinger, 1999;
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FIG. 36 (Color online) Diffraction relations of 1D PT lattice
(143) for three values of W0 (V0 = 6). The inset in the lower
right panel is amplification of the small boxed region near
k = 1 and Im[µ] = 0 of the same panel.

Berry, 1998; Graefe and Jones, 2011; Nixon, Ge, and
Yang, 2012). Using power-series expansion of the Bessel
function, the above solution can be rewritten as ψ(x) =
eikxp̃(x; k), where p̃(x; k) is a π-periodic function of x.
In order for this solution to be a Bloch mode, k should
be real. Then if we also restrict k to be in the first
BZ −1 ≤ k ≤ 1, then the exact diffraction relation is
µ = −V0/2 + (k + 2m)2, where m = 0,±1,±2 . . . . This
diffraction function matches that shown in Fig. 36 for
W0 = 0.5. It shows that all Bloch bands are real-valued.
In addition, these Bloch bands are connected either at
the center (k = 0) or edge (k = ±1) of the BZ, where
µ = −V0/2 + n2, and n = 0, 1, 2, . . . .
We now consider the case where W0 is near 1/2, i.e.,

V0(W0 − 1/2) ≡ ǫ≪ 1. In this case, Eq. (145) becomes

(µ+ V0/2)ψ + ψxx + V0/2
(
e2ix

)
ψ + ǫ i sin(2x)ψ = 0.

Since complex eigenvalues first appear near band inter-
sections we only need to calculate the eigenvalue at k = 0
and ±1, where the Bloch modes are π- or 2π-periodic.
These solutions and the associated µ values can be ex-
panded as power series in ǫ1/2,

µ = −V0/2 + n2
0 + ǫ1/2n1 + ǫn2 + . . . ,

ψ = ψ0 + ǫ1/2ψ1 + ǫψ2 + . . . ,
(147)

where n0 = 0, 1, 2, · · · , and the coefficients n1, n2, n3, · · ·
are constants shown in Table I (Nixon, Ge, and Yang,
2012). When n0 = 1, 3, the coefficient n1 or n3 is imag-
inary, thus complex eigenvalues bifurcate out simulta-
neously above the phase transition point (ǫ > 0). The
imaginary part of these complex eigenvalues at n0 = 3
(∼ ǫ3/2) is much smaller than that at n0 = 1 (∼ ǫ1/2),
and no complex eigenvalues bifurcate out when n0 = 0, 2.
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TABLE I Coefficients in the µ expansion (147).

n0 n1 n2 n3

0 0 V0/8 0

1 ±iV 1/2
0 /2 V0/32 ±i

(

V
−1/2
0 /4 + V

3/2
0 /29

)

2 0 −5V0/48, V0/48 0

3 0 −V0/64 ±i V 3/2
0 /29

N 0 −V0/8(N
2 − 1)−1 0

Continuing these calculations to higher n0 values, one
can find that the coefficient n2m+1 is always imaginary
for n0 = 2m + 1, where m = 0, 1, 2, · · · . Thus complex
eigenvalues bifurcate out simultaneously from all odd val-
ues of n0 at the phase transition point W0 = 1/2.
Table I also shows that below the phase transition

point (W0 < 1/2, or ǫ < 0), the eigenvalue µ is real
for all integers n0.

2D lattices. In 2D, we focus on the separable potential

U2D(x, y) = U1D(x) + U1D(y), (148)

whose linear spectrum can be obtained directly from the
spectrum of the 1D problem (143). In this case, µ =
µ(k1) + µ(k2) is the 2D diffraction relation, k1, k2 are
Bloch wavenumbers in the x and y directions which and
are located inside the first BZ, and

Ψ(x, y, t) = eik1x+ik2y−iµtp(x; k1)p(y; k2), (149)

where p(x; k) is the 1D π-periodic function as given in
(144). This diffraction relation shows that complex eigen-
values appear in 2D PT lattice if and only if complex
eigenvalues appear in the 1D PT lattice (143). Thus
Bloch bands in the 2D potential (148) are all-real when
W0 ≤ 1/2, and a phase transition occurs at W0 = 1/2
above which complex eigenvalues arise.

B. Solitons and their stability

Solitons in PT -symmetric periodic potentials exist as
continuous families (Li et al., 2012a; Musslimani et al.,
2008a; Nixon, Ge, and Yang, 2012). The simplest soliton
families are those that bifurcate out from edges of Bloch
bands, and they can be established analytically by ex-
ponential asymptotics methods (Nixon and Yang, 2014).
In addition to these simplest soliton families, an infinite
number of other soliton families were reported numeri-
cally (Li et al., 2012a; Nixon, Ge, and Yang, 2012).

Solitons in 1D latices. Let us consider 1D NLS equa-
tion (39) with PT -symmetric periodic potential (143).
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FIG. 37 1D solitons in the semi-infinite gap of (143) under
focusing nonlinearity (g = 1) for V0 = 6 and W0 = 0.45.
(left) Power curves of these solitons; solid blue and dashed red
lines represent stable and unstable solitons, respectively; the
shaded region is the first Bloch band. (right) A fundamental
soliton at µ = −3.5 (marked by a dot on the lower curve of the
left panel); the solid blue line is for the real part and dashed
pink line for the imaginary part.

Solitons are searched in the form Ψ(x, t) = e−iµtψ(x),
where ψ(x) is a stationary localized wavefunction solv-
ing (131), and µ is a real propagation constant. In full
analogy with the conservative case (Brazhnyi and Kono-
top, 2004; Pelinovsky, 2011; Yang, 2010), exponentially
decaying soliton solutions (alias gap solitons) exist when
µ lies inside bandgaps of the underlying linear system.
For broken PT symmetry, all solitons are unstable since
small tails of solitons will be amplified. Thus below we
only consider the unbroken PT symmetry case where
W0 ≤ 1/2.

In Fig. 37 (left) we illustrate two families of solitons in
the semi-infinite gap under focusing nonlinearity (Nixon,
Ge, and Yang, 2012). The lower power curve is for
the fundamental solitons which are PT symmetric, i.e.,
ψ∗(x) = ψ(−x), and whose real parts possess a single
dominant peak. The profile of such a soliton at µ = −3.5
is displayed in Fig. 37 (right). This soliton family bi-
furcates out of the first Bloch band, and in the vicinity
of the bifurcation the solitons can be described as low-
amplitude Bloch-wave packets. The entire family of fun-
damental solitons is linearly stable.

The upper power curve in Fig. 37 consists of dipole
solitons. This power curve features double branches
which terminate through a saddle-node bifurcation be-
fore reaching the first Bloch band. Profiles of two such
solitons on the lower power branch are displayed in Fig.
38 (left two panels). The real parts of these dipole soli-
tons possess two dominant peaks of opposite sign. This
however does not violate PT symmetry, as due to phase
invariance we have that φ(x) = ψ(x)eiπ/2 is a PT -
symmetric solution.

Dipole solitons are linearly stable only in a certain por-
tion of their existence region. Specifically, only dipole
solitons on the lower branch with µ ≤ µa ≈ −3.8 are sta-
ble (see Fig. 37 (left)). For dipole solitons in this region,
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FIG. 38 (Color online) Left two panels: dipole solitons at
the marked points of the lower power curve in Fig. 37. Right
panel: linear-stability spectrum for the dipole soliton in the
middle panel.

their spectra are entirely imaginary. At µ = µa, stability
switching occurs where a quadruple of complex eigen-
values bifurcate off the edge of the continuous spectrum
(see Fig. 38, right panel). Within this unstable region,
there is a second eigenvalue bifurcation at µ ≈ −3.4 of
the lower branch (near and on the left side of the power
minimum) where a pair of real eigenvalues bifurcate out
from zero.

Beside these soliton families, the model also admits
other types of solitons such as truncated-Bloch-mode soli-
tons (Li et al., 2012a) which are stable in certain param-
eter regimes. Stable dissipative solitons exist at the sur-
face between homogeneous Kerr medium and a truncated
lattice (143) supported by the linear dissipation (He et
al., 2012a).

2D solitons. Solitons and their stability in 2D PT -
symmetric periodic potentials (148) have also been stud-
ied (Nixon, Ge, and Yang, 2012). These solitons are of
the form Ψ(x, y, t) = e−iµtψ(x, y). Figure 39 (left panel)
shows fundamental 2D solitons in the semi-infinite gap
under focusing nonlinearity (g = 1). Similar to the con-
servative case, there exists a threshold power (L2 norm)
necessary for the existence of such solitons. The pro-
files of the solitons possess PT symmetry, ψ∗(x, y) =
ψ(−x,−y), and their real parts have a single dominant
peak [Fig. 39(right)]. These fundamental solitons are
stable only in a finite µ-interval, even though their exis-
tence region is infinite. For large negative values of µ, the
instability is due to a quadruple of complex eigenvalues,
whereas for µ values near the first band, the instability
is due to a pair of real eigenvalues.

Beside the fundamental solitons in Fig. 39, other types
of solitons such as vortex solitons and multipole solitons
have also been reported in 2D PT -symmetric lattices (Li
et al., 2014; Ren et al., 2014; Wang et al., 2015; Zhu et
al., 2013b).
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FIG. 39 (Left) Power curve of fundamental 2D solitons in
the semi-infinite gap under focusing nonlinearity (g = 1) for
V0 = 6 and W0 = 0.3. The inset is amplification of the power
curve near the first Bloch band in the same panel. Solid blue
lines indicate stable solitons, while dashed red lines indicate
unstable solitons. (Right) Real and imaginary parts of the
soliton ψ(x, y) at µ = −8.5 (marked by a dot on the power
curve).

Nonlinear periodic solutions and constant-intensity waves.

As we have mentioned earlier, a PT -symmetry thresh-
old can be zero. This fact, however, does not prohibit
existence of nonlinear periodic solutions, which do not
require the propagation constant to belong to a bandgap
of the linear spectrum. For instance, phase transi-
tion for the PT -symmetric periodic potential U1D(x) =
−[V0 sin

2 x+ 3iW0 sinx], where V0 and W0 are real con-
stants, has zero threshold (complex eigenvalues appear
in Bloch bands for any nonzero W0). However, in the
presence of focusing nonlinearity, it admits a stationary
x-periodic solution found in exact form by Musslimani et
al. (2008b),

Ψ(x, t) =
√
V0 +W 2

0 cosxeiW0 sin x−iµt, µ = 1− V0,

provided that V0 > −W 2
0 . These periodic solutions may

be stable, even though the periodic potential is above
phase transition (Lumer et al., 2013). Examples of sta-
ble periodic solutions in defocusing medium can also be
found (Abdullaev et al., 2010).
The complex Wadati potentials U1D(x) = −[w2(x) +

iwx(x)] (see also Sec. VI.C and VI.D) support exact
constant-intensity solutions Ψ = A exp[−i

∫
w(x)dx +

igA2t], where A is a real amplitude (Makris et al.,
2015). These solutions can be generalized to the 2D case,
where the PT -symmetric potential reads U2D(x, y) =
−|W|2 − i∇ · W, where W = (W1,W2) is a vector
potential constrained by the condition (W1)y = (W2)x.
Then the 2D exact solutions have the form Ψ(x, y, t) =
A exp[−i

∫
C
W · dr + igA2t], where C is a smooth open

curve between any two points in the (x, y)-plane. The
constant-amplitude solutions were explored by Makris et
al. (2015) in the context of modulational instability.
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C. Nonlinear dynamics near phase transition point

Beyond the question of stationary modes, a more gen-
eral question is how an initial wave evolves in a PT -
symmetric periodic potential. Here we review linear and
nonlinear dynamics of wavepackets near the phase tran-
sition point, investigated analytically by Nixon and Yang
(2013) and Nixon, Zhu, and Yang (2012), and describe
new phenomena such as wave blowup, periodic bound
states and linear or nonlinear pyramid diffraction pat-
terns.

1D dynamics. We first consider the model (39) with po-
tential (143), which in this subsection is rewritten as
U(x) = U1D(x) = −V 2

0 [cos(2x) + iW0 sin(2x)]. For this
form of the potential, phase transition occurs at W0 = 1.
At this phase transition point, the diffraction relation is
µ = (k+2m)2, where k is in the first BZ k ∈ [−1, 1], and
m is any nonnegative integer (see Fig. 36 for W0 = 1/2).
At k = 0 and ±1, adjacent Bloch bands intersect each

other. At these intersection points, Bloch solutions are
degenerate and π- or 2π-periodic in x. Posed as an eigen-
value problem for Ψ = φ(x)e−iµt in the linear Eq. (33),
we get Lφ = −µφ, where L ≡ ∂2x−U(x)|W0=1. Then
at these band-intersection points, the eigenvalues are
µ = n2, where n is any positive integer. These eigenval-
ues all have geometric multiplicity 1 and algebraic multi-
plicity 2, thus there exists a generalized eigenfunction φg

satisfying (L+ µ)φg = φ [for construction of the com-
plete basis at an exceptional point see (Gasymov, 1980;
Graefe and Jones, 2011)].
To study nonlinear dynamics of wave packets near the

phase-transition point (i.e., W0 ∼ 1), one can use the

asymptotic expansion Ψ = e−in2t[ǫA(X,T )φ(x)+ ǫ2ψ1 +
. . .], where A(X,T ) is an envelope of the degenerate
Bloch mode φ(x), X = ǫx, T = ǫt are slow variables,
and 0 < ǫ ≪ 1. From the multiple-scale perturbation
analysis one finds that near n = 1 and W0 = 1 − cǫ2

where c is a constant, the envelope is governed by a non-
linear Klein-Gordon (KG) equation,

ATT − 4AXX + αA+ γ|A|2A = 0. (150)

Here α = cV 4
0 /2 and γ = 2g

π

∫ π

−π |φ|2φ2dx are real con-
stants. At higher n values, similar envelope equations
can be derived under appropriate scalings of W0(ǫ).
Envelope dynamics in the nonlinear KG equation (150)

proves to closely mimic the corresponding wavepacket dy-
namics in the original PT model (39).
First, at the phase-transition point (c = 0), solutions

for the left and right propagating waves (resembling so-
lutions of the wave equation ATT − 4AXX = 0) can be
found in the original linear PT model (39) with g = 0.
Two examples are shown in Fig. 40. The spreading-shelf
solutions in this wave equation were reported experimen-
tally by Regensburger et al. (2012).

FIG. 40 (a) Linear unidirectional wavepacket and (b) linear
wavepacket splitting at the phase-transition point W0 = 1.
Other parameters are ǫ = 0.1, µ = 1 and V0 =

√
6.
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FIG. 41 (Color online) Nonlinear wavepacket solutions below
the phase-transition point (c = 1) under self-defocusing non-
linearity. From left to right: a blowup solution in the envelope
equation and the full equation; a periodic bound state in the
envelope equation and the full equation.

Next we consider envelope solutions in the KG equa-
tion (150) with self-defocusing nonlinearity (γ < 0) near
the lowest band-intersection point (n = 1). Nixon, Zhu,
and Yang (2012) numerically found that below the phase-
transition point (c > 0) envelope solutions blow up to in-
finity [first panel in Fig. 41]. In the full model (39), sim-
ilar growing solutions were found and displayed in Fig.
41 (second panel). In the full model, this blowup may
eventually be suppressed, but that is already beyond the
asymptotic regime of the KG model (150). Under self-
defocusing nonlinearity Eq. (150) also admits breather-
like solutions shown in the third panel of Fig. 41, as
well as stationary solitons A(X,T ) = F (X)eiωT with
ω ∈ [−√

α,
√
α]. The corresponding breather solution

in the full model is shown in the fourth panel of Fig. 41.
If the nonlinearity is self-focusing (g = 1), envelope so-

lutions do not blow up, periodic bound states cannot be
found, and stationary solitary waves do not exist in the
envelope equation. In this case, breathers as well as non-
linear diffracting solutions similar to the linear diffract-
ing pattern reported in Makris et al. (2010) can be found.
Dynamics near the breaking point appears to be rich even
in the linear limit, allowing in particular for the resonant
mode conversion (Vysloukh and Kartashov, 2014).

2D dynamics. Next we consider dynamics of wave pack-
ets in a 2D PT -symmetric periodic potential near the
phase transition point (Nixon and Yang, 2013). The
mathematical model is taken as (141) with U2D(x, y) =
U1D(x)+U1D(y), where U1D(x) is the same periodic po-
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FIG. 42 (Color online) (Left) Diffraction relation near in-
tersection point (kx, ky , µ) = (1, 1, 2) (marked by red dot).
(Right) Linear pyramid diffraction of initial Gaussian enve-
lope at phase transition point in the envelope equation (151).

tential used in the 1D dynamics above. At the phase
transition point W0 = 1, the linear diffraction relation
reads µ = (kx + 2m1)

2 + (ky + 2m2)
2, where (kx, ky) are

Bloch wavenumbers in the first BZ −1 ≤ kx, ky ≤ 1, and
m1,2 are nonnegative integers. The most complex de-
generacies occur at points kx = 0,±1 and ky = 0,±1,
where the diffraction surface intersects itself four-fold
as illustrated in Fig. 42. When a linear Bloch wave
Ψ = φ(x, y)e−iµt is chosen at one of these degeneracies,
φ(x, y) satisfies an eigenvalue equation Lφ = −µφ, where
L = ∇2−U(x, y)|W0=1, µ = n2

1+n
2
2, and (n1, n2) are any

pair of positive integers.
We will conduct the analysis at the lowest inter-

section point, µ = 2. The perturbation expan-
sion for the wave packet near this point is Ψ =
ǫ

3
2 e−iµt

(
A(X,Y, T )φ01(x, y) + ǫψ1 + . . .

)
, where φ01 is

the Bloch mode at the point (kx, ky, µ) = (1, 1, 2),
(X,Y, T ) = (ǫx, ǫy, ǫt) are slow variables, and 0 < ǫ ≪
1. Near the phase-transition point we express W0 =
1− ηǫ2/V 2

0 , where η measures the deviation from phase-
transition. Through a perturbation calculation we obtain
(Nixon and Yang, 2013)

∂4TA− 8(∂2X + ∂2Y )∂
2
TA+ 16(∂2X − ∂2Y )

2A

+ α∂2TA+ ig̃∂T
(
|A|2A

)
= 0, (151)

where α = 2V 2
0 η, and g̃ is a real constant. Equation (151)

reveals important physical features, which are demon-
strated below using the initial conditions

A = A0e
−(X2+Y 2), AT = ATT = 0, ∂3TA = −ig̃|A|2A

(152)
in the envelope equation (and corresponding initial con-
ditions in the full Eq. (141)). Further, we take V 2

0 = 6,
ǫ = 0.1, and η = 0 or 1 (at or below phase transition,
respectively), which yields α = 12η and g̃ ≈ 7.3g.
In the linear limit g = 0 and at the phase transition

point α = 0, Eq. (151) becomes linear and is readily
solved. Its general solution corresponds to an expanding
square wave front propagating with speeds ±2 in both

A0 =2 A0 =3.3 A0 =4

Initial Wavepacket Focusing (σ = 1) Defocusing (σ = −1)

FIG. 43 (Color online) Nonlinear dynamics of wave packets
below phase transition. Upper row: envelope solutions in
(151) at T ≈ 2 for three values of A0 in (152). Lower row:
solutions of the full equation (141) for the initial wavepacket
with A0 = 6 (left) at later times under focusing (middle) and
defocusing (right) nonlinearities.

X and Y directions, which is termed pyramid diffraction.
For the initial conditions (152), this pattern is illustrated
in Fig. 42.
In the presence of nonlinearity (g̃ ≈ 7.3g) and below

phase transition, the wave packet diffracts away if its
initial amplitude is below a certain threshold value, as
displayed in the upper left panel of Fig. 43. If the initial
amplitude is above this threshold, the envelope solution
blows up to infinity in finite time. For example, with
the initial condition (152), the envelope solution in (151)
blows up when A0 > 3.2 [Fig. 43 (upper middle and
right panels)]. Remarkably, this blowup is independent
of the sign of nonlinearity, a fact which is clear from the
envelope equation (151), since a sign change in g̃ can be
accounted for by taking the complex conjugate of this
equation. In the full equation (141), it was confirmed
that similar growth occurs for both signs of the nonlin-
earity as well (see Fig. 43, lower row) at initial stages of
evolution, although the finite-time blowup is ruled out in
the defocussing medium at longer times.

D. Nonlinear PT -symmetric lattices

So far, we have considered nonlinear models whose lin-
ear parts obey PT symmetry. Now we turn to wave prop-
agation in a nonlinear PT -symmetric lattice governed by
the equation

iΨt +Ψxx + g[1 + UNL(x)]|Ψ|2Ψ = 0, (153)

where UNL(x) = U∗
NL(−x) is a PT -symmetric nonlin-

ear potential. Equation (153) can be considered as a
PT -symmetric deformation of conservative nonlinear lat-
tice models studied intensively during the last decade
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[see Kartashov, Malomed, and Torner (2011) for a re-
view]. This model with a periodic PT -symmetric poten-
tial UNL(x) = V0 cos(x) + iW0 sin(x) was introduced by
Abdullaev et al. (2011a). It supports continuous families
of stable solitons (detailed linear stability analysis was
performed by Zezyulin, Kartashov, and Konotop (2011)).
Interestingly, stable solitons can be found even if periodic
modulation of the real part of the potential is absent,
i.e., V0 = 0. Stable solitons also exist in non-periodic
nonlinear landscapes, such as UNL(x) = iW0 tanhx or
UNL(x) = iW0x.
Further natural generalization is a model of combined

linear and nonlinear PT -symmetric lattices (He et al.,
2012c):

iΨt +Ψxx−UL(x)Ψ + g[1 + UNL(x)]|Ψ|2Ψ = 0, (154)

where UL(x) = U∗
L(−x) and UNL(x) = U∗

NL(−x). The
presence of both linear and nonlinear modulations en-
riches the problem and makes it possible to consider
a general case where linear and nonlinear modulations
are different from each other and the special case where
the two lattices are identical (He et al., 2012c). Stable
gap solitons can be found in both cases, as well as in
the case of real-valued functions UNL(x) (He and Mi-
halache, 2012; He et al., 2012b; Meng and Liu, 2013).
It is of interest to consider in-phase modulations, i.e.,
UL(x) = UNL(x) (He et al., 2012c) and out-of-phase
modulations, i.e., UL(x) = −UNL(x). The latter type of
modulation can support stable fundamental and multi-
pole solitons whose counterparts in in-phase lattices are
unstable (Huang, Li, and Dong, 2013).

E. Solitons in generalized lattice models

The basic PT -symmetric nonlinear models described
above allow for numerous generalizations accounting for
more complex forms of nonlinearities and periodic lat-
tices, as well as for multi-component situations. Such
generalized models also support a variety of solitons
whose properties were studied systematically. Here we
provide a succinct review of the available results [some
generalizations were also summarized by He and Mal-
omed (2013)].

Vector mixed-gap solitons. A model describing two inco-
herently coupled fields (Ψ1,2) in a PT -symmetric lattice
U(x)

i
∂Ψ1,2

∂t
+
∂2Ψ1,2

∂x2
−U(x)Ψ1,2 + (|Ψ1|2 + |Ψ2|2)Ψ1,2 = 0,

was studied by Kartashov (2013). Since the model does
not include linear coupling between the two fields, it sup-
ports the so-called mixed-gap solitons characterized by

different propagation constants for the two field compo-
nents: Ψj(x, t) = e−iµjtψj(x), where µ1 6= µ2 lie in dif-
ferent gaps of the PT -symmetric potential. A further
generalization of this model accounting for both linear
and nonlinear periodic lattices was considered by Zhu et
al. (2014a).

Generalized nonlinearities. A PT -symmetric lattice
model with a more general form of nonlinearity is

iΨt +Ψxx − U(x)Ψ + F (x, |Ψ|2)Ψ = 0. (155)

The case of nonlocal nonlinearity corresponds to
F (x, |Ψ|2) = g(x)

∫∞

−∞K(x−y)|Ψ(x)|2dy, where K(x) ≥
0 is a kernel function describing nonlocal properties of
the medium, and g(x) is the nonlinear coefficient. Stable
nonlocal gap solitons were found for both self-focusing
[g(x) ≡ 1] (Li et al., 2012c) and self-defocusing [g(x) ≡
−1] (Jisha et al., 2014a; Zhu et al., 2013a) nonlocal non-
linearities. Spatially modulated nonlocal nonlinearity
with a periodic function g(x) was also considered (Yin
et al., 2012). “Accessible solitons” (Snyder and Mitchell,
1997) in a strongly nonlocal 2D PT -symmetric medium
were reported by Zhong, Belić, and Huang (2012).
Saturating nonlinearity F (x, |Ψ|2) = g|Ψ|2/(1 + |Ψ|2)

also supports gap solitons (Cao et al., 2014; Hong and
Jung, 2015). Multistable solitons in PT -symmetric
lattices in the presence of cubic-quintic nonlinearity
F (x, |Ψ|2) = g1|Ψ|2 + g2|Ψ|4 were reported by Li, Liu,
and Dong (2012). He and Mihalache (2013) studied soli-
ton propagation in the cubic-quintic Ginzburg-Landau
model with a PT -symmetric lattice.

PT -symmetric superlattices. Superlattices are combina-
tions of several periodic potentials with different periods.
Zhu et al. (2011) considered a PT -symmetric superlat-
tice with the potential U(x) having real and imaginary
parts: V (x) = ε sin2(x + π/2) + (1 − ε) sin2(2(x + π/2))
and W (x) =W0 sin(2x), and found that such a superlat-
tice supports stable gap solitons. The extension of this
study to the case where both real and imaginary parts
of the complex potential are dual-periodic superlattices
was addressed by Wang et al. (2014).

Defect solitons. Periodic lattices or superlattices locally
perturbed by a defect can support defect solitons. As
an example, one can consider a periodic lattice whose
real part is given as V (x) = cos2(x)[1 + εfD(x)], where
fD(x) is a localized function and the coefficient ε con-
trols the defect strength (Wang and Wang, 2011). If the
imaginary part is an unperturbed periodic function, say,
W (x) = W0 sin(2x), then the resulting PT -symmetric
defect lattice is known to support stable defect solitons
under self-focusing (Hu and Hu, 2012; Wang and Wang,
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2011) and self-defocusing (Hu and Hu, 2013b) nonlin-
earities. Further developments in this directions include
defect solitons in superlattices (Fang et al., 2014; Hu and
Hu, 2013a; Hu et al., 2012a; Lu and Zhang, 2011; Wang
et al., 2014), as well as in nonlocal (Fang et al., 2014; Hu
et al., 2012a,b), saturable (Hu and Hu, 2013c), and PT -
symmetric (Wang et al., 2012, 2014) nonlinearities. De-
fect solitons in 2D PT -symmetric lattices were reported
by Xie et al. (2014).
Finishing this review of generalized PT -symmetric lat-

tice models, we also mention other possibilities such as
chirped (quasi-periodic) PT lattices (Chun-Yan, Chang-
Ming, and Liang-Wei, 2013) and effects of higher-order
diffraction on PT models (Ge et al., 2014).

F. Bragg solitons

The NLS-type models considered above do not account
for waves reflected from the periodic structure, i.e., they
are only valid away from the Bragg resonance. If a stop
gap is relatively narrow and the carrier wave frequency
falls inside that gap, the interference of forward and back-
ward propagating waves

E = Ef (z, t)e
i(β0z−ω0t) + Eb(z, t)e

−i(β0z+ω0t) (156)

must be considered. Here ω0 is the carrier-wave fre-
quency, and β0 = n0ω0/c is the unperturbed propagation
constant. Then under Kerr nonlinearity the medium sup-
ports the so-called Bragg solitons (Acevez and Wabnitz,
1989; Christodoulides and Joseph, 1989). Bragg solitons
persist also in the case of a periodic PT -symmetric grat-
ing and are described by the coupled equations (Miri et
al., 2012a):

i

v

∂Ef

∂t
+ i

∂Ef

∂z
+ (κ+ g)Eb + γ

(
|Ef |2 + 2|Eb|2

)
Ef = 0,

i

v

∂Eb

∂t
− i

∂Eb

∂z
+ (κ− g)Ef + γ

(
2|Ef |2 + |Eb|2

)
Eb = 0,

(157)
where v = c/n0, κ is the coupling arising from the real
Bragg grating itself, g is the antisymmetric coupling aris-
ing from the complex PT -symmetric potential, and γ is
a nonlinear coefficient.
In the linear limit (γ = 0), the substitution Ef,b =

Ψf,be
i(Kz−iΩt) yields the dispersion relation Ω2 =

v2(K2 + κ2 − g2). Thus PT symmetry is unbroken (Ω
is real for any K) if g ≤ κ; the case g = κ corresponds
to the exceptional point; and PT symmetry is broken if
g > κ. When PT symmetry is unbroken, the nonlinear
model (157) supports traveling soliton solutions

Ef,b = ±α
√
κρ
2γ

∆∓1 sin(σ)sech
(
θ ∓ σ

2

)
eiη(z,t), (158)

where κρ =
√
κ2 − g2, θ = κρ sin(σ)(z −mvt)/

√
1−m2,

m = (1 − ∆4)/(1 + ∆4), and ∆, σ ∈ (0, π) are free pa-

rameters. The amplitude α and phase η(z, t) can also be
found in analytical form (Miri et al., 2012a).
The nonlinear model (157) also supports plane wave

solutions whose modulational instability was classified by
Sarma (2014) in different parameter regimes. Families
of more general traveling wave solutions (including bright
solitons in forward waves and dark solitons in backward
waves) were reported by Gupta and Sarma (2014a).

VIII. PT -SYMMETRIC χ(2) MEDIA

In this section, we consider PT -symmetric optical me-
dia with quadratic [i.e., χ(2)] nonlinearity. Our main con-
cern is the existence and stability of nonlinear modes. We
have seen before that the existence of continuous solution
families requires not only balance between linear gain and
loss, but also specific form of nonlinearity. This balance
can be achieved either in spatially extended systems, or
in linearly coupled multicomponent systems. χ(2) media
appear as a special case since they arise due to frequency
conversion and intrinsically have two components hav-
ing “different nonlinearities”. In addition, they do not
allow linear coupling between the two components due
to different frequencies. Therefore PT -symmetric optics
of quadratic media can be developed either on the basis
of coupled extended systems where one (or each) com-
ponent is subject to gain and loss, or as a combination
of (at least two) PT -symmetric models where the first
two components are linearly coupled with the second two
components. Below we consider the respective examples.

A. Quadratic media with PT -symmetric potentials

The dimensionless mathematical model for quadratic
media with PT -symmetric potentials reads:

iq1,z = −q1,xx + V (x)q1 + 2q∗1q2, (159a)

iq2,z = −(1/2)q2,xx + 2[Ṽ (x) + β]q2 + q21 , (159b)

where q1 and q2 are the fundamental-frequency (FF)
and second-harmonic (SH) fields, β is the mismatch
parameter, and V (x), Ṽ (x) are PT -symmetric po-
tentials. Stationary localized solutions of (159) are
searched in the form q1 = w1(x)e

ibz and q2 =
w2(x)e

2ibz , where w1, w2 can be required to obey
the symmetries {w1(x), w2(x)} = {w∗

1(−x), w∗
2(−x)}

or {w1(x), w2(x)} = {−w∗
1(−x), w∗

2(x)}. In the so-
called cascade limit corresponding to large β for which
the approximate solution w2 ≈ −w2

1/2β of (159b) is
valid (Stegeman, Hagan, and Torner, 1996), Eq. (159a)
for the FF is reduced to the stationary NLS equation
(131) with a PT -symmetric potential. This suggests the
existence of localized modes in the model (159) with PT -
symmetric potentials. Such modes indeed were found
(Moreira et al., 2012) in the case of the Scarf II potential
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(132) for the FF and Ṽ = 2V1/ cosh
2 x for the SH. On

the other hand, exact sech-shaped or cnoidal-shaped so-
lutions can be found by “inverse engineering” (Abdullaev
and Umarov, 2014; Truong Vu et al., 2015).

Another case where stationary modes in PT -
symmetric quadratic media were found (Moreira, Kono-
top, and Malomed, 2013) corresponds to the periodic
PT -symmetric potential V (x) given by (143) in the FF
and a real periodic potential Ṽ (x) = Ṽ1 cos

2(2x) in the
SH. The resulting periodic model supports families of gap
solitons which bifurcate from band edges of the underly-
ing linear model. Such bifurcations are always charac-
terized by vanishing fields in the FF (w1 → 0), while
the asymptotics of SH may be different. More precisely,
there exist three possibilities for bifurcation of gap soli-
tons from band edges.

Case 1 : Both components are of the same order, i.e.,
w2 ∼ w1 and w1 → 0. In this case (see left column of
Fig. 44), in the vicinity of the bifurcation the nonlinear-
ity is negligible, and both components are governed by
linear equations: the FF is described by a solution of
the stationary equation (145) with the pair (µ, ψ) re-
placed by (b, w1), i.e., w1 ∼ ψ, while w2 ∼ ψ̃, where
ψ̃ solves the linear Mathieu equation with the potential
Ṽ (x). For the existence of a gap soliton, the propaga-
tion constant b should belong to the gaps of both FF and
SH, which requires a non-empty overlap of the stop gaps
of both components; such an overlap can be termed as
a total gap. Moreover, the adopted scaling implies that
band edges of FF and SH should coincide exactly. This
constraint makes this case uncommon, although in prac-
tice it can always be achieved by adjusting the mismatch
parameter β.

Case 2 : The SH field remains finite: w2 = O(1), and
w1 → 0. In this case (see middle column of Fig. 44),
the vicinity of the total gap must coincide with the re-
spective SH gap edge. Then, while the FF component is
vanishing (w1 → 0) as b approaches the total gap edge,
the amplitude of the SH w2 remains finite and its width
increases (i.e., the SH in this limit becomes delocalized).
This explains divergent powers of the SH P2 (shown in
the inset in the middle panel of Fig. 44) and, respectively,
the divergence of the total power.

Case 3 : The SH amplitude scales as the square of the
FF amplitude: w2 = O(w2

1), and w1 → 0. This case
(see right column of Fig. 44) takes place when an edge
of the total gap, from which gap solitons bifurcate, is de-
termined by one of the respective edges of the gap of the
FF. Then in the small-amplitude limit the SH is deter-
mined by the field distribution in the FF and the total
power vanishes at the bifurcation point.

FIG. 44 (Color online) Upper panels: families of fundamental
solitons in the semi-infinite gap. Left, center and right panels
correspond to cases 1, 2, and 3, with β = −0.316, β = 0 and
β = −0.5134 respectively. Thick and thin lines correspond to
stable and unstable solitons. Shaded regions denote bands of
the FF and/or SH. Insets show powers of the FF (P1) and SH
(P2) fields close to the band-edge. Lower panels: intensities of
stable fundamental solitons indicated by black circles in the
respective upper panels: b = 1.25 (case 1), b = 1.43 (case 2),

and b = 1.21 (case 3). Other parameters are V0 = Ṽ0 = 2 and
W0 = 0.35. Adapted from Moreira, Konotop, and Malomed
(2013).

B. PT -symmetric coupler with quadratic nonlinearity

A model of a PT -symmetric coupler with χ(2) nonlin-
earity, introduced by Li et al. (2013b), reads:

iu̇1 = k1u2 − 2u∗1v1 + iγ1u1,

iv̇1 = k2v2 − u21 − βv1 + iγ2v1,

iu̇2 = k1u1 − 2u∗2v2 − iγ1u2,

iv̇2 = k2v1 − u22 − βv2 − iγ2v2.

(160)

Here two modes propagate in each waveguide: the FF uj
and the SH vj , and j = 1, 2 enumerates the coupler arm.
Linear coupling between two FFs (two SHs) is described
by k1 (k2), the gain (loss) strength in the arms is given
by γj , and β is the mismatch parameter.
Stationary modes of (160) are searched in the

form (u1, v1, u2, v2)
T = e−iΛbzw, where Λ =

diag(1, 2, 1, 2), b is the propagation constant, and w =
(w(1), w(2), w(3), w(4))T solves the stationary nonlinear
problem EΛw = Hw − F (w)w, where matrix H de-
scribes the linear part of system (160) and matrix func-
tion F (w) has F1,2 = 2[w(1)]∗, F2,1 = w(1), F3,4 =
2[w(3)]∗, and F4,3 = w(3) with other entries being zero.
H is PT symmetric with P = σ1 ⊗ σ0.
From a physical point of view (160) represents a cou-

pler with each of the arms guiding two modes; from a
mathematical point of view, it is a quadrimer similar to
one considered in Sec. IV.B. Eigenvalues of H are given
by

b̃1,2 = ±
√
k21 − γ21 , b̃3,4 =

1

2

(
−β ±

√
k22 − γ22

)
,
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and its eigenvectors are:

w̃1 = (eiθ1 , 0, e−iθ1 , 0)T , w̃2 = i(e−iθ1 , 0,−eiθ1, 0)T ,
w̃3 = (0, eiθ2 , 0, e−iθ2)T , w̃4 = i(0, e−iθ2 , 0,−e−iθ2)T ,

where θ1,2 = 1
2 arctan

(
γ1,2/

√
k21,2 − γ21,2

)
. If PT sym-

metry is unbroken, i.e., |γ1,2| < k1,2, then eigenvectors
w̃j are PT invariant, i.e., PT w̃ = w̃.

In the nonlinear problem, one looks for nonlinear
modes obtained by continuation from the linear eigen-
vectors [see Sec. IV.C.3.a]. Notice that F (w̃3,4) = 0,
which means that eigenvectors w̃3,4 also solve the non-
linear problem (160). As a result, one can construct
nonlinear modes of two different types. For the first
type, one looks for nonlinear continuation of w̃1,2 in
the form of expansions wj = εw̃j + ε2Wj + . . . and

bj = b̃j + εb
(2)
j + . . ., where coefficients Wj and b

(2)
j

(j = 1, 2) are computed from the solvability conditions
at higher orders. This is the “standard” expansion: in
the linear limit (ε = 0), the power of nonlinear modes
P = |w(1)|2 + |w(3)|2 + 2(|w(1)|2 + |w(3)|2) (which corre-
sponds to the Manley-Rowe invariant of the conservative
coupler with γ1,2 = 0) vanishes. For modes of the second
type, which bifurcate from w̃3,4, the expansions are of

the form wj = αjw̃j + εWj + . . ., bj = b̃j + ε2b
(2)
j + . . .,

where αj (j = 3, 4) are (generically nonzero) coefficients.
In this case, at ε = 0 the mode amplitudes do not vanish.
Admissible values of the coefficients αj are found from
compatibility conditions that arise from the underlying
expansions. Generally speaking there exist two admissi-
ble values of αj , thus w̃3 and w̃4 admit two continuous
families of nonlinear modes (Li et al., 2013b).

Numerical results are illustrated in Fig. 45. In both
conservative and PT -symmetric cases there are two so-
lution families bifurcating from the eigenstates w̃1 and
w̃2. These bifurcations take place at the limit P = 0.
Bifurcations of nonlinear modes from w̃3,4 occur at finite
P (in some cases these values of P are quite small and
hardly distinguishable from P = 0 on the scale of the fig-
ure). In the conservative case, either w̃3 or w̃4 gives birth
to one physically distinct family. In the PT -symmetric
case two distinct solution families originate from either
of w̃3 and w̃4.

IX. PARTIAL PT SYMMETRY

Multi-dimensional complex potentials considered so far
obey the PT symmetry with the canonical P operator
(2) resulting in inversion of all spatial variables. Now we
discuss situations where the complex potential is not PT
symmetric in this sense but is partially PT -symmetric
meaning that the potential is invariant under complex
conjugation and reflection in a single spatial direction.
Such potentials can still admit all-real spectra and sup-

FIG. 45 (Color online) Families of nonlinear modes in χ(2)

coupler (160) for k1 = 1, k2 = 2, β = 0.5, and γ1,2 = 0
[panel (a)]; γ1 = 0.1 and γ2 = 0.9 [panel (b)]. Solid blue and
dashed red segments correspond to stable and unstable modes
respectively. Adapted from Li et al. (2013b).

port continuous families of solitons (Kartashov, Konotop,
and Torner, 2015; Yang, 2014c).
The mathematical model we use is a 2D NLS equation

(141) with a potential U2D(x, y) which is partially PT
symmetric with respect to x:

U∗
2D(x, y) = U2D(−x, y). (161)

No symmetry is assumed in the y direction.
First, we argue that the linear spectrum of a partially

PT -symmetric potential can be all-real. If the poten-
tial is separable, i.e., U2D = U0

2D = V1(x) + V2(y), then
the partial PT symmetry condition (161) implies that
V ∗
1 (x) = V1(−x), V ∗

2 (y) = V2(y), and its eigenvalues are
λ = Λ1 + Λ2, where Λj are eigenvalues of 1D potentials
Vj(x). Since V1(x) is PT symmetric, its eigenvalues Λ1

can be all-real. Since V2(y) is strictly real, i.e. the re-
spective Hamiltonian is Hermitian, its eigenvalues Λ2 are
all-real as well. Thus eigenvalues λ of the separable po-
tential U2D(x, y) can be all-real.
Next, we consider a separable potential with all-real

spectra perturbed by a localized potential Up
2D(x, y):

U2D = U0
2D + ǫUp

2D, where ǫ a small real parameter,
and both U0

2D and Up
2D satisfy the partial PT symmetry

(161). Since Up
2D is localized, continuous spectrum of the

perturbed potential U2D coincides with that of U0
2D and

is thus all-real. Regarding isolated eigenvalues of U2D,
they can be shown to be real as well by a perturbation
calculation (Bender and Jones, 2008; Yang, 2014c).
Partially PT -symmetric potentials possess some typi-

cal feature of standard PT -symmetric potentials, such as
phase transition in the linear case and existence of con-
tinuous families of stationary solitons in the nonlinear
case. One can show that, from each simple real discrete
eigenvalue µ̃n of a partially PT -symmetric potential, a
continuous family of solitons bifurcates out under both
focusing and defocusing nonlinearities. Indeed, introduc-
ing small-amplitude expansions for nonlinear modes bi-
furcating from a linear eigenvalue µ̃n with eigenfunction
ψ̃n(x, y), similar to those in Eqs. (135), one can show
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FIG. 46 (Color online) (a) power diagram of soliton families
in potential (162) under focusing nonlinearity (solid blue seg-
ments are stable and dashed red unstable); (b,c) amplitude
and phase fields of the soliton at the marked point of the
power curve. Adapted from (Yang, 2014c).

that bifurcations are governed by the coefficient µ
(2)
n de-

fined by Eq. (136), where the integrals should be taken
over dxdy. For real eigenvalue µ̃n, its eigenfunction ψ̃n

inherits the partial PT symmetry of the potential. Thus

both integrals in the expression for µ
(2)
n are real, so µ

(2)
n

is also real. Pursuing the perturbation calculation to
higher orders, one can construct a perturbation solution
to all powers of ǫ, and thus a continuous family of soli-
tons, parameterized by µ, bifurcates out from the linear
eigenmode (µ̃n, ψ̃n).
The existence of soliton families can be verified nu-

merically. For this purpose, we take the partially PT -
symmetric potential

U2D = −3
(
e−|r−r+|2 + e−|r−r−|2

)

−2
(
e−|r+r+|2 + e−|r+r−|2

)
+ iγ

(
−e−|r+r−|2 + e−|r+r+|2

−2e−|r−r+|2 + 2e−|r−r−|2
)
, where r± = (±x0, y0). (162)

For γ = 0.1 and x0 = y0 = 1.5, this potential has
three discrete eigenmodes, from each of which a soli-
ton family bifurcates out. Soliton families bifurcated
from the first and second linear eigenmodes of the po-
tential under focusing nonlinearity (g = 1) are displayed
in Fig. 46(a). Interestingly, these two power curves are
connected through a fold bifurcation and have an upper
bound. The profile of a stable soliton on the power curve
is displayed in Fig. 46(b,c).
Results of numerical linear stability analysis show that

most solitons of the upper power branch are stable. This
is surprising, since in conservative potentials solitons on
the upper power branch are generally less stable. The
increased stability of the upper power branch here is due
to the complex partially PT -symmetric potential (162),
which stabilizes solitons at higher powers.
Solitons in Fig. 46 are partially PT -symmetric as the

underlying potential (162) itself. In special classes of
partially PT -symmetric potentials, symmetry breaking
of solitons can occur, where families of non-partially-
PT -symmetric solitons can bifurcate out from the base
branch of partially-PT -symmetric solitons (Yang, 2015).

This situation is analogous to 1D PT -symmetric poten-
tials (see Sec. VI.C and Yang (2014d)).

X. SPECTRAL SINGULARITIES

A. Spectral singularities in the linear theory

A non-Hermitian Hamiltonian at an exceptional point
does not admit a complete bi-orthonormal basis and
cannot be diagonalized. Alternatively, completeness of
the basis is lost if the continuum spectrum features a
spectral singularity (Naimark, 1954), which may be rel-
evant for physical applications (Longhi, 2009a,b, 2010;
Mostafazadeh, 2009b, 2011a,b; Mostafazadeh and Mehri-
Dehnavi, 2009) (see also (Mostafazadeh, 2015) for a re-
cent review).
Consider an eigenvalue problem Hψ̃k = k2ψ̃k for the

Schrödinger operator (6) with a localized complex poten-
tial: limx→±∞ |U(x)| = 0 (the tilde stands for eigenstates
of the linear problem). The associated Jost solutions
ψ̃k±(x) are defined by their asymptotics: ψ̃k±(x) ∼ e±ikx

for x → ±∞, while an arbitrary eigenfunction of the
continuous spectrum has asymptotics ψ̃k(x) → A±e

ikx+
B±e

−ikx at x → ±∞. The constants, A± and B± are
not independent: the link among them defines the trans-
fer matrix M(k)

(A+, B+)
T
=M(k) (A−, B−)

T
. (163)

The Wronskian of the Jost solutions W [ψ̃k−, ψ̃k+] =
2ikM22(k) is x-independent and detM(k) = 1. If
M22(k∗) = 0 for some real k∗ 6= 0, then the number
k2∗ > 0 is said to be a spectral singularity (Mostafazadeh
and Mehri-Dehnavi, 2009). The explicit form of the
Wronskian implies that linear dependence of the Jost so-
lutions is necessary and sufficient for the spectral singu-
larity (Mostafazadeh, 2013a). Notice that bound states
of H , if any, are also defined by the roots of M22(k)
which, however, are located in the upper half-plane of
the complex k: Im(k) > 0.
Spectral singularities are known for a number

of particular cases, including the step-like potential
(35) (Mostafazadeh, 2009b, 2011a, 2014), δ-function po-
tentials (Mostafazadeh and Mehri-Dehnavi, 2009), PT -
symmetric Scarff II potentials (Ahmed, 2009), and spe-
cial types of periodic potentials (Gasymov, 1980; Longhi,
2010).
Consider now a monochromatic wave incident on the

potential U(x) either from the left or from the right and
suppose that there exists a real k∗ solving M22(k∗) = 0,
i.e., there exists a spectral singularity. Relations (38)
among the scattering characteristics still hold. Thus
at the spectral singularity the reflection and transmis-
sion coefficients diverge, behaving like zero-width reso-
nances (Mostafazadeh, 2009b). It follows from (163) that
there exists a solution with A−(k∗) = B+(k∗) = 0. This



54

is a solution where only radiation propagating away from
the potential exists, i.e., it means that the potential op-
erates as a laser (Longhi, 2010; Mostafazadeh, 2011a).
On the other hand, if a medium allows for a zero

of M11(k̃∗) = 0 with real k̃∗, then there exists a solu-
tion with A+(k̃∗) = B−(k̃∗) = 0 meaning absence of
radiation propagating away from the potential. Such a
medium operates as a coherent perfect absorber (CPA),
which was predicted by Chong et al. (2010) and observed
experimentally by Wan et al. (2011). (k̃∗)

2 is referred
to as time-reversed spectral singularity (Longhi, 2011;
Mostafazadeh, 2015). Realization of a CPA using a pair
of passive resonators was reported by Sun et al. (2014).
The authors observed complete absorption of light when
the system was in (passive) PT -symmetric phase; how-
ever the complete absorption was not observed when the
PT -phase was broken.
In a generic case, there may exist either spectral sin-

gularities or time-reversed spectral singularities, or both
with k∗ 6= k̃∗. However, if a complex potential is PT
symmetric, then for each k∗ there exist k̃∗ = k∗ giving
origin to so-called self-dual spectral singularity. Such a
potential can operate either as a laser or as an absorber,
i.e., as a CPA-laser (Chong, Ge, and Stone, 2011; Longhi,
2010). Furthermore, the interplay between PT symme-
try and Fano resonances can result in singularities emerg-
ing from the coincidence of two independent singularities
and having highly directional responses (Ramezani et al.,
2014).

B. Spectral singularities of a nonlinear layer

Generalization of spectral singularities to nonlinear
media is justified by at least two reasons. First, in a
realistic system infinite transmission or reflection coeffi-
cients are the idealization, and regularizing mechanisms
must be involved, nonlinearity being one of them. Sec-
ond, the nonlinearity is expected to become a dominating
mechanism at large field amplitudes.
Effects of nonlinearity on spectral singularities were

considered by Mostafazadeh (2013a,b, 2014) for the non-
linear eigenvalue problem

Hnlψk = k2ψk, H
nlψ ≡ −ψ′′ + U(x)ψ + F (ψ′, ψ, x)ψ,

(164)
where ψ(x) is a complex-valued function, U(x) is a
rapidly decaying complex potential, and F (ψ′, ψ, x) de-
scribes the nonlinearity, which is confined to the interval
[0, 1]: F (ψ′, ψ, x) ≡ 0 for x < 0 and x > 1. In this
case one can still exploit Jost solutions ψ̃k± of the un-
derlying linear problem and define a nonlinear spectral
singularity as follows (Mostafazadeh, 2013a): a positive
real number k2 is a spectral singularity of Hnl if there
exists a solution ψk of the nonlinear problem (164) such
that limx→±∞ ψk(x) = C±ψ̃k±(x), where C± are complex
numbers.

Continuity of the field and its derivative at the bound-
aries of the nonlinear medium requires

ψk(0) = ψk−(0), ψ′
k(0) = ψ′

k−(0), (165a)

ψk(1) = ψk+(1), ψ′
k(1) = ψ′

k+(1). (165b)

This suggests an algorithm for obtaining spectral sin-
gularities (Mostafazadeh, 2013a,b). Consider a solution
ψk−(x) [or ψk+(x)] of (164) on the semi-axis x ∈ [0,∞)
[or x ∈ (−∞, 1]] with the “initial” conditions (165a) [or
(165b)]. Compute k ensuring the asymptotics ψk(x) ∼
C+e

ikx as x → ∞ [or ψk(x) ∼ C−e
−ikx as x → −∞]. If

the problem has a real solution for either of ψk(x), the
respective k then yields a spectral singularity k2.
Let us consider an example of a non-PT -symmetric po-

tential U(x) = ζδ(x − a), where ζ is a complex number,
a ∈ (0, 1) is the position of the defect inside the non-
linear layer, and Kerr nonlinearity F ≡ χ|ψ|2 with real
χ for x ∈ (0, 1) and F ≡ 0 otherwise (Mostafazadeh,
2013a). Assuming χ|ψ|2 to be small, one finds that
a nonlinear spectral singularity occurs at k satisfying
ζ ≈ 2ik + iχ|A−|2(e2ik(1−a) + e2ika − 2)/(2k) [at χ = 0
one recovers the linear spectral singularity (Mostafazadeh
and Mehri-Dehnavi, 2009)]. The field intensity can be
found from this expression:

χ|A−|2 ≈ −kRe(ζ) / (cos[k(1− 2a)] sin k), (166)

which is valid for Re(ζ) ≪ 1 and k 6= πm, π(m +
1/2)/(1 − 2a). The obtained nonlinear spectral singu-
larities obey parity symmetry, i.e., they are invariant un-
der the transformation a → 1 − a; they are amplitude-
dependent and sensitive to location of the defect a. One
also observes that the right hand side of (166) has a min-
imal value, which means that no singularities arise if the
amplitude is below a certain threshold.
A nonlinear PT -symmetric bi-layered structure with

potential (35) was considered by Mostafazadeh (2014).
It was found that for V0 = 1 the lossy layer results in a
decrease of the lasing threshold of the gain. On the other
hand, when V0 − 1 ≫ γ the threshold value of the gain-
loss coefficient, considered as a function of the real part of
the refractive index, has a minimum (for a homogeneous
active layer the lasing threshold decreases with V0).
From these examples, one can conclude that while

the cubic nonlinearity makes the spectral singularity
amplitude-dependent, it does not regularize the scatter-
ing characteristics. Similar conclusions can be reached
from the study of step-like potentials (35) (Mostafazadeh,
2013b, 2014). However, regularization of the spectral
singularity is indeed possible. It was obtained by Liu,
Gupta, and Agarwal (2014) for a PT -symmetric bi-
layered structure with saturable nonlinearity modeled by

d2ψ

dx2
+ k2ξ(x)

(δ + i)ψ

1 + δ2 + α|ψ|2 = 0, (167)

where ξ(x) = −1 for x ∈ (−L, 0) and ξ(x) = 1 for x ∈
(0, L), and δ, α are real constants.
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The described algorithm of obtaining nonlinear spec-
tral singularities relies on the solution of the scattering
problem where the output radiation is fixed, rather than
on the solution of a problem with the fixed amplitude of
the incident wave. These are two different statements of
the nonlinear scattering problem, referred to as the fixed-
output and fixed-input problems [see e.g. Konotop and
Vázquez (1994) and references therein]. The fixed-input
problem manifests multistability phenomenon, while the
fixed-output problem does not. In the numerical study of
transmission-coefficient dependence on the input inten-
sity, bi-stability was reported by Liu, Gupta, and Agar-
wal (2014).

XI. PT SYMMETRY IN KLEIN-GORDON MODELS

PT symmetry can be introduced in Klein-Gordon
(KG) models which in the conservative case read

utt − uxx + f(u) = 0, (168)

where f(u) is a nonlinear function of the field u(x, t).
The two celebrated examples are the sine-Gordon (SG)
equation given by f(u) = sin(u) and the φ4 model given
by f(u) = 2(u3 − u). Now the PT symmetry is defined
by the transformation (x, t) → (−x,−t). To preserve this
symmetry, gain and loss can be introduced by adding
a spatially inhomogeneous dissipative term γ(x)ut with
γ(x) being an odd function: γ(x) = −γ(−x) (Demirkaya
et al., 2014). This yields the model

utt − uxx + γ(x)ut + f(u) = 0, (169)

where lossy and gain domains correspond to regions with
γ(x) > 0 and γ(x) < 0, respectively.
For PT -symmetric KG model (169), the Galilean in-

variance is broken. Therefore, unlike its conservative
counterpart (168), the model does not admit traveling-
wave solutions. Nevertheless, stationary solutions are
not affected by the dissipation and gain and are given
by u = φ(x), where φ(x) solves the equation φxx = f(φ).
The most interesting solution is the kink, which is a topo-
logical object given by φ(x) = 4 arctan(ex−x0) in the SG
model, and φ(x) = tanh(x − x0) in the φ4 model (x0
stands for the position of the kink center).
To study linear stability of these kinks, one substitutes

u(t, x) = φ(x) + v(x)eλt, with v(x) ≪ 1, into Eq. (169)
and obtains a linear eigenvalue problem

λ2v + λγ(x)v − vxx + f ′(φ)v = 0. (170)

Demirkaya et al. (2014) performed general analysis of
(170) as well as a numerical study of stability for γ(x) =

ǫxe−x2/2, where the constant ǫ characterizes the strength
of gain and loss. The main findings for SG and φ4 kinks
can be summarized as follows. The linear stability spec-
trum is unaffected by γ(x) (except for a possible shift

of the discrete spectrum along the imaginary axis) if the
kink center x0 coincides with the boundary between the
domains with gain and loss, i.e., with x = 0. If however
the kink center is shifted to the lossy or to the gain gain
region, then the kink becomes spectrally stable and un-
stable, respectively. Behavior of kinks in PT -symmetric
SG and φ4 models can be also described by means of a
generalized collective coordinate method which was de-
veloped by Kevrekidis (2014) on the basis of a proposition
of Galley (2013) who suggested an approach to formu-
lation of the Lagrangian and Hamiltonian dynamics of
generic non-conservative systems.
The conservative SG equation is also known to admit

a breather solution φ = 4 arctan
σ cos[a(t− t0)]

a cosh[σ(x − x0)]
, where

σ =
√
a, 0 < a < 1, x0 is the center of the breather, and

t0 is a constant. Lu, Kevrekidis, and Cuevas-Maraver
(2014) addressed the existence and stability of breathers
in the PT -symmetric SG model. Unlike kinks, breathers
are always affected by the gain and loss because of their
time-periodic nature. This in particular makes their per-
sistence in the PT -symmetric model possible only if they
are centered at the boundary between the gain and loss.
Numerical analysis shows that even for a small amplitude
of the gain and loss |γ(x)| the breather becomes unstable
through a Hopf bifurcation. It was also found that if a
breather is initially centered at the lossy side, then it will
decay away. If, however, the breather is initially shifted
toward the gain region, then its energy will grow until a
pair of a kink and an anti-kink is nucleated.

XII. PT -DEFORMATIONS OF NONLINEAR EQUATIONS

The nonlinear models we considered so far were con-
structed by adding nonlinear terms (physically, by ac-
counting for nonlinear interactions) to linear models with
complex potentials, dissipation, or gain. In this section,
we address another possibility, where the so-called PT -
deformation (alias PT -extension) is performed by ex-
tending purely real coefficients of a nonlinear equation
to the complex plane.

A. Deformed KdV equation

The idea was formulated by Bender et al. (2007) and
can be described as follows. Consider wave dynamics
governed by the KdV equation

ut + uux + uxxx = 0. (171)

Now under parity transformation (x → −x), u also has
to change its sign: u→ −u. Since we are dealing with a
classical Hamiltonian system, the time reversal operator
T results in the change t→ −t with simultaneous change
u 7→ −u. Then in order to continue u from the real
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axis to the complex plane, one can “borrow” from the
quantum mechanics the rule of changing i → −i when
applying time reversal. This suggests to introduce a PT -
symmetric extension of the KdV equation as (Bender et
al., 2007)

ut − iu(iux)
ε + uxxx = 0, ε ∈ R. (172)

Obviously, both equations (171) and (172) are invariant
under the PT transformation. At ǫ = 1, Eq. (172) re-
duces to (171). Other physically relevant cases include
ε = 0, which leads to the dispersive equation vt+vxxx = 0
with v = e−itu, and ε = 3, which leads to the nonlinear
equation ut − u(ux)

3 + uxxx = 0 (Bender et al., 2007;
Fushchych, Serov, and Amerov, 1991).
Another PT -deformation of the KdV equation can be

obtained using the Hamiltonian formulation. The origi-
nal KdV equation (171) can be written in a Hamiltonian
form as

ut =
∂

∂x

δH

δu(x)
= {u,H}, (173)

where

H(t) =

∫ ∞

−∞

H(x, t)dx, H(x, t) =
1

2
u2x + u3. (174)

Fring (2007) considered a PT -symmetric generalization
of the Hamiltonian density H(x, t) as

H(x, t) = −(1 + ε)−1(iux)
ε+1 + u3, (175)

which satisfies the relation H(u(x)) = H∗(u(−x)). The
latter property ensures that the energy on each symmet-
ric interval [−a, a] is real:

E =

∫ a

−a

H(u(x))dx =

∫ a

−a

H∗(u(x))dx = E∗. (176)

Equation (173) with the Hamiltonian (175) yields an-
other PT deformed KdV equation (Fring, 2007)

ut − 6uux + iε(ε− 1)(iux)
ε−2u2xx + ε(iux)

ε−1uxxx = 0.
(177)

While the physical relevance of models like (172) or
(177) for arbitrary values of the deformable parameter ε
remains an open question, the systems themselves possess
some interesting properties which justify the attracted
interest. One of them is the existence of integrals of
motion, which is a nontrivial issue for nonconservative
systems. In particular, model (172) with ε = 3 admits
two integrals of motion (Bender et al., 2007)

I± =

∫
dx

21/3u(x,t)∫

0

ds
[
Bi (s)±

√
3Ai (s)

]
, (178)

where Ai (·) and Bi (·) are the Airy functions. Quantity
I− is strictly positive (when u(x, t) is not identically zero)
and therefore can be interpreted as the energy.
For other PT -deformations of the KdV equation, as

well as for examples of their solutions, see (Bagchi and
Fring, 2008; Cavaglia, Fring, and Bagchi, 2011).

B. Deformed Burgers equation

Cavaglia and Fring (2012) studied a PT -deformed
Hopf equation

ut − if(u)(iux)
ε = 0, (179)

where f(u) is a well behaved function, and ε is a real
rational number. For ε = 1, Eq. (179) reduces to the
real-valued Hopf equation

wt + f(w)wx = 0. (180)

This deformation extends the earlier results of Ben-
der and Feinberg (2008) on the PT -deformation vt −
iv(ivx)

ε = 0 of the inviscid Burgers’ equation wt+wwx =
0.
The PT -deformed Hopf equation (179) can be ob-

tained from its original version (180) for arbitrary ra-
tional ε through an explicit map, i.e., change of vari-
ables (Cavaglia and Fring, 2012; Curtright and Fairlie,
2008). For the particular case of f(w) = wn, the map
reads w 7→ n

√
εu(iux)n. This direct mapping allows for

the straightforward analysis of wave dynamics in the de-
formed model on the basis of the knowledge about the
“seed” real nonlinear equation. We illustrate this on the
example of shock formation (Bender and Feinberg, 2008;
Cavaglia and Fring, 2012). Suppose the initial condition
to the Hopf equation (180) is w(x0, 0) = w0(x0), and con-
sider a characteristic, i.e., a curve in the plane (x, t) for
which w(x, t) = w0(x0). The characteristic has the form
x = f(w0)t + x0. At the point of gradient catastrophe
two characteristics cross and wx tends to infinity. Then
by computing

wx = w′
0(x0)

dx0
dx

=
w′

0(x0)

1 + t (df(w0)/dx0)
(181)

and utilizing the above map, one finds that for f(w) = wn

the earliest time for shock formation in the PT -deformed
Hopf equation (179) is

tws = −ε−1/n

[
d

dx0

(
u
1/n
0 (iux0

)
(ε−1)/n

)]−1

. (182)

Requiring the time tws to be real, one finds that this condi-
tion is satisfied under the replacement u0 → iαũ0, where
ũ0 ∈ R, α = (4m ± 1)n/ε, and m ∈ Z. Thus for cer-
tain combinations of ε and n one can not observe shock
wave formation for real solutions of the deformed equa-
tion (179). On the other hand, the deformed model offers
other possibilities for singularities of the solutions to oc-
cur (Cavaglia and Fring, 2012). Such possibilities corre-
spond to a curvature catastrophe. For the inviscid Burg-
ers’ equation (f(w) = w) this phenomenon stems from
the relation wx = iε(iux)

ε−2
[
u2x + (ε− 1)uuxx

]
, mean-

ing that the shock of the u-field (ux → ∞) always corre-
sponds to the shock of w. In the meantime, the converse
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is not necessarily true because wx → ∞ can also occur
when uxx → ∞.
For other PT -symmetric deformations of the Hopf

equation see also Yan (2008).

C. Deformed short pulse equation

PT -deformation of yet another model, the short pulse
equation uxt = u+ 1

2 (u
2ux)x (Schäfer and Wayne, 2004),

was constructed by Yan (2012):

i[(iux)
σ]t = u+ bum + ic[un(iux)

ε]x. (183)

Here parameters b, c, σ, n, m, and ε are all real. For
their specific choices Eq. (183) allows for soliton, kink, or
compacton solutons.

D. Nonlocal NLS equation

The NLS equation (28) belongs to the so-
called Abblowitz-Kaup-Newell-Segur (AKNS)
scheme (Ablowitz et al., 1973), allowing for obtain-
ing a wide class of equations integrable by the inverse
scattering transform. More specifically, NLS equation
(28) with g = 2 is a particular case of the more general
integrable system (Ablowitz and Segur, 1981; Novikov
et al., 1984)

iψt + ψxx + 2φψ2 = 0, iφt − φxx − 2ψφ2 = 0, (184)

subject to the reduction φ(x, t) = ψ∗(x, t).
Ablowitz and Musslimani (2013) considered yet an-

other reduction, φ(x, t) = ±ψ∗(−x, t) leading to the
equation with nonlocal nonlinearity (σ = ±1)

iψt(x, t) = ψxx(x, t) + 2σψ(x, t)ψ∗(−x, t)ψ(x, t). (185)

Notice that in this equation, the nonlinear term can be
represented as F (ψ)ψ, where F (φ) = 2σφ(x, t)φ∗(−x, t).
For any ψ, the nonlinearity satisfies the identity
(F (ψ))∗ = PF (ψ)P , and thus commutes with PT and
can be termed as PT symmetric or P-pseudo-Hermitian
in the sense of the definition (97). In the discrete case
this property guarantees the existence of at least one in-
tegral of motion. For the continuous model (185), one
can find an infinite number of conserved quantities. The
first one is given by (18), and the second and third ones
read

Q2 =

∫ ∞

−∞

[ψx(x, t)ψ
∗(−x, t) + ψ(x, t)ψ∗

x(−x, t)] dx,
(186)

Q3 =

∫ ∞

−∞

[
ψx(x, t)ψ

∗
x(−x, t)− σψ2(x, t)ψ∗2(−x, t)

]
dx.

(187)

The one-soliton solution for (185) reads

ψ(x, t) = − 2(η + η̄)eiθ̄e−4iη̄2te−2η̄x

1 + ei(θ̄+θ)e4i(η2−η̄2)te−2(η̄+η)x
, (188)

where η, η̄ (> 0), θ and θ̄ are constants.
Being a particular case of the model (184), Eq. (185)

is only the first equation in a hierarchy of integrable non-
local models. Furthermore, it can be generalized to the
vectorial case and to include a wider class of symmetries
through the reductions of the type φ(x, t) = ψ∗(ǫ1x, ǫ2t),
where ǫ1 and ǫ2 take values ±1 (Yan, 2015).
Furthermore, one can construct a discrete analog of

(185), which was reported by Ablowitz and Musslimani
(2014).

XIII. CONCLUSIONS AND PERSPECTIVES

In this article, we have reviewed recent progress on
nonlinear wave dynamics in PT -symmetric systems. We
have shown that the interplay between nonlinearity and
PT symmetry creates a host of new phenomena which
sets nonlinear PT -symmetric systems apart from tradi-
tional conservative or dissipative systems. For instance,
even though PT systems contain gain and loss and are
dissipative in nature, they admit continuous families of
nonlinear modes and integrals of motion – properties
which are common in conservative systems but rare in
dissipative systems. PT -symmetry breaking of nonlin-
ear modes in certain types of PT systems is another
surprising property which is highly non-intuitive. Sta-
bilization of nonlinear modes in PT -symmetric systems
above phase transition is a fascinating property as well.
Most of the materials reviewed in this article are on

theoretical aspects of PT -symmetric systems. But a
number of experimental validations of the main concepts
as well as several practical applications were also de-
scribed. Since PT symmetry is prevalent in a wide range
of physical systems, further experimental studies are ex-
pected to continue. A reason PT symmetry can be phys-
ically useful is that it allows for overcoming losses while
still preserving guidance properties of the system. In
addition, under PT symmetry, the gain and loss can
be varied, thus paving the way for optimal and flexi-
ble control of wave-guiding systems. Exciting applica-
tions of PT symmetry have already appeared. They in-
clude optical switches, unidirectional reflectionless PT -
symmetric metamaterials at optical frequencies, single-
mode PT -symmetric micro-ring lasers, CPA-lasers and
phonon lasers. In those applications, the effects of non-
linearity can be an important issue. For instance, it is
well known that lasing is an intrinsic nonlinear process.
Thus studies of nonlinear effects in those emerging appli-
cations are important open questions.
We anticipate that nonlinear PT systems may find fur-

ther applications in the near future, especially because
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the paradigm is relevant practically to all branches of
contemporary physics. We also expect growing interest
in this subject from the mathematical community, which
is justified by the novelty and beauty of properties of PT -
symmetric models and, more generally, of non-Hermitian
systems.
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Schäfer, T., and C. E. Wayne, 2004, Physica D, 196, 90.
Shchesnovich, V. S., and V. V. Konotop, 2010, Phys. Rev. A

81, 053611.
Schindler, J., A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos,

2011, Phys. Rev. A 84, 040101(R).
Scott, D. D., and Y. N. Joglekar, 2011, Phys. Rev. A 83,

050102(R).
Scully, M. O., 1991, Phys. Rev. Lett. 67, 1855.
Serkin, V. N., and A. Hasegawa, 2000, Phys. Rev. Lett. 85,

4502.

Shi, Z., X. Jiang, X. Zhu, and H. Li, 2011, Phys. Rev. A 84,
053855.

Shi, Z., H. Li, X. Zhu, and X. Jiang, 2012, EPL 98, 64006.
Simmons, Z. J., N. A. Proite, J. Miles, D. E. Sikes, and D. D.

Yavuz, 2012, Phys. Rev. A 85, 053810.
Slonczewski, J. C., 2002, J. Magnetism and Magnetic Mate-

rials 247, 324.
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