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I. INTRODUCTION

Metallic ferromagnets have been studied since ancient
times, as this class of materials includes elemental iron,
which gave ferromagnetism its name. Detailed studies in
the early 1900s led to one of the first examples of mean-
field theory (Weiss, 1907). A more elaborate mean-field
theory by Stoner (1938) explained how a nonzero mag-
netization can arise from a spontaneous splitting of the
conduction band. When it became clear, 30 years later,
that mean-field theory does not correctly describe the
behavior close to the phase transition, ferromagnetism
became one of the testing grounds for the theory of criti-
cal phenomena (Stanley, 1971; Wilson and Kogut, 1974).
More recently metallic ferromagnets with low Curie tem-
peratures, ranging from tens of degrees to a few degrees,
or even lower, have attracted much attention. Many of



these materials allow for decreasing the Curie temper-
ature even further, by applying pressure or by chang-
ing the chemical composition. This makes possible the
study of the quantum phase transition that occurs at zero
temperature and for fundamental reasons must be quite
different in nature from the thermal phase transition ob-
served at a nonzero Curie temperature. Over the years
it again became clear that the quantum version of mean-
field theory does not correctly describe the behavior close
to the transition, contrary to early suggestions.

This review summarizes the experimental and theo-
retical understanding of this quantum phase transition.
Our discussion of experimental results is restricted to ma-
terials where an instability of a ferromagnetic phase at
low temperatures is clearly observed and reasonably well
characterized. In parallel to this discussion we describe
the relevant theoretical ideas and the extent to which
they explain, and in some cases predicted, the experi-
mental observations. In this section we start with some
general remarks about quantum phase transitions and
then turn to the one in metallic ferromagnets.

A. General remarks on quantum phase transitions

Quantum phase transitions (QPTs) have been dis-
cussed for many years and remain a subject of great in-
terest (Hertz, 1976; Sachdev, 1999). Whereas classical
or thermal phase transitions occur at a nonzero transi-
tion temperature and are driven by thermal fluctuations,
QPTs occur at zero temperature, T' = 0, as a function of
some non-thermal control parameter (typical examples
are pressure, composition, or an external magnetic field)
and are driven by quantum fluctuations. The ways in
which the description of QPTs differs from that of their
classical counterparts are subtle and took a long time to
understand. Early on it was realized that at a mean-field
level the description is the same for both quantum and
classical phase transitions. Indeed, the earliest theory of
a QPT was the Stoner theory of ferromagnetism (Stoner,
1938). Stoner considered the case of itinerant ferromag-
nets, where the conduction electrons are responsible for
the ferromagnetism,' and developed a mean-field theory
that describes both the classical and the quantum ferro-
magnetic transition.

Important mathematical developments were the Trot-
ter formula (Trotter, 1959), and the coherent-state for-
malism (Casher et al., 1968), which proved useful for rep-
resenting the partition function of quantum spin systems

1 We refer to systems where the conduction electrons are the sole
source of the magnetization as “itinerant ferromagnets”, and to
ones where part or all of the magnetization is due to localized
spins as “localized-moment ferromagnets”. The theory reviewed
in Secs. II1.B and III.C is valid for both.

in terms of a functional integral (Suzuki, 1976a,b). It
implied, at least for certain spin models, that a quantum
phase transition in a system with d spatial dimensions
could be described in terms of the corresponding classi-
cal phase transition in an effective dimension deg = d+1.
An example is the Ising model in a transverse field (De-
Gennes, 1963; Stinchcombe, 1973). The crucial observa-
tion was that the functional-integral representation of the
partition function contains an integration over an auxil-
iary variable (usually referred to as imaginary time) that
extends from zero to the inverse temperature 1/7. At
T = 0, this integration range becomes infinite and mimics
an additional spatial integration in the thermodynamic
limit. If space and time scale in the same way, then
deg = d + 1 follows. For the classical Ising model in par-
ticular, the upper critical dimension, above which mean-
field theory provides an exact description of the transi-
tion, is df = 4. Tt follows that the critical behavior of
the quantum Ising model in a transverse field in d > 3 is
mean-field like (Suzuki, 1976a). More generally, the stat-
ics and the dynamics are intrinsically coupled at QPTs;
unlike the case of classical phase transitions, where the
dynamic critical phenomena are decoupled from the stat-
ics (Ferrell et al., 1967, 1968; Halperin and Hohenberg,
1967, 1969; Hohenberg and Halperin, 1977).

This leads to the following general point: For classical
critical phenomena, the dynamic universality classes are
much smaller (and therefore more numerous) than the
static ones. Physically, this is due to the fact that the
order-parameter fluctuations that determine the univer-
sality class can be conserved (such as in, e.g., a ferro-
magnet) or non-conserved (such as in, e.g., an antiferro-
magnet), and they can couple to any number of other
slow or soft modes or excitations, with each of these
cases realizing a different universality class (Hohenberg
and Halperin, 1977). By the same argument one expects
quantum phase transitions in metals to be different from
those in insulators because the respective dynamical pro-
cesses are very different.?

In an important paper, Hertz (1976), among other
things, generalized the Trotter-Suzuki formulation to the
case where space and time do not scale the same way. 3
He showed that if the slow order-parameter time scale
t¢ at a continuous QPT diverges as t¢ oc &7, with ¢
the correlation length and z the dynamical scaling ex-
ponent (which in general is not equal to unity), then the
imaginary-time integral is analogous to a spatial integra-
tion over an additional z spatial dimensions. For such a

2 To date, no comprehensive classification of QPTs, at a level of the
classification of classical critical dynamics given by Hohenberg
and Halperin (1977), exists.

3 Initially, mathematical results for specific spin models that
yielded z = 1 had been applied more broadly than their validity
warranted, which led to considerable confusion.



class of problems the critical behavior at the continuous
QPT is equivalent to that at the corresponding classi-
cal transition in deg = d + z dimensions. At this point
it seemed that QPTs were, in fact, not fundamentally
different from their classical counterparts. The statics
and the dynamics couple, leading to an effective dimen-
sion different from the physical spatial dimension, and
the number of universality classes is different, but the
technical machinery that had been developed to solve
the classical phase transition problem (Fisher, 1983; Ma,
1976; Wilson and Kogut, 1974) could be generalized to
treat QPTs as well and map them onto classical transi-
tions in a different dimension.*

The above considerations assume that the phase tran-
sition separates an ordered phase from a disordered one,
with the ordered phase characterized by a local order
parameter. For the ferromagnetic transition that is the
subject of this review, this is indeed the case. It should be
mentioned, however, that there are very interesting phase
transitions, both classical and quantum, that do not al-
low for a description in terms of a local order parameter.
One example is provided by spin liquids (Balents, 2010),
others, by the quantum Hall effects (Tsui et al., 1982; von
Klitzing et al., 1980) and topological insulators (Hasan
and Kane, 2010; Qi and Zhang, 2011). Other interesting
cases are the Anderson and Anderson-Mott metal insu-
lator transitions.* It has been proposed that for these
transitions, and indeed for all QPTs, the von Neumann
entanglement entropy S is a useful concept since it dis-
plays nonanalyticities characteristic of the QPT (Kopp
et al., 2007). S, tends to scale with the area of the sub-
system rather than its volume, and provides interesting
connections between correlated electrons, quantum infor-
mation theory, and the thermodynamics of black holes
(Eisert et al., 2010).

B. Quantum ferromagnetic transitions in metals

Hertz’s prime example was the same as Stoner’s.
namely, an itinerant ferromagnet. Here the magneti-
zation serves as an order parameter, and Hertz (1976)
derived a dynamical Landau-Ginzburg-Wilson (LGW)
functional for this transition by considering a model of
itinerant electrons that interact only through a contact
potential in the particle-hole spin-triplet channel. He an-

4 There are important QPTs that have no classical analogs; ex-
amples include various metal-insulator transitions in disordered
electron systems with or without the electron-electron interac-
tion taken into account (Anderson, 1958; Belitz and Kirkpatrick,
1994; Evers and Mirlin, 2008; Finkelstein, 1984; Kramer and
MacKinnon, 1993; Lee and Ramakrishnan, 1985). While they
do not allow for a mapping onto a classical counterpart, their
theoretical descriptions still use the same concepts that were de-
veloped for classical transitions.

alyzed this LGW functional by means of renormalization-
group (RG) methods. He concluded that in this case the
dynamical critical exponent has the value z = 3, and
that the QPT for an itinerant Heisenberg ferromagnet
hence maps onto the corresponding classical transition
in deg = d + 3 dimensions. Since the upper critical di-
mension for classical ferromagnets is dI” = 4, this seemed
to imply that Stoner theory for the critical behavior was
exact in the physical spatial dimensions d = 2 and d = 3.
This in turn implied that the transition was generically
continuous or second order, with mean-field static critical
exponents. Preceding Hertz’s work, Moriya and collab-
orators in the early 1970s had developed a description
of itinerant quantum ferromagnets that one would now
classify as a self-consistent one-loop theory (historically,
it was often referred to as self-consistently renormalized
or SCR spin-fluctuation theory); this work was summa-
rized by Moriya (1985). Millis (1993) used Hertz’s RG
framework to study the behavior at low but nonzero tem-
perature, and the crossover between the quantum and
classical scaling behaviors. Most of the explicit results
confirmed the earlier results of the spin-fluctuation the-
ory. This combined body of work is often referred to
as Hertz-Millis-Moriya or Hertz-Millis theory. We will
discuss its basic features and results in Sec. III.C.2.

A related but separate line of investigations dealt with
quantitative issues regarding the strength of the mag-
netism, and the properties of the ordered phase, in itin-
erant ferromagnets. It was realized early on that Stoner
theory and its extension to finite temperature (Edwards
and Wohlfarth, 1968) leaves key questions unanswered,
especially for metals with low Curie temperatures T¢:
Firstly, why is the exchange energy, which can be ex-
tracted from band structure probes or from careful anal-
ysis of the magnetic equation of state, typically at least
an order of magnitude larger than kgTc? If the order
was destroyed solely by a thermal smearing of the Fermi
function, the two would be expected to be of similar
magnitude. Secondly, why is the ordered moment in the
low-temperature limit only a small fraction of the fluc-
tuating moment as extracted from the Curie constant in
the temperature dependent susceptibility? Thirdly, why
is the temperature dependence of the magnetization at
low temperature proportional to T2 rather than 7°/2, as
would be expected from including spin-wave excitations?

The key to answering these questions, and to achiev-
ing a quantitative description of itinerant ferromagnets
with low ordering temperatures, was to include the ef-
fect of fluctuations of the local magnetization, as was
demonstrated by Murata and Doniach (1972). More
comprehensive models were developed in the 1970s by
Moriya and collaborators (Moriya, 1985) in the spin-
fluctuation-theory work already mentioned above. As in-
elastic neutron scattering became feasible, which demon-
strated the existence of magnetic fluctuations and al-
lowed for their quantitative parameterization (Bernhoeft



et al., 1983; Ishikawa et al., 1982), it became possible
to accurately model key material properties such as T,
the low-temperature ordered moment and its tempera-
ture dependence, as well as the temperature dependence
of the magnetic susceptibility and the associated fluctu-
ating moment, in a further development of the SCR spin-
fluctuation approach (Lonzarich and Taillefer, 1985).

Returning to the statistical-mechanics description of
the phase transition itself, a key result of both the SCR
theories and Hertz’s RG description of clean metallic
ferromagnets was the value of the dynamical exponent,
z = 3. This can be made plausible independent of
the technical details of Hertz’s theory, and, more im-
portantly, independent of whether or not the conduc-
tion electrons themselves are responsible for the mag-
netism. In the absence of soft modes other than the
order-parameter fluctuations, the bare order-parameter
susceptibility xyop at criticality as a function of the fre-
quency w and the wave number k has the form (Hohen-
berg and Halperin, 1977)

Yob(k,w) = —iw/y + K (L1a)

if the order parameter is not a conserved quantity, or

Xop (k,w) = —iw/ A k> + k? (1.1b)

if it is, with v and A kinetic coefficients. At T > 0, or at
T = 0 in the presence of quenched disorder, v and A are
weakly k-dependent and approach constants as k& — 0.
However, in clean systems at 7" = 0 these coefficients do
not exist in the limit of zero frequency and wave num-
ber, and in metallic systems their effective behavior is
v < A x 1/k. For a non-conserved order parameter this
leads to z = 1, as in the case of a quantum antiferro-
magnet (Chakravarty et al., 1989), or an Ising model in
a transverse field (Suzuki, 1976a). For a ferromagnet,
where the order parameter is conserved, we find from Eq.
(1.1b) z = 3 in the clean case, and z = 4 in the disordered
case. This is consistent with Hertz’s explicit calculation
for a specific model. The Egs. (1.1) do not get qualita-
tively changed by renormalizations, provided deg = d+ 2
is greater than the upper critical dimension: The cou-
pling between the statics and the dynamics ensures that
the critical exponent 7 ® is zero and the exponents in Eqgs.
(1.1) remain unchanged. Simple mean-field arguments,
including Egs. (1.1), are therefore self-consistently valid
for all d > df —z, the static critical behavior is mean-field
like, and the dynamical critical exponent is the one that
follows from Eqs. (1.1). However, all of these considera-
tions are valid only under the assumption that there are
no other soft modes that couple to the order parameter.
In metallic ferromagnets this assumption is not valid, as
we will explain in detail in Sec. III.

5 For a definition of critical exponents, see Appendix B.

The experimental situation through the 1990s was con-
fusing: In some materials a second-order transition was
observed, but many others showed a first-order transi-
tion. Within mean-field theory, the standard explana-
tion (if one can call it that) for a first-order transition
is that the coefficient of the quartic term in the Landau
expansion happens to be negative (Landau and Lifshitz,
1980). While this can always be the case in some specific
materials, for reasons related to the band structure, there
is no reason to believe that it will be the case in whole
classes of materials. A much more general mechanism for
a first-order transition was proposed in 1999, when two of
the present authors, together with Thomas Vojta, showed
theoretically that the QPT in two-dimensional and three-
dimensional metallic systems from a paramagnetic (PM)
phase to a homogeneous ferromagnetic one is generically
first order, provided the material is sufficiently clean (Be-
litz et al., 1999, to be referred to as BKV). The physical
reason underlying this universal conclusion is a coupling
of the magnetization to electronic soft modes that ex-
ist in any metal, which leads to a fluctuation-induced
first-order transition. The same conclusion was reached
by other groups (Chubukov et al., 2004; Maslov et al.,
2006; Rech et al., 2006). This theoretical work was later
generalized to include the effects of an external magnetic
field, which leads to tricritical wings in the phase diagram
(Belitz et al., 2005a). Since the role of the electronic soft
modes diminishes with increasing temperature, this the-
ory predicts that in clean systems there necessarily exists
a tricritical point in the phase diagram, i.e., a tempera-
ture that separates a line of first-order transitions at low
temperatures from a line of second-order transitions at
higher temperatures as the control parameter is varied.
In addition, BKV showed that non-magnetic quenched
disorder suppresses the tricritical temperature, and that
the transition remains second order down to zero tem-
perature if the disorder strength exceeds a critical value.

An important generalization of the theory was the re-
alization that it is equally valid for localized-moment fer-
romagnets as for itinerant ones (Kirkpatrick and Belitz,
2012a); the previous focus on itinerant magnets was his-
torically rooted and not necessary. In addition, it ap-
plies to systems where the magnetic order is ferrimag-
netic (Kirkpatrick and Belitz, 2012a) or magnetic ne-
matic (Kirkpatrick and Belitz, 2011) rather than ferro-
magnetic.

Many experiments are consistent with these predic-
tions, and over time experiments on cleaner samples, or
at lower temperatures, or both, showed a first-order tran-
sition even in cases where previously a continuous tran-
sition had been found. The predicted tricritical point
and associated tricritical wings have also been observed
in many systems. A representative example of this type
of phase diagram is shown in Fig. 1. Strongly disordered
materials, on the other hand, almost always show a con-
tinuous transition, also in agreement with the theoretical
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FIG. 1 Observed phase diagram of UGesz in the space spanned
by temperature (T'), pressure (P) and magnetic field (H).
Solid red curves represent lines of second-order transitions,
blue planes represent first-order transitions. Also shown are
the tricritical point (TCP), and the extrapolated “quantum
critical end points” (QCEP)® at the wing tips. From Kote-
gawa et al. (2011Db).

prediction. There are, however, exceptions from these
general patterns, which we will discuss in Sec. II.C.1.

These predictions and observations are for systems
where the transition is to a homogeneous ferromagnetic
state; the schematic phase diagrams for the discontinuous
and continuous cases, respectively, are shown in Fig. 2 a)
and b). In other materials, magnetic order of a different
kind is found to compete with homogeneous ferromag-
netism at low temperatures, as schematically illustrated
in Fig. 2 c¢). In strongly disordered systems, spin-glass
freezing and quantum Griffiths effects may occur at low
temperatures and augment or compete with critical be-
havior, see Fig. 2 d). These effects will be discussed in
detail in Secs. II.D, IL.LE and IIL.D, IIL.E.

The striking difference between the predictions of BKV
and Hertz theory is due to a coupling of the order-
parameter fluctuations to electronic degrees of freedom.
Hertz theory treats this coupling in too simple an ap-
proximation to capture all of its qualitative effects. In
metals at T = 0 there are soft or gapless two-fermion
excitations that couple to the magnetic order-parameter
fluctuations in important ways. In effect, the combined
fermionic and bosonic (order-parameter) fluctuations de-
termine the quantum universality class in all spatial di-
mensions d < 3. As a result of this coupling, the upper

6 A critical end point (CEP) is defined as a point where a line of
second-order transitions terminates at a line of first-order transi-
tions, with the first-order line continuing into an ordered region,
see, e.g., Chaikin and Lubensky (1995) and references therein.
In the recent literature the term CEP is often misused.

critical dimension is df = 3, rather than dT = 1 as pre-
dicted by Hertz theory, and the transition is first order,
rather than continuous with mean-field exponents. The
mechanism behind this phenomenon is similar to what
is known as a fluctuation-induced first-order transition
in classical phase transitions (Chen et al., 1978; Halperin
et al., 1974), but it is different in at least one crucial way,
cf. Secs. II1.B.2 and IV.A. Two well-known classical ex-
amples of a fluctuation-induced first-order transition are
the superconducting (BCS) transition, and the nematic-
to-smectic-A transition in liquid crystals. ”

We add some remarks about the relative strength of
fluctuations at second-order and certain first-order tran-
sitions. At a second-order transition above the upper
critical dimension, treating the fluctuations in a Gaus-
sian approximation suffices to obtain the exact critical
behavior; this is what Hertz theory concluded for the
ferromagnetic QPT. At a critical point below the upper
critical dimension this is not true; fluctuations are strong
enough to modify the critical exponents, although they
do not change the continuous nature of the transition.
At a fluctuation-induced first-order transition, the com-
bined effects of order-parameter fluctuations and other
soft modes are so strong that they change the order of
the transition predicted by mean-field theory.® The pre-
diction of BKV was that this will happen at the ferro-
magnetic QPT in clean systems.

The continuous quantum ferromagnetic transition in
disordered metals, in systems where the disorder is strong
enough to suppress the tricritical temperature to zero,
has also been studied in detail theoretically (Belitz et al.,
2001a,b; Kirkpatrick and Belitz, 1996). In this case the
itinerant electrons are moving diffusively, rather than
ballistically. Because this is a slower process, there is
an effective enhancement of the exchange interaction
that causes ferromagnetism, and some crucial signs are
changed compared to the clean case. The net result is
that the second-order transition predicted by Hertz the-
ory becomes, so to speak, even more continuous by the
coupling to the electronic soft modes: For example, the
theory predicts that in d = 3 the critical exponent® 3 is
equal to 2, compared to 8 = 1/2 in Hertz theory.” This
large value of 8 may give the impression of a “smeared

7 In liquid crystals it took a long time until the weakly first-order
transition was observed (Anisimov et al., 1990). We will discuss
in Secs. II1.B.2 and IV.A why the fluctuation-induced first-order
transition in quantum ferromagnets is so much more robust.

It is often thought that at first-order transitions, as opposed to
second-order ones, fluctuations are not important. In the case
of a fluctuation-induced first-order transition this notion is obvi-
ously misleading. Less obviously, all first-order transitions can be
understood as a limiting case of second-order transitions where
the critical exponents (including 8 = 0) can be determined ex-
actly (Fisher and Berker, 1982; Nienhuis and Nauenberg, 1975).
The asymptotic critical behavior in this case actually consists
of power laws multiplied by log-normal terms, see Sec. II1.C.3.

oo



transition”, even though there still is a sharp critical
point. This, as well as the predicted values of other
exponents, is consistent with numerous experiments in
disordered systems, as we will discuss. In related devel-
opments, much work has been done on Griffiths singular-
ities and Griffiths phases in disordered metallic magnets.
Depending on the nature and symmetry of the order pa-
rameter, these theories predict that in some systems the
Griffiths-phase effects are very weak, while in others they
lead to strong power-law singularities with continuously
varying exponents, and in yet others they completely de-
stroy the sharp quantum phase transition (for a review,
see Vojta, 2010). If these effects are important, they will
be superimposed on the critical behavior.

Finally, there are theories that suggest that in some
metallic systems an inhomogeneous magnetic phase may
form in between the paramagnetic and the homogeneous
ferromagnetic state at low 7. This was first suggested
by Belitz et al. (1997), and has been explored in detail
by others. Spiral phases, spin nematics, and spin-density
waves have been proposed to appear between the uniform
ferromagnet and the paramagnetic phase (Chubukov and
Maslov, 2009; Chubukov et al., 2004; Conduit et al., 2009;
Efremov et al., 2008; Karahasanovic et al., 2012; Maslov
et al., 2006; Rech et al., 2006). We will discuss these and
related theories in Sec. I1LE.

Il. EXPERIMENTAL RESULTS

Here we discuss experimental results organized with re-
spect to the observed phase diagrams as shown in Fig. 2.

A. General remarks

During the last two decades a large number of ferro-
magnetic (FM) metals have been found that (1) have a
low Curie temperature, and (2) can be driven across a
ferromagnet-to-paramagnet QPT. The control parame-
ter is often either hydrostatic pressure or uniaxial stress,
but the transition can also be triggered by composition,
or an external magnetic field. The initial motivation
was to look for a ferromagnetic quantum critical point
(QCP), and possibly novel states of matter in its vicin-
ity, as had been found in many antiferromagnetic (AFM)
metals (Gegenwart et al., 2008; Grosche et al., 1996;
Mathur et al., 1998; Park et al., 2006; von L&hneysen
et al., 2007). It soon became clear, however, that the
FM case is quite different from the AFM one. Instead of
displaying a quantum critical point, many systems were
found to undergo a first-order QPT, with a tricritical
point in the phase diagram separating a line of second-
order transitions at relatively high temperatures from a
line of first-order transitions at low temperatures. In
several of these materials the existence of a tricritical

FIG. 2 (Color online) Schematic phase diagrams observed in
ferromagnetic (FM) systems that show, at the lowest tem-
peratures realized, a) a discontinuous transition and tricriti-
cal wings in a magnetic field, b) a continuous transition, c)
a change to spin-density-wave (SDW) or antiferromagnetic
(AFM) order, d) a continuous transition in strongly disor-
dered systems that may be accompanied by quantum Griffiths
effects or spin-glass freezing in the tail of the phase diagram.

point has been confirmed by the observation of tricriti-
cal wings upon the application of an external magnetic
field H, as shown schematically in Fig. 2a. Some sys-
tems, such as ZrZns, were initially reported to have a
QCP, but with increasing sample quality the transition
at low temperatures was found to be first order. The
first-order transition occurs in a large variety of mate-
rials, including 3d transition metals as well as 4f- and
5f-electron systems, see Tables I, II. Some systems do
show a continuous QPT to the lowest temperatures ob-
served, see Tables ITI, IV, V and Fig. 2b. Several of these
are either strongly disordered, as judged by their resid-
ual resistivities,'” or their crystal structure makes them
quasi-one-dimensional. Finally, the expectation of addi-
tional phases was borne out. In some systems the long-
range order changes from ferromagnetic to modulated

10 We use the residual resistivity, denoted by po, as a measure of
quenched disorder. We note that pg is a very rough and incom-
plete measure of disorder, that many transport theories make
very simple assumptions regarding the scattering process, and
that relating the measured value of pg to theoretical considera-
tions can therefore be difficult. Also, different manifestations of
disorder may affect pg differently than they affect magnetism.
This may be relevant for certain systems that are nominally
rather clean, such as NizPdj_,, Sec. II.C.1.a. Unfortunately,
more extensive characterizations of disorder are rarely available.



spin-density-wave (SDW) or AFM order, see Fig. 2c¢),
and strongly disordered systems often show a spin-glass-
like phase in the tail of the phase diagram, Fig. 2d).
Accordingly, we distinguish four categories of metallic
quantum ferromagnets, namely: (1) Systems that dis-
play a first-order QPT; (2) systems that display, or are
suspected to display, a QCP; (3) systems that undergo a
phase transition to a different type of magnetic order be-
fore the FM quantum phase transition is reached; and (4)
systems with spin-glass-like characteristics or other man-
ifestations of strong disorder at low temperatures. This
phenomenological classification, which is independent of
the microscopical origin of the magnetism, is reflected in
Fig. 2 and Tabs. I-VII. For each of these categories we
discuss a number of representative materials in which the
QPT has been reasonably well characterized. This list of
materials is not exhaustive.

We also mention that superconductivity has been
found to coexist with itinerant ferromagnetism in four U-
based FM metals: UGes (Saxena et al. (2000)), URhGe
(Aoki et al. (2001) and Yelland et al. (2011)), UCoGe
(Huy et al. (2007a)), and Ulr (Kobayashi et al. (2006)).
While very interesting, this topic is outside the scope
of this review and will be mentioned only in passing.
For a related review, see Pfleiderer (2009). Another very
interesting class of materials that we do not cover are
ferromagnetic semiconductors which have recently been
reviewed by Jungwirth et al. (2006).

B. Systems showing a discontinuous transition

We first discuss systems in which there is strong ev-
idence for a first-order transition at low temperatures.
These include the transition-metal compounds MnSi and
Zr7Zn,, several uranium-based compounds, and some
other materials; their properties are summarized in Ta-
bles I, II. The widespread pattern of 1st order transitions
near the QPT is consistent with fundamental arguments
such as the BKV theory (Belitz et al., 2005a, 1999), which
for clean ferromagnets predicted a first-order quantum
phase transition at T' = 0, a tricritical point in the phase
diagram, and associated tricritical wings in an external
magnetic field. This theory will be reviewed in Sec. III,
where we will give a detailed discussion of the relation
between theory and experiment.

1. Transition-metal compounds

a. MnSi MnSi is a very well-studied material in which
the search for a FM QCP resulted in the observation
of a first-order quantum phase transition. The transi-

tion temperature at ambient pressure is T¢ ~ 29.5 K,
and the application of hydrostatic pressure suppresses
Tc to zero at a critical pressure p. ~ 14.6kbar (Pflei-
derer et al., 1997, 1994). This compound is actually a
weak helimagnet (Ishikawa et al., 1976) with a compli-
cated phase diagram (see Miihlbauer et al., 2009 and ref-
erences therein). However, the long wavelength of the
helix, about 180 A, allows one to approximate the sys-
tem as a ferromagnet. The helical order implies that
the transition should be very weakly first order even at
ambient pressure (Bak and Jensen, 1980). This has in-
deed been observed (Janoschek et al., 2013; Stishov et al.,
2007, 2008).12 Pfleiderer et al. (1997) found evidence of
a strongly first-order transition for pressures p* < p < p.
with p* =& 12 kbar. The tricritical temperature (i.e.,
the transition temperature at p = p*) is Ty, ~ 12K.13
These results were later corroborated by the observation
of tricritical wings (Pfleiderer et al., 2001a), see Fig. 3,
and by pSR data that show, for p* < p < p., phase
separation indicative of a first-order transition (Uemura
et al., 2007), see Fig. 4. Moreover, this has been con-
firmed by neutron Larmor diffraction experiments under
pressure (Pfleiderer et al., 2007). Conversely, data pre-
sented by Stishov et al. (2007), Petrova et al. (2009), and
Petrova and Stishov (2012), suggests that the quantum
phase transition at p = p. is either continuous or very
weakly first order. Although the evidence for a pressure
induced first-order transition appears convincing in the
purest crystals, no agreement has been reached (Otero-
Leal et al., 2009a,b; Stishov, 2009).

For p < p. the properties of MnSi are in good agree-
ment with the SCR theory (Pfleiderer et al, 1997).

Specifically, Té/ % is a linear function of the pressure.
This agreement fails at p — p. due to the presence of
the first-order transition. Also, a striking 7°/2 power
law for the resistivity was observed in a broad range of
p 2 pe (Pfleiderer et al., 2001b) where one would expect
a Fermi-liquid T2 behavior. The physics behind this non-
Fermi-liquid (NFL) behavior, which seems to be common
in itinerant magnets near their QPT (cf. Sec. IV.B), is
still unclear.

11 We denote the ferromagnetic transition temperature by T ir-
respective of the order of the transition. In parts of Sec. III,
where we want to emphasize that a transition is second order,
we denote the critical temperature by T¢.

The first-order transition at ambient pressure was found by
Janoschek et al. (2013) to be of a type that was first predicted
by Brazovskii (1975) for different systems. It differs slightly from
the type predicted by Bak and Jensen (1980) for helical magnets.

Since the transition is likely to be weakly first order for all
p < p*, the observed apparent tricritical point separates a very
weakly first-order transition from one that is more strongly first
order.
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TABLE I Systems showing a first-order transition I: Transition-metal and uranium-based compounds. FM = ferromagnetism,
SC = superconductivity. Tc = Curie temperature, Ti. = tricritical temperature. pp = residual resistivity. n.a. = not available

System  Order of Tc/K® magnetic  tuning Tic/K wings Disorder? Comments
Transition ¢ moment/uf parameter observed (po/uQcm)
MnSi 1st 12 29.53 0.43 pressure ! ~ 101 yes? 0.334 weak helimagnet 3¢
ZrZng 1st 7 28.57 0.177 pressure ” ~57 yes >0.318 long history °
CoSs 1st 1011 12210 0.8412 pressure 1° ~ 11810 (yes) f02-06" high Tc and Tic
NizAl (1st?) 9 41 -15"  0.075° pressure ' n.a. no 0.8415 1st order trans-
ition suspected
UGe2 1st 16:17 5218 1.518 pressure 1819 9420 yes 1820 0219 easy-axis FM
coex. FM+SC'?
UsPy Ist 2! 13822 1.34239 pressure 2! 3221 yes 2Lk 4201 canted easy-axis FM
URhGe 1st!724 9.5%° 0.427% 1 B-field 2426 ~ 12 yes 24 827 easy-plane FM
coex. FM+SC %
UCoGe  1st!728 2.5%8 0.03%° none > 257 ™ no 1229 very weak FM
coex. FM+SC %
UCoAl  1st 307 rs (3030 (30,310 pressure 3931 > 11 K30 yeg30 2430 easy-axis FM
URhAl  1st® 34 - 253233 ~0.9%%33  pressure® ~ 113 yes®® ~ 6533 weakly 1st order

@ At the lowest temperature achieved.

® A single value of Tt at the default value of the tuning parameter (ambient pressure, zero field) is given if Tic has also been
measured; a range of Tc for a range of control parameters in all other cases. ¢ Per formula unit unless otherwise noted.

4 For the highest-quality samples. ¢ Disputed by Stishov et al. (2007); see text.

f Metamagnetic behavior in 1st-order region indicative of wings.

9 Suspected 1st order transition near p = 80 kbar (Niklowitz et al., 2005; Pfleiderer, 2007).

" For pressures p = 0 — 60 kbar. * Per Ni at p = 0 (Niklowitz et al., 2005). 7 Per U.

*¥ Via a metamagnetic transition; wings have not been mapped out. ' At the critical pressure p. ~ 4 GPa.

™ Pressure decreases Tc (Slooten et al., 2009); TCP not accessible. Tc increases nonmonotonically upon doping with Rh
(Sakarya et al., 2008); order of transition for URh;Co;_,Ge not known except for z =1 (2nd order with Tc = 9.5K).

" Inferred from existence of tricritical wings.

° PM at zero pressure. Uniaxial pressure induces FM, so does doping, see Ishii et al. (2003) and references therein.

! Pfleiderer et al. (1997) 2 Uemura et al. (2007) 3 Ishikawa et al. (1985) * Pfleiderer et al. (2001a)
5 Ishikawa et al. (1976) © Miihlbauer et al. (2009) " Uhlarz et al. (2004) 8 Sutherland et al. (2012)
9 Pfleiderer (2007) 19 Goto et al. (1997) ' Goto et al. (2001) 12 Adachi et al. (1969)

13 Sidorov et al. (2011a) * Niklowitz et al. (2005) 15 Steiner et al. (2003) 6 Huxley et al. (2001)

17 Aoki et al. (2011Db) 18 Kotegawa et al. (2011b) 9 Saxena et al. (2000) 20 Taufour et al. (2010)

2L Araki et al. (2015) 22 Trzebiatowski and Troé (1963) 23 Widniewski et al. (1999) 24 Huxley et al. (2007)

25 Aoki et al. (2001) 26 Levy et al. (2005) 2T Miyake et al. (2009) 28 Hattori et al. (2010)

2 Huy et al. (2007b) 30 Aoki et al. (2011a) 31 Tshii et al. (2003) 32 Veenhuizen et al. (1988)

33 Shimizu et al. (2015b)

b. ZrZns ZrZns crystallizes in the cubic C15 structure and the tricritical temperature is Ti. = 5 K. The phase
and is a true ferromagnet (Matthias and Bozorth, 1958; diagram is qualitatively the same as that shown in Fig. 3;
Pickart et al., 1964) with a small magnetic anisotropy and the observation of tricritical wings by Uhlarz et al. (2004)
an ordered moment of 0.17 up per formula unit (Uhlarz confirmed an earlier suggestion by Kimura et al. (2004).
et al., 2004). The material can be tuned across the tran- The first-order nature of the QPT was confirmed by
sition by means of hydrostatic pressure. While early ex-  Kabeya et al. (2012, 2013), who also studied crossover
periments (Grosche et al., 1995; Huber et al., 1975; Smith phenomena above the tricritical wings. However, the
et al., 1971) suggested the existence of a quantum critical transition is weakly first order and, for p < p., ZrZng
point, an increase in sample quality led to the realization can be reasonably well understood within the SCR, the-
that the transition becomes first order near the critical ory (Grosche et al., 1995; Smith et al., 2008). The re-
pressure p. ~ 16.5kbar (Uhlarz et al., 2004). The tran-  sistivity exponent shows an abrupt change from 5/3 for
sition temperature at ambient pressure is To =~ 28.5K, p < pe to 3/2 at p > p. and remains 3/2 up to higher
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TABLE II Systems showing a first-order transition II: Lanthanide-based compounds, and strontium ruthenates. Tc = Curie
temperature, Ti. = tricritical temperature. pp = residual resistivity. n.a. = not available.

System Order of Tc/K magnetic tuning T:c/K  wings Disorder © Comments
Transition ¢ moment/up ® parameter observed (po/ufdcm)

Lai_.Ce;Ino 1st! 22 -19.5 % n.a. composition 1''>9227¢no n.a. third phase? 1

SmNiCs 1st 2 17-15%f  0.322 pressure > 177 no 2 other phases 2

YbCusSiz 1st 3 4.7 -3.5%%9 0.16 - 0.423" pressure®® n.a. no <0.5¢ strong Ising

v _ anisotropy >

YblrsSio 1st 7 2.3-1.3" n.a. pressure7 n.a. no ~ 227 FM order
suspected ”

CePt (1st?)® 5.8 - 098 n.a. pressure ® n.a. no ~11° 1st order trans-
ition suspected

Sr1_,Ca,RuOs 1st° 160 — 0% 0.8-0* composition '° n.a. no n.a. ceramic samples

SrgRu207 1st o™ om pressure ™ n.a. yes 11 <051 foliated wings,

exotic phase 11

“ At the lowest temperature achieved.
4 For = 1.0 - 0.9.
" For pressures p = 9.4 — 11.5 GPa.

® Per formula unit unless otherwise noted.
¢ 1st order for x = 1, TCP not accessible.

¢ For the highest-quality samples.
f For p=0-2GPa. ¢ For pressures p ~ 11.5 — 9.4 GPa.

 For pressures p ~ 10 — 8 GPa.

9 For a magnetic sample at pressures p ~ 8 — 10 GPa. Samples with pg as low as 0.3uQcm at ambient pressure have been

prepared (Yuan et al., 2006). * For z = 0 to = > 0.7.

! Phase diagram not mapped out completely; the most detailed measurements show tips of wings. See Wu et al. (2011).
™ Paramagnetic at ambient pressure. Hydrostatic pressure drives the system away from FM, uniaxial stress drives it towards
FM. See Wu et al. (2011) and references therein, especially Ikeda et al. (2000).

! Rojas et al. (2011)
5 Fernandez-Paiiella et al. (2011)
 Holt et al. (1981)

2 Woo et al. (2013)

6 Colombier et al. (2009)
10 Uemura et al. (2007)

3 Tateiwa et al. (2014) * Winkelmann et al. (1999)
" Yuan et al. (2006)  ® Larrea et al. (2005)
" Wu et al. (2011)

pressures (about 25kbar). As in MnSi (Sec. II1.B.1.a),
this NFL behavior is not understood.

c. CoSy Cobalt disulphide crystallizes in a cubic pyrite
structure. It is an itinerant ferromagnet with T =~
124K, an ordered moment of 0.84 ug/Co, and an effec-
tive moment of 1.76 up/Co (Adachi et al., 1969; Jarrett
et al., 1968). Density-functional calculations concluded
that CoSy is a half-metallic ferromagnet (Mazin, 2000;
Zhao et al., 1993). The spin polarization is high at about
56% (Wang et al., 2004), and the transport coefficients
and the thermal expansion coefficient show unusual be-
havior in the vicinity of the transition (Adachi and Ohko-
hchi, 1980; Yomo, 1979). Magnetization measurements
indicate that the transition is almost first order at am-
bient pressure (Wang et al., 2004). Hydrostatic pressure
decreases T¢, and at a pressure of about 0.4 GPa the na-
ture of the transition changes from second order to first
order, with a tricritical temperature Ti. ~ 118 K (Goto
et al., 1997). A much lower value for the tricritical pres-
sure was found by Otero-Leal et al. (2008); however, this
analysis depended on a specific model equation of state.
Sidorov et al. (2011a) confirmed a strongly first order
QPT at a critical pressure of about 4.8 GPa. T¢ is also
suppressed if selenium is substituted for sulphur, and the

transition again becomes first order at a small selenium
concentration, with 1% of selenium roughly equivalent to
a pressure of 1 GPa (Hiraka and Endoh, 1996).

Two groups have investigated the p-T phase diagram
at higher pressures up to the QPT: Barakat et al. (2005)
observed a monotonically decreasing T¢ with increasing
pressure. They inferred a first-order quantum phase tran-
sition at p. =~ 6 GPa from a change of the temperature
dependence of the resistivity (p(T) = po + AT™) from
n = 2 in the FM phase to n =~ 1.6 for p > p.. Their
samples had a residual resistivity pp ~ 2 puflem and a
residual resistance ratio (RRR) of about 60. Sidorov
et al. (2011a) performed experiments on a cleaner sample
(po = 0.7 u2em) and concluded that p. = 4.8 GPa. They
found that the temperature dependence of the resistivity
does not change across the transition, with n = 2 both
below and above p., while the residual resistivity drops
by about a factor of 3 as the transition is crossed.

These discrepancies notwithstanding, all experiments
agree on the first-order nature of the quantum phase
transition. This makes the phase diagrams of CoSs,
ZrZngy, and MnSi qualitatively the same.

d. NizAl NigAl crystallizes in the simple cubic CugAu
structure. Its magnetic properties depend on the exact



composition; the stoichiometric compound at ambient
pressure is a ferromagnet with Tc = 41K and a small
ordered moment of 0.075 up/Ni (de Boer et al., 1969;
Niklowitz et al., 2005). T¢ decreases upon the appli-
cation of hydrostatic pressure and vanishes at a critical
pressure of 8.1 GPa (Niklowitz et al., 2005). The resis-
tivity of stoichiometric NigAl shows a pronounced NFL
temperature dependence on either side of the transition,
Ap < T", with n somewhere between 3/2 and 5/3 (Fluit-
man et al., 1973; Pfleiderer, 2007; Steiner et al., 2003). At
ambient pressure and in zero magnetic field Steiner et al.
(2003) found n = 1.65 for temperatures between about
0.5 and 3.5 K. The prefactor is comparable with that of
the T3/2 behavior of the resistivity in ZrZn, (Pfleiderer
et al., 2001b; Yelland et al., 2005).

The transition at ambient pressure is second order, and
the overall form of the phase diagram is consistent with
the results of the spin-fluctuation theory described in Sec.
II1.C.2, as is the logarithmic temperature dependence of
the specific heat (Niklowitz et al., 2005; Sato, 1975; Yang
et al., 2011). However, studies of the temperature de-
pendence of the resistivity under pressure suggest that
the QPT at the critical pressure is first order (Niklowitz
et al., 2005; Pfleiderer, 2007). This would be analogous
to the behavior of MnSi, Sec. I1.B.1.a.

Tc also decreases upon doing of NigAl with Pd (Sato,
1975) or Ga (Yang et al., 2011); these systems are dis-
cussed in Sec. I1.C.1.b.

1st order transition

Critical endpoint (5, By)

FIG. 3 Phase diagram of MnSi. In the temperature - pres-
sure (T-p) plane the transition temperature drops from T¢
= 29.5K at ambient pressure and changes from second to
first order at p* = 12kbar where Tc ~ 12K. T¢ vanishes at
pe = 14.6 kbar. In the magnetic field - pressure (B-p) plane
at T = 0, and everywhere across the shaded wing, the tran-
sition is first order up to a “critical endpoint”® estimated to
be located at By, = 0.6 T and pn, = 17 kbar. From Pfleiderer
et al. (2001a).
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2. Uranium-based compounds

Ferromagnetism with a first-order transition at low
temperatures has been observed in the uranium-based
heavy-fermion compounds UGes (Huxley et al., 2000;
Kotegawa et al., 2011b; Taufour et al., 2010), URhGe
(Huxley et al., 2007), and UCoGe (Hattori et al., 2010).
UCoALl is paramagnetic at ambient pressure, but very
close to a first-order QPT (Aoki et al., 2011a). The fer-
romagnetism is due to 5f electrons. The extent to which
these electrons are localized or itinerant, and the con-
sequences for neutron-scattering observations, have been
investigated in some detail (Chubukov et al., 2014; Fuji-
mori et al., 2012; Yaouanc et al., 2002). Coexistence of
ferromagnetism and superconductivity has been found in
UGey (Huxley et al., 2001; Saxena et al., 2000), URhGe
(Aoki et al., 2001), and UCoGe (Huy et al., 2007b); for
a recent overview, see Aoki and Flouquet (2014).

a. UGez UGes crystallizes in an inversion-symmetric or-
thorhombic structure, and the best samples have resid-
ual resistivities as low as 0.2 uQ2cm (Saxena et al., 2000).
Taufour et al. (2010) found the residual resistivity to
be strongly pressure dependent. The Curie temperature
at ambient pressure is T¢ =~ 52K (Aoki and Flouquet,
2012; Aoki et al., 2001; Huxley et al., 2001; Saxena et al.,
2000). T¢ decreases with increasing hydrostatic pressure
and vanishes at p ~ 16 kbar, which coincides with the
pressure where the superconductivity disappears. Within
the ferromagnetic phase a further transition is observed,
across which the magnitude of the magnetic moment
changes discontinuously. The associated transition line
starts near the peak in the superconducting transition
temperature, ends in a critical point at a temperature of
about 4 K, and is replaced by a crossover at higher tem-

0 kbar

9.6 kbar

e 11.7 kbar

12.9 kbar

- 13.9 kbar

S 15.0 kbar
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@
£
=]
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30 40

Temperature (K)

FIG. 4 upSR results for the volume fraction with static mag-
netic order. The nonzero volume fraction less then unity at
T = 0 for intermediate pressures indicates phase separation,
which in turn is indicative of a first-order transition. From
Uemura et al. (2007).



T (K)

p (GPa)

FIG. 5 Phase diagram of UGes in the temperature-pressure
plane. Shown are the paramagnetic (PM) phase, two ferro-
magnetic phases (FM1 and FM2), and the tricritical point
(TCP). The critical point marked CEP © is related to the
transition between the phases FM1 and FM2. From Taufour
et al. (2010).

peratures (Huxley et al., 2007; Taufour et al., 2010), see
Fig. 5. The tricritical temperature has been measured to
be Ti. ~ 24K (Kotegawa et al., 2011b; Taufour et al.,
2010), but values as high as Ti. ~ 31K have been re-
ported (Huxley et al., 2007) with a tricritical pressure
Pre = 13 kbar. Kabeya et al. (2010) found a somewhat
smaller value of ~ 12.5 kbar from measurements of the
linear thermal expansion coefficient. The tricritical wings
have been mapped out in detail, see Fig. 1.

b. UsPs UsP4 at ambient pressure is a ferromagnet
with Te = 138 K (Trzebiatowski and Tro¢, 1963). It crys-
tallizes in a bcc structure with no inversion symmetry,
and the magnetic structure is canted with a FM compo-
nent along (111) (Burlet et al., 1981; Heimbrecht et al.,
1941; Widniewski et al., 1999; Zumbusch, 1941). Pressure
reduces T until a QPT is reached at p. ~ 4 GPa. From
measurements of the resistivity and the magnetic sus-
ceptibility at p =~ 1.5 GPa, Araki et al. (2015) concluded
that the transition changes from second order to first or-
der with a tricritical temperature Ti. = 32 K. Consistent
with this, the pressure-dependence of T¢ changes from a
Hertz-type Te o (p—pc)®/* behavior to Tc o (p—pe)*/?.
In a magnetic field, metamagnetic behavior has been ob-
served that is indicative of tricritical wings, although the
wings have not been mapped out.

c¢. URhGe and UCoGe Both of these materials belong to
the ternary UTX intermetallic U-compounds where T is
one of the late transition metals and X a p-electron ele-
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ment. They crystallize in the orthorhombic TiNiSi struc-
ture (space group Pp,q). For lattice parameters, see Troé
and H.Tran (1988) and Canepa et al. (2008). Because
the 5 f-electrons, which carry the magnetic moments, are
partially delocalized in these materials, the ordered mo-
ment is often reduced compared to the free ion value
and an enhanced electronic specific heat is observed.
In addition, they are characterized by a strong Ising
anisotropy (Sechovsky and Havela, 1998). Two main
mechanisms control the delocalization of the 5f electrons
and thus the magnetism: the direct overlap of neigh-
boring U 5f orbitals, and their hybridization with the
d-electrons. For inter-U distances smaller than the Hill
limit (dy_py ~ 3.4 — 3.6 A) (Hill, 1970) the strong over-
lap of the 5f orbitals results in a non-magnetic ground
state. Larger values yield a FM or AFM ordered ground
state. For values close to this limit the f — d hybridiza-
tion strength controls the magnetic properties. There is a
clear tendency of these systems to show magnetic order
with increasing d-electron filling of the T element (Se-
chovsky and Havela, 1998). The strongest electronic cor-
relations are therefore found in UTX compounds with
intermediate values of dy_y and d-electron filling.

URhGe has a dy_y = 3.5 A close to the Hill limit. It is
ferromagnetic with a Curie temperature T¢ = 9.5K and
an ordered moment of 0.42 up, oriented along the c-axis.
A magnetic field parallel to the b-axis suppresses T¢ and
leads to a tricritical point at T~ 1K and Hy ~ 12T
(Huxley et al., 2007). With an additional field in the
c-direction, tricritical wings appear, see Fig. 6. The su-
perconductivity that is observed in zero field (Aoki et al.,
2001) is absent at intermediate fields, but reappears at
low temperatures in the vicinity of the tricritical wings
(Huxley et al., 2007; Levy et al., 2005).

The nature of the magnetic order in UCoGe, fer-
romagnetic or otherwise, was initially unclear. This,
together with the observation that URhGe is ferro-
magnetic, prompted the study of URh;_,Co,Ge alloys
(Sakarya et al., 2008), and the final conclusion was that

FIG. 6 Phase diagram of URhGe in the space spanned by
temperature and magnetic fields in the b- and c-directions.
The dark shaded regions indicate the presence of supercon-
ductivity. From Huxley et al. (2007).



UCoGe is indeed a weak ferromagnet with a Curie tem-
perature near 3 K and a small ordered moment of 0.03 up
(Huy et al., 2007b). The transition was found to be
weakly first order by means of nuclear quadrupole res-
onance measurements (Hattori et al., 2010). Hydrostatic
pressure decreases Tc (Hassinger et al., 2008; Slooten
et al., 2009) which vanishes near the maximum of the
superconducting dome, see Fig. 7. A tricritical point
must appear as T¢ increases upon doping with Rh, see
Fig. 8, but the order of the transition has not been stud-
ied as a function of the Rh concentration. Similarly, in
pure UCoGe tricritical wings should appear in a mag-
netic field, analogously to what is observed in UCoAl,
see Fig. 10. A recent study has reported that T¢ is sup-
pressed by doping with Ru, with an extrapolated critical
Ru concentration of about 31% (Valiska et al., 2015).
The order of the transition has not been determined.

UCoGe displays coexistence of superconductivity and
ferromagnetism below 0.8 K (Huy et al., 2007b; Slooten
et al., 2009). In contrast to both UGey and URhGe the
superconductivity is observed in both the ferromagnetic
and paramagnetic phases, see Fig. 7.

d. UCoAl At ambient pressure and zero field, UCoAl is
a paramagnet with a strong uniaxial magnetic anisotropy
(Sechovsky et al., 1986). It crystallizes in the hexago-
nal ZrNiAl structure consisting of U-Co and Co-Al lay-
ers that alternate along the c-axis. The inter-U dis-
tance is dy_y ~ 3.5A (same value as in URhGe, see
I1.B.2.c), but a large d-filling leads to UCoAl being para-
magnetic (Sechovsky and Havela, 1998). Its isoelectronic
analog URhAI is ferromagnetic with dy_y ~ 3.63 A, (cf.
Sec. I1.B.2.e). These observations suggest that UCoAl
is close to a FM instability, which is indeed the case:
Application of a magnetic field along the easy magneti-
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FIG. 7 Phase diagram of UCoGe in the temperature-
pressure plane, showing the ferromagnetic and superconduct-
ing phases. The magnetic transition is first order for all pres-
sure values (Hattori et al., 2010). From Slooten et al. (2009).
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FIG. 8 Curie temperature of URhGe doped with Co, Si, or
Rh as a function of the dopant concentration. The transition
in pure URhGe is 2nd order, in pure UCoGe, 1st order. From
Sakarya et al. (2008).

zation axis (the crystallographic c-axis) induces a first-
order metamagnetic phase transition at H,, ~ 0.7T
at low temperature with an induced moment of about
0.3 up (Andreev et al., 1985; Mushnikov et al., 1999).
Moreover, uniaxial stress induces ferromagnetism (Ishii
et al., 2003; Shimizu et al., 2015¢). The susceptibility
shows Curie-Weiss behavior for T > 40 K with a fluctu-
ating moment of about 1.6 up, much larger than the in-
duced moment of 0.3 up (Havela et al., 1997). The mag-
netism is believed to be itinerant with the U 5 f-electrons
providing the main contribution (Eriksson et al., 1989;
Mushnikov et al., 1999; Wulff et al., 1990); polarized-
neutron diffraction experiments have found the magnetic
moment exclusively at the U sites with the orbital mo-
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FIG. 9 a) Magnetostriction measured along the c-axis with
H || ¢ for temperatures between 2 and 21K (every 1K). b)
Temperature vs field evolution of the metamagnetic transition
which changes from first order to a crossover for T > Ty =
11 K. From Aoki et al. (2011a).



FIG. 10 T-P-H phase diagram of UCoAl. The tricritical
wings are determined by the observation of a first-order meta-
magnetic transition at H, (red dots); they are bounded by
lines of second-order transitions at Ty and end in quantum
“critical end points” (QCEPs)®. The critical pressure P. is
negative and the tricritical point (TCP) is not accessible.
From Aoki et al. (2011a).

ment being twice as large as (and antiparallel to) the spin
moment (Javorsky et al., 2001; Wulff et al., 1990).

Studies of the magnetostriction, magnetoresistiv-
ity (Aoki et al, 201la), nuclear magnetic reso-
nance (Karube et al., 2012) and thermopower (Palacio-
Morales et al., 2013) indicate that the field-induced first-
order transition terminates in a critical point at a tem-
perature Ty = 11K at ambient pressure, as illustrated
in Fig. 9: AL(H)/L shows a step-like jump at H,, for
T < Ty which becomes smooth for T' > Ty. A determi-
nation of critical exponents suggests that the transition
at Tp is in the 3-d Ising universality class (Karube et al.,
2012). H,, increases with pressure and each wing ter-
minates in a quantum critical point (denoted by QCEP
in the figure)® at P ~ 1.5GPa and pgH ~ 7T. At the
wing-tip point a pronounced enhancement of the effective
mass (derived from the coefficient of the T2 term in the
electrical resistivity) is observed (Aoki et al., 2011a).

The resulting T-P-H semi-schematic phase diagram is
shown in Fig. 10, which demonstrates the presence of
tricritical wings in UCoAl. The red dots represent the
experimental values for H,, determined by magnetore-
sistivity (with J L H) and magnetostriction measure-
ments. Since Ty = 11K at the ambient pressure, the
tricritical point (TCP) must be located at T' > 11 K. At
pressures higher than 1.5 GPa, the first-order character of
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FIG. 11 Upper panel: Temperature-pressure phase diagram
of URhALI in zero field determined from resistivity measure-
ments. Lower panel: Temperature-pressure-field diagram in-
ferred from metamagnetic behavior observed in an external
field. From Shimizu et al. (2015b).

the metamagnetic transition disappears and new features
in the form of kinks in the magnetoresistivity and Hall
effect are observed at H,, and H* (Combier et al., 2013).
Investigations of the transverse and longitudinal resistiv-
ities and of the magnetization under pressure (Combier,
2013) point to a much richer phase diagram, where the
exact location of the QCEP remains uncertain, with pos-
sible changes of the Fermi surface as well as the appear-
ance of new phases around the QCEP.

The substitution of Fe for Co was found to lead to a
FM ground state in zero field and ambient pressure by
Karube et al. (2015). By nuclear quadrupole resonance
measurements these authors found a first-order transition
in U(Coy_,Fe,)Al with a T¢ of about 10K and about
17K for z = 0.1 and x = 0.02, respectively.

e. URhAl URhAI belongs to the same UTX compound
family as URhGe, UCoGe, and UCoAl. It has the
same layered hexagonal ZrNiAl-type crystal structure as
UCoAl, but with dy_y = 3.63A, larger than the Hill
limit (cf. Sec. II.B.2.c). Consistent with this, and
contrary to UCoAl which has a nonmagnetic ground



state, URhAI orders ferromagnetically via a second-order
transition. Values of T between 27K and 34 K have
been reported, with strong Ising-like ordered moments of
0.9 up /U along the c-axis (Combier, 2013; Shimizu et al.,
2015b; Veenhuizen et al., 1988).

The itinerant vs localized nature of magnetism in
URhAL is controversial, as it is in many other UTX com-
pounds. A peak at 380 meV in inelastic neutron scatter-
ing experiments (Hiess et al., 1997) was interpreted as
indication of an intermultiplet transition, suggesting 5 f-
electron localization. X-ray magnetic circular dichroism
(XMCD) experiments also indicate a high degree of lo-
calization of the 5 f-orbitals (Grange et al., 1998). On the
other hand, polarized neutron studies point to a rather
strong delocalization of the 5f electrons (Paixao et al.,
1992). Moreover, band structure calculations based on
an itinerant approach can reproduce most of the experi-
mental findings (Kunes et al., 2001; Kucera et al., 1998).

Pressure experiments were performed on a rather clean
single crystal with a RRR = 14 and T = 28 K (Combier,
2013). At ambient pressure the phase transition is mean-
field-like characterized by a single peak in C/T" and a kink
in the thermal expansion ratio AL/L. The magnetization
with H || ¢ shows a clear hysteresis at 2K with a rema-
nent magnetization of 0.9 up/U. Transport experiments
on moderately disordered samples (py = 65 ufdcm near
the transition) have mapped out the phase diagram in
more detail (Shimizu et al., 2015a,b). The QPT at a crit-
ical pressure p. = 5.2 GPa is weakly first order, allowing
strong spin fluctuations to be observed in transport and
thermodynamic properties. Metamagnetic signatures in
a magnetic field imply the existence of tricritical wings.

3. Lanthanide-based compounds

a. Lai_,CeyIny  Celny crystallizes in the orthorhombic
CeCuy structure and undergoes a first-order transition
to a FM state at To = 22K (Rojas et al., 2009). This
conclusion on the basis of discontinuities at T¢ in the
resistivity, the thermal expansion, and the magnetic en-
tropy was later corroborated by pSR measurements (Ro-
jas et al., 2011). Application of hydrostatic pressure
increases T (Mukherjee et al., 2012), but upon dop-
ing with lanthanum T decreases, to about 19.4K in
La;_,Ce,Iny, with x = 0.9, and the transition remains
first order (Rojas et al., 2011). The same pSR mea-
surements indicated the existence of a second magnetic
phase with long-range order in between the FM and PM
phases. The nature of this phase is not known. Dop-
ing with Ni decreases T sharply, and the transition in
Ce(Iny _;Ni, )o has been reported to be second order to
a FM for = 0.025, 0.05, and 0.15 (Rojas et al., 2013).
However, an earlier experiment by Sung et al. (2009) con-
cluded that the ground state for z = 0.15 is AFM.
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b. SmNiC, The ferromagnetic charge-density-wave
(CDW) compound SmNiCs has a T¢ of about 17K
which is weakly susceptible to pressure (Woo et al.,
2013). The polycrystalline samples measured had a
residual resistivity of less than 2puem for pressures
below about 3 GPa. The PM-FM transition is first order
and remains first order as the pressure is increased from
zero to 2GPa, with T¢ dropping to 15K. At higher
pressure, there is a second-order or weakly first-order
transition from the FM to a phase of unclear nature, and
at least two other phases appear at low temperature.
Since the nonmagnetic phase in this material is a CDW
state below T =~ 150K, the phase diagram may fall
outside the classification provided by Fig. 2 and the
first-order transition may be of different origin than in
other materials, see Sec. IIL.F.

c. Yb-based systems YbCusSiy crystallizes in the body-
centered ThCrsSis structure and does not order magnet-
ically at ambient pressure. A transition to a magneti-
cally ordered phase under pressure was suggested on the
basis of transport measurements (Alami-Yadri and Jac-
card, 1996; Alami-Yadri et al., 1998), and later confirmed
by means of Mossbauer data (Winkelmann et al., 1999).
Fernandez-Panella et al. (2011) concluded from suscepti-
bility measurements that the nature of the order is FM,
and the transition is likely first order (Colombier et al.,
2009; Fernandez-Panella et al., 2011; Winkelmann et al.,
1999). The FM nature of the ordered phase was con-
firmed by Tateiwa et al. (2014), who also found evidence
for phase separation indicative of a first-order transition.

Yblr,Sis crystallizes in either the ThCrySiy structure,
or the P-type CaBeyGesy structure, depending on the
synthesis conditions (Hossain et al., 2005). The for-
mer is magnetically (presumably AFM) ordered below
0.7K, whereas the latter is a paramagnet at ambient
pressure. Yuan et al. (2006) found that by applying
pressure the system in its P-type structure undergoes
a first-order QPT to an ordered phase at a critical pres-
sure p. ~ 8 GPa. The nature of the ordered phase is
suspected to be FM, but additional investigations are
needed. Recent measurements of the resistivity under
hydrostatic pressure as high as 15 GPa found NFL be-
havior in a pressure range 3 < p < 8 GPa, and confirmed
the sudden appearence of magnetic order at 8.3 GPa, sug-
gesting a first-order QPT (Macovei, 2010). The transi-
tion temperature shifts to higher values and shows a weak
maximum around 11 GPa, a behavior very similar to that
of YbRhsSis> under pressure (Knebel et al., 2006; Med-
erle et al., 2001). YbRhySiy evolves from an AFM to
a FM ordered state under chemical pressure (Co substi-
tution) (Lausberg et al., 2013) and possibly even under
hydrostatic pressure (Knebel et al., 2006). This suggests
that the nature of the magnetic ordered phase in YblrsSiy
could also be AFM, but more investigations are needed.



d. CePt CePt under pressure has been reported to dis-
play a FM QPT at p. =~ 12.1 GPa (Larrea et al., 2005).
The transition at p = 0 is second order (Holt et al., 1981).
No magnetization measurements have been performed
under pressure. The FM signature is strongly weakened
under pressure well before p. and transport experiments
indicate a sudden drop of the phase boundary line close
to pc, suggesting the presence of a first-order transition.

4. Strontium Ruthenates

The perovskite ruthenates, which include SroRuO4 and
SryRu301g in addition to SrRuOz and SrzRusO7, be-
long to the Ruddlesden-Popper series; for a historical
overview, see Mackenzie and Grigera (2004). In SrRuOgs
a QPT can be triggered by means of doping with cal-
cium, whereas the phase diagram of Sr3RusO7 has been
explored by applying pressure and an external magnetic
field. In Sr;_,Ca,RuOg3 a variety of very different be-
haviors has been observed, which is likely due to different
sample preparation methods (bulk ceramic, bulk powder,
and thin films). We therefore discuss this material both
in the present section and in Secs. II.C.1 and II.E.3.

a. Sri_;Ca; RuOs (bulk ceramic samples) Sri_,Ca;RuOg
is a metallic system that crystallizes in an orthorhom-
bically distorted perovskite structure. SrRuOs is an
itinerant ferromagnet with a second-order transition at
Tc~ 160K (Kim et al., 2003) and an ordered moment
of about 1 up/Rh, while CaRuOg3 is a strongly exchange-
enhanced Pauli paramagnet with no sign of metamag-
netism and a Fermi-liquid ground state with an anoma-
lously low coherence scale (Schneider et al., 2014). Long-
range FM order disappears for a Ca concentration around
z. ~ 0.7, and NMR experiments established the pres-
ence of FM spin fluctuations for all concentrations, the
Curie-Weiss behavior of the susceptibility with a Weiss
temperature that changes sign at z. notwithstanding
(Yoshimura et al., 1999). This, and the large effective
moment (compared to the ordered one) of about 3 upg/Ru
seemed to make Sr;_,Ca,RuOj3 a good candidate for the
SCR theory of itinerant ferromagnetism (cf. Sec. IB).
However, a uSR study by Uemura et al. (2007) of ceramic
samples with z = 0.65 and x = 0.7 found a finite volume
fraction of ferromagnetic order and a suppression of the
critical dynamics at smaller values of x. These results
are similar to the corresponding ones in MnSi (Fig. 4)
and are indicative of a first-order transition. No infor-
mation about the disorder strength in these samples is
available. For bulk powder samples and epitaxial thin
films of the same material rather different results have
been obtained, see Secs. I1.C.1.g and II.E.3, respectively.
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FIG. 12 Schematic phase diagram of SrsRuzO~7 in the space
spanned by temperature (T"), hydrostatic pressure (P), and
magnetic field (H), with H L ¢. Ambient pressure (Fp) is in-
dicated by the solid purple line. The tricritical point (TCP) is
not accessible, but the tricritical wings are observed by sweep-
ing the magnetic field at fixed temperature (dashed purple
lines and inset (i)). The critical temperature T can be tuned
by rotating the magnetic field by an angle 6 out of the mag-
netically easy ab-plane. As T™ decreases, the wing tips split
and a phase displaying a strong transport anisotropy is found
in between two sheets, with a second-order phase boundary
on top (inset (ii) and Fig. 13). From Wu et al. (2011).

b. SrsRu207 Very clean samples of SrgRusO7; have
been prepared, with residual resistivities of less than
0.25 pufdem (Perry and Maeno, 2004). The ground state
in zero field and at ambient pressure is PM close to a
FM instability (Ikeda et al., 2000). In the generic phase
diagram of Fig. 2 a) this places the system between the
tricritical wings (see Fig. 12), as is the case for UCoAl,
Fig. 10. A magnetic field applied in the magnetically
easy ab-plane takes the system through the metamag-
netic wings at about 5 T if the temperature is low enough,
see Fig. 12 inset (i). Hydrostatic pressure and uniaxial
stress drive the system away from and towards ferromag-
netism, respectively (Chiao et al., 2002; Tkeda et al., 2001,
2004; Wu et al., 2011). Wu et al. (2011) investigated the
ac susceptibility under pressure across the metamagnetic
transition. They found a QCP (denoted by QCEP in
Fig. 12)¢ at p. ~ 13.6kbar, but no divergence of the
susceptibility at this point as would be expected for the
generic model of quantum-critical metamagnetism (Millis
et al., 2002b), implying that the metamagnetism cannot
solely be explained by field-induced ferromagnetism.
Another way to navigate the phase diagram is to
change the field direction out of the magnetically easy
ab-plane: Changing the field tilt angle 6 allows to follow
the wings and suppress the critical temperature 7™ that
marks the top of the wing (Grigera et al., 2003, 2001).
As T goes to zero, a second sheet of the wing appears,
and instead of the QCP that is observed in simpler sys-
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FIG. 13 T-H phase diagram of Sr3Ru2O7 at ambient pressure
with H || ¢. The near-vertical lines are the two sheets of
the tricritical wings, with the novel phase in between. The
transition below (above) the red arrows is first (second) order.
From Grigera et al. (2004).

tems (see Sec. II1.B.2) a more complicated phase struc-
ture emerges (Grigera et al., 2004; Perry et al., 2004; Rost
et al., 2011). The observed bifurcation of the wings has
been modeled phenomenologically by means of a Landau
theory (Green et al., 2005). The phase between the two
sheets, which is observed with field tuning but not with
pressure tuning (Wu et al., 2011), has been interpreted
as a magnetic nematic (i.e., a non-s-wave FM) (Borzi
et al., 2007; Grigera et al., 2004; Raghu et al., 2009; Rost
et al., 2011; Stingl et al., 2011), or an inhomogeneous
phase analogous to the Fulde-Ferrell-Larkin-Ovchinnikov
phase in superconductors (Berridge et al., 2009, 2010),
but the details are not well understood. Magnetic neu-
tron scattering experiments have identified an incommen-
surate SDW order with an ordered moment of about
0.1 up/Ru and wavevector ¢ = (0.233,0,0) in the phase
between the sheets, and an additional phase at slightly
higher magnetic fields with a different ordering wavevec-
tor ¢ = (0.218,0,0) (Lester et al., 2015).

5. Discussion, and comparison with theory

A striking aspect of the phase diagrams discussed in
this section is their universality. As illustrated in Ta-
bles I, IT and discussed above, phase diagrams that are
qualitatively the same as the one shown in Fig. 1 are
observed in a wide variety of systems with very differ-
ent electronic structures and different symmetries of the
order parameter. Their only commonality is that they
are metallic ferromagnets with rather small amounts of
disorder.'® This universal behavior calls for an equally
universal explanation of the first-order nature of the
QPT. Although quantitative modeling of the phase dia-
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gram is still lacking, the theory described in Sec. II11.B.2
can explain the phase diagram qualitatively in terms of
a fluctuation-induced first-order transition, with generic
soft modes in the conduction-electron system playing
the role of the extraneous (to the order parameter) soft
modes that drive the transition first order.

There are large quantitative differences between the
systems listed in Tables I, II. Sang et al. (2014) have
shown that the sizes of the tricritical wings, which vary
dramatically from material to material, correlate with
the saturation magnetization as expected from the the-
ory discussed in Sec. IT1.B.2. Regarding the shape of the
wings, theory and all experiments agree that the wings
point in the “forward” direction, i.e., the wing tips are lo-
cated at a larger value of the control parameter than the
first-order transition in zero field. However, the curvature
of the wings is not expected to be universal; it depends on
the relation between the experimental control parameter
and the theoretical one (i.e., the mass term in a LGW the-
ory), which in turn depends on microscopic details. For
instance, the wings in UGe,, Fig. 1, have a pronounced
curvature, whereas the ones in UCoAl, Fig. 10, are al-
most flat. Similarly, the shape of the lines that connect
the tricritical point with the wing tips is not universal.
Wysokinski et al. (2014a,b) have considered a model con-
taining f-electrons in addition to conduction electrons
and have achieved good agreement with the shape of the
wings in UGey. The physical mechanism that leads to
a first-order QPT in their theory is the same as the one
discussed in Sec. 111.B.2.

There also is a clear correlation between the size of the
ordered moment and the value of Ti., see Tables I, II.
This is consistent with the theory, which predicts that
T, is proportional to the ordered magnetic moment (for
given microscopic temperature and magnetic-moment
scales, which one would expect to be similar for systems
that are chemically similar) (Belitz et al., 2005a). For
instance, within the uranium-based systems there is a
rough correlation between Ti. and the ordered moment.
A U-based system in which no first-order transition has
been found is Ulr, see Sec. I1.C.1 and Table III. Since the
ordered moment in the phase FM3 of Ulr, from which the
QPT to the PM phase occurs, is smaller than the one in
UGey by more than a factor of 30, and smaller than the
one in URhGe by a factor of more than 10 (Kobayashi
et al., 2006), one expects Ti. to be smaller by a similar
factor. This would put Ti. well below 1K, and possibly
lower than 100 mK, which is less than the lowest T ob-
served in Ulr. Similarly, in the first group of materials
in Tables I, IT T}. correlates with the size of the ordered
moment: CoSs has the largest moment and the high-
est Ti., while in NizAl, which has the smallest moment,
a first-order transition at very low temperatures is sus-
pected but has not yet been convincingly observed. More
generally, it is conceivable that Ti. in several weakly dis-
ordered systems is rather low and has not been observed



so far. A related issue is the robustness of the first-order
transition; this is discussed in Secs. II1.B.2 and IV.A.

C. Systems showing a continuous transition.

We now discuss systems that show a continuous tran-
sition at low temperatures; their properties are summa-
rized in Tables III, IV, V. Most of these materials are
composition-tuned, which introduces various amounts of
disorder, and they can be classified with respect to the
disorder strength. The first group is known or suspected
to be relatively weakly disordered as judged by the resid-
ual resistivity,'? see Table ITI. Consistent with this, their
phase diagrams have the shape shown in Fig. 2 b). In
the second group, Table IV, the disorder is strong, and
the phase diagrams are of the form shown in Fig. 2 d).
YbNiyP, falls into a separate category due to its quasi-
one-dimensional electronic structure which sets it apart
from all other materials we discuss, see Table V.

1. Weakly disordered systems

a. NizPdi_, NiPd alloys, which crystallize in an fcc
structure, form a series of solid solutions whose compo-
sition can be varied continuously from pure Pd to pure
Ni. The alloying procedure can produce very little dis-
order as measured by the residual resistivity pg, which
has been reported not to exceed 0.1 uQcm for any con-
centration (Tkeda, 1987). A small concentration (about
2.5%) of Ni induces FM order (Murani et al., 1974). This
composition-induced QPT was studied by Nicklas et al.
(1999) by means of heat capacity, electrical resistivity
and magnetization measurements. For Ni concentrations
up to 10% above the critical concentration z. ~ 0.026
they found T¢ o (z — z.)%* and a T'InT contribution
to the specific heat down to 0.3 K. The T-dependence of
the resistivity shows a power-law behavior

p(T =0)=pg+AT™ . (2.1)
The exponent n displays a sharp minimum of n = 5/3
near x., while the prefactor A shows an equally sharp
maximum. These results are all consistent with the pre-
dictions of Hertz-Millis-Moriya theory, cf. Sec. III.C.2.

The lowest T¢ achieved in these experiments was T
~ 7K at v —x. = 0.002, see Fig. 14. This is on the same
order as the temperature above which, e.g., MnSi dis-
plays behavior consistent with Hertz theory even though
the behavior at low T is very different. Subsequent ac
susceptibility and zero-field-cooled /field-cooled magneti-
zation measurements on the same samples at tempera-
tures as low as 2 K found evidence for spin-glass freezing
in a small region of the phase diagram (0.025 < z <
0.028) (Nicklas, 2000). To corroborate this observation a
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FIG. 14 Observed phase diagram of NizPdi_,. Filled dots
are data taken by Nicklas et al. (1999), the other symbols
represent earlier data. From Nicklas et al. (1999).

measurement of the thermal expansion was performed on
the same x = 0.024 polycrystal studied by Nicklas et al.
(1999). Kiichler et al. (2006) found that the Griineisen
ratio (i.e., the thermal expansion coefficient divided by
the specific heat) does not increase with decreasing T,
but remains constant below 3 K, in contrast to what is ex-
pected at a QCP (Kiichler et al., 2006). Single-crystalline
samples investigated by Franz et al. (2010) show similar
transport and thermodynamic properties as those seen in
polycrystals studied by Nicklas et al. (1999), but a de-
tailed analysis of the magnetization indicates that at low
fields and low temperatures the behavior is not consis-
tent with either a mean-field QCP or a first-order tran-
sition. Considering that neutron-depolarization imaging
experiments have shown that polycrystalline samples are
much more homogeneous than the single-crystalline sam-
ples (Pfleiderer et al., 2010), these results raise the ques-
tion of disorder present in the samples. The strength
of the disorder, or how to characterize it, is not quite
clear.!? The data obtained by Ikeda (1987) suggest a
residual resistivity pg &~ 5 pflem for x around the crit-
ical concentration. Tari and Coles (1971) reported a low-
temperature (< 4.2K) resistivity of about 1 uQcm for a
sample with x = 0.025. pg for the samples studied by
Nicklas (2000) is about 0.5 uQcm for pure Pd (RRR =
40) and for = 0.1, 1.5 uQem for &~ z., and it reaches
a maximum of 3 uflcm at x =~ 0.04. These results suggest
that there is a substantial amount of disorder even in the
best samples. It would be desirable to revisit the QPT in
NiPd, while carefully characterizing the amount of disor-
der in the samples. A pg of 1 uQlem would put the sample
marginally in the intermediate Regime II of the theory
discussed in Sec. II1.B.3, where the theory predicts a con-
tinuous transition with effectively mean-field exponents.
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TABLE III Systems showing a second-order transition: Weakly disordered bulk systems. Tc = Curie temperature, pg =
residual resistivity. FM = ferromagnetism, SC = superconductivity. n.a. = not available.

System Order of Tc/K magnetic tuning Disorder Comments
Transition ¢ moment/up ° parameter (po/pf2cm) ©
Ni,Pdi_. ond! 600 —7¢ 0.2 —2.45°¢ composition! 1.5 (?) f low-T behavior unclear
(Ni;—Pds)sAl 2nd? 42 — 49 0.075 - 0" composition? 102%? moderate disorder
NizAl; _.Gag 2nd 3 41 — 537 0.075 — 0.0237 composition3 n.a. disorder unknown
Ulr 2nd 4 46 - 14 0.5% pressure n.a.” three FM phases,
coex. FM+SC
UNiSiz 2nd® 95 56,7 1.2 pressure ° ~ 25° two FM phases
(Cri—.Fe;).B 2nd ® 45 — 884 1.4 - 0.25" composition 358 moderate disorder
Zr1_NbzZns 2nd°? 18 —-0%™ 0.08 —0%™ composition® n.a. disorder unknown
Sri_;Ca,RuOs3 2nd 1© 160 - 0" 0.8-0" composition  n.a. bulk powder samples
SrCo2(Ge1—zPz)2  2nd 1 35 — 21Le 0.1 - 0.02'%° composition!! n.a. FM induced by
dimer-breaking
CeSi g1 2nd 12 9.5 — 312p 0.2 — 01219 pressure 12 (30)" moderate disorder
CePd;_.Ni, ond 13 10.5 - 6.1*° n.a. composition B x1518 Tc nonmonotonic
UsRurGes 2nd ™ 11.2 - 3° 0.2 pressure '+ 58 intermediate disorder
Us(Rui—40s;)7Gegs n.a. 12-1"° 0.2% composition '® n.a. disorder unknown
(Sci—zLuz)s.1In 2nd 6 4-1" 0.13-0" composition 1 n.a. quasi-1-d chains of Sc-In

@ At the lowest temperature achieved.

b Per formula unit unless otherwise noted.

¢ For the highest-quality samples.

4 For z = 1 — 0.027 (Nicklas et al., 1999). © For 0.018 < z < 0.1 (Nicklas et al., 1999).
! Nicklas (2000) and Tari and Coles (1971); Tkeda (1987) reported po as small as 0.01 uQcm for the relevant Ni concentrations.

9 For x =0 - 0.9.
* RRR up to 250 (Kobayashi et al., 2006).
¢ Per Co for x = 0.55 — 0.35. ? For p =0 — 13kbar.

" For CeSii.g¢ at p = 0 with a current in a- (c-) direction (Sato et al., 1988).
Y For x = 0 — 0.3 (Colineau et al., 2001).

fForp=0-2GPa. “ per U.

" For & = 0 (Niklowitz et al., 2005) to x = 0.1 (Sato, 1975).
! For z = 0.05 — 0.02.

“For z =0.1. 7 For z =0 — 0.33.
™ Forx=0-0.08. "Forz=0-=x20.7.

1At T=17K for p =0 — 14 kbar.

* For z ~ 0.5 — 0.94.
“ For z =0 — 0.03.

! Nicklas et al. (1999)
® Sidorov et al. (2011b)
¥ Sokolov et al. (2006)
13 Kappler et al. (1997)

2 Sato (1975)

5 Das et al. (2000)

10 Ttoh et al. (2008)

4 Hidaka et al. (2011)

3 Yang et al. (2011) * Kobayashi et al. (2006)
" Pikul and Kaczorowski (2012) ® Schoop et al. (2014)

1 Jia et al. (2011) 2 Drotziger et al. (2006)
!5 Colineau et al. (2001) 16 Svanidze et al. (2015)

However, if the spin-glass effects found by Nicklas (2000)
were to be corroborated this theory would be inapplica-
ble and the system would have to be classified with the
materials discussed in Sec. IL.E.

b. Ni3Al_,Ga, and (Nii_,Pd;)sAl The FM order in
NizAl with Tc = 41K (see Sec. I1.B.1.d) can be sup-
pressed by substitution of Pd for Ni (Sato, 1975), or by
doping with Ga (Yang et al., 2011). In the former system,
a QCP is reached at z = 0.095, at which concentration
the samples measured by Sato (1975) had a residual resis-
tivity pg = 10 uf2cm, indicating moderate disorder. The
observed critical behavior is consistent with the Hertz-
Millis-Moriya theory, as one would theoretically expect
for systems in this disorder regime, see Sec. I11.B.3.

Tc also decreases monotonically upon doping with Ga,
leading to a QPT in NizAl;_,Ga, at z. ~ 0.34 (Yang
et al., 2011); NizGa is paramagnetic (Hayden et al.,
1986). The disorder strength in these samples is not
known, but assuming the same moderate disorder as in
(Ni;_,Pd,)3Al one would expect Hertz-type critical be-
havior according to the theoretical analysis reviewed in
Sec. II1.B.3. This is indeed borne out by the experiment,
see Fig. 15: The temperature-concentration phase dia-
gram obeys Eq. (3.51), the susceptibility at the critical
concentration diverges as T~%/3, Eq. (3.55), and the mag-
netization as a function of temperature near T¢ obeys
Eq. (3.59). The first result reflects the combination of
critical exponents v z/(1 + 2v) = 3/4, see Eq. (3.47).
The second one reflects the exponent vr = 4/3, and if
combined with the first one it also implies v = 1, in agree-
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FIG. 15 Hertz-type scaling behavior as observed in NigAl;_,Ga,. From left to right: Tc vs x phase diagram, inverse magnetic
susceptibility vs. T%/3 for z = z., magnetization squared vs. T%* for various z. From Yang et al. (2011).

ment with Eq. (3.47), since y ~ T~4/3 ~ |z —z.|7!. The
third one reflects 8 = 1/2 in addition to the combina-
tion v z/(1 4 2v). See Appendix B for the definitions of
the critical exponents, and Sec. II1.C.2.b for the scaling
considerations underlying the above statements. As em-
phasized in Sec. III, this behavior is expected to hold,
strictly speaking, only in a pre-asymptotic regime. How-
ever, for moderate disorder strengths the true asymptotic
regime is expected to be unobservably small.

c. UIr Ulr at ambient pressure is an Ising-like FM with
Tc ~ 46 K. High-quality samples with a RRR =~ 250 have
been investigated under hydrostatic pressure (Akazawa
et al., 2004; Kobayashi et al., 2006, 2007). The over-
all phase diagram is similar to that of UGes, but the
details are different. With increasing pressure there
are three distinct FM phases labeled FM1, FM2, and
FM3 (Kobayashi et al., 2006), and strain and resistiv-
ity measurements suggest that they have slightly differ-
ent crystal structures (Kotegawa et al., 2011a). FMI1
has an ordered moment of 0.5 up/U. There is a first-
order metamagnetic transition between FM1 and FM2
at p ~ 1.7GPa (at T = 0). The ordered moment in FM2
and FM3 is less than 0.5 ug/U. Tc goes to zero, and
FM3 gives way to paramagnetism, at a critical pressure
pe =~ 2.8 GPa. Near p. in the FM3 phase, superconduc-
tivity is observed at T' < 140 mK (Akazawa et al., 2004).
The absence of metamagnetic behavior in the PM phase
is indicative of the FM3-PM transition remaining second
order to the lowest observed To ~ 0.8 K.

d. UNiSi UNiSiy is a collinear ferromagnet with T¢ ~
95 K and U moments of 1.2 up directed along the crystal-
lographic c-axis of the orthorhombic structure (Das et al.,
2000; Geibel et al., 1990; Kaczorowski, 1996; Pikul, 2012;

Taniguchi et al., 1998).Although the amount of magnetic
entropy below T, AS = 11.3J/mole-K, suggests that
the uranium moments are mostly localized, this value is
lower than the value AS = RIn(10) = 19.1 J/mole-K ex-
pected for fully localized U3t moments (Sidorov et al.,
2011b).1* This is possibly due to the crystalline electric
field and the Kondo effect, which is seen in the p o —InT
behavior of the resistivity above T¢ (Kaczorowski, 1996;
Sidorov et al., 2011b). In polycrystalline samples as well
as in single crystals of good quality (RRR ~ 7) the FM
phase transition in zero field is second order, character-
ized by a A-like peak in C(T)/T (Pikul, 2012) Partial
substitution of Th for U suppresses T¢ and leads to pro-
nounced disorder effects; this system is discussed in Sec.
II.E.2.a. Sidorov et al. (2011b) investigated single crys-
tals of UNiSiy under hydrostatic pressure, up to about
6 GPa. With increasing pressure T¢ decreases, moder-
ately for pressures up to about 4 GPa, and then more
sharply, vanishing above 5.5 GPa, see Fig. 16. The FM
phase transition remains second order (from ac calorime-
try measurements) in the pressure range 0 < p < 5.1 GPa
where the transition could be detected. In the pressure
range near the QPT, between 5.1 and 5.5 GPa, another
phase appears (turquoise region in Fig. 16), which is char-
acterized by weak FM. This feature, which is reminiscent
of the distinct FM phases in Ulr (see Sec. II.C.1.c) is indi-
cated by an upturn in the ac susceptibility and signatures
in the resistivity and the specific heat (Sidorov et al.,
2011b). The magnetic entropy is strongly reduced under
pressure. This, and the enhanced Sommerfeld coefficient
and resistivity at 5.5 GPa led Sidorov et al. (2011Db) to
suggest a delocalization of the f-electrons at the QPT.

1 Pikul (2012) finds an even lower value, AS ~ 8 J/mole-K
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FIG. 16 Temperature-pressure (7-P) phase diagram of
UNiSiy from resistivity, ac susceptibility, and specific heat
measurements. The turquoise region represents a separate
phase characterized by weak FM and a large Sommerfeld co-
efficient. In the PM phase the Sommerfeld coefficient remains
large as does the resistivity. From Sidorov et al. (2011b).

e. (Cri—zFe;),B Ferromagnetism can be induced in the
paramagnetic compound CrsB by doping with Fe. The
resulting system (Cr;_,Fe;)2B undergoes a QPT near
2. = 0.02 (Schoop et al., 2014). Doping introduces a
substantial amount of disorder resulting in a residual re-
sistivity near x. of py ~ 35uflcm. The exponent n in
Eq. (2.1) falls from its Fermi-liquid value n =2 at x =0
ton =1 at z., and remains there for larger values of x.
The prefactor A peaks around x.. However, the absolute
change of p with temperature in the linear-in-7T" range is
extremely small. For instance, for x = 0.025 between 8
and 20K Ap = p — pg =~ 0.2 u2cm, which is very small
compared to the rather large value of pg = 40 uQcm.
This results in a tiny value of A ~18nQcm/K; for other
values of x it is even smaller. A magnetic field of 14T
restores the Fermi-liquid value n = 2. The specific heat
shows a T'In T term similar to that observed in Ni;_,Pd,,
with a prefactor that is largest around x., but again the
maximal change is very small, AC/T ~ 2mJ/K?mol.
These observations are in principle consistent with the
existence of a QCP at x., but the NFL properties char-
acteristic of critical behavior are extremely weak. Given
the disorder strength, the theory reviewed in Sec. II1.B
predicts a continuous transition.

f. Zri—4Nb,Zn, Itinerant ferromagnetism in ZrZns (¢
= 28.5K, Matthias and Bozorth (1958) and Pickart
et al. (1964)) can be tuned to zero by substituting Nb
for Zr. Sokolov et al. (2006) investigated the magne-
tization of several polycrystalline samples of the series
Zr1_;Nb,7Zns with 0 < z < 0.14 down to 1.8 K. From an
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Arrott-plot analysis they found that T¢ is suppressed
to zero at x. ~ 0.08. The z-dependence of T is
well described by T o (z — x)%/*, and the sponta-
neous moment vanishes linearly with T. Furthermore,
the inverse magnetic susceptibility could be fitted to
X' =aT*3 4+ b(x — x.), with a and b constants. All of
this is consistent with the results of Hertz-Millis-Moriya
theory, see Sec. II1.C.2.b. There were no indications of a
first-order transition or metamagnetism.

These results are reminiscent of those for Ni;_,Pd,
(cf. Sec. I1.C.1.a). However, in the present case little is
known about the disorder present in the samples. X-ray
diffraction experiments revealed single-phase specimens
with Laves phase C15 structure, but no resistivity data
are available (Sokolov, 2015).

g. Sri—,Ca, RuOs (bulk powder samples) FEarly studies of
polycrystalline Sr;_,Ca,RuO3 samples showed that T¢
goes to zero linearly as x approaches z. ~ 0.7 (Kan-
bayasi, 1978; Kiyama et al., 1999), which led to the pro-
posal of a QCP in this material. Ttoh et al. (2008) stud-
ied powder samples and concluded from magnetization
measurements that there is indeed a QCP. From Arrott
plots for x near x. they inferred a field-dependence of
the magnetization M o~ H?/3, i.e., a critical exponent
d = 3/2. This agrees with the prediction of the general-
ized Landau theory for disordered systems described in
Sec. II1.B.3. No information is available about the disor-
der strength in these samples. Huang et al. (2015) have
studied the dynamical scaling of the magnetization and
specific heat and found § = 1.6 in agreement with Itoh
et al. (2008). Their scaling analysis yields a very unusual
temperature dependence of the specific-heat coefficient
v o const. — T%7. The behavior is markedly different
from that of ceramic samples (see Sec. I1.B.4.a) and epi-
taxial thin films (see Sec. ILE.3).

h. SrCoz(Ge1_;P,)2 For the ferromagnetism that devel-
ops in SrCoqz(Ge1_,P;)2 at x & 0.325, Jia et al. (2011)
have proposed a new tuning mechanism: the breaking
of bonds in Ge-Ge dimers, which the authors argue is
more important than the simple change in carrier concen-
tration with . SrCo,Ges forms in the ThCrsySis struc-
ture, with CosGesy layers separated by a Ge-Ge inter-
layer bond, i.e., a dimer. This causes the layers to be
pulled together and to form a collapsed tetragonal cell
with a three-dimensional electronic structure. SrCosGes
is a simple Pauli paramagnet. The lack of such a dimer
in SrCosP5 causes the same structure to be uncollapsed
and, therefore, to have a more two-dimensional electronic
structure and a shorter Co-Co separation within the lay-
ers, which increases the Co-Co interaction. From mea-
surements of the magnetization, the susceptibility, and
the specific heat of polycrystalline samples Jia et al.



(2011) concluded that at x &~ 0.325 the system develops
bulk ferromagnetism via a QCP. The Curie temperature
increases with increasing x, reaches a maximum of T¢
~ 35K at x = 0.55, and then decreases. For x = 0.75
Jia et al. (2011) found that the ground state is a Stoner-
enhanced paramagnet rather than a ferromagnet. The
ferromagnetism is of the itinerant type, characterized by
a Curie-Weiss behavior with an effective moment much
larger than the saturation moment. This is in agreement
with band-structure calculations, which show a maxi-
mum in the density of states at  ~ 0.5 where T¢ reaches
its maximal value (Cuervo-Reyes and Nesper, 2014). T¢
increases linearly from x = 0.3 to 0.5 having a value of
about 5K for x = 0.35. No sign of a first-order transi-
tion or spin-glass behavior was detected. For a sample
with £ = 0.325 and no T¢ the susceptibility was found
to behave as y o« T~%3 (down to 2K) and the specific
heat C/T « —InT (down to 0.4K), in agreement with
Hertz-Millis-Moriya theory (cf. Sec. II1.C.2). No resis-
tivity measurements have been reported, and the role of
disorder in this material is unknown.

i. CeSi, CeSi, can be considered a FM dense Kondo
system (Sato et al., 1988; Yashima et al., 1982). It crys-
tallizes in the a-ThSiy structure with a broad homo-
geneity range, 1.7 < z < 2 (Ruggiero and Olcese, 1964;
Yashima et al., 1982; Yashima and Satoh, 1982). It shows
a paramagnetic ground state for z > 1.85, while a mag-
netically ordered state was found for z < 1.8 with a tran-
sition temperature around 10 K. The nature of the mag-
netic order is not clear (Drotziger et al., 2006). Suscep-
tibility measurements suggest that the magnetic struc-
ture depends on the Si vacancy distribution (Shaheen
and Mendoza, 1999), and magnetization measurements
indicate that the ground state may not be pure FM, but
rather a ferrimagnet or canted ferromagnet resulting from
the RKKY interaction between the Ce 4 f local moments
on two different lattice sites (Drotziger et al., 2006).
Drotziger et al. (2006) studied the magnetization of
a single crystal of CeSij g1 as a function of temperature
and hydrostatic pressure. Pressure was found to sup-
press T monotonically from its ambient-pressure value
of 9.5 K. T vanishes at a critical pressure p. ~ 13.1 kbar,
with a concomitant continuous suppression of the mag-
netic moment from 0.2 up/Ce to zero. The transition at
Tc was found to be of second order down to the lowest
observed value of Tc ~ 3K. The electrical resistivity of
the x = 1.81 sample is not known, but for x = 1.86 a
residual resistivity of 12 uQcm (with current along the
a-axis) and 30 uQlem (with current along the c-axis) has
been reported (Sato et al., 1988). If these values are rep-
resentative for the = 1.81 critical sample as well, they
put the system CeSi, in a moderately disordered regime
where a continuous transition is expected theoretically,
see Sec. II1.B.3. However, questions about both the na-
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ture of the ordered phase and the nature of the transition
at low T remain (Drotziger et al., 2006).

j. CePdi_zNi, The FM T¢ of CePd (T¢ = 6.5K) ini-
tially increases upon alloying with nickel, then decreases
for z 2 0.8, and vanishes at a Ni concentration z. ~ 0.95
(Kappler et al., 1997). Measurements of the specific heat,
magnetization, and resistivity have shown NFL behavior
of the resistivity for 3 < T' < 30K, and logarithmic be-
havior of the specific-heat coefficient in a temperature
window between about 1 and 10 K.

k. (Sci—zLug)s1In  Upon doping of the mnon-stoichio-
metric FM compound Scs 1In with lutetium, evidence for
a QCP with unusual values of the critical exponents in
(Sc1—oLug)s.1In has been found near a critical concen-
tration x. &~ 0.035 (Svanidze et al., 2015). NFL behavior
has been observed in both the FM and PM phases, in
addition to the vicinity of the QCP. This material may
be characterized by a reduced dimensionality due to the
one-dimensional nature of the Sc-In chains (Jeong and
Kwon, 2007; Svanidze et al., 2015).

L U4RU7G66 and U4 (Rul_z OSZ)7G66 U4RU7G€6 iS ferro—
magnetic below T ~ 12 K; it is a metal with Kondo-like
and heavy-fermion features, while U4Os7;Geg is a param-
agnet. The system Uy(Ru;_,Os;)7Geg has been inves-
tigated by Colineau et al. (2001), who found that T is
suppressed to zero for x ~ 0.3.

Hydrostatic pressure applied to UsRu7Geg also sup-
presses T¢, with a FM-PM QPT at p =~ 2.6 GPa. Re-
sistivity measurements on polycrystalline samples by Hi-
daka et al. (2011) suggest the existence of a QCP with
Hertz-type behavior. The residual resistivity at p =
2.36 GPa was about 58 uQ2cm. The resistivity of the
Us(Ruy—,0s,)7Geg samples is not known, but is pre-
sumably higher. This places this system in the disor-
der Regime II (intermediate disorder) discussed in Sec.
II1.B.3, which is consistent with the observations.

2. Strongly disordered systems

a. LaV,Cri_,Ges Upon substitution of vanadium for
chromium in LaCrGes, the FM T¢ drops from 88K to
36 K for x = 0.21 (Lin et al., 2013). Pressure applied to
a sample with z = 0.16 leads to a further decrease of T¢,
with a QPT at p =~ 3 GPa. The lowest T achieved was
about 20K; the order of the QPT is not known.

b. URuz—;Re;Sia The parent compound of
URus_;Re,Sis, URusSip, is a heavy-fermion super-
conductor (superconducting T. =~ 1.5K) that has an



TABLE IV Systems showing a second-order transition: Strongly disordered bulk systems. Tc = Curie temperature, po =

residual resistivity. FM = ferromagnetism, SC = superconductivity. n.a. = not available.

System Order of Tc/K magnetic tuning Disorder Comments
Transition ¢ moment/up ° parameter (po/pf2cm) ©

LaV,;Cri_,Ges n.a. 55 —20¢ 1.4¢ comp. + press. 1 1007 lowest Tc rather high

URus_,Re;Siz  2nd 23 25 - 29 0.4-0.033 composition2 ~ 100" strong disorder

URhi_,Ru,Ge 2nd* ~10-0% =~0.1-0% composi‘cion4 n.a.’ disorder unclear

Thi_.UsCusSia 2nd® 101 —12%  0.92 - 0.09% composition 5 235! disorder unclear

UCoi1_,Fe,.Ge ond ® 85-3™ 0.1 -0.02™ Composition6 430" extremely high po

@ At the lowest temperature achieved. ° Per formula unit unless otherwise noted. ¢ For the highest-quality samples.
dForz=016and p=0-3GPa. ¢Forz=0. f Forz=0.16. 9 For z =0.6 — 0.2 (Butch and Maple, 2009).

" For £ = 0.1 (Butch and Maple, 2010). * For z =0 — 0.4 (Huy et al., 2007a).

J Large nominal po = 200 — 300 uf2cm due to cracks; not indicative of the intrinsic disorder (Huy et al., 2007a).

¥ For . =1-0.15. ! High po due to microcracks. ™ For z =~ 0.75 — 0.22. ™ For = 0.22.

! Lin et al. (2013)
® Lenkewitz et al. (1997)

2 Bauer et al. (2005)
5 Huang et al. (2013)

3 Butch and Maple (2009) * Huy et al. (2007a)

ordered phase of unknown nature, usually referred to as
the “hidden-order” phase, below about 17K; see Mydosh
and Oppeneer (2013) for a recent overview. Substitution
of Re, Tc, or Mn leads to the destruction of the hidden-
order phase and the emergence of ferromagnetism past
a certain dopant concentration (Dalichaouch et al.,
1990). Only URus_,Re,Si> has been studied in detail.
In this system, the hidden-order phase disappears for
z ~ 0.1 and the system develops a FM ground state
for x =2 0.15 (Butch and Maple, 2010). 7¢ increases
monotonically with increasing x and reaches a maximum
of almost 40K at = ~ 0.8, above which the material
does not remain in a single phase. The existence of
FM long-range order has been ascertained by neutron
scattering for © = 0.8 (Torikachvili et al., 1992) and by
29Gi NMR for 2 > 0.4 (Kohori et al., 1993). Pronounced
NFL behavior has been observed in the specific heat and
the electrical resistivity for a large concentration range
0.15 < = < 0.8 (Bauer et al., 2005), and the dynamical
magnetic susceptibility shows unusual behavior for
0.2 < z < 0.6 (Krishnamurthy et al., 2008). The
system is highly disordered as judged from the residual
resistivity, which is on the order of 100 pflcm (Butch
and Maple, 2010), and the magnetic moment appears
to go to zero continuously. Attempts to determine
critical exponents have been hampered by difficulties in
determining the critical concentration precisely (Bauer
et al., 2005; Butch and Maple, 2009, 2010). Results
from scaling plots yield exponents & and ~ that vary
continuously with x and approach 1 and 0, respectively,
for x approaching the critical value x. ~ 0.15, while
B = 0.8 is independent of x (Butch and Maple, 2009,
2010). These results are hard to understand within
any phase-transition scenario, even if one interprets the

exponents as effective ones in a pre-asymptotic region.
v = 0 in particular contradicts the very notion of a
FM order parameter. There currently is no resolution
of this problem. The uncertainty about x. may be to
blame, and the strong disorder may lead to unusual
effects. For instance, it is conceivable that there is a Re
concentration region that represents a quantum Griffiths
phase (see Secs. ILE and III.D.1) rather than true
long-range FM order. It has also been speculated that
an interplay between remnants of the hidden order and
ferromagnetism leads to unusual behavior near the onset
of ferromagnetism (Butch and Maple, 2010).

c¢. URhi_;Ru,Ge Doping URhGe with Ru decreases T¢
after a small initial increase and suppresses it to zero at
a Ru concentration close to z = 0.38 (Huy et al., 2007a;
Sakarya et al., 2008), see Fig. 8. Huy et al. (2007a) found
the QPT to be second order with a pronounced T'InT
contribution to the specific heat at the critical concentra-
tion. The T-dependence of the electrical resistivity shows
a non-Fermi-liquid 7™ behavior, with n < 2 over a wide
range of concentrations, with a minimum of n = 1.2 at
the critical concentration. Such NFL behavior has been
interpreted as indicative of the existence of a QPT. The
continuous nature of the transition is consistent with the-
oretical expectations, assuming that the large critical Ru
concentration leads to a substantial amount of disorder.
The strength of the microscopic disorder is hard to de-
termine experimentally, since cracks in the brittle system
lead to an artificially high residual resistivity of 200 - 300
pQem. The Griineisen parameter I' is observed to stay
finite at the transition, in disagreement with a theoretical
result that predicts a diverging I" (Zhu et al., 2003).



Si doping up to x ~ 0.2 has little effect on the T¢ of
URhGe; —,Si, (Fig. 8), and no quantum phase transition
has been observed in this material (Sakarya et al., 2008).

d. UCoi_,Fe;Ge Doping of the weak FM UCoGe (see
Sec. I1.B.2.c) with Fe initially increases T¢ to a maximum
of Tc = 8.5 K around x = 0.075. With further increasing
xz, Tc decreases and vanishes at an extrapolated x. =
0.22 (Huang et al., 2013). The QPT is believed to be
second order, and there is some evidence for quantum
critical behavior in the transport and specific-heat data.
Since the transition in UCoGe is first order this implies
the existence of a tricritical point in the phase diagram,
but this has not been investigated. The origin of the very
large residual resistivity is not clear.

e. Thi_,U,CuzSia UCuySiy orders ferromagnetically
below Tc ~ 101K, ThCuySi; is paramagnetic. In
Thy_,U,CusSis, (Lenkewitz et al., 1997) have found a
QPT for x =~ 0.15, with a logarithmic T-dependence of
the specific-heat coefficient. The large residual resistiv-
ity (po > 200uf2cm) is due to microcracks in the samples
and not a measure of intrinsic disorder.

3. Quasi-one-dimensional systems

a. YbNisP> YDbNiyPs is the stoichiometric metallic fer-
romagnet with the lowest T¢ observed to date, Tc =
0.15K (Steppke et al., 2013). In this compound Ni
is not magnetic (Députier et al., 1997; Krellner et al.,
2011). The Yb atoms are arranged in chains along the
c-direction and located between Ni tetrahedra, forming
a ZrFe,Siy structure type with a lattice-constant ratio
¢/a = 0.5. Band-structure calculations show quasi-1-d
Fermi surfaces (Krellner et al., 2011), which are believed
to be responsible for the observed anisotropy of the re-
sistivity, pa/pc = 5 at 1.8 K (Krellner and Geibel, 2012).

The Yb3" ion is located in an orthorhombic crystalline
electric field (CEF) which splits the J = 7/2 energy lev-
els, leaving a Kramers doublet as the ground state (Hues-
ges et al., 2013), and causes the crystalline c-axis to be
the magnetic easy axis (Krellner and Geibel, 2012). This
can be seen in Fig. 17, which shows the ac susceptibil-
ity x’(T) in a small field H parallel and perpendicular,
respectively, to the c-axis. Although YbNi Py is a heavy-
fermion system with a Kondo temperature of 8 K, a small
unscreened moment of about 0.05 ug/Yb orders ferro-
magnetically at 0.15K (Gegenwart et al., 2015; Krell-
ner et al., 2011; Spehling et al., 2012; Steppke et al.,
2013). In addition, despite the strong CEF anisotropy
the moments align within the ab-plane, i.e., the mag-
netically hard direction (see Fig. 17). YbNiyPy shares
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FIG. 17 Temperature dependence of the ac susceptibility
X'(T) measured with a modulation-field amplitude poH =
15 4T parallel and perpendicular, respectively, to the c-axis.
The large value x'(Tc) =~ 200 x 107% m®/mol indicates a FM
phase transition. The dashed line indicates that x| (7) o

T~2/% above Tc. From Steppke et al. (2013).

this uncommon behavior with just a few other FM
Kondo-lattice systems, such as CeRuPO (Sec. I1.D.2.a),
CeAgSbsy (Sec. I1.D.3.a), YbNiSn (Bonville et al., 1992),
and Yb(Rhg 75C00.27)25i2 (Sec. II.D.3.c). An explana-
tion within a local-moment Heisenberg model with com-
peting exchange interactions (Andrade et al., 2014) does
not work for YbNisPy where quantum effects are strong.
For instance, x'(T) in classical Ising or Heisenberg sys-
tems is characterized by a power-law behavior at the
transition with well-known universal exponents, while
the divergence of x' L ¢ in Fig. 17 just above T¢ is
much stronger than a power law. It is even stronger
than what is expected for a pure one-dimensional Ising
ferromagnet, where x/(T) oc T~ exp(2J/kgT), with J
the coupling constant (Ising, 1925). Another proposed
explanation is strong transverse spin fluctuations which
at sufficiently low temperature dominate the magnetic
anisotropy (Kriiger et al., 2014). This model, however,
implies a first-order phase transition at T¢, which is not
observed in YbNigPy (Steppke et al., 2013).

YbNiyPs also has a number of other unconventional
properties. For instance, polycrystals in a broad T-region
above T show strong NFL behavior in the resistivity,
p(T) oc T, the specific heat, C/T o T7%42 and the
NMR relaxation rate, 1/T3T T-3/4 (Krellner et al.,
2011; Sarkar et al., 2012).

b. YbNis(P1—;Asz)> The results reviewed in Sec.
II.C.3.a motivated the growth of single crystals with
phosphorus substituted by arsenic (which amounts to
negative chemical pressure) in order to reduce T¢ and
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TABLE V Systems showing a second-order transition: Quasi-one-dimensional (1-d) materials. Tc = Curie temperature,

po = residual resistivity. n.a. = not available.

System Order of Tc/K magnetic tuning Disorder Comments
Transition ¢ moment/up ® parameter  (po/pQcm)

YbNiyPs 2nd* 0.142 ~ 0.0352 none 2,61 quasi-1-d

YbNiy(P1_zAsz)2 2nd3 0.15 - 0.025%¢ ~0.05° composition = 5.5, 15%¢ quasi-1-d, disordered

¢ At the lowest temperature achieved.
4 For & = 0 — 0.08 (Steppke et al., 2013).

b Per formula unit unless otherwise noted.

¢ For the highest-quality samples.

¢5.5 for J || ¢, 15 for J L ¢ (Steppke et al., 2013).

! Krellner et al. (2011) 2 Spehling et al. (2012)

3 Steppke et al. (2013)

look for FM quantum criticality. Four single crystals of
the series YbNiy(P1_,As; )2 were grown with a minimum
value of py = 5.5 uQlem for the stochiometric YbNiyPs.
Steppke et al. (2013) investigated the magnetic and ther-
modynamic properties down to 20 mK and in particular
measured the Griineisen ratio I'(T) = 8(T)/C(T), where
B(T) is the volume thermal expansion coefficient. Ac-
cording to Zhu et al. (2003), this quantity should di-
verge as I'(T) o« T~* at any QCP, where A = 1/vz
is given in terms of the correlation-length exponent v
and the dynamical exponent z (cf. Sec. III). Steppke
et al. (2013) found that the FM phase transition is sup-
pressed at z. =~ 0.1 (Fig. 18A) and that it remains sec-
ond order even in the sample with z = 0.08 with a T¢
of about 25 mK. Both C(T)/T and B(T)/T diverge (see
Fig. 18B) with exponents that are approximately inde-
pendent of the As concentration, which rules out a pos-
sible quantum Griffiths phase (cf. IIL.D.1). Most impor-
tantly, T'(T) oc 77922 in the sample with = = 0.08 which
is located almost at z. (see Fig. 18B). This provides
evidence that in YbNiy(P;_,As;)s a FM QCP exists.
The nature of this QCP is still unclear. The exponent
A = 0.22 yields a value of vz &~ 5, which is rather large.
For instance, within Hertz-Millis-Moriya theory one has
v =1/2,z =3 (cf. II1.C.2.b). This is not surprising, as
no existing theory is expected to apply to this material.
Any theoretical framework will have to take into account
the local nature of the Yb 4 f-states with spin-orbit cou-
pling, a strong Kondo effect, and the quasi-1-d electronic
structure. The absence of a first-order transition is likely
due to the latter, see the discussion below.

4. Discussion, and comparison with theory

The materials in which a continuous transition is ob-
served to the lowest temperatures achieved have been
grouped into three distinct classes, see Tables II1, IV, V:
Weakly disordered, strongly disordered, and quasi-one-
dimensional. For the last group, the conduction-electron
system is expected to be a Fermi liquid at asymptoti-
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FIG. 18 A: Phase diagram of YbNis(P1—zAsz)2. B: Spe-
cific heat (blue, left axis) and volume thermal expansion co-
efficient (green, right axis) for the sample with T¢ & 25 mK
(x = 0.08). Inset: T-dependence of the Griineisen ratio
I(T) = B(T)/C(T) o« T~%22. From Steppke et al. (2013).

cally low temperatures, but it will cross over to a Lut-
tinger liquid at a temperature that depends on the elec-
tronic anisotropy. A determination of the temperature
range where the theories discussed in Sec. III, which all
depend on an underlying Fermi liquid, still apply re-
quires detailed theoretical considerations that are cur-
rently not available. For the strongly disordered bulk
systems, the theory discussed in Sec. III.C.3 predicts a
continuous transition, and Griffiths effects may also be
present, see Sec. II1.D.1. Of the two systems in this cate-
gory, URus_,Re,Sis is the more thoroughly studied one.
As discussed in Sec. I1.C.2.b, the current experimental
results cannot be easily interpreted with any existing the-
ory. A major obstacle is the uncertainty about the critical
concentration x., and additional studies about the onset



of long-range FM order would be desirable.

In the weakly disordered group, CeSi, and Ni,Pd;_,
come with open questions regarding the nature of the
transition, or the presence of phases other than the FM
one, at low temperatures. Given the residual resistivi-
ties of these materials, theoretically one would expect a
continuous transition in CeSi,, and a first-order one in
Ni,Pd;_,, provided the transition is not pre-empted by
a different phase. In (Cr;_,Fe;)2B one expects a second-
order transition, and the observed mean-field critical be-
havior is consistent with theoretical expectations, see Sec.
III.B.3. For the remaining systems no information about
the disorder strength is available, which makes a com-
parison with theoretical predictions difficult.

These somewhat inconclusive results may well have to
be revisited if cleaner samples and/or measurements at
lower temperatures should become available in the fu-
ture. The history of ZrZns, Sec. I1.B.1.b, shows that im-
proving sample quality can change the conclusion about
the order of the transition. Ome also needs to keep
in mind that the tricritical temperatures listed in Ta-
bles I, IT span a substantial range, and the Ti. in, for
instance, URhGe is barely higher than the lowest tem-
perature at which Ulr has been measured.

D. Systems changing to spin-density-wave or
antiferromagnetic order

In some systems the FM phase undergoes a transition
to a spatially modulated magnetic phase as T decreases,
see the schematic phase diagram in Fig. 2 ¢).!> This pro-
duces a Lifshitz point, where the FM, modulated, and
PM phases meet, as well as two QPTs, one from the FM
phase to the modulated one, and one from the modu-
lated phase to the PM. They are discussed below, and
their properties are summarized in Table VI. In some
of these materials the evidence for a modulated phase is
stronger than in others, and in some cases there are con-
flicting experimental results. The classification of some
of these systems within our scheme should thus be con-
sidered tentative.

1. Simple ferromagnets

a. An itinerant magnet: Nbi_,Fes;, The Laves phase
compound NbFey shows itinerant antiferromagnetism on
the border of a FM phase. First indications of a low-T
AFM ordered state with Ty ~ 10K were found in mag-
netization and NMR experiments on polycrystals (Crook

15 There also are cases of transitions from a metallic AFM state
to a metallic FM state, with the FM being the ground state, see
Sec. IV.B point 3. We do not discuss these materials.
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and Cywinski, 1995; Shiga and Nakamura, 1987; Yamada
and Sakata, 1988). This has recently been confirmed by
a microscopic study with electron spin resonance, muon
spin relaxation and Mossbauer spectroscopy on single
crystals (Rauch et al., 2015). However, this state is char-
acterized by an unusually high magnetic susceptibility,
x =~ 0.02 in SI units, which corresponds to a large Stoner
enhancement factor of the order of 180 (Brando et al.,
2008). These authors speculated that the magnetic or-
der in NbFe, is a long-wavelength modulated state with

a small ordering wave number @ = 0.05 A™'. This has
been corroborated by recent neutron scattering experi-
ments (Niklowitz, 2015).

The Wilson ratio (i.e., the low-T" susceptibility divided
by the specific-heat coefficient) is about 60, which in-
dicates that the susceptibility is much more enhanced
than the effective electron mass. This suggests that
stoichiometric NbFey is very close to the border of fer-
romagnetism. Indeed, a FM ground state is found in
iron-rich samples (Crook and Cywinski, 1995; Moroni-
Klementowicz et al., 2009; Yamada and Sakata, 1988).
By varying the iron content in Nb;_,Fe,, within a nar-
row homogeneity range, NbFey can be tuned from ferro-
magnetism for y = 0.01 via an intermediate SDW mod-
ulated state around y ~ 0 to a QCP at y ~ —0.015. For
y < —0.015 the ground state becomes FM again (Fig. 19).
The fact that both iron and niobium-rich samples are
FM at low temperature has been linked to the peculiar
electronic structure of this material (Alam and Johnson,
2011; Neal et al., 2011; Subedi and Singh, 2010; Tompsett
et al., 2010). Part of the phase diagram can also be repro-
duced by applying hydrostatic pressure (Duncan et al.,
2010): Starting with a FM sample with y = 0.015, in-
creasing pressure is equivalent to moving the system to
the left in the phase diagram of Fig. 19. A pressure of
2.5 GPa roughly corresponds to a shift in composition
from y = 0.015 to 0.007. For y 2 —0.015, Nby_,Fes
is thus an itinerant system in which a SDW state with a
small wave vector connects continuously to the FM state
at a Lifshitz point, cf. Fig. 19. Signatures of quantum
critical behavior have been observed near the QPT where
the SDW order disappears: the electrical resistivity dis-
plays a T3/2 power-law behavior, and the specific-heat co-
efficient v shows a logarithmic temperature dependence
down to 0.1 K (Brando et al., 2008). The latter is consis-
tent with Hertz-Millis-Moriya theory for a clean FM,¢
but the former disagrees with the 7°/3 behavior expected
for this case, see Eqs. (3.62, 3.64). A T°/2 behavior of
the resistivity has also been observed in other systems,
e.g., in MnSi and ZrZny, even far from the QPT, which
suggests a more general phenomenon that remains incom-
pletely understood, see Sec. IV.A. In the current case,
the proximity to both FM and SDW order may result
in fluctuations with different wave vectors that have dif-
ferent effects on the transport and thermodynamic prop-
erties, respectively. This might explain the apparent in-



consistency between the behavior of the specific heat and
the resistivity. 16

The existence of a QCP indicates that the PM-to-SDW
transition is second order, at least at low temperature.
There are indications that the FM-to-SDW transition at
y = 0.015 is first order (Friedemann, 2015). On the Nb-
rich side of the phase diagram, the transition was found
to be second order for all samples investigated by Moroni-
Klementowicz et al. (2009).

b. An induced-moment magnet: PrPtAl Another example
of a modulated magnetic state in a narrow temperature
range above the FM phase is given by PrPtAl. Since
the orthorhombic TiNiSi-type structure of PrPtAl is in-
version symmetric, the modulated order cannot be due
to a Dzyaloshinski-Moriya interaction. Neutron scatter-
ing data in conjunction with a theoretical analysis have
been interpreted as indicating that it is a result of quan-
tum critical fluctuations, in accord with the mechanism
reviewed in Sec. IIL.E (Abdul-Jabbar et al., 2015).
Initial experiments on polycrystals identified a second-
order phase transition into a FM state at Tc = 5.8 K with
an ordered saturation moment of 1 ug/Pr (Hulliger, 1993;
Kitazawa et al., 1998). As in other rare-earth systems,
the origin of magnetism in PrPtAl is subtle. Although
the ground state of the Pr?>* ion is a non-magnetic sin-
glet, magnetic moments are induced by an interplay be-
tween the exchange interaction and the CEF. This causes
strong short-range correlations, which are responsible for
the small entropy release (only about 15% of R1n2) be-
low T¢ and significant magnetic (Kitazawa et al., 1998).
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FIG. 19 Phase diagram of Nb;_,Fesy,. From Moroni-

Klementowicz et al. (2009).

16 As is explained in Sec. III.C.2, in the FM case this does not
represent true critical behavior, but it may be observable in a
sizable pre-asymptotic region.
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Neutron scattering experiments on single crystals have
revealed two SDW phases just above T¢: Below T7 =
5.85 K Abdul-Jabbar et al. (2015) found a doubly modu-
lated incommensurate SDW (SDW1), followed by a sin-
gle incommensurate modulation (SDW2) at a different
ordering vector below 75 = 5.5K, and eventually the
transition into the FM state at Tc = 4.7 K. Both SDW
phases are suppressed by a weak magnetic field; this may
be the reason why these phases were not seen before. The
magnetic structure in the SDW2 phase is an elliptical
spiral. Spiral order preceding a FM transition is not un-
common in rare-earth magnets such as, for instance, Th
and Dy, and is usually attributed to a complex interplay
between the anisotropy energy and the exchange inter-
action (Miwa and Yosida, 1961). However, in PrPtAl
Abdul-Jabbar et al. (2015) point at the lack of appar-
ent nesting vectors which would favor spiral order, the
temperature dependence of the ordering wave vector in
the spiral phase SDW2, the low critical magnetic fields
required to tune between SDW2 phase and FM, and the
second-order nature of the transition at 77, which con-
trasts with the first-order nature at 75 and 7. They
argue that the mechanism behind the spiral formation in
SDW2 must involve the strong magnetic fluctuations in
the competing ordered states. Starting from the model
proposed by Karahasanovic et al. (2012) and adding lo-
cal moments, the strong anisotropy, and weak disorder,
the authors derived a theory that can describe key exper-
imental results observed by neutron scattering and mea-
surements of the magnetoresistivity and the specific heat.
Although the full phase diagram has not been accessed
experimentally, the proposed phase diagram is similar to
that in Fig. 39 without the nematic phase. This mate-
rial may thus represent a case in which the mechanism
discussed in Sec. II1.E is realized.

2. Ferromagnetic Kondo-lattice systems: CeTPO

Quantum criticality in FM Kondo-lattice systems has
received little attention compared to their AFM counter-
parts (Gegenwart et al. (2008) and references therein.)
Often these materials possess peculiar crystal structures,
such as the quasi-1-d heavy-fermion material YbNiyPs,
Sec. II.C.3, or the quasi-2-d cerium transition-metal (T)
phosphide oxides CePTO, which are the topic of this sec-
tion. For other Kondo-lattice systems, see Sec. I1.D.3.

The quasi-2-d tetragonal ZrCuSiAs-type of the CePTO
systems is familiar from some of the iron-based super-
conductors, such as LaFePO (Kamihara et al., 2006).
It consists of alternating layers of TP, and OCe, along
the crystallographic c-axis (Zimmer et al., 1995). The
Ce-Ce interatomic distance is in the range where the
RKKY interaction is ferromagnetic (Chevalier and Mala-
man, 2004; Sereni, 1991). However, not all CeTPO sys-
tems are FM, for instance, CeOsPO is an AFM (Krell-
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TABLE VI Systems showing change into a spin-density-wave (SDW) or antiferromagnetic (AFM) order. Tc = Curie temper-
ature, T = Néel temperature, pp = residual resistivity. QC = quantum critical, n.a. = not available.

System Order of Tc/K Tn/K magnetic tuning Disorder Comments
Transition ¢ moment/up® parameter (po/puflem)®
Nbi_yFeoyy Ist (N 72-6° 32 - 287 ~ 0.022 composition 3 5.5-17%* SDW phase,
pressure Lifshitz point
PrPtAl 1st 69 4.76 5.85, 555" 16 none n.a. spiral phase
two SDW phases
CeRuPO st ™* 1511787 10 - 178 1.28 pressure % ~ 307k AFM phase
CeFeAs:_.P,O n.a. ~ 10 — 69100  g11m 0.95-0° compositiong’10 n.a. conflicting results
CeRuj_5Fe, PO n.a. 15 - 0.312 ~05-01 121 composition n.a. QC flucts., pos-
sible AFM phase
CeAgSby Ist 14 9.6 - 214 ~6- 4t 0.4115 pressure 1416 0.2 AFM phase not
1 field *¢ always observed
CeRuz(Ge1—zSiz)2 n.a. 8 — 2517 10-11%Y n.a. comp. /press. L18 318 hybridization
suppresses FM
Yb(Rhi-;Cogz)2Si2 n.a. 1.319m 1.2 - 0.072%° 0.1 - composition 2° 0.5 — 102%2! field-induced
0.0022%19P  pressure 324 AFM QPT

@ For the FM-to-AFM or SDW transition at the lowest temperature achieved. ° Per formula unit unless otherwise noted.
¢ For the highest-quality samples.

4 For the FM-SDW transition. The FM-PM transition on the Nb-rich side is second order to the lowest Tc measured (= 2K).
¢ For 0.04 > y > 0.007 (Brando et al., 2008; Moroni-Klementowicz et al., 2009).

£ For 0.015 > y > —0.01 (Brando et al., 2008; Moroni-Klementowicz et al., 2009).

9 For the FM-SDW2 and SDW2-SDW1 transitions. The SDW1-PM is 2nd order (Abdul-Jabbar et al., 2015).

" For the SDW1-PM and SDW2-SDW1 transitions, respectively (Abdul-Jabbar et al., 2015).

‘ For the FM-AFM transition at 7 > 9 K. The order of the transition at low T is not known.

9 FM for 0 < p < 0.7GPa and AFM for 0.7 < p < 2.8 GPa (Kotegawa et al., 2013; Lengyel et al., 2015).

* Near the FM-AFM transition. ' For 2 = 0.4 — 0.8 (Jesche et al., 2012; Luo et al., 2010). ™ For x = 0.9 (Jesche, 2011).
™ For Yb(Rho.73C00.27)2Si2 (Lausberg et al., 2013). © For z = 0.27 — 0 (Klingner et al., 2011).

P 0.002 pp for YbRh2Sis (Ishida et al., 2003); 0.1 up for Yb(Rhg.73Co00.27)2Si2 (Lausberg et al., 2013).

! Friedemann (2015) 2 Brando et al. (2008) 3 Moroni-Klementowicz et al. (2009) * Friedemann et al. (2013)

® Duncan et al. (2010)  ® Abdul-Jabbar et al. (2015) 7 Kotegawa et al. (2013) 8 Lengyel et al. (2015)

 Luo et al. (2010) 10 Jesche et al. (2012) ' Jesche (2011) 12 Kitagawa et al. (2012)

13 Krellner et al. (2007) ** Sidorov et al. (2003) 15 Araki et al. (2003) 16 Logg et al. (2013)

7 Siillow et al. (1999) 18 Wilhelm and Jaccard (1998) ' Lausberg et al. (2013) 20 Klingner et al. (2011)

2! Krellner et al. (2009) 22 Tshida et al. (2003) 23 Mederle et al. (2001) 20 Knebel et al. (2006)

ner et al., 2007). Two compounds that have been stud- lent in this compound and Fe is non-magnetic) with a
ied with respect to FM quantum criticality are CeRuPO positive Weiss temperature Ow = 8K and FM order
and CeFePO. CeRuPO is a ferromagnet with Tc = below T = 15 K. The transition at T¢ is second order,
15K (Krellner et al., 2007), and CeFePO is a paramag- indicated by the A-like shape of the specific heat. The re-
net with strong in-plane FM fluctuations (Briining et al., sistivity shows a distinctive drop below about 50 K which

2008). In what follows we review studies of CeRuPO is a signature of coherent Kondo scattering. The Kondo
under hydrostatic pressure, and of CeRu;_,Fe, PO and temperature Tx ~ 10K, estimated from an analysis of
CeFeAs;_,P,0O. The special case of stoichiometric Ce- the entropy, is comparable with T¢.
FePO is discussed in Sec. IL.E.4.
Using a Sn-flux method, the same authors grew high-
quality single crystals with py = 5pf2lem (RRR =
a. CeRuPO The low-T properties of CeRuPO poly-  30) (Krellner and Geibel, 2008), and studied the mag-
crystalline samples (RRR = 50) were first investigated netic anisotropy. At high T the susceptibility mea-
by Krellner et al. (2007). These authors found a Curie-  sured with H | ¢ and H 1 ¢ shows a Curie-Weiss
Weiss behavior of the susceptibility at high T" (Ce is triva- behavior, but with very different Weiss temperatures
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FIG. 20 Magnetization isotherms at 2K with H || cand H L
c. From Krellner and Geibel (2008).

for the two cases: O% ~ 4K and ©f = —250K.
This temperature difference can be expressed in terms
of the first CEF parameter, which is a measure of the
strength of the magnetocrystalline anisotropy. (Bowden
et al., 1971) It indicates that the CEF anisotropy favors
the moments to be aligned within the ab-plane. How-
ever, the magnetic moments below T¢ align along the
c-axis. This is shown in Fig. 20, which displays the mag-
netization isotherms at 2K. Ordering of the moments
along the magnetic hard direction is also found in Yb-
NiSn (Bonville et al., 1992), Yb(Rhg.73C0¢.27)2Si2 (Laus-
berg et al., 2013), YbNiyPy (Steppke et al., 2013), and
CeAgSbs (Araki et al., 2003).

Quantum criticality in CeRuPO has been looked for by
means of resistivity measurements under pressure, with
the current in the ab-plane. Pressure was found to de-
crease T, to 5.9K at 2.1 GPa, which by extrapolation
suggested a QCP at about 3.2 GPa (Macovei et al., 2009).
Lengyel et al. (2015) investigated the ac susceptibility
under pressure and performed resistivity experiments at
pressures up to 7.5 GPa. These experiments found that
the FM ground state changed into an AFM one (with
unknown structure) at a pressure of about 0.87 GPa. At
p > 3 GPa the resistivity no longer shows a phase tran-
sition, and the observations suggested a first-order QPT
at a critical pressure p. ~ 3 GPa, with no QCP. Above
pe the ground state was proposed to be a Fermi liquid,
due to a T? behavior of the resistivity. The coefficient of
the T2 term in the resistivity shows a maximum at about
4 GPa, well inside the FL paramagnetic state.

The T-p-H phase diagram of CeRuPO, up to p =
3.5 GPa, was investigated by Kotegawa et al. (2013), see
Fig. 21. The observed sensitivity of the magnetic order
to a magnetic field ascertained that the FM state changes
into an AFM one above p ~ 0.7 GPa, and the magnetic
order was found to be completely suppressed at p. =
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FIG. 21 Pressure-temperature-magnetic field phase diagram
of CeRuPO derived from resistivity measurements. At ambi-
ent pressure and H = 0 the ground state is FM, but changes
into an AFM one at about 0.7 GPa. Magnetism is suppressed
at p. =~ 2.8 GPa. The AFM state is identified by the transi-
tion temperature decreasing with increasing field (black solid
lines). At even larger fields (H,,) a metamagnetic crossover
occurs from a PM state to a polarized PM (PPM) state. T*
indicated the Kondo coherence temperature which increases
with increasing pressure. From Kotegawa et al. (2013).

2.8 GPa. CeRuPO is thus another case where an an-
ticipated FM QPT is not realized because a modulated
phase intervenes. Although the authors could not deter-
mine the order of the transition at p. the coefficient of
the T2 term in the resistivity shows a maximum around
Pe, which suggests the presence of an AFM QCP. This
is in disagreement with Lengyel et al. (2015). 3'P-NMR
experiments have revealed that the magnetic correlations
are 3-d over the entire pressure range investigated (Kita-
gawa et al., 2014), in contrast to what was found in
Ce(Rh;_,Fe,)PO, see Sec. IL.D.2.c. The FM-AFM tran-
sition was found to be first order at the two points de-
noted by open circles in Fig. 21; the order of the transi-
tion at lower temperatures is not known. We note that
the AFM-to-FM transition in Yb(Rh;_,Co,)2Siy with
x = 0.215 (see Fig. 27 in Sec. II.D.3.c) has also been re-
ported to be first order (Hamann, 2015; Klingner et al.,
2011), as has the SDW-to-FM transition in Nb;_,Feq .,
(see Fig. 19 in Sec. NbFey) (Friedemann, 2015).

At pressures close to p., Kotegawa et al. (2013) ob-
served another resistivity feature at a magnetic field H,,
and a temperature Ty, which increases with increasing
field (see Fig. 21). They ascribed this to a metamagnetic



crossover from a PM state to a polarized PM (PPM)
state. This is similar to what has been observed in doped
CeRusSiy (Flouquet et al., 2010, 2002; Shimizu et al.,
2012).

b. CeFeAsi_,P,O CeFePO is a PM very close to a
FM instability (Briining et al., 2008), which motivated
searches for an FM phase nearby. The substitution of As
at the P site acts as negative chemical pressure and fa-
vors magnetic order in Ce-based systems. It also permits
to study the evolution of Fe and Ce magnetism from the
AFM CeFeAsO (Zhao et al., 2008) to CeFePO. This was
done independently by two groups (Jesche et al., 2012;
Luo et al., 2010).

Luo et al. (2010) measured the phase diagram of poly-
crystalline samples of CeFeAs; P, O and confirmed that
the commensurate AFM order of the Fe sublattice below
Tre ~ 140K in CeFeAsO is suppressed by P substitu-
tion. With increasing x the unit cell shrinks along the
c-axis substantially faster than along the a-axis, which
is important for the evolution of the f-d hybridization
strength. The AFM order disappears at x ~ 0.4, and
an AFM QCP was suspected (de la Cruz et al., 2010;
Luo et al., 2010). Moreover, Luo et al. (2010) found
that the Ce sublattice also orders antiferromagnetically
at T = 4.16 K, which is very weakly x-dependent for
small z. At x ~ 0.37 the ground state of the Ce sublat-
tice changes from AFM to FM, and FM order was found
to persist up to x ~ 0.9. In a small concentration region
at © < 1 the system was found to be a heavy-fermion
(HF) paramagnet with strong FM fluctuations, in agree-
ment with Briining et al. (2008), and a second QCP, for
the FM-HF transition, was suggested.

Later studies by Jesche (2011) and Jesche et al. (2012)
found additional features in the phase diagram, see
Fig. 22, and disagree in some respects with Luo et al.
(2010). Instead of an AFM QCP they found that the
AFM order terminates at a nonzero Th¢ ~ 30K and is
followed by a region of phase separation, indicating a pos-
sible tricritical point. They also found superconductivity,
possibly coexisting with Ce ferromagnetism, in a small
dome around xz = 0.3 at temperatures up to 4 K. On the
large-x side of the phase diagram Jesche (2011) and Krell-
ner and Jesche (2014) found that a single-crystal sample
with x = 0.9 had an AFM ground state rather than a
FM one. This evidence is shown in the inset of Fig. 22
which shows the isothermal magnetization at T = 2K,
i.e. below the transition temperature of about 2.7 K for
this concentration. There is no remanent magnetization
at B = 0 in both field directions, and a metamagnetic
transition at B = 1T implies that the ground state is in-
deed AFM. This indicates that CeFeAs;_,P,O belongs
to the class of systems where the order changes from
FM to AFM as T¢ decreases, as is the case in CeRuPO
under pressure (previous section), and CeRuy_,Fe,PO
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FIG. 22 T - z phase diagram of CeFeAs;_,P,O obtained by
a variety of techniques (list in the right inset) for single- and
polycrystalline samples. Red and blue dotted lines indicate
the AFM ordering temperature of the Fe and Ce sublattices,
respectively. Superconductivity (SC) is found near x = 0.3.
The black dotted line is the Curie temperature for the FM
order of the Ce atoms. After Jesche (2011) and Jesche et al.
(2012)).

(next section). This implies that there must be a Lif-
shitz point on the phase boundary shown in Fig. 22, and
a QPT from the FM phase to the AFM phase, followed by
an AFM QPT. These issues have not been investigated.

c. CeRui_,Fe, PO CeRuPO is a low-temperature FM
(see Sec. II.D.2.a), while CeFePO is a PM with strong
FM fluctuations (see Sec. I1.D.2.b); this motivated the
study of the series CeRu;_,Fe,PO. The substitution of
Fe for Ru is isoelectronic and affects just the Fe(Ru)P
layers without causing much disorder in the CeO layers
responsible for the magnetism. Kitagawa et al. (2012)
have investigated polycrystalline (oriented powder) sam-
ples by 3!P nuclear magnetic resonance (NMR). They
measured the Knight shift K, which is proportional to
the uniform magnetization, and the spin-lattice relax-
ation rate (1/77), which is a measure of the fluctuations
perpendicular to the applied field direction, for fields par-
allel (]|) and perpendicular (L)to the c-axis of the tetrag-
onal crystallographic structure. Because of the XY-type
anisotropy, the largest signal is found for K| and (1/71)y,
which both show a strong T" dependence.

The FM transition temperature was determined by the
large increase of K(T') at Tc and the peak in (1/77)) as
shown in Fig. 23 for pugH = 0.5T; the resulting phase
diagram is shown in Fig. 24. With increasing Fe con-
tent, both T and the ordered moment, as determined
from the Knight shift (not shown), are continuously sup-
pressed until both vanish at . ~ 0.86. The phase tran-
sition is clearly second order at x = 0 and remains sec-
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FIG. 23 Temperature dependence of the in-plane spin fluc-
tuations S1 = (1/2T1) g at poH = 0.5T for various values
of . The peak indicates the FM transition temperature Tc,
which is only visible for z < 0.85. For z > 0.85, S is constant
at low T'. The inset shows the x-dependence of S, at a tem-
perature of 200mK. S| peaks at z. indicating the presence
of a QCP. From Kitagawa et al. (2012).

ond order for all concentrations, although a significant
broadening of the relaxation rate and of the Knight-shift
increase is seen at x = 0.85. This might indicate a spin-
glass-like or short-range ordered state, as was observed
in pure CeFePO (Lausberg et al., 2012), see Sec. ILE.4,
but this is not quite clear. It is possible that short-range
order, if it is present, is suppressed by the applied field
(about 0.5 T is needed for most NMR measurements); in
CeFePO the short-range ordered state is suppressed at
this field strength. One thus must keep in mind that
Fig. 24 does not show a zero-field phase diagram, and
this is more relevant for z ~ xz. than for small x.

The strong fluctuations observed near x. are a clear
sign of a QCP, the nature of which is not purely ferro-
magnetic. The NMR data in a field pyoH = 0.07T for
a sample with x = 0.85 showed that, in addition to the
homogeneous FM (¢ = 0) component of the fluctuations
that levels off below T' = 3K, there are AFM (¢ # 0)
components that continue to increase as the tempera-
ture is lowered towards T~ 300mK (Kitagawa et al.,
2012). Similar behavior was found in YbRhySiy near an
AFM QCP (Ishida et al., 2003). The behavior near the
QCP was further investigated by Kitagawa et al. (2013),
who concluded that the suppression of ferromagnetism
is due to a change of the effective dimensionality of the
FM fluctuations from 3-d to 2-d near x.. This is in con-
trast to what was observed in stoichiometric CeRuPO
under hydrostatic pressure, where the magnetic correla-
tions remain 3-d at all values of the pressure, including
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FIG. 24 Lower panel: x-T phase diagram of CeRu;_,Fe,PO
derived from NMR studies. Strong fluctuations are indicative
of a QCP at z. =~ 0.86. At larger = the ground state is a
heavy-fermion (HF) paramagnet, bounded by the tempera-
ture Tmax where the Knight shift shows a peak. Upper panel:
The exponent n is indicative of the effective dimensionality
of magnetic correlations, with n = 1.5 corresponding to 2-d
correlations. From Kitagawa et al. (2013).

pe (Kitagawa et al., 2014). Another interesting effect is a
metamagnetic crossover (not a first-order transition) at
a field Hjs perpendicular to the c-axis (Kitagawa et al.,
2011, 2012). The tips of these “crossover wings” coincide
with the QCP and the wings grow with increasing field,;
their shape is thus very different from that of the tri-
critical wings discussed in Sec. II.B. A possibly related
observation is that pure CeFePO at puoH =~ 4T shows
NFL behavior commonly associated with a QCP. (Kita-
gawa et al., 2011) These authors suggested that Hys rep-
resents the field that breaks the local Kondo singlet, and
that the critical behavior is driven by the Kondo break-
down accompanied by a Fermi-surface instability.

These NMR results paint a picture that is rather dif-
ferent from that of CeRuPO under pressure, where a
phase of AFM character intervenes before the FM QCP is
reached, see Sec. I1.D.2.a. However, Krellner and Jesche
(2014) found an AFM ground state between the FM and
the PM phases in single crystals with a Ru content close
to 20%, just as in CeRuPO under pressure. An example
is shown in Fig. 25 which displays the field dependence of
the magnetization for a sample with 22% of Ru content
at T ~ 1.8 K, below the transition temperature of 2.5 K
for this concentration. There is no remanent magneti-
zation at zero field in either field direction. In addition,
for H || ¢ a metamagnetic increase of the magnetization
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FIG. 25 Isothermal magnetization of a single crystal of
CeRug.22Feq.7sPO for H || cand H L ¢ at T =~ 1.8 K. Note
the absence of a remanent magnetization at H = 0. The in-
set shows a weak hysteresis loop near poH = 1.1T for H || c.
After Krellner and Jesche (2014).

with a small hysteresis loop is found for poH ~ 1.1T
(see the inset in Fig. 25) indicating a first-order meta-
magnetic transition. This is reminiscent of the situa-
tion in CeFeAs;_,P,O (cf. the inset in Fig. 22) and
NbFes (Moroni-Klementowicz et al., 2009).

3. Other Kondo-lattice systems

a. CeAgSb, Neutron scattering experiments on the
Kondo-lattice system CeAgSb, found an ordered moment
of 0.41up/Ce that aligns uniaxially along the tetrago-
nal c-axis, whereas magnetization measurements indicate
a strong magnetocrystalline anisotropy with the basal
plane as the magnetic easy plane (Araki et al., 2003;
Takeuchi et al., 2003). For other examples of such align-
ment along the hard direction see Sec. I1.D.2.a. For this
reason, quantum criticality in CeAgSbs has been studied
by transversal-field tuning with H 1 ¢. The critical field
is H. = 2.8T (Logg et al., 2013; Strydom et al., 2008;
Zou et al., 2013). The transition is suspected to remain
second order to the lowest T measured, about 2 K.
The FM order in CeAgSbs can also be suppressed by
hydrostatic pressure. Sidorov et al. (2003) measured the
resistivity and the ac heat capacity of very pure single
crystals (RRR ~ 285 — 480) at pressures p < 50kbar.
They found that the FM state changes into a presumably
AFM state above 27 kbar, with the new phase persisting
to about 46 kbar (see Fig. 26). The thermal FM phase
transition is second order for p < 27 kbar and the entropy
below T¢ indicates that the Kondo temperature in this
material is well below T (Sidorov et al., 2003; Zou et al.,
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FIG. 26 Pressure-temperature phase diagram of CeAgSbs Tc
and Tn were determined from dp/dT while Tyqg from ac-
calorimetry measurements. From Sidorov et al. (2003).

2013). For 27kbar < p < 33kbar the resistivity signa-
ture (specifically in dp/dT) at the FM transition sharp-
ens considerably with increasing p, indicating that the
FM-to-AFM transition is first order. This is reminiscent
of the situation observed in other ferromagnets which
show a change to AFM oder, such as Yb(Rh;_,Co,)2Sia,
CeRuPO or Nby_,Fesy,, (cf. Tab. VI). However, subse-
quent experiments by other groups, measuring the resis-
tivity and magnetization under pressure, could not detect
the AFM phase, possibly because of lower sample quality
(RRR = 110) or the limited resolution of the measure-
ments (Kobayashi et al., 2007; Logg et al., 2013).

b. CeRusGes and CeRuz(Ge1—5Siz )2 CeRusGes is a FM
Kondo-lattice system with T ~ 8 K, a spontaneous mag-
netization of 1.96 up along the tetragonal c-axis (Besnus
et al., 1991; Bohm et al., 1988), a Kondo temperature
Tk ~ 2K, and a rather small Sommerfeld coefficient
of 20mJ/K?mol. In some crystalline samples specific
heat and magnetization measurements exhibit two tran-
sitions, a hump at Ty =~ 8.2K and a sharp transition
at Tc ~ 7.7K (Fontes et al., 1996; Raymond et al.,
1999b). Between T and Ty, long-range order was iden-
tified to be AFM with an incommensurate wave vec-
tor ¢ = (0.31,0,0). Studies under hydrostatic pres-
sure (Kobayashi et al., 1998; Siillow et al., 1999; Wil-
helm and Jaccard, 1998) have revealed a rich p - T phase
diagram that is well reproduced by Si substitution for
Ge (Haen et al., 1999). Both local-moment FM and AFM
phases exist at low pressures. Above 20kbar the FM
phase changes into a second low-7" AFM phase. The mag-
netic order is then rapidly suppressed near p. =~ 67 kbar,
accompanied by NFL behavior with a linear-in-T" resis-
tivity. For p > p. the ground state is a Fermi liquid with
an enhanced quasiparticle mass that decreases towards
higher pressures (Siillow et al., 1999). A similar phase



diagram was obtained by substituting Ru by Fe (Ray-
mond et al., 1999b).

Although the p-T phase diagram of CeRusGes and its
Si-doped variety has the general shape shown in Fig. 2¢),
the underlying physics may be different from other sys-
tems. This is because the change in the ground state from
FM to AFM occurs when the Kondo temperature is much
smaller than the transition temperatures (Stllow et al.,
1999). The modification of the ordered state is therefore
likely due to a pressure-dependence of the exchange in-
teraction, and is not driven by the mechanism discussed
in Sec. IIL.E.

c. YbRhySi> and Yb(Rhi—5Co,)2Sia  The heavy-fermion
metal YbRhySis (Trovarelli et al., 2000) is a prototypical
example of a quantum critical system (Custers et al.,
2003; Gegenwart et al., 2002); for reviews, see Gegenwart
et al. (2008) and Si and Steglich (2010). Here we focus
only on properties that are related to ferromagnetism.

YbRhsSis crystallizes in the body-centered tetrago-
nal ThCrySis structure. The Yb ions are in the triva-
lent state as indicated by the high-T" Curie-Weiss behav-
ior of the susceptibility x(7') with an effective magnetic
moment of 4.4 ug, i.e. close to what is expected for a
free Yb3*t ion. The Weiss temperatures Ow (B | ¢) =
—180K and Oy (B L ¢) = —9K indicate a strong mag-
netocrystalline anisotropy (Trovarelli et al., 2000). The
CEF splits the J = 7/2 levels into 4 Kramers doublets,
leaving the ground state separated from the three ex-
cited doublets by approximately 17, 25, and 43 meV,
respectively (Stockert et al., 2006). YbRhySis has a
high Kondo temperature Tx =~ 25K (Kohler et al.,
2008), but a small unscreened magnetic moment of about
10~3up/Yb (Ishida et al., 2003) orders antiferromagnet-
ically below Ty ~ 0.07K (Trovarelli et al., 2000). The
exact magnetic structure is still unknown. Tn can be
suppressed by a magnetic field B ~ 0.06 T perpendicular
to the magnetically hard c-axis (Gegenwart et al., 2002),
or by negative chemical pressure (p ~ —0.25 GPa) (Ma-
covei et al., 2008; Mederle et al., 2001), which tunes the
system to QCPs.

YbRhySis shows pronounced NFL behavior in trans-
port and thermodynamic quantities, indicating the pres-
ence of strong spin fluctuations. For instance, the re-
sistivity p(T') o< T below 10K and the Sommerfeld co-
efficient diverges as a power law C/T o T~%3% for
T < 0.3K, similar to what is observed in the low-7' FM
YbNiyPs (Krellner et al., 2009). The latter behavior has
been interpreted in terms of a breakup of the heavy quasi-
particles at the QCP (Custers et al., 2003). At low tem-
perature the susceptibility x| . is very large for an AFM
(~ 8.5-107°m3/mol ~ 0.18 SI) and about 20 times
larger than x| .. This, and the value of the Sommerfeld-
Wilson ratio of about 30, indicate the presence of strong
FM fluctuations (Gegenwart et al., 2005), consistent
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FIG. 27 (a) T — x phase diagram of Yb(Rhi_,Co,)2Si> as
measured by Klingner et al. (2011) showing the transition
temperatures 77, and Txn. The red arrow marks the sample
with = 0.27 which is FM. (b) Real part x'(T') of the suscep-
tibility for Yb(Rho.73C00.27)2Si2 in different magnetic fields
with B || ¢. The sharp peak at Tc = 1.30K and B = 0 is
suppressed and shifted towards higher T' with increasing field.
(c) Temperature dependence of the imaginary part x”(T) of
the susceptibility. From Lausberg et al. (2013).

with NMR (Ishida et al., 2003) and neutron scattering
data (Stock et al., 2012). In an intermediate tempera-
ture range, for 0.3K < T < 4K, C(T)/T « In(To/T),
with Ty =~ 25K the characteristic spin-fluctuation tem-
perature according to Moriya (1985). Pressure stabilizes
the magnetic order, increasing both T and the ordered
moment (Knebel et al., 2006; Mederle et al., 2001). At
small pressures an additional transition is observed at a
lower temperature T, which moves towards Tx with in-
creasing pressure. At about 5 GPa, T, &~ Ty and Knebel
et al. (2006) proposed a FM ground state above 5 GPa
in YthQSlQ

Isoelectronic  substitution of Rh by Co in
Yb(Rh;_,Co,)2Sis leads to a similar effect as pressure;
the correspondence is excellent for p < 2.5 GPa (Klingner
et al., 2011). The phase diagram for 2 < 0.3 is shown
in Fig. 27. At x = 0.27, which corresponds to about
4.5GPa, T, =Ty = 1.3K. In this sample FM order was
indeed found by Lausberg et al. (2013). The moments
order along the magnetically hard c-axis, similar to
YbNiyPy (Steppke et al., 2013) and CeRuPO (Krellner
et al., 2007), and despite the large magnetocrystalline
anisotropy (Wthh is about 6 in Yb(Rh0_73000.27)28i2). A
plot of the real and imaginary parts of the susceptibility
with B || ¢ is shown in Fig. 27 (b) and (c), respectively.
A pronounced peak is seen in both quantities, with
huge absolute values. In Yb(Rhgr73C00.27)2Si2 this
anomalous behavior can be well explained in terms
of a Heisenberg model with competing FM and AFM
exchange interactions (Andrade et al, 2014). This
model also explains the observation that the transition



from the AFM to the FM at, e.g., x = 0.21, is first order,
as it is in Nby_,Feqy,, see Sec. I.D.1.a.

The diSCOVGI"y of FM in Yb(Rh0.73COO_27)QSi2 sug-
gests that the state below Tp (the dark gray area in
Fig. 27(a)) is also FM with a field-induced FM QCP.
However, recent investigations by Hamann (2015) indi-
cate a much richer phase diagram with additional AFM
phases. Yb(Rh;_,Co,)2Sis thus appears to be one of the
systems whose ground state changes from FM into AFM
while approaching the putative FM QCP (cf. Fig 2c)).
As in CeRuySiy, the physics of Yb(Rh;_,Co,)2Sis is con-
trolled by the evolution of the Kondo temperature, the
magnetic anisotropy, and the exchange interactions, and
not simply by the mechanism discussed in Sec. III.E that
could be valid for a simpler system such as Nb;_,Fes .

4. Discussion, and comparison with theory

All of the phase diagrams discussed in this section have
the same overall structure: As the Curie temperature
decreases, the ground state changes from a homogeneous
FM to some modulated magnetic state that is often sum-
marily referred to as AFM, even if its detailed structure
is not known.'” This is an important distinction from a
theoretical point of view, as classic AFM involves struc-
ture on an atomic scale, whereas other modulated states,
such as the SDW in Nb; _,Fea,, Sec. I1.D.1.a, or the he-
limagnetism in MnSi, Sec. I1.B.1.a, are long-wavelength
phenomena. The general structure of these phase dia-
grams is shown schematically in Fig. 2¢). It contains
two QPTs (between the FM and modulated states, and
between the modulated and nonmagnetic states, respec-
tively), and a multicritical point where the three phases
meet.

The issues related to the nature and properties of AFM
QCPs are very different from those of FM QCPs. Most
of the theoretical concepts discussed in Sec. I1I, with the
exception of Sec. IIL.LE, apply to FM QCPs only, and
questions related to the first-order vs. second-order na-
ture of any AFM QPT must not be confused with the
corresponding questions for FM QPTs. Moreover, in
some systems, especially Kondo-lattice systems, such a
change from FM to AFM order can occur as the result
of competing interactions, i.e., frustration, as a result of
pressure or chemical substitution. These mechanisms are
very different from the one discussed in Sec. IIL.E.

An interesting topic is the order of the QPT from the
FM to the modulated phase. FM-to-AFM transitions
are common even at high temperatures, and are often ac-
companied by a structural phase transition, which makes

17 The evidence for an AFM phase is stronger in some materials
than in others, and additional experimental work is needed in
many cases, see the discussions of the individual systems above.
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them first order. The nature of the FM-to-AFM/SDW
transitions discussed in this section is probably different,
as indicated by the small wave number that characterizes
the modulated phase. They likely belong to the class
of Lifshitz transitions, which separate a homogeneous
phase from a phase with a modulated order parameter
(see Hornreich et al. (1975) and references therein, and
Chaikin and Lubensky (1995)), and have been considered
in many contexts. On the basis of the mechanism dis-
cussed in Sec. III there are theoretical reasons to believe
that a QPT from a metallic FM to a modulated magnet
is generically of first order, although a detailed theory
remains to be worked out, see Sec. IV.B. Classically, this
transition can be either first or second order (Chaikin and
Lubensky, 1995). A generalization of the theory reviewed
in Sec. II1.B that allows for a modulated order parameter
has been developed by Karahasanovic et al. (2012), see
Fig. 39 (the nematic phase may or may not be present)
and the discussion in Sec. III.LE. The structure of the
resulting phase diagram agrees with what is observed
in, e.g., Nby_yFes ,, see Fig. 19. However, the the-
ory predicts a first-order transition from the AFM //spiral
phase to the PM, whereas the SDW-PM transition in
Nb;_,Fes, is observed to be continuous.

FM Kondo-lattice systems have been studied theoret-
ically by Perkins et al. (2007) by means of a mean-field
theory, and by Yamamoto and Si (2010) by means of a
RG treatment. Both found a second-order QPT, i.e., the
RG treatment found that the earlier generalized Stoner
theory is exact with respect to the order of the transition.
Technically, this is because the calculation by Yamamoto
and Si (2010) does not yield the nonanalytic wavenum-
ber dependence of the spin propagator found in a related
model (Chubukov et al., 2004), which destroys the FM
QCP and leads to a first-order transition as described in
Sec. IT1.B.2. While it is conceivable that the two models
are different in this respect, this seems unlikely. There is
reason to believe that the theory reviewed in Sec. III, if
applied to Kondo-lattice systems, will yield a first-order
transition. However, this has not been worked out in
detail and more work on this topic is needed. In any
case, these theories consider a QPT from a FM metal
to a PM metal, which so far has not been observed in
Kondo-lattice systems (although in some materials the
experimental situation is not quite clear yet, see, e.g.,
CeRuj_,Fe,PO in Sec. I1.D.2.c).

E. System showing glass-like behavior, short-range order,
or other strong-disorder effects

This section (with the exception of Sec. ILE.5) de-
scribes FM metallic systems that display effects believed
to be characteristic of strong disorder in the region where
the FM order is destroyed, and for many of them the
nature and precise location of the FM QPT is not clear.



Some materials display effects that have been interpreted
as evidence for a quantum Griffiths region on the PM side
of the QCP, with or without glassy freezing of the rare
regions or clusters that characterize the Griffiths region.
A special case is CeFePO, which displays short-range
magnetic order in the absence of strong quenched disor-
der. The systems discussed here are listed in Table VIL®
They are arranged with respect to their phenomenology
and/or its interpretation.

The behavior characteristic of these materials can of-
ten be obtained by substituting a magnetic element by
a non-magnetic one of the same series, e.g., uranium
by thorium in U;_,Th,NiSis, or nickel by vanadium in
Ni;_,V,. This usually introduces substantial amounts
of quenched disorder. The x - T phase diagram is often
characterized by a pronounced tail (cf. Fig. 2d), and the
region immediately above the tail is generally character-
ized by NFL behavior. The tail has been interpreted in
terms of locally ordered clusters, and the NFL behavior
in terms of quantum Griffiths singularities, a topic that
we review in Sec. III.D. This is, however, not the only
possible explanation for a tail in the phase diagram, see
the discussion in Sec. III.B.3. Some of the theoretical
and experimental results pertinent to this section have
been summarized by Vojta (2010). As in the case of Sec.
I1.D, different experiments and their interpretations are
not consistent for some materials, and it is possible that
some of the systems discussed below will eventually be
classified with those in Sec. II.C. Conversely, some ma-
terials discussed in Sec. II.C may eventually be found to
belong in the current section, especially URus_,Re,;Sis,
Sec. I1.C.2.b, and possibly Ni,Pd;_,, Sec. I1.C.1.a, while
CeFePO may belong into Sec. I1.B according to some ex-
perimental results, see Sec. IL.LE.4.

1. Systems with glass-like features

Systems with strong disorder effects include
CePd;_,Rh,, Ni;_,V,, and UNi;_,Co,Sis.  Their
behavior has been interpreted in terms of a Griffiths
region in the PM phase, with symptoms of glassy
freezing at the lowest temperatures.

a. CePdi_yRh, This series crystallizes in the or-
thorhombic CrB structure and evolves from a FM ground
state in CePd with Tc = 6.6K to a non-magnetic
intermediate-valence state in CeRh (Kappler et al., 1991;
Sereni et al., 1993). The chemical substitution of the
Ce-ligand Pd with Rh induces not just a volume effect
(positive chemical pressure), but also increases the local

18 We do not include diluted magnetic semiconductors, such as
Fei_;CozS2. For an example, see Guo et al. (2008).
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FIG. 28 Magnetic phase diagram of CePd;_;Rh;. Left scale:
composition dependence of the ordering (freezing) tempera-
ture Tc (T¢) deduced from various measurement techniques:
magnetization (M), ac susceptibility (x4.), thermal expan-
sion (3) and specific heat (C). The inset shows Tc(z) values
observed in x,.(T) for z > 0.7 in poly- and single crystals.
Right scale: the Weiss temperature 0p. After Sereni et al.
(2007) and Westerkamp et al. (2009).

hybridization strength of the cerium 4f electrons with
the conduction electrons, leading to a strong enhance-
ment of the Kondo temperature Tk (Sereni et al., 2007).
In addition, the Rh substitution introduces disorder.

Evidence for the FM nature of the ordered state comes
from the T-dependence of the ac susceptibility x'(T),
which shows large and sharp maxima for all samples rang-
ing from z = 0.6 to z = 0.87 (Sereni et al., 2007). No
maximum was observed down to 20 mK in a sample with
x = 0.9; this indicates a critical concentration for the
loss of ferromagnetism very close to z. = 0.87 (West-
erkamp et al., 2009). The phase diagram in Fig. 28 shows
the transition temperature deduced from measurements
of various observables as a function of xz. Westerkamp
et al. (2009) have attributed the continuous decrease of
Tc with increasing « on the competition between FM or-
der and growing Kondo screening. The curvature of T¢
changes from negative to positive at x ~ 0.6, display-
ing a long tail towards higher Rh contents. In this con-
centration range, the Kondo temperature Tx =~ 2|0p|,
with fp the paramagnetic Weiss temperature obtained
from fits of the dc susceptibility at high temperatures,
strongly increases with x. The main mechanism gov-
erning Tk is the hybridization of the Ce 4f electrons
with the valence electrons of the surrounding ligands. In
Ce-based compounds, Rh ligands are known to lead to
much larger Tk than Pd ligands (Koelling et al., 1985).
Thus, in CePd;_,Rh, the effect of the Rh-ligands is
much stronger than the effect of the Pd-ligands once
the Rh content reaches a critical value close to 0.7. The
random distribution of Rh and Pd ligands likely creates
regions with different local values of Tx. An analysis
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TABLE VII Systems showing short-range order or spin-glass (SG) freezing. Tc = Curie temperature, Ty = freezing tempera-
ture, po = residual resistivity. QC = quantum critical. QGP = quantum Griffiths phase. N/A = not applicable. n.a. = not

available.
System Order of Tc/K Ts/K magnetic tuning Disorder Comments
Transition ¢ moment /up ® parameter (po/pf2em) ©
CePd;_,Rh, n.a. 6.6-3 1 3-0°¢ n.a. composition 1,2 n.a. Kondo cluster
glass
CePti_;Rh, n.a. 627 3-29 n.a. composition n.a. cluster glass (7)"
Nij_ Vs n.a. 633 —~30%" ~30-02% 060 composition * n.a. cluster glass (7)"
UNi;—,Co.Si2 n.a. 95 — 8.6 6 (7)1 n.a. composition ® 15 uQem ©™ glassy phase ?
U;_.Th;NiSi> n.a. 95 — 297 20 — 470 n.a. composition 7 n.a. possible QGP
CeTi1_.VzGes 2nd ®° 14 — 2.889 n.a 1.5° compositiom9 229 QGP ?
Sri1_,Ca,RuO3 n.a. ~ 100 - 40'%7 ~ 40 - ~51" 1-0 composition 10 8% thin films
CeFePO N/A N/A 0.9 n.a none 800 1% low intrinsic

disorder

¢ For the disappearance of homogeneous FM order.
¢ For the highest-quality samples.

" See Footnote 19.
¥ For 2 = 0 — 0.96 (Pikul and Kaczorowski, 2012).
" For z = 0 — 0.7 (Pikul, 2012).
? For z = 0.15 — 0.38 (Demko et al., 2012).

b Per formula unit unless otherwise noted.
4 For =1 - 0.6 (Sereni et al., 2007)
¢ For x = 0.6 — 0.9 (Sereni et al., 2007; Westerkamp et al., 2009).

S Forz=0-0.7 9 For z = 0.5 and 0.6.

“ For £ = 0 — 0.105 (Ubaid-Kassis et al., 2010). 7 For 2 = 0.11 — 0.1225 (Ubaid-Kassis et al., 2010).
! For x = 0.98 (Pikul and Kaczorowski, 2012).
° For z = 0.7 — 0.9 (Pikul, 2012).

" For UNiCoSi.
P For CeTiGes.

" For z = 0.38 — 0.52 (Demko et al., 2012).

® For x = 0 (Schneider et al., 2010). RRR values varied from a high of 28.9 for x = 0 to a low of 2.9 for x = 0.5.
 High po not intrinsic, but due to granularity of the polycrystalline sample.

! Sereni et al. (2007) 2 Westerkamp et al. (2009)
5 Pikul and Kaczorowski (2012) ¢ Kaczorowski (1996)
9 Kittler et al. (2013) 10 Demko et al. (2012)

3 Kawasaki et al. (2009, 2008) * Ubaid-Kassis et al. (2010)
7 Pikul (2012) 8 Manfrinetti et al. (2005)
1 Lausberg et al. (2012) 2 Briining et al. (2008)

of the entropy and the slope of x/(T) at 2K revealed
some fraction of unscreened magnetic moments, even at
large « where the average T is already above 50 K. The
pronounced maxima in x'(7) of samples with concen-
trations > 0.6 exhibit a frequency dependence simi-
lar to that observed in spin glasses (Westerkamp et al.,
2009). The relative temperature shift of about 3 to 10%
per frequency decade is considerably larger than that in
canonical metallic spin glasses (where typical values are
1 to 2%), but well below the value of about 28% ob-
served in superparamagnets (Mydosh, 1993). This be-
havior, and zero-field-cooled and field-cooled magnetiza-
tion measurements, have been interpreted as evidence for
the existence of clusters of magnetic moments in the sys-
tem below a certain temperature Tejyster (Westerkamp
et al., 2009). Since the broad distribution of local Kondo
temperatures is thought to be responsible for the clus-
ter formation, Westerkamp et al. (2009) called the low-T
state in CePd;_,Rh, a “Kondo-cluster glass”.'® The ob-

19 The term ” cluster glass” is frequently used in a spin-glass context
(see, e.g., Itoh et al. (1994)), and different authors use it for

servation of reentrant depolarization in recent neutron-
depolarization imaging experiments (Schmakat et al.,
2015) on the same samples investigated by Westerkamp
et al. (2009) seems to confirm the presence of such a
state. The general behavior of CePd;_,Rh, is quite dif-
ferent from that observed in many other disordered NFL
systems, such as CeNi;_,Cu,, where the Ce valence re-
mains nearly trivalent and where a percolative cluster
scenario has been proposed (Marcano et al., 2007).
Specific-heat measurements have shown the existence
of NFL behavior for concentrations 0.85 < z < 0.9
(Deppe et al., 2006; Pikul et al., 2006). Samples in
this concentration range show a power-law dependence
C(T)/T ~ T*7', with exponents A = 0.6 and 0.67 for
x = 0.87 and 0.9, respectively (see inset a of Fig. 29).
Power-law behavior has also been found for the T-
dependent ac susceptibility, see inset b of Fig. 29. These
findings suggest that there are strong fluctuations in an
entire range of Rh concentrations, which raises the ques-

various phenomena and concepts whose underlying physics may
be quite different.
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FIG. 29 Comparison of thermodynamic data for

CePd;_,Rh, with the quantum Griffiths phase scenario
(cf. Sec. III.D). Main figure: Field dependence of the
magnetization M for a single crystal with x = 0.8 at 50 mK.
The data follow a power law M o H with A = 0.21. Inset
a: 4f Sommerfeld coefficient for polycrystals with x = 0.87
and 0.9 (Pikul et al., 2006) plotted on a double-logarithmic
scale. Solid lines indicate a T*~! power-law behavior. Inset
b: T-dependence of the ac susceptibility x'(T) of three
polycrystals with z = 0.8, 0.85 and 0.87. The lines are fits to
a T*~! power law. From Westerkamp et al. (2009).

tion whether T¢ going to zero near © = (.87 represents a
FM QCP or not.

A clear answer was given by Westerkamp et al. (2009)
who measured the Griineisen ratio, defined as I x 5/C,
with § the volume thermal expansion coefficient and C'
the specific heat. I' must diverge as a power law as T
goes to zero at any QCP (Zhu et al., 2003); this has
been confirmed experimentally for several Kondo-lattice
systems exhibiting an AFM QCP (Kiichler et al., 2003).
Close to the critical concentration, where the anomaly
in x/(T') disappears, I'(T') « InT was found, contrary to
the power-law divergence expected at a FM QCP. This
shows that there is no FM QCP in CePd;_,Rh, at this
concentration. Rather, in the region 0.7 < x < 0.9 and
in the temperature range Tc < T < Teuster the obser-
vations are consistent with the quantum-Griffiths-phase
scenario that predicts x/(T') o C(T)/T o T*~! and
M H)‘, with 0 < XA < 1 an z-dependent exponents
(Castro Neto et al., 1998; Dobrosavljevi¢ and Miranda,
2005), and T'(T) « log(T") (Vojta, 2009), see Sec. IIL.D.
This is demonstrated in Fig. 29. However, the exponents
A obtained from the specific heat and the susceptibility
are not the same, contrary to the theoretical prediction.

The field-dependent magnetization at 50 mK also fol-
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lows a power law (Brando et al., 2010; Westerkamp
et al., 2009). CePd;_,Rh, has a very small magnetic
anisotropy at x = 0.8 (Deppe et al., 2006), suggesting
Heisenberg symmetry which is needed for the realiza-
tion of the quantum-Griffiths-phase scenario (Vojta and
Schmalian, 2005). According to this interpretation, the
observations for 0.7 < z < 0.9 represent quantum Grif-
fiths behavior in the PM phase, and the true QCP, which
one expects for x = 0.7, so far has not been observed.

b. CePti_,Rh, Kawasaki et al. (2009, 2008) have found
that CePt;_,Rh, behaves similarly to CePd;_,Rh, and
have successfully fitted the freezing temperature, identi-
fied as the temperature where the ac susceptibility shows
a pronounced peak, to a Vogel-Fulcher law.

c. Nii_zV, A small amount of vanadium (about 12%)
suppresses T¢ to zero from T ~ 630K in pure nickel
(Bolling, 1968). Ni;_,V, is attractive for studying quan-
tum Griffiths effects for several reasons: 1) it is sim-
pler than Kondo-lattice ferromagnets and has Heisen-
berg symmetry, ii) the high T of nickel allows the ef-
fects to be observable in a larger temperature range than
in other systems, and iii) a vanadium impurity causes a
strong reduction (about 90%) of the magnetic moment of
the neighboring Ni atoms, which creates significant disor-
der. This is in contrast to Ni;_,Pd,, where isoelectronic
Pd substitution does not introduce much disorder, and a
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FIG. 30 = - T phase diagram of Ni;_;V,;. Tmax, where the
ac susceptibility peaks, marks the freezing into the cluster
glass (CG) state. For 0.114 < z < 0.15 effects consistent
with a quantum Griffiths phase (GP) were observed in the
susceptibility (x o< T77) and magnetization (M « H<) , see
Fig. 31. The orange squares mark the crossover from the
GP to the cluster glass phase (CG). The inset shows the -
dependence of the exponents. From Schroeder et al. (2011).
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FIG. 31 The low-field susceptibility xm = M/H — Xorb vs T,
and the magnetization M,, = M — xo.»H at 2K vs H, for
samples with 0.114 < x < 0.15. Xorp is the orbital contri-
bution to x. The dashed lines indicate power-law behavior
Xm < T77 and M,, « H*. From Ubaid-Kassis et al. (2010).

large amount of Pd (about 97.5%) is needed to suppress
Tc to zero, see Sec. I1.C.1.a.

Ubaid-Kassis et al. (2010) have measured the magne-
tization M and the ac susceptibility x of several samples
with 0 <z < 0.15. The z - T phase diagram is shown in
Fig. 30 (note the log-linear plot). For x < 0.11 T was
estimated from standard Arrott plots, H/M = a + bM?.
For larger = the determination of T¢ was model depen-
dent; for > 0.11 and fields H > 0.5 T a modified Arrott
plot, M/8 = Mé/B(T) + ¢(H/M)Y/7, was used. Recent
1SR data confirmed that the long-range FM order is lost
for x close to 0.11 (Schroeder et al., 2014). In addition to
the Arrott plots, the temperature Ty, of the maximum
in the ac susceptibility was determined as in the case
of CePd;_,Rh,. The field and frequency dependence of
Timax for z = 0.12 was found to be consistent with what is
expected for a cluster glass (see Sec. ITL.D.3). The dashed
line in Fig. 30 is a linear extrapolation of In T¢ vs. =,
which represents a shape of the phase diagram similar to
that in Fig. 2d).

In the PM region of the phase diagram with 0.114 <
x < 0.15 the T-dependence of the susceptibility x,, =
M/H — xorp (with a small orbital contribution xerp =
6 x 1075 emu/mol) can be fitted to a power law T~
for 10 < T < 300K, see Fig. 31. The magnetization
M,, = M — xorpH also shows a power-law behavior, H*
at 2K, for 3000 < H < 50000 G; both are characteris-
tic of a quantum Griffiths phase. Deviations from this
behavior at low T has been ascribed to the formation
of a cluster-glass phase (Ubaid-Kassis et al., 2010); the
crossover between the two is marked by orange squares
in Fig. 30. It is not known whether the specific heat of
these samples also follows a power law.
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d. UNij_,Co.Si» UNiSis is a ferromagnet (see Sec.
I1.C.1.d), UCoSis is a paramagnet with strong spin fluc-
tuations (Kaczorowski, 1996). The series UNij_,Co,Sis
has been investigated by Pikul and Kaczorowski (2012).
Cobalt substitution leaves both the uranium lattice and
the orthorhombic crystal structure intact, while reduc-
ing the unit cell volume by about 1.2%. Since the b-axis
stretches with increasing x, while the a and ¢ axes shrink,
Co substitution is not equivalent to hydrostatic pressure.
The main effect of the doping seems to be the modifi-
cation of the intersite coupling between the U magnetic
moments: A Curie-Weiss analysis of the susceptibility
shows that the effective moment is almost unaffected by
the Co substitution, whereas the Curie-Weiss tempera-
ture Ocw varies from 95 K in UNiSis to —70 K in UCoSis.
Tc as well as the remanent magnetization decrease con-
tinuously with increasing x. The clear onset of the mag-
netization observed at T for 0 < z < 0.96 evolves for
x = 0.98 into a small anomaly at T' ~ 6 K, which is also
seen in C'(T)/T as a broad hump. For 2 = 1 the anomaly
is absent. The ground state of the x = 0.98 sample is
unknown; Pikul and Kaczorowski (2012) have suggested
that it is a spin-glass-like state with competing FM and
AFM interactions (see Fig. 32). The FM transition at
nonzero temperature appears to be second order for all
samples where it is clearly present; the order of the tran-
sition from the FM state to the glassy state, if it exists,
is not known. UCoSi, shows a logarithmic enhancement
of the Sommerfeld coefficient, C(T)/T x —InT, down to
the lowest temperature measured, 7" = 2 K, which Pikul
and Kaczorowski (2012) have interpreted as indicating
vicinity to a QCP.

2. Other systems showing effects of strong disorder
a. Ui—zTh;NiSi> The system U;_,Th,NiSiy was inves-

tigated by Pikul (2012). Alloying with non-magnetic Th
causes the unit cell volume to expand without changing
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FIG. 32 z - T phase diagram of UNi;_;Co;Siz. From Pikul
and Kaczorowski (2012).



100 T T T T
U, ThNiSi,
80 @ 4
— 60| <
=)
&L/
L X 4
40 M 3
20 F l 4
O 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 33 T - x phase diagram of U;_,;Th,NiSiz derived from
magnetization M (T) and specific heat C(T") measurements.
The circles correspond to the maxima in x(T) = M(T)/B
or minima in OM(T)/0T, and the triangles correspond to
the minima in 9(C(T")/T)/0T. The arrow (z.) indicates the
position of the putative FM QCP obtained from extrapolating
the low-x curvature of the phase separation line. From Pikul
(2012).

the crystal structure. This shifts the FM phase transi-
tion to lower temperatures as shown in Fig. 33, see also
Fig. 4 in Pikul (2012). The feature in the specific heat
that signals the phase transition broadens with increasing
x. At x = 0.8 the transition is no longer clearly visible
in C(T)/T, while it can be still seen in OM(T)/0T. At
. ~ 0.75 the long-range FM order seen for 0 < z < 0.7
changes smoothly into short-range or spin-glass-like or-
der. z. indicates the position of the putative FM QCP;
around this concentration the phase boundary changes its
curvature and develops a marked tail (cf. Figs. 2d) and
33). For the sample with = 0.8, C(T)/T does not show
a maximum, as one would expect in a spin glass (Mydosh,
1993), and it does not level off either as in a Fermi liquid,
but keeps increasing with decreasing T'. This anomalous
behavior was also observed in other doped FM systems,
for instance, CePd;_,Rh,, where the thermodynamics in
the “tail” region of the phase diagram are believed to be
dominated by quantum Griffiths effects (see Westerkamp
et al. (2009) and Sec. ILE.1.a).

b. CeTii—,V,Ges CeTiGes is a FM Kondo-lattice sys-
tem with Tc = 14 K and a hexagonal perovskite BaNiO3-
type structure (Manfrinetti et al., 2005). The system
CeTij_, V,Ges has been studied by Kittler et al. (2013).
So far only polycrystalline samples with a relatively large
residual resistivity pg &~ 22 puQem (for CeTiGes) have
been investigated. At high temperature the susceptibility
has been reported to follow a Curie-Weiss behavior with
a negative Weiss temperature 0y = —36.5K, indicat-
ing predominantly AFM interactions. The effective mo-
ment is 2.64 pp, close to the value of 2.54 up for trivalent
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FIG. 34 x—T phase diagram of CeTi1_,V,Ges. Tc decreases
approximately linearly with increasing x, as indicated by the
dotted line. Also shown is a fit by Tc o (z. — )*/* (solid
line), which is expected within the Herz-Millis-Moriya theory
(cf. Sec. III.C.2). From Kittler et al. (2013).

free T3Ce ions. The resistivity increases with decreas-
ing temperature, displaying a maximum at about 35K
which indicates the onset of Kondo coherence. The Ce
ground state is a Kramers doublet, but the entropy just
above T¢ is larger than the RIn 2 expected for a doublet
ground state, suggesting that the CEF splitting is small
and that the Kondo temperature can not easily be deter-
mined from the entropy. The ordered moment measured
by neutron powder diffraction within the FM phase is
1.5 pp/Ce, and the ordering is collinear, with moments
pointing along the crystallographic c-axis (Kittler et al.,
2013). The specific heat below T suggests the presence
of a spin gap A/kp ~ 0.8 T in the magnetic excitation
spectrum, which indicates a strong magnetic anisotropy.

Non-isoelectronic vanadium substitution for titanium
in CeTi;_,V,Ges permits to reduce T¢ and completely
suppress it at x. &~ 0.35, while Ce retains its +3 valence in
all samples (Kittler et al., 2013). CeVGes shows AFM or-
der below 4K (Bie and Mar, 2009). Magnetization mea-
surements demonstrate that the ordered moment is also
reduced with increasing x. The phase transition is second
order down to about 3K, as indicated by the mean-field-
like feature in the specific heat, and remains second order
and ferromagnetic even at higher V concentrations, but it
broadens strongly for x close to x.. This is an indication
of strong disorder effects. The logarithmic increase of
Cay/T towards low temperatures for the z = 0.3 sample
indicates the presence of spin fluctuations, which might
arise from the presence of a QCP at x. or, more proba-
bly, from quantum Griffiths effects, similarly to what has
been observed in CePd;_,Rh, and Ni;_,V,. The ex-
perimental phase diagram of CeTi;_,V,Ges is shown in
Fig. 34. The dotted line denotes a linear decrease of T¢
with x, and the solid line is a fit to the behavior expected
from Hertz-Millis-Moriya theory, T ~ (z. — x)3/%, see
Sec. II1.C.2. The lowest temperature achieved was 2 K.
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FIG. 35 Contour plot of the remanent magnetization in the
T - x plane for an epitaxial film of Sr;_,Ca;RuOs. Black
and white symbols indicate the transition temperature deter-
mined from susceptibility and magnetization measurements,
respectively. From Demko et al. (2012).

Low-T data in the region at x ~ x. would be required to
determine whether or not a Griffiths region as discussed
in Sec. III.D is indeed present in this system.

3. A thin-film system: Sri_,Ca;RuOs (thin-film samples)

Bulk (ceramic and powder) samples of Sr;_,Ca,RuOg3
have been discussed in Secs. I1.B.4 and II.C.1, respec-
tively. Thin films have been grown epitaxially by Schnei-
der et al. (2010), Wissinger et al. (2011), and Demko
et al. (2012). The former authors found that T¢ de-
creases roughly linearly with x, with an extrapolated
critical value x. = 0.7, in agreement with results on
powder, polycrystalline, and ceramic samples. How-
ever, Wissinger et al. (2011) found significant differ-
ences between film and bulk samples, including a higher
value of z. for films. Demko et al. (2012) measured
the magnetization and susceptibility using a magneto-
optical technique on a composition-spread epitaxial film
of 200nm thickness. They found a phase diagram that
differs markedly from previous results, including those by
Schneider et al. (2010), namely, a pronounced tail with
an onset around xz = 0.4, see Fig. 35. They interpreted
their results as the FM-to-PM quantum phase transition
being destroyed by the disorder. This is consistent with
a microscopic model which considers spatial disorder cor-
relations at smeared phase transitions (Vojta, 2003) with
a behavior different from that at critical points (Demko
et al., 2012; Svoboda et al., 2012).
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FIG. 36 Normalized muon-spin asymmetry function G(t, B)
in CeFePO at different temperatures. The red lines are fits to
G(t,B) = Gre 1Y £ @G, e=ALt” The peak in Ar(T") and
the strong increase of Ar(T) mark the spin-freezing tempera-
ture T,. From Lausberg et al. (2012).

4. A system showing short-range order: CeFePO

CeFePO, a homologue of the quaternary pnictides, is
a stoichiometric Kondo lattice system that is very close
to a FM instability (Briining et al., 2008). However,
its ground state is neither FM nor PM, but a short-
range ordered state (Lausberg et al., 2012), which is
very unusual for a clean system. The first comprehen-
sive low-T" study of CeFePO was performed by Briining
et al. (2008), who investigated polycrystals by measure-
ments of the uniform susceptibility, resistivity, NMR (ori-
ented powder) down to 2K, and specific heat down to
0.4K. They found that CeFePO is a heavy-fermion sys-
tem (iron is not magnetic in this compound) with a
Kondo temperature Tk ~ 10K, a Sommerfeld coeffient
v = 0.7J/K?mol, which corresponds to a mass enhance-
ment of 50, a Sommerfeld-Wilson ratio of 5.5, and a Kor-
ringa ratio So/TiTK? ~ 0.065, indicating the presence
of FM correlations. Below 10K the broadening of the
line shape of the NMR spectra for small fields H 1 ¢ —
but not for H | ¢ — suggests that in this temperature
regime short-range FM correlations that cannot be as-
cribed to disorder start to be relevant. Thus, only the
basal-plane component of the cerium 4f moment is FM
correlated. This strong anisotropy reflects the quasi-2-
d crystal structure. Later, uSR experiments were per-
formed on poly- and single crystals, together with ac



susceptibility and specific heat measurements down to
0.02K (Lausberg et al., 2012). The ac susceptibility
shows a frequency-dependent peak at T, ~ 0.9 K, whose
dependence on the modulation frequency is larger than
that found in canonical spin glasses and smaller than that
of superparamagnets. The entropy measured below the
freezing maximum is just 1% of RIn2. A summary of the
1SR results in zero and small longitudinal field is shown
in Fig. 36. In conclusion, there is no FM-QCP in CeFePO
but rather some short-range order with a particular tex-
ture whose nature is unknown. The fact that in CeFePO
strong FM fluctuations are present, and that AFM phases
were observed in samples slightly doped with Ru or As
(see Sec. I1.D.2.c and Sec. IL.D.2.b), suggests a delicate
interplay between FM and AFM correlations in this sys-
tem. This might cause frustration and favor exotic states.
There are theoretical predictions of textured states in
itinerant systems close to a FM instability, see Sec. II1.E.
An interestig proposal was put forward by Thomson et al.
(2013), who suggested a helical glass state as the result of
weak disorder which destabilizes the FM state and leads
to incommensurate spiral magnetic order. Even the best
samples of CeFePO have a relatively small RRR of ap-
proximately 5, but this may be attributed to the presence
of strong FM fluctuations rather than quenched disorder.
Since the amount of disorder necessary to generate the
spiral state is rather small, the mechanism proposed by
Thomson et al. (2013) is a viable candidate for explaining
the observations.

5. Discussion, and comparison with theory

The properties of CePd;_,Rh, and Ni;_,V, have
been interpreted in terms of the theoretical ideas dis-
cussed in Secs. II1.D.1 and II1.D.3, namely, a quantum
Griffiths phase and interactions between rare regions that
lead to glassy properties. While some aspects of the the-
ory agree very well with the experimental results (see,
e.g., the fits in Fig. 29), there also are discrepancies. For
instance, the theory predicts that the field dependence
of the magnetization and the temperature dependence
of the specific-heat coefficient are governed by the same
exponent A\, whereas the data yield different values, see
Fig. 29. For Kondo systems there are other scenarios
that so far have not been explored in the context of these
experiments, see Sec. II.D.2. The evidence for a glassy
phase in UNi;_,Co,Siz (Sec. IL.E.1.d) is much weaker,
and the lowest T where a clear FM transition has been
observed is Tc = 8.6 K. Experiments at lower tempera-
tures in the region close to x = 1 are needed to determine
the nature of the FM QCP in this system.

The evidence for strong disorder effects in the systems
discussed in Sec. II.E.2 is weaker and largely based on the
shape of the phase diagram. As we discuss in Sec. I111.B.3
there are other possible explanations for a “tail” in the
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phase diagram (see Fig. 38) and further investigations are
needed to ascertain whether quantum Griffiths or related
effects are indeed present in these materials.

IIl. THEORETICAL RESULTS

A. Soft modes in metals

In Sec. I.LB we discussed why, in the absence of soft
modes other than the order-parameter fluctuations, the
quantum FM transition in clean systems is expected to be
generically continuous with mean-field static exponents
and a dynamical exponent z = 3. We also mentioned that
this expectation breaks down in general, and in Sec. IT we
discussed many experiments that show a first-order tran-
sition rather than a continuous one. Indeed, Tables I, 1T
and III, IV, V show that most of the observed low-
temperature transitions into a homogeneous FM phase
are first order unless the system is either disordered or
quasi-1-d. We will argue below that the systems in Ta-
ble IIT can be understood in terms of a crossover from
an asymptotic first-order transition to a pre-asymptotic
regime that is described by Hertz theory. Underlying the
breakdown of the original expectation for metallic mag-
nets are soft two-particle excitations that couple to the
magnetization. These excitations are the result of two
characteristic properties of metals, viz., (1) a sharp Fermi
surface, and (2) a nonzero density of states at the Fermi
level. As we will see, they can be understood as rep-
resenting a Goldstone mode that results from a sponta-
neously broken gauge symmetry. In disordered systems,
soft critical order-parameter fluctuations exist in addi-
tion to this fermionic soft mode and govern the critical
behavior. Finally, the rare-region effects mentioned in
Sec. I.B also can be understood as a certain class of soft
excitations. In this section we explain the importance
of soft modes, give a classification, and discuss in more
detail the fermionic Goldstone mode that is of particular
importance for quantum FMs.

1. Why we should care about soft modes

The only way in which observables, be it thermody-
namic quantities or time correlation functions, can dis-
play nonanalytic behavior as a function of temperature,
frequency, wavenumber, or an external field, is via the
existence of soft modes, i.e., correlation functions that
diverge as the frequency and the wavenumber go to zero.
It is useful in this context to consider soft modes as lead-
ing to a distribution of relaxation times. Consider, for
example, a diffusive process (e.g., Forster, 1975), i.e., a
correlation function that behaves for small wave vectors
k and long times t as

C(k,t) x e vk (3.1a)



with v some kinetic coefficient.
k-dependent relaxation time

(k) = 1/vk? .

This corresponds to a

(3.1b)

For a fixed wave vector the decay is exponential, but the
relaxation time diverges as k — 0. As a result, the local
time-correlation function in d dimensions,

Clx=0,t) = %Z C(k,t) o< 1/t42  (3.2)
k

decays algebraically with time. We write the local time-
correlation function as an integral,
oo
Clx =0,t) = / dr P(t)e V7 . (3.3a)
To

Here 7 is a relaxation time, 79 = 1/vk3, with ko the upper
cutoff on the momentum integral in Eq. (3.2), and P(7) is
a relaxation-time distribution function. Comparing Egs.
(3.3a) and (3.2) we see that

P(7) oc 1/7(@+2)/2 (3.3b)

The algebraic decay, or long-time tail, of the time-
correlation function is thus a result of the power-law de-
cay of the distribution function P(7). The Laplace trans-
form C(z) of C'(x = 0,t) is a nonanalytic function of the
complex frequency z at z = 0; for Imz > 0 and (d—2)/2
not integer the leading low-frequency behavior is

C(z):i/ dt e C(x = 0,t)
0

o 2(47D/2 4 (terms analytic in z) . (3.4)

Observables that couple to such diffusive modes will be
given in terms of integrals whose integrands contain dif-
fusive correlation functions. This results in a nonanalytic
dependence on, e.g., the temperature or the frequency.

Such nonanalytic behavior can be generic, i.e., exist in
an entire phase, or it can occur only at special points in
the phase diagram. An example of the former are Gold-
stone modes, which arise from the spontaneous breaking
of a global continuous symmetry (Forster, 1975; Zinn-
Justin, 1996). The prime example of the latter are crit-
ical fluctuations, which are soft only at a critical point
(Ma, 1976). Other mechanisms for producing generic soft
modes include conservation laws, and gauge invariance
(Belitz et al., 2005b). For the purposes of this review,
we are interested in four classes of soft modes in metals.
The first class consists of

i) single-particle excitations. These are represented
by the soft single-particle Green function. They
exist because of the sharpness of the Fermi surface
and the existence of a nonvanishing quasiparticle
weight. They are responsible for the leading be-
havior of observables in a Fermi liquid, e.g., the
linear T-dependence of the specific heat.
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An example of the effects of soft single-particle excita-
tions is the paramagnon propagator in a metallic mag-
net. As a function of the wave vector k and the imagi-
nary Matsubara frequency €2 it has the form (Doniach
and Engelsberg, 1966; Hertz, 1976)

1
P(k,iQ) = .
(ki) = R o) TRl

(3.5a)

Here t is the distance from the magnetic transition, and
a and b are constants. n is an integer that depends on
the physical situation. For clean and disordered metallic
FMs, n = 1 and n = 2, respectively. For AFMs, n = 0.
The spectrum or dissipative part of the corresponding
causal function, P”(k,w) = Im P(k,iQ) — w + 40), reads

w/|k["

1" _
Pk @) = Gamys + oo e

(3.5b)

We see that the paramagnon excitation is damped with a
damping coefficient given by w/|k|™. Physically, this re-
flects the coupling of the magnetic collective mode to the
soft single-particle excitations in the itinerant electron
system. It is usually referred to as Landau damping, in
analogy to the corresponding effect in a collisionless clas-
sical plasma (Lifshitz and Pitaevskii, 1981). The same
damping mechanism is applicable to the plasmon mode
in a charged Fermi liquid, and the zero-sound mode in
a neutral one (Pines and Nozieres, 1989). We also note
that the |Q| singularity on the imaginary-frequency axis
in Eq. (3.5a) implies, for fixed k, a 1/72 long-time tail
for P as a function of the imaginary time 7 (see, e.g.,
Belitz et al., 2005b). We will encounter the FM para-
magnon propagator again later in this section, see Eqs.
(3.44, 3.75), and the 1/72 long-time tail will be important
for the discussion in Sec. III.D.3.

The second class consists of

ii) two-particle excitations that are the Goldstone
modes of a broken gauge symmetry with the density
of states at the Fermi level as the order parameter.
They were first identified as Goldstone modes by
Wegner (1979) in the context of disordered electron
system; we will discuss them in Sec. II1.A.2.

The third class are

iii) Griffiths or rare-region effects in disordered systems
(Griffiths, 1969; McCoy, 1969).

These are normally not thought of as soft modes. To
see the connection, consider a classical Ising system with
randomly missing bonds in its disordered phase. In an
infinite system, below the transition temperature of the
clean system, but above the one of the actual bond-
disordered one, one can find arbitrarily large regions with
linear dimension L that happen to contain no missing
bonds. In such a region, the spins are ordered, but the



probability of finding such a region will decrease expo-
nentially with its volume L. In order to destroy such a
rare region, a surface free energy must be overcome. The
relaxation time for a cluster of linear size L will therefore
be (Bray, 1988; Randeria et al., 1985)

(L) =79 e , (3.6)

with 7y a microscopic time scale and o a surface tension.
This time scale diverges as L — oo, just as the diffusive
relaxation time in Eq. (3.1b) diverges as k — 0, only
here the divergence is exponential. In order to estimate
time-correlation functions C(t) we need to weigh a factor
exp(—t/7(L)) with the probability P(L) o exp(—cL?) of
finding a rare region in the first place, and integrate over
all sizes L. We thus expect
o0
cayx/ dLem{—dﬂ—@ﬁweﬂ“* . (3.7a)
0
where c is a constant. For large times t the integral can be
evaluated by the method of steepest descent. The typical
length scale L is Ly, o< [In(T/70)]*/ (=) and the leading
contribution to C(t) is (Randeria et al., 1985)
O(t = 00) o exp {-bun(t/7b)yﬂ<d—l>} . (3.7)
with b = ¢/o%(@=1) another constant. We see that the
time-correlation function again decays slower than expo-
nentially, albeit faster than any power. We again define
a distribution function for relaxation times by writing

Cm:/wmﬂﬂfm. (3.82)
70
The leading behavior for large 7 is

P(r — o0) x exp [—b[ln(T/To)]d/(d_l) (3.8b)
The analogy to diffusive soft modes, Egs. (3.1) - (3.3), is

now obvious.

For later reference we mention that Eq. (3.6) holds for
classical Ising magnets only; for other systems the expo-
nent may be different. We will discuss Griffiths effects in
more detail in Sec. II1.D.

All of the above are generic soft modes.
we will encounter

In addition,

iv) critical fluctuations at the QCP in disordered FMs.
These are analogous to the critical fluctuations at
classical transitions (Ma, 1976). However, as we
will see in Sec. IT1.C.2 their effects at the quantum
ferromagnetic transition are rather weak.

Another class of generic soft modes is represented by
phonons, or elastic deformations in a continuum model.
Their coupling to the magnetization has been studied
extensively for classical magnets (Bergman and Halperin,
1976, and references therein). For quantum magnets no
convincing treatment exists; see Sec. IIL.F.
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2. Goldstone modes in metals

We now illustrate the nature of the second class of soft
modes listed above, which are of crucial importance for
the breakdown of Hertz theory. We first show that spin-
less noninteracting electrons, at T' = 0, possess Goldstone
modes resulting from a spontaneously broken gauge sym-
metry. We then generalize these arguments to the case
of interacting electrons with spin.

a. Goldstone modes in a Fermi gas Consider free elec-
trons with mass m, and chemical potential u de-
scribed by fermionic (i.e., Grassmann-valued) fields
¥, (k) and 1, (k) that depend on a wave vector k and
a fermionic Matsubara frequency w, = 27T(n + 1/2)
(n = 0,+1,+2,...). These fields are temporal Fourier
transforms of fields 1 (k, ) and ¢ (k,7) that depend on
the imaginary-time variable 7. In terms of these fields,
the free-fermion action reads (Negele and Orland, 1988)

Solth, 9] = Zan

[iwy, — k*/2me + 1] ¥y (K)

(3.9)
Single-particle excitations are described by the Green
function

Gn(k) = (¥n(k) Yn(k)) = 1/ (iwn — &)

with & = k?/2m. — pu. These are soft in the sense that
G, (k) diverges for wave vectors on the Fermi surface,
&k = 0, as the frequency approaches zero. Of greater in-
terest in the current context are two-particle excitations.
Consider the correlation function

Dnm(kvq) = < (kJr) "/}m( )z/jm(kf)wn(]@r»
= 0nim 0g,0 (Gn(K))* = Gplky) Gl(k-)
(3.11a)

(3.10)

where k+ = k £ q/2, and the second line follows from
Wick’s theorem. Multiplying Eq. (3.11a) with the inverse
of Gy, (k4) and Gy, (k_), respectively, and subtracting the
resulting two equations, we find
(i —m — k- q/me) Dum(k,q) = Gp(ky) — Gr(k-) .
(3.11b)
Now analytically continue to real frequencies according
to iw, = Q+10, iw,, - —Q — 10, and consider the limit
g — 0, Q2 — 0. Eq. (3.11b) then becomes

iG" (K, = 0)

(3.12)

Here DT () is the analytic continuation of D,,,, and
G" denotes the spectrum of the Green function. DT~
diverges in the limit of zero wave vector g and zero fre-
quency €2, provided the spectrum of the Green function



is nonzero. For free electrons this is the case for all val-
ues of k; if we replace the free electrons by band elec-
trons, £, = € — i, where € is determined by the lattice
structure, it remains true everywhere within the band.
Equivalently, it is true whenever the density of states is
nonzero. We have thus identified the correlation function
Dynm(k,q), Eq. (3.11a), as a soft mode of noninteracting
electrons. The nature of this soft mode is ballistic, i.e.,
the frequency €2 scales linearly with the wave number.
This simple result is more general and significant than
one might expect, as can be seen from the following anal-
ogy. Consider a classical XY ferromagnet with magneti-
zation m in the presence of a small magnetic field h. Let
the magnitude of m and h be m and h, respectively. In
the PM phase, m is proportional to h, and m(h) is an
analytic function of h; in particular, m(h = 0) = 0. How-
ever, in the FM phase this is not true. m still points in
the same direction as h, but m is not an analytic func-
tion of h at h = 0: m(h = +0) = +mg, with mg the
spontaneous magnetization. Now let the system be in
the FM phase, and consider an infinitesimal rotation of
the field, h — h + dh, that leaves h unchanged. Then
the magnetization simply follows the field, with m also
unchanged. Hence |0m|/m = |dh|/h. But |dm|/|d0h| is
the homogeneous transverse susceptibility x , and hence

hxt=m. (3.13)
This simple argument (Ma, 1976) shows that the trans-
verse susceptibility diverges in the limit of zero field ev-
erywhere in the ordered phase where m(h — 0) # 0.
It can be made technically more elaborate by proving
a Ward identity that takes the form of Eq. (3.13) (Zinn-
Justin, 1996), but the simple argument contains all physi-
cally relevant points: The soft mode (that is, the magnon
or transverse magnetization fluctuation) is a Goldstone
mode that results from a spontaneously broken contin-
uous symmetry (Forster, 1975; Goldstone, 1961; Zinn-
Justin, 1996); in this case, the rotational symmetry in
spin space that leads to a nonzero order parameter m.

Now return to free fermions. Consider a local (in imag-
inary time) gauge transformation

Yk, ) — e Tk, ), Pk, T) = T P(k,T)
(3.14a)
with « real, or, equivalently,

Un(k) = Yn—a(k) , Yn(k) = Yn_a(k) .

The second and third terms in Eq. (3.9) are invariant
under this transformation, but the frequency term is not;
it acts analogously to a magnetic field in the classical XY
model. Explicitly, we have

(3.14b)

Solth, 0] = D> b (k) [iwn — k2 /2me + pu + ] (k) .
k n

(3.15)
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If we now let a — 0 and consider the expectation value
(1, (k) 1 (k)) we see that, upon analytic continuation to
real frequencies, a > 0 vs. a < 0 makes the difference be-
tween a retarded and an advanced Green function. The
latter are not the same anywhere within the band, and
the U(1) gauge symmetry expressed by Eqs. (3.14) is thus
spontaneously broken. Eq. (3.12) can now be interpreted
in analogy to Eq. (3.13): The spectrum of the Green
function is the order parameter of a spontaneously bro-
ken continuous symmetry, the frequency acts as the field
conjugate to the order parameter, and the soft correla-
tion function DT~ is the Goldstone mode associated with
the broken symmetry. This remarkable analogy was first
found by Wegner (1979) (see also McKane and Stone,
1981 and Schéfer and Wegner, 1980) in the context of
disordered electrons, where the soft modes are diffusive
and commonly referred to as “diffusons” (Akkermans and
Montambaux, 2011). The same argument holds for clean
electrons, with the diffusive soft modes replaced by bal-
listic ones (Belitz and Kirkpatrick, 1997, 2012). In these
papers the symmetry considered was an SO(2) rotation
in frequency space that is isomorphic to the U(1) gauge
transformation above. We stress that the broken sym-
metry discussed above, and the resulting existence of the
soft modes, has nothing to do with the conservation law
for the particle number.

b. Goldstone modes in a Fermi liquid We now take into
account electron-electron interactions, and spin. Inter-
actions have two effects. One is the appearance of an
inelastic scattering rate, both in the Green function and
in the propagator DT—. However, this rate vanishes at
T = 0. The second change is the appearance of an addi-
tional term on the right-hand side of Eq. (3.11b), with is
related to a three-particle correlation function. This term
has a different functional dependence on the interaction
than the difference of Green functions in Eq. (3.11b) and
therefore cannot change the fact that D™~ diverges in the
limit of vanishing frequency and wave number (Belitz and
Kirkpatrick, 2012). This is consistent with Fermi-liquid
theory, which posits that there is a one-to-one correspon-
dence between free-electron states and states in a Fermi
liquid (Lifshitz and Pitaevskii, 1991). Basic properties
such as the soft-mode spectrum will thus not be changed
by interactions, only the coefficients in the soft propaga-
tor will acquire interaction dependences.

Spin provides another complication, which is conve-
niently dealt with by means of introducing bosonic ma-
trix variables @Q:



(i
~t TP\ T)Pm\Y) — Y (X
Qnm(may) - 2 q@ni(w)lém*r(y) '(/ini,(w)
Yt ()t (Y) —Pn (@)

Here = means that @ is isomorphic to 1)tp. We also define
the Fourier transforms

1 —ik-z+tip-
Qnm(k7p) = V/dwdy € kw+prnm(wvy)‘
(3.17a)
and

The 4 x 4 matrix @Qn.,, can be expanded in a spin-
quaternion basis

3

r,5=0
where 79 = sg = 15 is the unit 2 X 2 matrix, and
Ti23 = —81.23 = —iol?? with 0123 the Pauli matrices.

An inspection shows that ¢ = 0 and ¢ = 1,2, 3 represent
the spin-singlet and triplet channels, respectively. Sim-
ilarly, » = 0,3 represents the particle-hole channel, i.e.,
products of the form 1), whereas r = 1,2 represents the
particle-particle channel, i.e., products of the form 1)t or
1p. We will need only the particle-hole degrees of free-
dom. All of the Q. are not independent; a convenient
choice of the independent elements are those with n > m.

The above considerations show that the matrix ele-
ments §Q,,,, with n > 0 and m < 0 are soft modes. It is
easy to see, by using discrete symmetries that connect the
various channels, that in the absence of external fields all
of the £Q, . with n > 0, m < 0 are soft (Belitz and Kirk-
patrick, 1997, 2012). Symmetry-breaking fields change
this. For instance, an external magnetic field gives a
mass to the particle-particle channel, and also to two
of the particle-hole spin-triplet channels (i = 1,2 for a
magnetic field in the z-direction). A nonzero magneti-
zation with a homogeneous component in a magnetically
ordered phase has the same effect.

To summarize, of the two-particle degrees of free-
dom £Q,, (k;q) defined by Egs. (3.16) - (3.18), those
with n > 0 and m < 0 are soft modes in the sense
that their two-point correlation functions diverge in the
limit of vanishing wave vector g and vanishing frequency
1Qn—m — Q+i0. They represent the Goldstone mode of a
spontaneously broken continuous symmetry expressed by
the gauge transformation in Eqgs. (3.14). Physically, the
broken symmetry reflects the difference between retarded
and advanced degrees of freedom, and the spectrum of
the single-particle Green function is the corresponding
order parameter. Notice that the *Q, (k;q) are soft for
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ml(Y) —Unt(®)Vmy(y)  Ynt(@)mr(y)

l(y) _%ni(w)@/}mi(y) 'llinl,(w)d}mT(y) (3 16)
ml (YY) Vnp(X)Vmy(Y) —Yni(T)Ymr(y) '
mi(y) _wnT(w)wmi(y) wnT(Q:)me(y)

any value of k for which the spectrum of the Green func-
tion is nonzero. There thus are an infinite number of soft
two-particle modes in a Fermi liquid. This is qualita-
tively different from the case of electrons in the presence
of quenched disorder, for which only the zeroth moment
Yok i@, (K q) is soft, see below.

c. Goldstone modes in a disordered Fermi liquid: Diffusons
Historically, the notion of a spontaneously broken con-
tinuous symmetry, and the resulting Goldstone modes,
in many-fermion systems was first developed for nonin-
teracting electrons in the presence of quenched disorder
(McKane and Stone, 1981; Pruisken and Schéfer, 1982;
Schifer and Wegner, 1980; Wegner, 1979), and it was
instrumental for Wegner’s matrix nonlinear sigma model
describing the Anderson metal-insulator transition (Weg-
ner, 1979). The derivation of Schéfer and Wegner (1980)
was later generalized to the case of interacting electrons
in the presence of disorder (Belitz and Kirkpatrick, 1997).
In the notation of Eq. (3.11b), the two crucial differ-
ences in the disordered case are: (1) Only the zeroth mo-
ment with respect to k of the disorder average of D,
>k Dnm(k,q), is soft if n and m have different signs,
and (2) the resulting soft modes have a diffusive char-
acter, ) ~ g2, as opposed to the ballistic modes in the
clean case. Denoting the soft modes analogous to Eq.
(3.12) by Dt (q,), one has

wN (e

DY (g —0,2—0) = W(DZ)? :
with N(ep) the density of states at the Fermi level, and
D a diffusion coefficient. These diffusive soft modes are
often referred to as “diffusons” in the literature, and their
counterparts in the particle-particle channel as “Cooper-
ons”. In the language of the Q-matrices, Egs. (3.16) -
(3.18), the diffusons and Cooperons are given by the cor-
relation functions of the Y, @, (k;q). Note that there
are many more soft modes in a clean system than in a
disordered one, which makes the soft-mode analysis in
clean systems more complicated.

(3.19)

B. Effects of fermionic soft modes: Simple physical
arguments

We now give simple arguments for why fermionic fluc-
tuations cause the FM QPT in clean 2-d or 3-d metals
to always be discontinuous. We then discuss how the
presence of quenched disorder modifies this conclusion.



1. Renormalized Landau theory

We need a theory that describes the magnetization or
order-parameter (OP) field, m, the fermionic degrees of
freedom or conduction electrons described by the Grass-
mann fields of Sec. I1I.A, and the coupling between them.
Accordingly, the action consist of three parts,

Sim; v, ¢ = —Aop[m]+ Sr Y, Y]+ Se[m; ¥, ] . (3.20)

They denote a purely bosonic part of the action that
governs the OP, a purely fermionic one that describes the

conduction electrons, and a coupling between the two. 2°
The partition function is given by
z= [ Dim] Dig.w) S (3

Note that we do not specify the origin of the magneti-
zation; in general it can be due to the conduction elec-
trons, or due to localized electrons in a different band, or
a combination of the two. If one formally integrates out
the conduction electrons one obtains a effective Landau-
Ginzburg-Wilson (LGW) action in terms of the OP only,

Z = /D[m] e~ Aertlm] (3.22a)

where

Aeglm] = Aop[m] —ln/D[@/;,@/J] eSE W]+ S [m ]

(3.22b)
In general, the magnetization will couple to both the or-
bital angular momentum and to the spin of the electrons.
The former poses interesting questions that have received
little attention to date, and we will not discuss it here.
The latter coupling is via a Zeeman-like term

Sifmi, 0] =c [ dom(e) n@). (329
Here ¢ is a coupling constant and ng is the electronic
spin-density,

ns(z) = Zia(x)aabz/}b(x) , (3.24)
a,b

with o = (o!,0%,03) the Pauli matrices. a,b = (1,])
are spin indices, = (x, 7) comprises both the real-space
position @ and the imaginary-time variable 7, and [ dz =

dz [M7T dr, with V' the system volume.
1% 0

20 We denote actions that depend on bosonic (number-valued)
fields only by A, actions that depend on fermionic (Grassmann-
valued) fields, or a mix of bosonic and fermionic fields, by S, and
use a sign convention such that S and A enter the exponential
with a plus and minus sign, respectively.
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For simplicity we now treat the OP in a mean-field
approximation, i.e., we replace the fluctuating magneti-
zation m(x) by an z-independent magnetization m that
we take to point in the 3-direction. We will discuss the
validity of this approximation in Sec. III.C. Denoting
the 3-component of ng by ng, the second term in Eq.
(3.22b), which describes the effect of the coupling be-
tween the fermions and the OP, can be written

_1“/ D[, ] eSelbbltem [ dena(o)

— I <ecmf dzns(w)>

dAm]

. (3.25)

where in the second line we have dropped a constant
contribution to the action, and (...)r denotes an average
with the action Sf.

Now consider the longitudinal spin susceptibility x(h)
of fermions governed by the action Sy and subject to a
magnetic field h. It is given by the correlation function

T
) =3, [ dody @ bn)s, . (320)
where S, = Sp + h [dazng(z), and dng(z) = ng(z) —
(ns(z))s,,. By differentiating Eq. (3.25) twice with re-
spect to m it is easy to show that

d?S5A Vo,
= T x(cm) . (3.27)
Since dA[m = 0] = ddA/dm| =0 = 0, we now have

5 Afm] = %

m ma
62/ dmq dmso x(cmz) . (3.28)
0 0
Sop will have the usual Landau form of a power series
in powers of m2, and the complete renormalized Landau
free-energy density forr = —(T/V)Aese thus is

fe[m] = tm? + 5fm] +um* +O0(m®) . (3.29a)
Here t and u are Landau parameters, and
m ma
0f[m] = —02/ dml/ dmz x(ecmz2) . (3.29b)
0 0

This result expresses the correction to the usual Lan-
dau action in terms of the spin susceptibility of nonmag-
netic fermions in the presence of an effective homoge-
neous magnetic field given by c¢m. It is a “renormalized
Landau theory” in the sense that it includes the effects
of fluctuations extraneous to the OP fluctuations. The
remaining question is the behavior of the susceptibility
x that represents these fluctuations for small m. As we
will see, x is not an analytic function of m at m = 0.

2. Clean systems

Various observables in a Fermi liquid are nonanalytic
functions of the temperature. For instance, the specific



heat coefficient has a T?2InT term (Baym and Pethick,
1991). The spin susceptibility in a 3-d system has no
such nonanalytic behavior (Carneiro and Pethick, 1977).
However, this absence of a nonanalyticity was later shown
to be accidental, and to pertain only to the T-dependence
in d = 3. In dimensions d # 3 there is a 79! nonanalyt-
icity, and even in d = 3 at T' = 0 the inhomogeneous spin
susceptibility has a k? In k wave-number dependence (Be-
litz et al., 1997; Chitov and Millis, 2001; Galitski et al.,
2005). This nonanalyticity is a direct consequence of
the soft modes discussed in Sec. III.A. From scaling ar-
guments one expects a corresponding nonanalyticity for
the homogeneous susceptibility at T = 0 as a function
of a magnetic field h, namely, x(h) oc const. + h¢~! in
generic dimensions, and x(h) o const. — h?Inh in d = 3.
These scaling arguments have been shown to be exact,
as far as the exponent is concerned, by a RG treatment
(Belitz and Kirkpatrick, 2014), and they are consistent
with explicit perturbative calculations (Barnea and Ed-
wards, 1977; Betouras et al., 2005; Misawa, 1971). The
sign of the effect is universal and can be established as
follows. Fluctuations suppress the tendency of a Fermi
liquid to order ferromagnetically, and therefore the fluc-
tuation correction to the bare zero-field susceptibility is
negative, dx(0) < 0. A magnetic field suppresses the fluc-
tuations, and therefore dx(h) — dx(0) > 0. This implies
that the nonanalyticity in x(h — 0) has a positive sign:

forl<d<3
ford=3

ag hdfl
as h2 ln(l/h)

)

(3.30)
where ag > 0. For the renormalized Landau free-energy
density, Eq. (3.29a), we thus obtain

x(h — 0) X(0)+{

fot[m] = —hm +tm?* + um?
d+1 1 1 <d
g m4 +um?* (1<d<3) (3.31)
m*In(l/m) (d=3).

Here vg o< ¢! > 0, and we have added an external mag-
netic field h. For d = 3 this result was first derived by
Belitz et al., 1999. The negative term in the free energy,
which dominates the quartic term for all d < 3, nec-
essarily leads to a first-order ferromagnetic transition.
We stress that while this is a fluctuation-induced first-
order quantum phase transition, the relevant fluctuations
are not the OP fluctuations, but are fermionic in nature.
For purposes of an analogy with the well-known classi-
cal fluctuation-induced first-order transitions (Halperin
et al., 1974), the latter play a role that is analogous to
that of the vector potential in superconductors, or the di-
rector fluctuations at the nematic-smectic-A transition.
An important difference, however, is that in these clas-
sical systems the OP fluctuations are below their upper
critical dimension, which makes them strong enough to
make the first-order transition weak and hard to observe
at best, and destroy it altogether at worst (Anisimov
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FIG. 37 Schematic phase diagram in the space spanned by
temperature (T), hydrostatic pressure (p), and magnetic field
(h). Shown are the FM and PM phases, the tricritical point
(TCP), and various QCPs. Solid and dashed lines denote
second- and first-order transitions, respectively. The tricriti-
cal wings emerging from the TCP are surfaces of first-order
transitions. The three panels show the predicted change with
increasing disorder. After Sang et al. (2014).

et al., 1990). By contrast, in the case of a quantum
FM the OP fluctuations are above their upper critical
dimension, so the first-order transition predicted by the
renormalized Landau theory will be much more robust.
A nonzero temperature cuts off the magnetic-field sin-
gularity (Betouras et al., 2005), and with increasing tem-
perature the fluctuation-induced term in the free energy
becomes less and less negative. Suppose the Landau pa-
rameter ¢ at 7' = 0 is a monotonically increasing function
of, say, hydrostatic pressure p, and let t(p = 0,7 = 0) <
0. Then there will be a QPT at some nonzero pressure p.
As the transition temperature is increased from zero by
lowering p, one expects a tricritical point in the phase di-
agram. Below the tricritical temperature the transition
will be discontinuous due to the mechanism described
above, while at higher temperatures it will be continu-
ous. In the presence of an external magnetic field there
appear surfaces of first-order transitions, or tricritical
wings (Belitz et al., 2005a), and the phase diagram has
the schematic structure shown in the right-most panel
in Fig. 37.2! The third law of thermodynamics, in con-
junction with various Clapeyron-Clausius relations, puts
constraints on the shape of the wings at low tempera-
tures (Kirkpatrick and Belitz, 2015b). Most importantly,
the wings must be perpendicular to the 7" = 0 plane,
and they cannot be perpendicular to the zero-field plane.
These constraints, as well as the overall wing structure,

21 The presence of tricritical wings is characteristic of any phase
diagram that contains a tricritical point (Griffiths, 1970, 1973), it
is not restricted to the ferromagnetic quantum phase transition.



are in excellent agreement with experimentally observed
phase diagrams, see, for instance, Figs. 1, 3, 6, and 10.

The theory also predicts a correlation between the tri-
critical temperature Ti. and the magnetic moment my
just on the FM side of the first-order transition. In terms
of the parameters in Eq. (3.31) one finds Ti. = Tp e~ u/vs
and my = mge Y2e %/vs where T, and mg are mi-
croscopic temperature and magnetization scales, respec-
tively (Belitz et al., 2005a). For given scales Ty and my,
which one expects to vary little within members of a given
class of materials, the theory thus predicts that T is pro-
portional to m;. As we have pointed out in Sec. I1.B.5,
this is in good agreement with experiments.

3. Disordered systems

In the presence of quenched disorder the logic of the
above arguments remains intact, but important aspects
change. First, the fermionic soft modes are diffusive in
nature, rather than ballistic, see Sec. III.A.2.c. This
slowing-down of the electrons favors the tendency to-
wards ferromagnetism, and the combined disorder and
interaction fluctuations increase the bare susceptibility,
5x(0) > 0.22 A small magnetic field will again suppress
the effect of the fluctuations, and the nonanalytic con-
tribution to x(h) therefore has a negative sign. Second,
the changed nature of the fermionic soft modes leads to
a different exponent, namely,

X(h = 0) = x(0) = ag b2/

ford>2, (3.32)

with ag > 0. This expectation is borne out by explicit
perturbative calculations (Altshuler et al., 1983). Third,
the notion of a disordered Fermi liquid breaks down for
d < 2 due to localization effects (Belitz and Kirkpatrick,
1994; Lee and Ramakrishnan, 1985), so the only physical
dimension where the current discussion applies is d = 3.

The renormalized Landau free-energy density in d = 3
now becomes (Belitz and Kirkpatrick, 1996; Kirkpatrick
and Belitz, 1996)

fee[m] = —hm +tm? + vm®? + um?* (3.33)

with v > 0. We see that, for very general reasons,
quenched disorder leads to a second-order or continuous
transition, but the Landau theory for this transition is
not standard because of the m®/? term which leads to

22 The notion that quenched disorder favors ferromagnetic order is
somewhat counterintuitive, given that in classical systems, long-
range order is negatively affected by it (Cardy, 1996). Indeed,
the ferromagnetic T¢ usually decreases with increasing disorder,
see Sec. II. However, at sufficiently low temperature the diffu-
sive motion of the electrons leads to an increase in the effective
exchange interaction. The interplay between these two effects is
discussed at the end of this subsection.
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unusual critical exponents. In particular, the exponents ®
B and ¢ for the OP, and ~ for the OP susceptibility, are

=2,

Other critical exponents will be discussed in Sec. II1.C.
Equations (3.31) and (3.33) are valid for the extreme
cases of ultraclean and strongly disordered systems, re-
spectively. An equation of state that interpolates be-
tween the two has been constructed by Sang et al. (2014);
the schematic evolution of the phase diagram with in-
creasing disorder is shown in Fig. 37. The theory allows
to distinguish between three distinct disorder regimes,
characterized by the residual resistivity pg:

Regime I (Clean): py < pél). The transition at low tem-

perature is first order, and there is a tricritical point in
the phase diagram. The tricritical temperature decreases
with increasing disorder.

§=3/2 , y=1. (3.34)

Regime II (Intermediate): pgl) Spo < p(()2). The transi-

tion is second order down to T' = 0. The critical behav-
ior is mean-field-like, as predicted by Hertz theory, except
extremely close to the critical point, where it crosses over
to the exponents given by Eq. (3.34).

Regime III (Disordered): po 2 p((f). The transition is
second order, and the critical exponents are given by Eq.
(3.34). In this regime the quantum Griffiths effects dis-
cussed in Sec. ITI.D are expected to be present and to
compete with the critical behavior.

A rough estimate (see footnote 10) for the boundaries be-

tween the three regimes yields pél)

and p(()2) ~ 100 to several hundred pQcm.

We now discuss the expected qualitative shape of the
phase diagram. Let x be a dimensionless measure of the
disorder, z o< 1/7 with 7 the elastic mean-free time. As
mentioned above,?? there are two competing influences
of z on the critical temperature. One is a classical dilu-
tion effect that suppresses 1. to zero at sufficiently large
values of z (Cardy, 1996). For simplicity, let us assume
that this leads to T,(z) = 1 — 2%, with T, measured in
units of Ty(x = 0). (Adding a term linear in = does
not change the qualitative discussion that follows.) The
other is an increase in T, due to the diffusive nature of
the electron dynamics, which increases the effective spin-
triplet interaction (Altshuler et al., 1983). Indeed, the
increase in the zero-field susceptibility mentioned above
Eq. (3.32) is proportional to this increase in the interac-
tion amplitude. For small disorder, this effect is linear in
the disorder at T' = 0, and it is cut off by the tempera-
ture itself, i.e., it is strongest for small values of T,. A
simple schematic way to represent these two effects is

~ 1 to several p{2cm,

axr

Tc(x)zl—xQ—i—m.

(3.35)

The resulting qualitative shape of the phase diagram is
shown in Fig. 38. The two competing disorder effects can
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FIG. 38 Phase diagram in the temperature-disorder plane as
given by Eq. (3.35). The dashed line reflects the classical
dilution effect of the disorder only (a = 0 in Eq. (3.35)); the
solid (red) line also reflects the quantum effects, with a = 1,
b = 10, due to the diffusive dynamics of the electrons.

lead to an inflection point in 7T, vs. x that is often seen in
experiments, see Figs. 33 and 28. Another possible inter-
pretation of this shape of the phase diagram is a smeared
transition due to quantum Griffiths effects that have been
ignored in the above arguments; this is discussed in Sec.
III.D. In addition to the inflection point in the phase di-
agram, the unusually large value of the exponent 3, Eq.
(3.34), can also mimic a smeared transition.

We finally recall a very general result for systems with
quenched disorder due to Harris (1974) and Chayes et al.
(1986). Harris investigated a necessary condition for
the critical behavior of a clean system to remain un-
changed by a small amount of quenched disorder. In or-
der for the transition to stay sharp, the disorder-induced
fluctuations of the location of the critical point in pa-
rameter space must be small compared to the distance
from the critical point. This implies that the correla-
tion length must diverge sufficiently fast as the critical
point is approached, which leads to a requirement for
the correlation-length exponent v,

v>2/d. (3.36)

This is often referred to as the Harris criterion. In Har-
ris’s original argument this was a constraint on the expo-
nent v of the clean system which, if hyperscaling holds,
is equivalent to the condition o < 0 for the specific-heat
exponent a. It does not apply to the quantum FM tran-
sition, since the latter is not continuous in clean systems.
However, Chayes et al. (1986) showed rigorously that, for
a large class of disordered systems that undergo a con-
tinuous phase transition, Eq. (3.36) must hold for the
exponent v that characterizes the disordered fixed point.
The value of v corresponding to the exponents given in
Eq. (3.34), viz., v = 1 in d = 3 (Kirkpatrick and Belitz,
1996), satisfies this constraint, while the mean-field value
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v =1/2 of Hertz theory does not. We will come back to
this point in Sec. II1.C.2.

C. Effects of order-parameter fluctuations, and comparison
with experiment

In the previous subsection we treated the OP in
a mean-field approximation and integrated out all
fermionic degrees of freedom. The fermionic soft modes
then led to a Landau free energy that is not an ana-
lytic function of the magnetization. We now discuss the
order-parameter fluctuations that were neglected in this
procedure, and also consider the behavior not asymptot-
ically close to the quantum phase transition. All of these
issues are important for the relation of the theory to the
experimental results discussed in Sec. II.

1. Coupled field theory for soft modes

We return to the coupled field theory in Eq. (3.20).
For the purposes of discussing fluctuation effects, inte-
grating out the fermions, as in Eq. (3.22), is not desir-
able, as it will result in a non-local field theory for the
order-parameter fluctuations.??> A better strategy is to
separate the fermionic degrees of freedom into soft and
massive modes, and integrate out only the latter to arrive
at an effective theory that treats all of the soft modes on
equal footing. This is possible using the identification of
fermionic soft modes explained in Sec. ITI.A. The result-
ing effective action can then be analyzed by means of RG
methods.

In Sec. ITI.A we have seen that the soft fermionic de-
grees of freedom are given by those matrix elements Q.
Eq. (3.16), for which the two Matsubara frequencies have
different signs. Denoting these by ¢nm, (with n > 0,
m < 0 implied, see the remark after Eq. (3.10)), and
the massive modes by P,,,, we first rewrite the action

23 Historically, this was the route taken by Hertz (1976), who inte-
grated out the fermions in a tree approximation. For disordered
systems, it was later refined by Kirkpatrick and Belitz (1996),
who showed that fermionic loops destabilize Hertz’s critical fixed
point. While this method works for power-counting purposes, the
coupled local field theory developed later for disordered (Belitz
et al., 2001a,b) and clean (Kirkpatrick and Belitz, 2012b) sys-
tems is more versatile and easier to handle, and we use it here.
For clean systems, the fermionic fluctuations destroy the critical
fixed point and change the order of the transition, as we have
discussed in Sec. II1.B.2. However, the pre-asymptotic behav-
ior, which is governed by a critical fixed point that ultimately is
unstable, can still be important and is discussed in Sec. II1.C.2.



from Eq. (3.20) in terms of the ¢ and P: 24

Alm; q, P] = —=S[m; ), ¢]

= Aop[m] + Arlg, P] + Ac[m; ¢, P] (3.37)

If we now integrate out the massive modes P, we can
formally write the partition function

:/D[mD

in terms of an effective action

= Aop[m] — ln/D[P] e~ Arlg, Pl—Ac[miq, P]

= Aor[m] + Ar[q] + Ac[m, q] .

e~ Aeti[m,q] ,

(3.38a)

-Aeff[mv q]
(3.38b)

Integrating out the P cannot be done exactly, but any
approximation that respects the symmetries of the action
suffices.

Before we discuss the various terms in this effective ac-
tion in more detail, we make a few general remarks. Aop
is a standard LGW action, supplemented by a random-
mass term in the disordered case, see below. Ap has a
Gaussian contribution that reflects the soft modes iden-
tified in Sec. ITI.A.2, as well as higher-order terms to all
orders in q. The soft modes are diffusive in disordered
systems, and ballistic in clean ones, but apart from this
and the random-mass term in Aop there are no struc-
tural differences between clean and disordered systems
as far as these two terms in the action are concerned.
The coupling A, has a contribution that is bilinear in
m and ¢, and in addition terms of order m ¢", where
n can be any integer. The bilinear term leads to the
characteristic Landau damping in the paramagnon prop-
agator (Doniach and Engelsberg, 1966; Hertz, 1976), i.e.,
to a frequency dependence of the form |2|/|k| in clean
systems, and |Q|/k? in disordered ones. At the level of
terms bilinear in m and ¢ there is again no other struc-
tural difference between the clean and disordered cases.
However, the terms of order m ¢? generate, in a renor-
malization procedure, a nonanalytic wave-number depen-
dence of the paramagnon propagator that has the form
|k|?~! in clean systems, and |k|%~2 in disordered ones.
The sign of this term is different in the two cases. If one
replaces the fluctuating order parameter by its expecta-
tion value, this term leads to the renormalized Landau
theory described in Sec. II1.B.1.

24 Technically, this can be achieved by constraining all terms in
the action that contain the Grassmann fields to higher than bi-
linear order to the matrix field @ from Eq. (3.16) by means of
a Lagrange multiplier field and integrating out the Grassmann
fields, see Belitz and Kirkpatrick (1997, 2012). For simplicity we
suppress the dependence of the action on the Lagrange multiplier
field in our notation.

a0

2. Clean systems

In clean systems, the transition at 7' = 0 in zero field
is first order if OP fluctuations are neglected, see Sec.
II1.B.2. OP fluctuations are thus cut off before the sys-
tem reaches a critical point, remain finite, and do not
change the nature of the transition.2> However, if the
transition is weakly first order there will be a sizable re-
gion in parameter space where the physical behavior is
controlled by the unstable fixed point that is described
by Hertz theory, and only asymptotically close to the
transition will the RG flow turn away towards the strong-
coupling fixed point that describes the first-order tran-
sition. It is therefore important to fully understand the
results of Hertz theory and its predecessors, even if they
ultimately do not describe the nature of the transition
correctly. Also, OP fluctuations do affect the various
lines of second-order transitions in the phase diagram
shown schematically in Fig. 37.

a. Hertz’s action, and relation to spin-fluctuation theory In
clean systems, the relevant fermionic soft modes are the
Fermi-liquid Goldstone modes discussed in Sec. III.A.2.
The soft-mode action has not been derived in a closed
form, but can be obtained to any desired order in the
soft degrees of freedom ¢q. To Gaussian order it reads
(Belitz and Kirkpatrick, 2012)

:_SZZZ qum q34 —k)

r=0,3 :=0 1,2
3,4

1

X | 613004 ——~
(13 24 P12 (k)

- 61_2,3_42%) 1 0(¢*) (3.39)

Here 7y and 7,23 are the spin-singlet and spin-triplet
interaction amplitudes, respectively, 1 = ny etc. is a
shorthand for Matsubara frequencies, and the function ¢
is given by

2
N 27C G

p12(k) = ?

0a(GiQi_2/k) , (3.40)

where G is a coupling constant whose bare value is the
inverse Fermi velocity 1/vp. ¢4 can be expressed in terms
of Gauss’s hypergeometric function. For d = 1,2,3 it
reduces to the familiar expressions for the hydrodynamic

25 This needs to be interpreted with care in the light of footnote 8.
The first-order transition is described by a strong-coupling fixed
point (Fisher and Berker, 1982; Nienhuis and Nauenberg, 1975),
and the relevant fluctuations are effectively already included in
the generalized Landau theory represented by Eq. (3.31)



part of the Lindhard function in these dimensions:

wa—1(2) = —iz/(1 — 2%) , (3.41a)
va=2(z) =i/Vz+1vz -1, (3.41b)
pi-a(z) = 5 In (_11__22) : (3.41¢)

Note that the vertex 1/¢ scales as a function that is
linear in either the frequency or the wave number (except
in d = 1), and that this is true also for the interaction
term in Eq. (3.39) due to the structure of the frequency
constraint. This feature reflects the Goldstone modes.

The order-parameter field m couples linearly to the
electron spin density with a dimensionless coupling con-
stant ¢ = O(1). To linear order in the soft component ¢
the coupling reads

Ac[m, q] —80\/>ZZZTQ12 (—k) +O(mq?)
(3.42a)

where
vhio(k) = T/ZZ% ny—ny My (k) + (=)t mL (k)]

(3.42b)
is a symmetrized version of the order-parameter field
m,, (k) with components mL23.

Finally, the order-parameter action is an ordinary
quantum ¢*-theory,26

AOP Zmn
+u/da:T Z (m,, (z

n1,m2,n3
X (M (T) - My —ny—ns (T)) 5 (3.43)

with t, a, b, and u the coupling constants of this LGW
action.

We now have specified all parts of the effective action,
Eq. (3.38b), to bilinear order in m and ¢. This is not a
fixed-point action corresponding to a critical fixed point.
The terms of O(m¢?) that are not shown explicitly in
Eq. (3.42a) are relevant with respect to the fixed point
represented by this action and lead to the first-order tran-
sition described in Sec. III.B.2. However, depending on
the strength of the first-order transition, there will be a
sizable regime where the RG flow is dominated by the un-
stable fixed point. The physical behavior in this regime

t+ak2 +b( )2] 'm—n(_k)

-y, (@)

26 This action is missing a term of order Q2 m3 that describes the
Bloch spin precession of the OP in the field of all the other mag-
netic moments. This term is absent in the case of an Ising OP,
but in all other cases it is important for producing the correct
dynamics of the spin waves. In a field-theoretic context, it is
sometimes referred to as a Wess-Zumino or Chern-Simons term,
and its topological aspects are stressed (Fradkin, 1991). For the
purposes of our discussion it is RG irrelevant, and we drop it.

o1

will thus be given by the action as written above, before
it crosses over to the first-order transition. To study this
pre-asymptotic behavior it is convenient to integrate out
the fermion fields ¢, which yields the action derived by
Hertz (1976). In particular, the Gaussian OP or param-
agnon propagator reads

) ] 1
<m51(k:) min(p)> = 6/4:,71) 6n,7m 62] 5
1
3.44
“t ak? + ()2 + GelQ,,|/|k| (344)

Here we have replaced the vertex 1/p12(k) in Eq. (3.39)
with a schematic one that is linear in €2 and k for simplic-
ity. We see that the coupling to the electronic Goldstone
modes generates the characteristic Landau-damping term
proportional to [Q2,|/|k| in the paramagnon propagator.
The term quadratic in the frequency in Eq. (3.43) is
therefore not the leading frequency dependence and can
be dropped. The approximate effective action becomes

Abteris = — Y ma () [t + ak? + Ge|Q,|/|k]] - m_, (k)
k,n

u / dzT (1, () - My ()

X (mn3 (33) "M —_n)—ny—ns ((B)) : (345)

This action was derived and studied by Hertz (1976),
and its finite-temperature properties were analyzed by
Millis (1993). Many of the explicit results had been de-
rived earlier by means of a theory of spin fluctuations that
one would now classify as a self-consistent one-loop the-
ory; see Moriya (1985) and references therein, Lonzarich
(1997), and Lonzarich and Taillefer (1985). This develop-
ment was analogous to that in the area of classical crit-
ical dynamics, where mode-coupling theories (Fixman,
1962; Kadanoff and Swift, 1968; Kawasaki, 1967, 1970,
1976) were followed by RG treatments (Hohenberg and
Halperin, 1977). In what follows, we will derive these
results by means of scaling arguments, which is analo-
gous to a third angle of attack on the classical dynamical
scaling problem (Ferrell et al., 1967, 1968; Halperin and
Hohenberg, 1967).

b. Scaling analysis of the pre-asymptotic regime From the
action, Eq. (3.45), we see that the frequency scales as
Q ~ k3. That is, the dynamical exponent is

z=3, (3.46)

independent of the dimensionality. The theory thus is
above its upper critical dimension for all d > 4 — z = 1.
Let t be the distance from criticality at T = 0 27 and

27 t in Eqs. (3.43) - (3.45) denotes the bare distance from criti-
cality; here and in what follows we use the same symbol for its
renormalized or physical counterpart.



define static exponents by the dependence of the observ-
ables on t in the usual way, see Appendix B. The static
exponents v, 8, n, v, and § then all have their usual
mean-field values for all d > 1:

v=B=1/2 , n=0 , y=1 , §=3 . (347
The quartic coefficient u, with scale dimension [u] =
—(d+ 2z —4) = —(d — 1) is a dangerous irrelevant vari-

able (DIV) with respect to the order parameter, which is
why 8 and § deviate from the naive scaling results. (For
a general discussion of the DIV concept, see, Ma (1976)
and Fisher (1983).)

u also plays an important role for the temperature de-
pendence of many observables, which is not simply de-
termined by z due to the dangerous irrelevancy of u. We
now show how the relevant results can be obtained from
scaling arguments. Scaling functions will be denoted by
F with a subscript indicating the observable in question.

(i) Correlation length. Let 6(t,T) be the T-dependent
distance from the QCP, such that 6(¢,0) = ¢. Then the
homogeneity law for § is

§(t,T) = b~V Fs(tb/", Th* ub™ (4= 1)

= b 2Fs(t b, TH%, ub=(47Y) . (3.48)

The temperature dependence of § results from a one-loop
contribution that is proportional to w. Therefore,

F5(0,1,y = 0) x y (3.49a)

This is in agreement with the perturbative result for d =
3 obtained by Moriya and Kawabata (1973),

6 =t + const. x uT*3 . (3.49b)

u is thus dangerously irrelevant with respect to the T-
dependence of §. In contrast, Fs(1,0,y — 0) x const.,
and also 0F5(z,1,y — 0)/0x|y—¢ = const. Choosing
b = T—'/3 we can therefore Taylor expand in the first
argument of Fjs. Specializing to d = 3 we have, for
t/T?/3 <« 1,

8(t,T) = T*3Fs(t/T?3,1,uT?3)
o T3 [uTQ/3 + const. x t/T?/3 4 . } (3.50)
For T¢, defined by 6(t,T.) = 0, this gives ¢t Tf/g X
uT2? o T3, or (Moriya and Kawabata, 1973)

T. o (—t)3/% . (3.51)

This result is due to the dangerous irrelevancy of u; in
its absence one would have T, oc (—t)?/2. This result was
confirmed by Millis (1993), who showed how to obtain it
from an RG analysis of Hertz’s action. The importance of
the DIV was stressed by him and also by Sachdev (1997).

The above results also determine the behavior of the
correlation length € o 1/4/]0]: At T = 0 we have &(t —
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0,7 = 0)  [t|~'/2, in agreement with the value of v in
Eq. (3.47), whereas at t = 0 we have {(t = 0,7 — 0) x
T-r, with (Millis, 1993)

vr =2/3. (3.52)

For general d, vp = (d + 1)/6.

(i) Magnetic susceptibility. Now consider the magne-
tization susceptibility x. The scaling law is

X(t,T) = b"/" B\ (t0Y7 T b%, ub=@=Y)

=2 F (tb*, TH ub 4Dy (3.53)

Since we are dealing with a Gaussian theory, §(¢,T) ~
1/x(t,T), and we know from the behavior of §(¢,T) that
u is dangerously irrelevant, viz.

F,(0,1,y = 0) x1/y . (3.54)

At t =0 in d = 3 we thus have x(t = 0,7 — 0) x T~7
with

’YT:4/37

and more generally v = (d+1)/3. At T = 0, on the
other hand, we have F) (1,0,y — 0) = const., and hence
x(t — 0,7 =0) o |[t|~! in agreement with the value of v
in Eq. (3.47).

(3.55)

(#i1) Magnetization.
scaling law
m(t,T) = b~ @+==240/2 g (¢ pY/v T b* wb=(d71)
= b~ D2 02, TH3 ub 47Dy . (3.56)

The magnetization m obeys a

In general, m is affected by the DIV w, just as y is. How-
ever, at t = 0 this is not the case: Since m o« /—d/u,
and 0(t = 0) o< u, see Eq. (3.49b), u drops out and hy-
perscaling works. We thus have

m(t=0,T)=b"+V/2F (0,T6%0), (3.57)

or m(t =0,T) o< TPT with fr = (d + 1)/6 in general, or
Br =2/3

for d = 3. In interpreting this exponent one needs to
keep in mind that the magnetization is nonzero only for
—t > uT*3 (putting a constant equal to unity), see Eq.
(3.50). For —t >> uT*/3 one observes static scaling with
small temperature corrections, and for —t < uT*/3 the
scaling function vanishes identically. The exponent Bt
therefore cannot be observed via the T-dependence of m
at 7 = 0. It does, however, determine the more general
scaling form of m as a function of t and T', see Kirkpatrick
and Belitz (2015a).

We also note that combining m o /=9 with § o
T4/3 — Tél/‘g, which follows from Eq. (3.49b), yields
(Moriya, 1985)

(3.58)

m? oc TA/3 —74/3 (3.59)



(iv) Specific heat. The free-energy density f obeys a
homogeneity law

ft,T) = b2 Bt bYv T ) (3.60)

For the specific-heat coefficient v = —92f/9T? this im-
plies

y(t,T) =>4 F,(tb* TbH?) . (3.61)
For d = 3 scaling thus yields v = const. An explicit cal-
culation of the Gaussian fluctuation contribution to the
free energy (Brinkman and Engelsberg, 1968; Lonzarich,
1997; Makoshi and Moriya, 1975; Millis, 1993) yields

v, T=0)xInt , ~(t=0,T)xInT . (3.62)

For general d > 1, the exponents & and ar (for a
definition, see Appendix B) are @ = (3 — d)/2 and
ar=(3-d)/3.28

(v) Electrical resistivity. In order to discuss relaxation
rates, we start with the single-particle rate 1/74,. This is
dimensionally an energy, and hence has a scale dimension
[1/7sp] = z = 3. The relevant homogeneity law is

1/7p(t,T) = b2 F, (b, TV?) = T F,(1,T/t3/?) .
(3.63)
At t =0 we have 1/7,,(t = 0,7 — 0) x T. For t # 0 we
must recover the Fermi-liquid result 1/7, oc T2, which
implies F, (1,2 — 0) oc @, or 1/7, oc T2/t3/2.

The transport rate 1/7,, which determines the electri-
cal resistivity, is also dimensionally an energy, but its
scale dimension is not equal to z. The reason is the
backscattering factor in the Boltzmann equation, which
provides an extra factor of k2 ~ b=2, with k& the hydro-
dynamic wave number.?? We thus have [1/7,] = 2 + 2,
and the homogeneity law for the resistivity p is

p(t, T) = b= CHIE (tbV/" T v*) = T3 F,(1,T/t%/?) .
(3.64)
At t = 0 we recover the result of Mathon (1968): p(t =
0,7 = 0) x T%/3. For t # 0 we can again invoke the
Fermi-liquid 72 behavior to conclude p oc T2 /t1/2.

Note that p does not obey naive scaling. While this
is true for many of the observables discussed above, in
this case the reason is not a DIV. Rather, the underlying
relaxation rate does not have its naive scale dimension.
As in the case of a DIV, this must be established by
explicit calculations; it cannot be deduced from general
scaling arguments. In the disordered case, this particular
complication does not occur, see Sec. II1.C.3.e (iii).

28 These exponents describe the leading fluctuation contribution
to the specific-heat coefficient. For d > 3 the latter is subleading
compared to a constant non-scaling contribution.

29 This is true for scattering by long-wavelength magnetic excita-
tions. In a Fermi liquid, both 1/7¢p, and 1/7¢, scale as T2,
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To summarize, the critical exponents at Hertz’s fixed
point, which determine the pre-asymptotic behavior in a
clean system before the first-order nature of the transi-
tion becomes manifest, are given for all d > 130 by

z=3,

v=1/2 vp=(d+1)/6,

g=1/2 pr=(d+1)/6,

0=3,

y=1, yr=(d+1)/3,

n=0,

a=03-d)/2 , ar=(3-4d)/3. (3.65)

c. First- and second-order transitions; tricritical behavior;
quantum critical points OP fluctuations do affect the
second-order transition above the tricritical tempera-
ture (the line of second-order transitions about TCP in
Fig. 37), where the critical behavior is in the appropri-
ate classical universality class: Heisenberg, XY, or Ising,
depending on the nature of the magnet. Along the wing-
critical lines (between TCP and QCP in Fig. 37) the
critical behavior is always in the classical Ising universal-
ity class, since the presence of a magnetic field effectively
makes the OP one-dimensional. The tricritical behavior
is described by the mean-field theory with logarithmic
corrections, as the upper critical dimension for a classi-
cal tricritical point is df = 3 (Wegner and Riedel, 1973).

d. Quantum critical points at the wing tips A magnetic
field restores the QCP that is suppressed in zero field:
The tricritical wings end in a pair of QCPs (see Fig. 37)
in the T = 0 plane at a point (¢, hc), with ¢. and h. the
critical values of the control parameter and the magnetic
field, respectively. The magnetization is nonzero at this
point and has a value m.. This QCP has the remark-
able property that the quantum critical behavior can be
determined exactly. The reason is that the nonzero field
and magnetization give the fermionic Goldstone modes a
mass, and the field conjugate to the OP therefore does
not change the soft-mode structure of the system. Un-
der these conditions, Hertz theory is expected to be valid
(Belitz et al., 2002). In the present case, an expansion in
powers of dm = m — m. about the QCP shows that the
quantity h = 2m.ot—dh, with §t = t—t. and 0h = h—hc,
plays the role of the conjugate field. Switching on an ex-
ternal magnetic field from h = 0 gives certain soft modes
a mass, but changing h from h. # 0 does not lead to
further changes in the soft-mode spectrum, and neither
does changing the value of t. Hertz theory thus gives the

30 See footnote 28 for the interpretation of & and ar for d > 3.



exact static quantum critical behavior, i.e.,
B=v=1/2 |

The dynamical behavior can be determined as follows.
The magnetization at criticality as a function of the con-
jugate field obeys the homogeneity law (which has the
effects of the DIV u built in)

’y:l s ’]’I:O 5 5:3. (3.66)

om(b) = b=V Fys,, (5 b7V (3.67)

With mean-field values for the exponents this yields
om o h'/3. But dt, and therefore b, within Hertz theory
scales as T(@+1)/3 see Eq. (3.49b) and its generalization
to a general d. We thus find that, at the QCP as a func-
tion of T', the magnetization decreases as

om(T) = m(T) — m(T = 0) ox —h/3 oc —Td+1/9
(3.68)
or T*? in d = 3. This is the result obtained by Belitz
et al. (2005a) using different arguments. The reasoning
above has the advantage that it also immediately yields
the behavior of the magnetic susceptibility x, which is
easier to measure. It obeys

x(h) = 7" Py (h0*77) (3.69)

which yields for the T-dependence of x at the QCP

X(T) oc T~2d+D/9 (3.70)
or T~8/9 in d = 3. We stress again that this is the exact
quantum critical behavior.

We also mention that in the presence of weak quenched
disorder, weak enough for the tricritical wings to still
be present (see Fig. 37 and the related discussion), the
asymptotic critical behavior is unknown. In a transient
pre-asymptotic region the behavior is governed by Hertz’s
fixed point for disordered systems; for a discussion of pre-
asymptotic behavior, see Kirkpatrick and Belitz (2015a).
However, this fixed point is ultimately unstable since it
violates the Harris criterion and the true critical fixed
point may be of a strong-disorder type.

e. Comparison with experiment In order to compare these
theoretical predictions with experiments, we recall that
the theory states that if there is a QPT to a homogeneous
FM state in a clean bulk system, then the transition is
first order. This qualification is important for several
reasons: (1) The transition at low temperatures may be
to a different state, see Secs. II.D, ILE, and IILE. (2)
The presence of quenched disorder has a qualitative effect
on the transition, and sufficiently strong disorder will al-
ways render the transition second order, see Secs. I111.B.3
and ITI.C.2. (3) The fermionic soft modes that drive the
transition first order exist only in 2- and 3-d systems; the
theory therefore does not apply to quasi-1-d materials.
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With these caveats taken into account, we consider
the systems listed in Tables I, II. With one exception,
these are all rather clean systems that show a first-order
transition, as expected. The only questionable case is
YbCusSia, which is strongly disordered; however, the na-
ture of the magnetic order is not clear. In the rather clean
system URhAI a tricritical point is suspected but so far
has not been conclusively observed (Combier, 2013).

The materials in Table III comprise systems that are
rather clean, with residual resistivities comparable to
those in Tables I, II, yet show a second-order transition.
The behavior observed in these systems is consistent with
the pre-asymptotic critical behavior governed by Hertz’s
fixed point discussed in Sec. III.C.2.b. In particular, the
characteristic (—t)3/* behavior of the Curie temperature,
Eq. (3.51), was observed as early as 1975 by Sato (1975)
in (Ni;_,Pd,)sAl and the behavior of the specific-heat
coefficient is consistent with Eq. (3.62). For a more re-
cent observation of the scaling of T¢, see Fig. 14. The
most obvious interpretation of these observations is that
these experiments indeed probe the pre-asymptotic re-
gion, and following 7T, to lower values would reveal a
tricritical point and a first-order transition at the low-
est temperatures. This expectation is supported by the
fact that the lowest T, observed so far in these systems
is relatively high, and by the observation that T, at in-
termediate temperatures also follows the (—t)%/* law in
systems where the transition at asymptotically low tem-
peratures is known to be first order, for instance, in MnSi
(Pfleiderer et al., 1997). An experimental confirmation
or otherwise of this expectation would be very important.
Another experimental check of the theory would be the
critical behavior at the wing tips, Egs. (3.66), (3.68),
(3.70), which has not been studied so far.

3. Disordered systems

For disordered systems, the situation is qualitatively
different since the transition is continuous at the mean-
field level. While the development of the effective action
proceeds in exact analogy to Sec. II1.C.2, the final re-
sult is a stable critical fixed point where the asymptotic
critical behavior is not given by power laws due to the
existence of marginal operators (Belitz et al., 2001a,b).

a. Effective soft-mode action In a disordered system, the
relevant fermionic soft modes are the diffusons discussed
in Sec. ITI.A.2. Their effective action can be written
in a closed form, namely, the matrix nonlinear sigma
model developed by Finkelstein (1983) for studying the
Anderson-Mott metal-insulator transition problem (for
reviews, see Belitz and Kirkpatrick (1994) and Finkel-
stein (2010)). The quenched disorder is handled techni-
cally by means of the replica trick (Edwards and Ander-



son, 1975; Grinstein, 1985) If one denotes the soft modes
by Lanm (@) = ©(—nm) 32, 1Q07, (ks q), With Quyn from
Egs. (3.16) and «, § replica indices, it can be written

Arlq] = AxvLom[q]
= %/dxtr(VQ(X))Q +2H/ dXtI"<QQ(X))

A [ NeO/2] + A NeOJ2] . (3.71a)
where

5[ V1—qd" q b

=V ) o e

is a nonlinear function of ¢, and €2 is a frequency matrix
with elements
Qyp = (7’0 (24 80) 012 Wn, (3710)

Here 1 = (n1, a1), etc., and tr denotes a trace over all dis-
crete degrees of freedom (frequency, spin, particle-hole,
and replica). The coupling constant G is proportional
to the bare (i.e., Boltzmann) resistivity, and thus is a
measure of the disorder strength. H is proportional to
the specific heat coefficient. The first two terms in Eq.
(3.71a) describe noninteracting electrons. They are the
fermionic version (Efetov et al., 1980) of Wegner’s non-
linear sigma model for the Anderson localization problem
(Wegner, 1979). Note the diffusive structure of these two
terms once they are expanded to O(q¢?), with the gradient
squared scaling as a frequency. The last two terms reflect
the electron-electron interactions in the spin-singlet and
spin-triplet channels, respectively. They are quadratic in
Q with coupling constants K and K;, respectively, and
are effectively linear in the frequency (Finkelstein, 1983).
They therefore do not spoil the soft-mode structure of the
nonlinear sigma model but just renormalize the prefactor
of the frequency in the diffusion pole.

The magnetization again couples linearly to the elec-
tron spin density, the soft part of which is linear in Q.
The coupling term reads

A :m/dxzzzmmx) S WAy

a n =1 r=0,3 m

xtr [(Tr ® si) Q%fern(x)} : (3.72)

with ¢ a coupling constant. m® (i = 1,2,3) denotes again
the three components of the order-parameter field m,
which now also carries a replica index «. It determines
the physical magnetization m via the relation

m = [ NET /Ky (mls2 ()

The order-parameter action is very similar to the one
in the clean case, Eq. (3.43), but there is an additional

(3.73)

%)

quartic term that arises from the quenched disorder,

Aop = — Z me{(k) [t+ak? +0(Qn)°] - m2, (k)

kn «

+u / dx T ) ) (mf (x)-mS,(x))

ni,n2,n3 «

x (mf (x) - m2, (%))

b [ 33 o G0 e

ni,n2 o,

(3.74)

The last term, with coupling constant v, is a random-
mass or random-temperature term that arises from the
disorder dependence of the bare distance from criticality
whose disorder average is given by t. There also is a
term cubic in m, which carries at least one gradient or
frequency and is less relevant for the critical behavior
than the terms shown.

The soft-mode action given by Egs. (3.71) - (3.74)
was motivated and derived by Belitz et al. (2001a) from
an underlying microscopic fermionic action.3! However,
such a derivation is not necessary. All parts of the ef-
fective action written above can be obtained from more
general considerations namely, (1) the existence of an ef-
fective soft-mode theory for disordered interacting elec-
trons, (2) symmetry considerations for a quantum ¢*-
theory with a vector OP, and (3) the Zeeman coupling
between the OP and the electron spin density. In par-
ticular, the OP part of the action can either be writ-
ten down based on symmetry considerations, or derived
by means of a Hubbard-Stratonovich decoupling of the
particle-hole spin-triplet interaction term in the under-
lying fermionic action. In the latter case, a spin-triplet
interaction will be generated again by renormalization in
the fermionic sector as long as a spin-singlet interaction
is present. The presence of the last term in Eq. (3.71a)
therefore does not constitute any double counting.

b. Hertz’s action As in the clean case, if we keep only
the term of O(Mgq) in Eq. (3.72) and integrate out the
fermions, we recover Hertz’s action (Hertz, 1976) (plus
the random-mass term, which was not considered by
Hertz). The Landau-damping term now has the form
|2]/k? due to the diffusive nature of the fermionic soft
modes. The paramagnon propagator thus reads

; ; 1
<2Mﬁ‘(k) erﬁn(p» = 5k,—p 5n,—m 5ij 6045 5
1

X .
o ak? b (0)? + et

(3.75)

31 The term b(Q,)? in Eq. (3.74) was erroneously written as b|Q|
in Ref. Belitz et al. (2001a). This is of no consequence, as the
term in question is RG irrelevant in either case.



Dropping the random-mass terms, the action becomes

==> Y mik) [t+ak® + G|, | /K]

kn «

AHertz
xm?, (—k)

+uy /dx T Z Z (m$ (x)-m (x))

ni,n2,n3 «

23 (w) ' mgn17n27n3 (33)) .
Power counting again suggests a continuous phase tran-
sition with mean-field static critical exponents, only now
the upper critical dimension is df = 0, and the dynam-
ical critical exponent is z = 4. This fixed point is ulti-
mately unstable, since the same physics that leads to the
Landau damping term also leads to the terms of higher
order in ¢ in Eq. (3.72). Nevertheless, as in the clean case
(see Sec. IT1.C.2) it is important to study this fixed point
since it is experimentally relevant in a pre-asymptotic
crossover region (Kirkpatrick and Belitz, 2014). In the
disordered case this is true a fortiori since the effects that
destabilize Hertz’s fixed point still result in a continuous
transition, albeit with different exponents.

The homogeneity relations and exponents for Hertz’s
action are obtained by a straightforward modification of
the development in Sec. II1.C.2.b. The dynamical critical
exponent is now

x (m (3.76)

=4, (3.77a)

which yields an upper critical dimensionality df = 0, and
the DIV u has a scale dimension [u] = —d. For all d > 0
the exponents are (cf. Egs. (3.65) for the clean case)

v=1/2 | vr=(d+2)/8,
B=1/2 , Br=(d+2)/8,

6=3,

y=1, yr=(d+2)/4,

n=0,

a=@d—d)j2 , ar=@—d/i. (3.77b)

For d > 4, @ and ar describe the leading fluctuation
contribution to the specific-heat coefficient, see footnote
28 for the analogous statement in the clean case.

As mentioned above, these exponents do not describe
the physical asymptotic critical behavior. Another indi-
cation of this is the value of the correlation-length expo-
nent, v = 1/2, which violates the requirement v > 2/d,
Eq. (3.36), for all d < 4. For finding the true asymp-
totic critical behavior it is preferable to not integrate out
the fermions, but rather deal with the coupled soft-mode
field theory for analyzing the fixed-point structure.

c. Fixed-point action The lowest-order term that was ne-
glected in Eq. (3.76) is the term of O(mg?) in Eq. (3.72).
It is easy to see that this generates a renormalization
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of the 2-point m-vertex that is proportional to |k|¢=2.
For dimensions d < 4, the gradient-squared term in Eq.
(3.74) is therefore not the leading wave-number depen-
dence, and it is convenient to add the generated term to
the bare action. In a schematic form that suppresses ev-
erything not necessary for power counting, the effective
action then reads (Belitz et al., 2001a)

Aegt[m, q] = —/da: m[t+ag_20%7% + a2 02] m
+0(0% m? m*)

- dw(@mq)2+H/da:Qq2+(Ks—i—Kt)T/d:ccf
—G—/dwagq‘*+H4/dmﬂq4+0(Tq3,a§q6,9q6)
4

—|—\/T01/dazmq+\/TCg/dwmq2+O(\/qu4) )
(3.78)

Here the fields are understood to be functions of position
and frequency, and only quantities that carry a scale di-
mension are shown. The bare values of G4 and Hy are
proportional to those of G and H. K, and K; are the
coupling constants of the terms of O(¢?) in the interact-
ing parts of Axpom. A term of order T¢® that arises
from the same part of the action is not important for the
problem of magnetic criticality. It therefore is not shown
although its coupling constant squared has the same scale
dimension as 1/G4 and Hy. c¢; and ¢y are the coupling
constants of the terms that result from expanding A, in
powers of ¢q. Their bare values are proportional to c.

d. Fixed points, and their stability The action shown
schematically in Eq. (3.78) can be analyzed for critical
fixed points by means of standard RG techniques (Ma,
1976). We assign a scale dimension [L] = —1 to a length
L, and [r] = —z to the imaginary time 7 (with 2z to
be determined). Under renormalization with a length
rescaling factor b, all scaling quantities A will transform
according to A — AblAl. In particular, temperature T
and frequency  have scale dimensions [T] = [Q] = z.

It is illustrative to first again look for a fixed point
that describes the mean-field critical behavior of Hertz
theory. To this end, let us look for a fixed point where
the coupling constants as and ¢; are marginal. This re-
sults in standard mean-field static critical behavior, and
a dynamical exponent z = 4, all of which is consistent
with the action given in Eq. (3.76) and with the param-
agnon propagator, Eq. (3.75). The requirement that the
action be dimensionless leads to [m] = (d — 2)/2, which
makes ¢ relevant with [t] = 2. The critical exponents 7
and v are thus n = 0, and v = 1/2. This fixed point is
unstable for d < 4, since [ag—2] = 4 —d, and a4 is thus
relevant for all d < 4. This is obvious if one adds the
term with coupling constant a4_o to the bare action, as



we have done above, but less so if one chooses the bare
value of az_o to be zero and have the physics related to
aq—2 be generated by the term with coupling constant co.
In that case, a careful analysis of the time scales involved
leads to the same conclusion (Belitz et al., 2001a). All of
this in consistent with the fact that the mean-field value
v = 1/2 violates the Harris criterion discussed in Sec.
ITI.B.3, see Eq. (3.27), and therefore cannot represent
the correct critical behavior in a disordered system.

The above discussion suggests that one should look for
a fixed point where only ¢; is required to be marginal,
which implies [m] = 1+ (d — 2)/2. The diffusons will
be unaffected by the magnetic transition, and hence the
scale dimension of the soft fermion field ¢ is [¢] = (d —
2)/2. This also implies that there is a diffusive time scale
characterized by a dynamical exponent

2giff = 2 (3.79)
in addition to the critical dynamical time scale whose ex-
ponent we denote by z.. This presence of more than one
time scale complicates the power-counting arguments, as
the scale dimensions of various coupling constants can
depend on the context they appear in. That is, the scale
dimension z of the various factors of temperature or fre-
quency in the effective action can be equal to zgig or z,
depending on the context. In particular, agz_o can be ir-
relevant if the paramagnon propagator appears as an in-
ternal propagator in the loop expansion, while it will be
marginal in the critical paramagnon propagator, which
implies [m] = 1. This leads to z. = d and n = 4—d. This
makes as irrelevant, while ¢ is relevant with [t] = d — 2.
The three independent critical exponents thus are

1

:m s Zc:d.

v n=4—-d |, (3.80a)
For this fixed point, v satisfies the Harris criterion. The
remaining static exponents are given by d-dependent gen-

eralizations of Eq. (3.25) (Belitz et al., 2001b):

2

=— | =1, 6d=d/2. 3.80b
=15 gl / ( )
Equation (3.80b) is valid for 2 < d < 6. For d > 6,
and 0 lock into their mean-field values; for v and 7 this
happens for d > 4. The T-dependence of the observables
at criticality, t = 0, is determined by (Belitz et al., 2001b)
Br=pB/2v , v =17/ (3.80c)

To discuss the stability of this fixed point we now con-
sider the remaining coupling constants in the effective ac-
tion, Eq. (3.78). ¢z has a scale dimension [c] = 1 — z/2,
and thus is irrelevant if z = z., but marginal if z = zg;g.
Moreover, due to the existence of two different time
scales even some operators that are irrelevant by power

counting may effectively act as marginal operators (Belitz
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et al., 2001b). The reason is that naive power counting is
based on a length scale argument, which can be modified
if the scale factor b represents a frequency rather than a
length. Since the difference between the two dynamical
exponents zgig and z. is equal to d — 2, this implies that
coupling constants with a naive scale dimension given by
—(d—2) can act as marginal operators under certain con-
ditions. As a consequence all terms that are shown ex-
plicitly in Eq. (3.78) are important for determining the
leading critical behavior and constitute the fixed-point
action.

e. Asymptotic critical behavior The conclusion so far is
that the fixed-point action represented by Eq. (3.78) con-
tains marginal operators that result, order by order in a
loop expansion, in logarithmic corrections to the fixed
point with critical exponents given by Eqs. (3.80). The
remaining question is what the result is if the loop ex-
pansion is summed to all orders.

(1) Integral equations for the diffusion coefficients. The
above question can be answered exactly without resorting
to a small parameter (such as an expansion in € = d — 4)
(Belitz et al., 2001a,b; Kirkpatrick and Belitz, 1996).
This hinges on various properties of the loop expansion:
First, at the fixed point of interest the fermionic dynam-
ics remain diffusive. The coupling constants Ky and K}
do not change this, and therefore can be ignored. Sec-
ond, G and ¢, are not singularly renormalized. Third, the
renormalized versions of G4 and Hy are proportional to
those of G and H, as are their bare values. Finally, ¢, is
held fixed by definition of the fixed point. This leaves the
renormalizations of H and the two-point order-parameter
vertex us = t+agq_s|k|92 4+ azk? to be determined. The
resummation of the loop expansion to all orders can be
expressed in terms of two coupled integral equations for
H and us or, equivalently, for the thermal diffusion coeffi-
cient D(Q) = 1/GH () and the spin diffusion coefficient
Dy(k,Q) = 16muz(k,Q)/Gc3, both of which acquire a
frequency dependence under renormalization. D and Dg
simultaneously go to zero at a critical value of G, and in
the vicinity of that critical point the integral equations
can be solved analytically. It turns out that the logarith-
mic corrections obtained in perturbation theory do not
change the power laws given in Egs. (3.80), but rather re-
sult in log-normal corrections to power-law scaling. For
instance, the magnetization m(t,T = 0) d = 3 has an
asymptotic behavior (Belitz et al., 2001b)

m(t — 0) o |t g(In(1/]t])]? , (3.81a)
with § = 2 from Egs. (3.80) and
glx — 0) x e(In®)?*/2In(3/2) (3.81b)



Similarly, at t = 0 as a function of a magnetic field h,

m(t=0,h = 0) x {hg (;111(1//1))} 7 sslo)

with § = 3/2 from Egs. (3.80). The specific heat also

has a log-normal critical behavior. However, the critical

exponent v comes without logarithmic corrections; the
magnetic susceptibility diverges as

x(t—0) < 1/[t] . (3.81d)

(7i) Scaling considerations: Thermodynamic quanti-

ties. All of the above results are conveniently summa-

rized in the following generalized homogeneity law for
the free-energy density (Belitz et al., 2001b):

f(t, T, h) = b= @+2e) £ (£ b1V T b hb*)

157 @H20) £ 46V T b hb™) . (3.82)

Here z. is the critical dynamical exponent, which deter-
mines the temperature dependence of the specific heat,
and z, is the dynamical exponent due to the generic soft
modes, which determines the temperature dependence of
the order parameter and its susceptibility. If z. > z,
(this has to be the case, see Sec. I11.C.4 below), we ob-
tain homogeneity laws for the order parameter df/0h,
the order-parameter susceptibility x = 0 f/0h?, and the
specific-heat coefficient vo = —9%f/9T?,

m(t, T, h) = b~ (4F2a=2) [ (417 T % hb*)
3.83a)

(
(3.83b)
(3.83c)

x(t, T; k) = b~ (@222 B (¢ b1V Tb2: kD) |
vo(t, T) = b={4=%) B (tbY/" T ™) .

In Eq. (3.83b) we have added the wave-number depen-
dence of x. Also of interest is the scaling of the critical
temperature T, with ¢. T. is the temperature where the
order parameter vanishes, or the susceptibility diverges,
and from Eq. (3.83a) or (3.83b) we obtain
T, o (—t)"%s . (3.83d)
All critical exponents can now be expressed in terms
of zc, 24, and v.° We have

a=v(z.—d) ,ar = (2 —d)/zc (3.84a
B=v(d+zy—2:) , Br=(d+ 29 — 2:)/25 , (3.84b
vy=v2z —d—z4), y7 = (22, —

0=2./(d+ 24 — 2c) .
nN=d+2+z5— 2z .
Finally, vr follows from the requirement that x(t =

0,7 — 0; k) must be proportional to T-77 times a func-
tion of k&, which yields

vp =1/z4 . (3.84f)
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The log-normal terms multiplying the power laws can be
expressed in terms of a scale dependence of the indepen-
dent exponents z., z4, and v. It is convenient to write,
for 2 < d < 4,

Ze=d+ X, zg=2+X, 1/lv=d—-2+X, (3.85)

where ) is defined as

A=Ilng(lnd)/Inb, (3.86)
with ¢g(Inb) from Eq. (3.81b).

This critical behavior is expected to be exact provided
a continuous transition into a homogeneous FM phase
occurs. However, rare-region effects may mask this crit-
ical behavior. Theories that deal with such effects are
discussed in Secs. III.D and IIL.E.

(#it) Scaling considerations: Electrical resistivity. We
finally mention the electrical resistivity p. The transport
relaxation rate is dominated by the disorder, which is un-
affected by the magnetic ordering. The scale dimension
of p at a ferromagnetic QCP is therefore zero. However,
p does depend on the critical dynamics, since the para-
magnon propagator enters the calculation of p in per-
turbation theory. From Eq. (3.78) we see that one-loop
corrections to p can be constructed, for instance, from
one vertex with coupling constant 1/Gy, or from two ver-
tices with coupling constant co. These terms belong to
the class of least irrelevant variables with respect to the
critical fixed point; their scale dimension is —(d —2). De-
noting the least irrelevant variables collectively by u, we
have the following homogeneity law for the resistivity:

p(t,T) = E,(t b/, Tb* ub(4=2)
= const. + b~ D, 10V T b*) , (3.87)

where we have used that fact that the leading correction
to p is linear in u. At criticality, this yields

p(t =0,T) o T2/ (3.88)
For the t-dependence at T' = 0 there are additional log-
arithmic complications due to a resonance between the
scale dimensions of u and ¢, see Belitz et al. (2001b).

Alternatively, one can argue that p consists of a back-
ground contribution that does not scale, and a singular
one contribution dp that does. Since p is dimensionally
a length to the power d — 2, one expects

Sp(t, T) = b= =2 Fs (£ b1/ T be) | (3.89)

which again yields (3.88). Note that this argument builds
in the DIV wu, so naive scaling works.

f. Pre-asymptotic behavior The logarithmic nature of the
asymptotic critical behavior described above suggests
that it is valid only in an exponentially small region



around the critical point. Indeed, a numerical solution of
the integral equations mentioned in Sec. II1.C.3.e shows
that the behavior in an observable region around criti-
cality is given by effective power laws that correspond to
the quantity A defined in Sec. III.C.3.e being A ~ 2/3
in a large range of scales (Kirkpatrick and Belitz, 2014).
For instance, the specific-heat coefficient follows effective
power laws with exponents®

af~04 , aff~0.18 (3.90a)
over almost three decades. Similarly, the critical tem-
perature dependence of the spin susceptibility and the

magnetization is given by effective exponents

vt ~0625 , B ~075, (3.90b)

and the corresponding effective static exponents are

y=1 , =12 , T~183. (3.90c)
For the exponent that determines the shape of the phase

diagram in the T-t plane, Eq. (3.83d), we have

(vzy)T 1.6 . (3.90d)

Only the value of v is the same in the pre-asymptotic
and asymptotic regions, respectively. This is important
for the interpretation of experiments.

g. Summary of critical exponents in the disordered case In
summary, the critical exponents for the disordered case
in 2 < d < 4 dimensions in both the asymptotic and the
pre-asymptotic regions are give by Eqgs. (3.84, 3.85). In
the asymptotic regime they do not represent pure power-
law behavior since ) is the scale-dependent object given
in Eq. (3.86). In the pre-asymptotic regime, A ~ 2/3,
and the exponents represent effective power laws.

h. Relation to experiment The interpretation of experi-
ments on strongly disordered systems is difficult for vari-
ous reasons. First, the control parameter tends to be the
chemical composition, which necessitates the preparation
of a separate sample for each data point. This makes the
precise determination of the critical point very difficult,
and neither the precision nor the absolute values of the
distance from criticality are anywhere near the values
that in classical systems are known to be necessary for a
reliable determination of critical exponents. Second, the
Griffiths-region effects discussed in Sec. III.D below are
expected to be pronounced in strongly disordered sys-
tems and coexist with critical phenomena.

A well-studied strongly disordered system is
URug_,Re,Sis, see Sec. I1.C.2. Bauer et al. (2005)
found a QCP at z ~ 0.3; scaling plots yielded exponent
values § = 1.56 and By = 0.9. v was inferred from the
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Widom relation (which does hold in this context, see
Kirkpatrick and Belitz (2015a)), v = Sr(é — 1) = 0.5.
The specific-heat coefficient showed a InT behavior
over a wide range of z values. A later analysis (Butch
and Maple, 2009) put the critical concentration at
x ~ 0.15 and found continuously varying exponents in
the range 0.6 > = > 0.2, with § — 1, 7 — 0, and
B =~ 0.8 roughly constant. If the data represent critical
phenomena, then continuously varying exponents are
hard to understand. Also, an exponent vy = 0, which
must signal a divergence of the OP susceptibility that is
only logarithmic, would be very unusual.

In Ni;_,V, (Sec. ILE.l.c), Ubaid-Kassis and
Schroeder (2008) found a critical point at z. =~ 0.11 with
yr = 0.37+0.07, 7 =~ 0.5, and § = 1.8 +0.2. The value
of ¢ agrees very well with Egs. (3.90), the agreement
for vy and fBr is less satisfactory. These data were
reinterpreted by Ubaid-Kassis et al. (2010) in terms of a
Griffiths phase for z < z..

Finally, the exponent that governs the scaling of T,
with the control parameter is equal to 2 asymptotically,
and about 1.6 in the pre-asymptotic region, see Egs.
(3.83d) and (3.90d). This is in contrast to the result from
Hertz theory in the clean case, where the corresponding
value is 3/4, see Eq. (3.51). An exponent well greater
than 1 is qualitatively consistent with the “tail” in the
phase diagram observed in many disordered systems, see
Figs. 33 and 35, and also with the schematic phase dia-
gram shown in Fig. 38. As discussed in Sec. II.E, these
tails are often interpreted as signalizing quantum Grif-
fiths effects. These two interpretations are not mutually
contradictory; more detailed experimental investigations
will be needed to distinguish between them.

4. Exponent relations

At a classical critical point, only two static critical ex-
ponents are independent. This implies that there must
exists relations between various exponents.3? These re-
lations have a complicated history, and some of them
were initially found empirically (Stanley, 1971). Sev-
eral of them take the form of a rigorous inequality that
turns into an equality if certain conditions are fulfilled.
Well-known examples are Widom’s equality v = 5(§ — 1)
(Widom, 1964) and Fisher’s equality v = (2—n)v (Fisher,
1964). Relations between the exponents at a QCP de-
fined in Appendix B have been derived and discussed by
Kirkpatrick and Belitz (2015a).

32 These exponent relations are also often referred to as “scaling
relations”, or “scaling laws”, the latter not to be confused with
the homogeneity laws that are often referred to by the same term.



D. Rare-region effects in disordered systems

1. Quantum Griffiths effects

The notion of a Griffiths phase is well established in
both classical and quantum disordered systems (Bray,
1987; Griffiths, 1969; McCoy, 1969; Millis et al., 2002a;
Randeria et al., 1985; Vojta, 2010). The basic idea can
be illustrated by considering a classical randomly diluted
Ising FM in d-dimensions. 33 In this model some of the
FM bonds are missing with a probability p. As a result,
the critical temperature T, in the random system is lower
than the corresponding critical temperature in the pure
or non-random system. In random systems, the latter
is often denoted by T¢ and referred to as the Griffiths
temperature. In general, interesting effects occur both in
the ‘paramagnetic’ phase, T' > T, and in the ‘Griffiths
phase’, T, < T < Tg. Here we focus on the latter.

Griffiths argued that in such a system there always ex-
ist regions of linear size L that happen to contain no miss-
ing bonds, and thus behave as a region of the same size
in the corresponding pure system. This is true even for
arbitrarily large L, but the probability of finding a large
region devoid of missing bonds is exponentially small,

P(L)  exp(—cL?) . (3.91)
Here d is the spatial dimensionality of the system, and
c is a constant. If the size of these rare regions is large
compared to the local correlation length, then it is mean-
ingful to speak of them as being magnetically ordered. At
criticality in a mean-field theory, the correlation length
¢ as a function of an applied magnetic field i scales as
€ ~ 1/hY/3. This in turn suggests that in the entire Grif-
fiths phase there is a contribution é F to the free energy
that reflects both the exponentially small probability of
rare regions and the scaling of the correlation length with
the magnetic field (Dotsenko, 2006):
0Fg o exp[—c' h™4/3] | (3.92)
with ¢’ another constant. That is, in the entire Griffiths
phase the free energy is a nonanalytic function of the field
h at h = 0. However, the singularity is only a very weak
essential one.

The weak singularities in the thermodynamic proper-
ties in the classical Griffiths phase are very difficult to
detect experimentally. However, the existence of ordered

33 The relevant concepts were put forth simultaneously by Griffiths
(1969) and McCoy (1969). McCoy considered a strip-random
two-dimensional classical model (McCoy and Wu, 1968) that is
closely related to the quantum-mechanical problem of a random
transverse-field Ising spin chain (Fisher, 1995). This observation,
and phenomena deriving from it, are now often referred to as
(quantum) Griffiths-phase effects.
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rare regions has a qualitative effect on the dynamics of
the equilibrium time-correlation functions. This is phys-
ically obvious since overturning large clusters of ordered
spins takes a time that grows exponentially with the size
of the cluster, and time-correlation functions in the Grif-
fiths phase will depend on such dynamical processes. We
have given the qualitative argument in Sec. III.A.1. The
result, Eq. (3.7b), was that time-correlation functions are
expected to decay slower than any exponential.

The conclusion is that the static effects in the classi-
cal Griffiths phase are very weak, but dynamic Griffiths
effects are quite profound, changing exponential decay
of time-correlation functions into non-exponential decay.
As we have stressed in Sec. I, in quantum statistical me-
chanics the statics and the dynamics are coupled. This
implies that Griffith-phase effects are expected to be im-
portant for both the statics and the dynamics near QPTs
in disordered systems in general, and in disordered quan-
tum FMs in particular. In fact, it turns out that in
the quantum case the dynamical singularities are even
stronger than suggested by the classical arguments above.

In the context of quantum mechanics, this goes back
to the model proposed and studied by McCoy and Wu
(1968) (McCoy, 1969; McCoy and Wu, 1969), which
is closely related to a 1-d quantum problem. This
model was later generalized (McCoy, 1970; Shankar and
Murthy, 1987), and its quantum mechanical interpreta-
tion was studied in detail by Fisher (1992, 1995) and
others (Pich et al., 1998; Rieger and Young, 1996; Young,
1997). The crucial point is that the slow dynamics asso-
ciated with the Griffiths phase greatly affects the zero-
temperature behavior. To see this, consider a local mag-
netized rare region of linear size L, separated by a domain
wall from the rest of the system as in the classical case. 34
Its imaginary-time local dynamic susceptibility will de-
cay exponentially by a quantum tunneling process. For
long imaginary times we have,

Xloc(T = 00) o exp[—7/7(L)] , (3.93)
where 7(L) is the characteristic relaxation time for the
tunneling process. To estimate 7(L) we imagine a domain
wall in imaginary-time space for a cluster of size L¢ in
real space. This has been considered for Ising systems
(Guo et al., 1996; Millis et al., 2002a; Motrunich et al.,
2000; Pich et al., 1998; Rieger and Young, 1996; Thill
and Huse, 1995) and for Heisenberg magnets (Vojta and
Schmalian, 2005); for a review, see Vojta (2010).35 Most

34 Griffiths effects also exist in the ordered phase. However, they
are weaker than the corresponding effects in the disordered phase
except in certain special models (Motrunich et al., 2000; Senthil
and Sachdev, 1996). Here we focus on the disordered phase.

35 Strictly speaking the considerations presented here are valid only
for non-Ising metallic magnets, i.e. systems with an order-



of the work on this topic has been done for AFMs i.e.,
the case of a nonconserved OP. One finds

7(L) ~ 1o exp(aL?) . (3.94)
Here 73 is a microscopic time scale, & is a constant, and
the overbars distinguish 7 and & from the corresponding
quantities in the classical case, Eq. (3.6). Effectively, in
the quantum case the volume of the region is L¢+*, with
z the dynamical exponent, and the domain wall is a hy-
persurface with area L?+*7# = L4, Physically, the decay
of the rare region in the quantum case is much slower
than its classical counterpart, Eq. (3.6), since at T > 0
the cluster can flip via thermal activation in addition to
quantum tunneling. Equations (3.91), (3.93) and (3.94)
imply for the average local dynamic susceptibility

Xioo(T) = /000 dLexp[—cL? — (T/To)e_‘ﬂd] (3.95a)

In this case the ftypical length scale is Ly, o
[In(7/7)]"/¢, and in the limit of large imaginary time
the method of steepest descent yields

X (T — 00) o (1/70) 77 . (3.95b)
We see that quantum mechanics leads to a power-law

decay. This is in contrast to the classical case, see Sec.
IIT.A.1. The T-dependence of the static susceptibility is

/T .
(T = 0) = / AT (r) ~ T~ (3.96)

0

The conclusion is that Griffiths-phase dynamical sin-
gularities lead to low-T singularities in static quanti-
ties. Similarly, the contribution to the specific heat is
A (T) ~ T¢7. 1If ¢/5 < 1, then these local rare-region

loc
contributions dominate the usual Fermi liquid ones.

The conserved disordered FM case is even more dra-
matic. Physically this is because a conservation law is
equivalent to a long-ranged interaction (Hoyos and Vo-
jta, 2007), and hence slows down relaxation even more.
Nozadze and Vojta (2012) have argued that in this case
the relaxation time in d = 3 scales as

7(L) oc exp[aL*T™] (3.97)

parameter dimensionality n > 1. The reason is that the |Qy|
term in the Gaussian order-parameter action corresponds, at
T = 0, to a long-ranged 1/7'2 decay in imaginary-time space.
Because a one-dimensional Ising model (n = 1) can have a phase
transition with such an interaction, this implies that there might
be a freezing phase transition in imaginary-time space that is
not included in the simple Griffiths arguments given here. One-
dimensional models with n > 1 do not have such a phase tran-
sition because they are below their lower critical dimension even
with this long-ranged interaction.
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where n = 1 if the itinerant electrons are ballistic, and
n = 2 if they are diffusive. Technically, the extra factor of
L™ compared to the AFM (non-conserved) case is a result
of the 1/|k|™ in the paramagnon propagator, Eq. (3.5a).
Following the same steps as above, one can determine the
physical observables. The local susceptibility behaves as

1
Xiv (T — 0) T exp[—A{In(Ty/T)}*/G+M] . (3.98)
Here A a constant and Tp is a microscopic temperature
scale. The specific heat is proportional to

(T — 0) o< exp[—A{In(Tp/T)}*/ )] .

loc

(3.99)

Finally, the magnetization m at zero temperature as a
function of an applied field H is

m(H — 0) o exp[—A{In(Hy/H)}*/G+M] | (3.100)

where Hj is a microscopic magnetic field scale. Note that
these exponentials go to zero slower than any power law.

2. Disordered local moments

A related concept in the presence of quenched disor-
der is that of local magnetic moments (Bhatt and Fisher,
1992; Milovanovich et al., 1989). This topic has been re-
viewed by Belitz and Kirkpatrick (1994). An important
conclusion is that the interactions between the local mo-
ments, or rare regions, are very important.

3. Interacting rare regions

One conclusion of the previous subsection is that long-
ranged RKKY interactions between local moments, in
conjunction with rare-region effects, can have qualitative
effects. This suggests that similar interactions between
rare regions in a quantum Griffith phase might also be
important. This question has been studied by Dobrosavl-
jevi¢ and others (Case and Dobrosavljevié, 2007; Do-
brosavljevi¢ and Miranda, 2005) for the case of a Heisen-
berg AFM. The applicability of these ideas, with suitable
modifications, to FMs remains to be studied.

These authors considered rare regions centered at
points R; (i =1,2,3,...) that are characterized by local
N-component (N > 1) OPs ¢;(7), with 7 the imaginary-
time variable. The Gaussian part of the action has the
form

g2 — 562) + 89

int

(3.101)
Here 5’62) is the noninteracting part,
B
59 =% / drdr’ i(r) To(r = ') - $i(r)
— Jo

=2 ®i(Q) To() - $i(~ ) (3.102)



with €, a bosonic Matsubara frequency. Let us assume
for simplicity that the OP is not conserved, so that the
noninteracting vertex is given by

FO(Qn) = FO(O) + ‘Qn‘ . (3103)

The |€2,| nonanalyticity is the Landau damping mech-
anism due to the coupling of the magnetic OP to the
conduction electrons that was discussed in Sec. III.A.1.
In imaginary-time space, it corresponds to a power-law
decay T'o(T — 00) oc 1/72. This puts the rare region or
droplet, now considered a 1-d classical system in 7-space
with a 1/72 interaction, at its lower critical dimension
(Joyce, 1969). This means that the noninteracting rare
regions cannot develop long-range order.

The interacting part of the Gaussian action is given by

B
Si(ft) = %Z/ drdr’ ¢i(1)V(Rij, 7 —7') - ¢, (7")
i 0
(3.104)
The interaction between two rare regions is assumed to
be a static RKKY interaction given by

Jij

V(Rij,7) = Ry )

5(r) . (3.105)

Ji; is assumed to be a random amplitude of zero mean
and variance (J12J> = J2?. Using replica methods, Do-
brosavljevi¢ and Miranda (2005) conclude that the ef-
fective contribution to the total action from rare-region
interactions is

5S = —;;(1 - 6z’j)§ (Rf)gd
x [ arar (820 ¢5(0) (#1)- 8(71)
(3.106)

Here (a, 8) = 1,2, ...n are replica labels, and the replica
limit n — 0) is implied. Treating this interaction in a
standard mean-field approximation gives

08 = =33 %) AT () - ¢ (— )

aff n,i

(3.107)

where A?ﬂ (Q,,) is proportional to a weighted spatial av-
erage of a local rare-region susceptibility,

2
A () = 30 = (B5(00) - 8(-0.)
N gy (Rij)

(3.108)

Within a self-consistent mean-field theory, the average in

Eq. (3.108) is to be taken with respect to the complete
action, including the rare-region interaction term.

Comparing Eq. (3.102) and Eq. (3.107) we see that the

rare-region interactions have renormalized the Gaussian

part of the noninteracting action Sy. This is analogous to
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the effects of the fermionic soft modes that was discussed
in Sections III.B and III.C. The importance of this term
depends on its behavior for long times or low frequen-
cies. Dobrosavljevi¢ and Miranda (2005) concluded that
effectively the noninteracting vertex I'g, Eq. (3.103), gets
augmented by an additive term of the form

6T(2,) o const. + [, |[*71 . (3.109)

Here o« = ¢/d is the same exponent that appears in
Egs. (3.95b) and (3.96). It is nonuniversal and is ex-
pected to decrease as the magnetically ordered phase is
approached. Once a < 2, the nonanalyticity coming from
the rare-region interaction is stronger than the one due to
Landau damping in the bare action, Eq. (3.103). The OP
correlation function then falls off more slowly than 1/72
for large imaginary times. The rare region thus is above
its lower critical dimension and can develop long-range
order. This in turn implies that sufficiently large droplets
will freeze and form a “cluster glass” phase.!® This con-
cept has been used to analyze and interpret experiments
on CePd;_,Rh,, see the discussion in Sec. II.E.1.a.

Based on these considerations, which suggest that the
Griffiths phase is unstable, Dobrosavljevi¢ and Miranda
(2005) have proposed a phase diagram where a cluster-
glass phase appears between the PM phase and the mag-
netically ordered phase. This has been further discussed
by Case and Dobrosavljevi¢ (2007), who have argued
that the transition from the PM to the cluster glass is
a fluctuation-induced first-order transition at low 7' and
continuous at higher T, with a tricritical point in be-
tween. This mechanism is analogous to the one described
in Sec. II1.B for clean FMs with the ordinary FM OP re-
placed by the droplet OP, and the fermionic soft modes
replaced by the Griffiths fluctuations that were discussed
in Sec. ITI.A.1.

4. The size of Griffiths effects

The arguments for Griffiths-phase effects reviewed
above are all asymptotic in nature, a characteristic they
share with other rare-region effects, e.g., Lifshitz tails in
the density of states of disordered solid (Lifshitz, 1964).
A question for all of these phenomena is the range of
their validity. For instance, we need to ask how far from
its initial value a time-correlation function has to decay
before the asymptotic behavior becomes realized, or how
low a temperature one has to consider in order for the
effects described in Sec. III.D.1 to becomes observable.
These and related questions have a long history. They
were initially investigated for classical systems, where the
predicted effects were not always observed. However, for
quantum systems more recent numerical evidence indi-
cates substantial effects (Guo et al., 1996; Pich et al.,
1998; Rieger and Young, 1996; Vojta, 2010), and experi-
mental observations in many strongly disordered systems



have been interpreted as due to quantum Griffiths effects,
see the discussions in Secs. II.C and IL.E.

For classical systems, several rigorous results are avail-
able. One example is the problem of a random walk
with a random distribution of static traps that immobi-
lize the diffusing particle if it hits one. It has been shown
rigorously (Donsker and Varadhan, 1975, 1979) that the
survival probability P(c,t), with ¢ the concentration of
traps, decays for asymptotically long times as

In P(e,t — 00) — AT A (3.110)
with A = —In(1 — ¢). The same result was obtained by
means of Griffiths-Lifshitz arguments by Grassberger and
Procaccia (1982) and by Kayser and Hubbard (1983),
who showed that the asymptotic long-time behavior is
dominated by the existence of arbitrarily large, but expo-
nentially rare, trap-free regions. This work left open the
size of the asymptotic region. After many earlier studies,
Barkema et al. (2001) (see also references therein) showed
conclusively by means of Monte-Carlo studies that the
asymptotic result is valid only when P(c,t) is exceed-
ingly small. For instance, in d = 3 the asymptotic be-
havior sets in only when P(c,t) ~ 1073 and 10750 for
¢ = 0.1 and ¢ = 0.01, respectively. For shorter times,
P(e,t) decays exponentially.

The Griffiths phase of the classical bond-diluted Ising
model mentioned in Sec. III.D.1 has also been studied.
The time-dependent local spin-spin correlation function
C(t) is predicted to decay as (Bray, 1988, 1989)

C(t — 00) ~ exp|[—const. x (Int)¥@=D]  (3.111)
Monte Carlo simulations for d = 3 (Colborne and Bray,
1989) showed poor agreement with Eq. (3.111). Plot-
ting In C(t) against (Int)3/? yielded substantial curva-
ture. A better fit was obtained by plotting In C'(t) against
[In(t/7)]?/?, with 7(T) an adjustable parameter. A still
better fit was found using a stretched exponential or
Kohlrausch form C(t) ~ exp[—(t/7)?], with 8 an increas-
ing function of temperature that is on the order of 0.4.
Various authors (Cao et al., 2006; Colborne and Bray,
1989; Jain, 1995) found that C(¢) must be less than 1074
of its initial value before the asymptotic behavior sets in.

The situation is different for classical n-dimensional
spins with n > 2. In this case, the Griffiths arguments
predict (Bray, 1987, 1988, 1989)

C(t — 00) ~ exp[—const. x t'/2] . (3.112)
Monte Carlo data are entirely consistent with this pre-
diction for all but short times (Colborne and Bray, 1989).

For quantum systems, the increasing power of nu-
merical methods has yielded interesting results. For a
transverse-field Ising spin glass, Monte-Carlo simulations
on 2-d and 3-d systems by Rieger and Young (1996) and
Guo et al. (1996) found clear evidence of Griffiths-phase
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effects. The size of the effects decreased by about a fac-
tor of 4 from d = 2 to d = 3. The strength of the ef-
fects, compared with classical systems, is sometimes at-
tributed to the fact that in the quantum case the Grif-
fiths clusters occur as line defects, as opposed to point
defects in classical models. Perhaps more importantly,
because quantum tunneling of a rare region is a slower
process (7 o exp (L?)) than thermally activated dynam-
ics (7 < exp L4=1) of the same rare region, the Griffiths
singularities in the quantum case lead to power-law de-
cays in time, or power-law singularities at low 7. These
power-law effects in temperature can dominate the usual
Fermi-liquid power laws in metals. Various susceptibili-
ties may even diverge as 7" — 0.

Collectively, these results imply that the importance
of the Griffiths effects is not a priori clear and may
strongly depend on the nature of the system. For in-
stance, in the classical case there is a qualitative differ-
ence between Ising and XY or Heisenberg models, see
Egs. (3.111) and (3.112). The quantum FM case, for
both Ising and Heisenberg symmetry, is similar to the
classical Ising model in the sense that there is a activa-
tion barrier to transport, unlike the classical Heisenberg
case. On the other hand, there is numerical evidence for
quantum mechanics enhancing the Griffiths effects.

E. Textured phases as a way to avoid a quantum critical
point

Various authors realized that the instability of Hertz
theory can signalize either a first-order transition, or a
transition into a non-homogeneous phase (Belitz et al.,
1997; Chubukov et al., 2004; Rech et al., 2006). The re-
spective conditions have been investigated by several au-
thors (Efremov et al., 2008; Maslov et al., 2006). Maslov
and Chubukov (2009) concluded that in a model with a
long-ranged exchange interaction the first-order transi-
tion always pre-empts the formation of a spiral phase.

Conduit et al. (2009) used a self-consistent many-body
approach supplemented by a numerical evaluation of fluc-
tuation corrections to the free energy to argue that a spi-
ral state can pre-empt the first-order transition as the FM
state is approached from the PM phase. This textured
magnetic phase is analogous to the FFLO state in super-
conductors (Fulde and Ferrell, 1964; Larkin and Ovchin-
nikov, 1964). Karahasanovic et al. (2012) expanded this
to a purely analytical theory that allows for instabilities
towards spin-nematic phases in addition to a spiral one.
They proposed a phase diagram, Fig. 39, where upon ap-
proaching from the PM at low T one first encounters a
spin-nematic phase, followed by a spiral phase, and fi-
nally a uniform FM. The possibility of a Pomeranchuk
instability towards a non-s-wave ferromagnet or magnetic
nematic had also been discussed earlier by Chubukov and
Maslov (2009). Later work concluded that an infinite
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FIG. 39 Proposed phase diagram for a model allowing for
spiral and spin-nematic order. p is the chemical potential, g
is the exchange coupling. From Karahasanovic et al. (2012).

resummation of fluctuation contributions to the free en-
ergy results in the spiral phase occupying a substantially
smaller part of the phase diagram (within about 1% of
the transition point at 7' = 0) than the original theory
predicted (Pedder et al., 2013), but the topology of the
phase diagram remained the same. Such a narrow slice
of spiral order would be easy to overlook experimentally
and has so far not been observed. In 2-d the theory pre-
dicts a much larger spiral phase. One must keep in mind,
however, that no true long-range FM order is possible in
d=2atT >0.

F. Other mechanisms for a first-order transition

The mechanism for a first-order transition in clean
quantum FMs that was discussed in Sec. II1.B.2 is re-
markable because of its universality. However, in any
given material less universal mechanism may be present
that by themselves would suffice to drive the transition
first order. Here we briefly discuss two such mechanisms.

1. Band structure effects
The coefficients in the Landau free energy

fulm] = tm? + ugm? + ugm® + O(m®) (3.113)
depend in complicated ways on the microscopic details of
the system, and in particular on band structure. In any
given material it is possible that band-structure effects
lead to a negative value of uy. If ug > 0, this leads to
a first-order transition at some positive value of ¢, which
pre-empts the second-order transition at ¢ = 0. Under
certain conditions, correlations can have the same effect
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(Yamada, 1993). However, this cannot explain the uni-
versality of the observed effect in clean low-T' FMs that
is displayed by Tables I, II.

It is interesting that UGes, in addition to the pressure-
induced first-order PM-to-FM transition at p ~ 16 kbar,
shows a metamagnetic transition at a lower pressure that
is also of first order. This transition, as well as the su-
perconductivity that coexists with the ferromagnetism at
low T and intermediate pressures, has been attributed to
a special feature in the density of states of UGeq (Pflei-
derer and Huxley, 2002; Sandeman et al., 2003; Shick
et al., 2004a,b).

2. Magpnetoelastic effects

Phonons are generic soft modes in the sense of Sec.
III.A.1 that couple to the magnetization. This can lead
to a weakly first-order transition in classical magnets
(Bean and Rodbell, 1962; Bergman and Halperin, 1976;
de Moura et al., 1976; Larkin and Pikin, 1969; Rice, 1954;
Sak, 1974; Wegner, 1974). We briefly review the con-
clusions for classical magnets, and then the relevance of
these results for quantum FMs.

a. Classical magnets Consider an LGW theory for a FM
with OP M that couples to harmonic elastic degrees of
freedom. In the simplest case of an isotropic 3-d system
in the continuum limit the action reads (Aharony, 1976)

E uaa

(3.114)

S = / dz tM2 +(VM)? + ugM* +

iy ulg +gMQZuaa} :
a,f3 «@

Here K and p are elastic coefficients, and

Uap = % <35ua + Oqug + Z 3au785u7> (3.115)

Y

is the strain tensor in terms of derivatives of the displace-
ment vector u(x). g is the magnetoelastic coupling con-
stant. In systems on a lattice there are additional terms
(Bergman and Halperin, 1976; de Moura et al., 1976),
but the general structure of the action is the same. At
constant pressure, additional terms coupling the pressure
to the strain tensor need to be added (Imry, 1974).
There are several important features of this action.
First, the coupling is to the square of the OP. Second,
the coupling is to the divergence of the soft mode, i.e.,
the displacement vector. This is in contrast to the case
of the smectic OP coupling to the nematic Goldstone
modes at a nematic-to-smectic-A transition, or the su-
perconducting OP coupling to the electromagnetic vector
potential (Halperin et al., 1974). In both of these cases,



the coupling is directly to a soft mode, which leads to a
nonanalytic dependence of the free energy on the OP in a
renormalized Landau theory. Here, by contrast, the cou-
pling is much weaker due to the additional gradient, and
the net effect of the elastic modes are additional terms
of quartic order in the OP. Schematically, one can see
this by replacing the strain tensor u,g by a scalar € and
considering a Landau free energy

flm, €] = tm? + ugm* + Ke® + gm?e . (3.116)
Decoupling m and e shows that the transition in mean-
field approximation is first order if g? > 4Kuy. The
nature of the phase transition as described by the LGW
action (3.114) and its generalizations has been studied
by de Moura et al. (1976), who integrated out the elas-
tic degrees of freedom, and by Bergman and Halperin
(1976), who performed an RG analysis of the full cou-
pled theory. The conclusion is consistent with the simple
argument above: For a sufficiently large magnetoelas-
tic coupling the transition may become first order, but
whether or not this occurs depends on the bare values of
the parameters in the LGW theory, i.e., on microscopic
details, as well as on the dimensionality of the OP (Nat-
termann, 1977). Magnetoelastic effects are a route to a
first-order transition but not a universal route.

b. Quantum magnets Gehring (2008) (see also Gehring
and Ahmed (2010)) and Mineev (2011) have proposed to
apply the above results for classical magnets to the quan-
tum FM transition in pressure-driven systems by gener-
alizing the Landau free energy (3.116) to

flm, €] = t(e)m? + ugm* + Ke? | (3.117)
with t(e) = T — T.(¢) representing the dependence of T,
on the strain (or, equivalently, on the pressure p). Ex-
panding T¢(¢) for small € leads to the coupling given in
Eq. (3.116) with g o« dT./dp. Since experimentally one
finds dT./dp — oo as T, — 0, these authors have argued
that effectively the magnetoelastic coupling ¢ increases
without bounds as T, decreases, necessarily leading to a
first-order transition at sufficiently low T.. This line of
reasoning is problematic. First, a singular dependence of
a coefficient on a field must not be built into a Landau
theory if the theory is to have any predictive value. Such
a singular dependence may result from integrating out
soft modes, such as in the treatment of classical liquid
crystals or superconductors by Halperin et al. (1974),
or in the renormalized Landau theory reviewed in Sec.
III.B. In the case of compressible magnets such a result
is implausible. The coupling between the magnetic OP
and the elastic deformations is weak even in the classi-
cal case, see above, and in the quantum case it will be
even weaker due to an additional frequency integral. Sec-
ond, a diverging effective magnetoelastic coupling results
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in a diverging volume change (Bean and Rodbell, 1962).
Therefore, even if one accepts the substitution of the ob-
served T¢.(p) into the Landau theory, it predicts that a
structural phase transition must necessarily accompany
the first-order magnetic transition. There is no experi-
mental evidence for this. We conclude that currently no
convincing theory for magnetoelastic effects in the quan-
tum regime exists.

IV. SUMMARY, DISCUSSION, AND OUTLOOK

A. Summary, and Discussion

We have given an overview of the quantum phase tran-
sition problem in metallic ferromagnets. Experimentally,
a variety of phase diagrams are observed, see Fig. 2.
Apart from discontinuous (first-order) and continuous
(second-order) QPTs FM to a PM, a QPT from a FM
state to an AFM or spin-wave state is observed in some
systems, while in others the low-T phase near the onset
of FM is some sort of a magnetic glass. In many systems
with quenched disorder there is evidence for quantum
Griffiths effects on the PM side of the transition. The
experimental results are described in Sec. II, organized
with respect to the structure of the phase diagram.

Theoretically, the transition from a PM quantum FM
is expected to be discontinuous in clean systems, and con-
tinuous in disordered ones. In either case the behavior
at the QPT is very different from the one expected from
Hertz theory. This is because of a coupling between the
magnetization and soft fermionic excitations in metals
that was included in Hertz theory in too simple an ap-
proximation and treated more thoroughly in the theory
originally developed by two of us and T. Vojta that is re-
viewed in Sec. ITI. The results obtained by Moriya, Hertz,
and Millis are still expected to be observable in certain
pre-asymptotic regimes. The agreement between these
theoretical predictions and experimental results are gen-
erally very good for clean systems. Strongly disordered
systems are much more complicated. Although the crit-
ical singularities at the continuous quantum FM transi-
tion have been calculated exactly, Griffiths-phase effects
coexist with the critical singularities and complicate the
experimental analysis.

We now add some remarks to the discussion in the
main text and mention some related topics that we did
not cover. The references in this section are intended to
be illustrative, rather than exhaustive.

1. Nematic phases and transitions in a Fermi liquid
have been investigated theoretically by Oganesyan et al.
(2001). They used a Hertz-type theory, which yields a
continuous transition with mean-field critical behavior
in spatial dimensions d = 2,3 for all types of nematics
considered. The case of a metallic spin-nematic, or non-
s-wave FM, is theoretically closely related to the FM one.



For such systems in the absence of quenched disorder it
was later shown that the same mechanism operative in
FMs generically causes the spin-nematic transition to be
of first order (Kirkpatrick and Belitz, 2011).

For charge nematics the mechanism leading to a first-
order transition does not apply (Belitz et al., 2002). Still,
later work showed that the Hertz approach breaks down
even in this case, but the breakdown is less dramatic
than in the spin channel and the transition is believed to
remain continuous (Dell’Anna and Metzner, 2006; Lee,
2009; Metliski and Sachdev, 2010).

There is experimental evidence of charge Ising-nematic
order in systems including the pnictides (Chuang et al.,
2010), Srz3Ru2O7 (Borzi et al., 2007), and the normal
state of the cuprates, in particular YBayCu3zO, (Daou
et al., 2009). For a review, see Fradkin et al. (2010).

2. Another point is related to the models used to theoret-
ically study the FM QPT. Hertz (1976) considered a con-
tinuum model of free electrons that interact via a point-
like spin-triplet interaction. There are good reasons to
believe that such a model does not actually have a FM
phase, see Sec. IV.B 4. However, the point of an effective
field theory such as Hertz’s is not to establish whether or
not there is a phase transition in this, or any, model; it
is to describe the properties of the transition, provided
one actually occurs. The complicated band structure and
other microscopic details that may well be necessary to
produce a transition in the first place do not affect the
universal properties at the transition, and therefore can
safely be omitted from the effective theory.

More recent theories (e.g., Kirkpatrick and Belitz, 2012a)
consider an effective OP theory that has the existence of
a magnetic transition encoded in the parameters of the
effective LGW functional. All details of the solid-state
structure that are necessary for FM to occur are thus
hidden in these parameters. The OP is then coupled to
fermions, and for capturing the qualitative effects of the
latter on the FM transition again a simple continuum
model suffices.

3. The near-universal observation of a first-order QPT
in clean FMs is surprising even given the robustness of
the effect discussed in Sec. II1.B.2, since the term in the
renormalized Landau theory that is responsible for it is
logarithmic, which results in an exponential dependence
of observables on parameters. It is possible that, perhaps
as a result of strong electron correlations, an analog of
van der Waals’s law of corresponding states for classical
liquids holds for strongly correlated Fermi liquids, mak-
ing the relevant parameters, measured in natural units,
roughly the same in different materials. This notion is
consistent with the discussion in Sec. II.B.5, and espe-
cially with the fact that the tricritical temperature scales
roughly with the magnetic moment.
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4. In Secs. II and III we emphasized that experimen-
tal observations of continuous FM QPTs in strongly
disordered systems are often difficult to interpret, and
the critical exponents that characterize these transitions
are hard to measure. However, qualitative features of
both theoretical results and experimental observations
indicate that several exponents are drastically different
from both the mean-field exponents expected in a pre-
asymptotic regime in weakly disordered systems, and
classical exponents in common universality classes.

For instance, the OP exponent [ is predicted to be
larger than unity (about 1.2) in the pre-asymptotic
regime where an effective power-law behavior is expected,
whereas the exponent ¢ is unusually small (about 1.8),
see Eq. (3.90c). In contrast, the mean-field values are
B = 1/2 and § = 3, and the corresponding classical
values for 3-d Heisenberg FMs are about 0.37 and 4.8,
respectively. Experiments do indeed tend to find val-
ues of 8 and 0 that are larger and smaller, respectively,
than their respective mean-field values, see Secs. I1.C.2
and II1.C.3.h. A related issue is the shape of the phase
boundary near the QPT, with both theory and experi-
ments finding a “tail” in the phase diagram, see the dis-
cussion in Sec. II1.C.3.h. Griffiths effects may also con-
tribute to the observed properties in this region, which
makes more detailed investigations desirable.

This superposition of critical phenomena and additional
disorder effects notwithstanding, the results reviewed in
Sec. II1.C.3.e for the critical behavior of an FM OP cou-
pled to diffusive fermions are believed to be exact. This
type of problem also appears elsewhere. For instance,
Savary et al. (2014) have considered a model for py-
rochlore iridates that couples a quantum ¢* theory to
(in this case exotic) fermions, which results in a phase
transition with similarly unusual critical properties.

5. Even far away from any QPT FM metals at low T" have
very interesting properties. This is not as well appreci-
ated as the problems posed by AFMs, or by FMs near a
QPTs. For instance, in many clean FMs a generic (i.e.,
existing in an entire phase) non-Fermi liquid T3/2 resis-
tivity is observed over a large low-T range in both the FM
and the PM phases (Brando et al., 2008; Niklowitz et al.,
2005; Pfleiderer et al., 2001b; Sato, 1975; Takashima
et al., 2007). This is not well understood, see Sec. IV.B.

In disordered systems, Griffith effects lead to generic
NFL behavior on the PM side of the phase bound-
ary as was discussed in Section III.D. In either phase,
weak-localization (Lee and Ramakrishnan, 1985) and
Altshuler-Aronov (Altshuler and Aronov, 1984), effects
are expected in disordered systems. The resulting super-
imposed temperature dependences of observables can be
quite intricate (Butenko et al., 1990) but in general little
attention has been paid to them.

6. There has been interesting work on FM transitions



in metals under non-equilibrium conditions (Mitra and
Millis, 2008; Mitra et al., 2006), where correlations are
generally greatly enhanced compared to systems in equi-
librium (Belitz et al., 2005b). In these systems the
fermionic soft modes discussed in Sec. III are suppressed
by boundary effects. As a consequence a Hertz-type non-
equilibrium transition has been predicted.

7. Unusual phases are expected in systems where both
electronic correlations and a strong spin-orbit interac-
tion are present (Wan et al., 2011). In particular, topo-
logical semi-metal phases can occur which may be real-
ized in YsoIraO7 (Wan et al., 2011), BisSes (Zhang et al.,
2009), and HgCraSey (Xu et al., 2011), or in heterostruc-
tures of topological and normal insulators (Burkov and
Balents, 2011). This semi-metal state is a 3-d ana-
log of graphene and provides a condensed-matter real-
ization of Weyl fermions. Calculations based on the
LSDA 4+ U + SO method (local spin-density approxi-
mation plus correlations plus spin-orbit coupling) have
suggested a rich phase diagram with a QPT between a
FM metal and a Weyl semi-metal (Wan et al., 2011).
The nature of this transition has not been investigated.

Weyl semi-metals also have interesting properties apart
from any QPT. Ideas associated with them have been
used to understand the intrinsic anomalous Hall effect
in metallic FMs (Chen et al., 2013). These authors ar-
gue that even Weyl nodes that do not coincide with the
Fermi energy, as is believed to be the case in SrRuOsg,
contribute to the intrinsic anomalous Hall conductivity
in FM metals. This in turn implies that this conductiv-
ity in FMs is not purely a Fermi-surface property, which
contradicts earlier conclusions (Haldane, 2004).

8. FM transitions have been observed in a variety of
quantum Hall systems. For instance, in a GaAs system
in a perpendicular magnetic field, Piazza et al. (1999)
observed a first-order transition in the v = 2 and v = 4
quantum Hall states. They suggested that the source of
the observed hysteresis effects was not exotic, but was
due to the expected domain structure in an easy-axis
FM. Similar behavior was observed by De Poortere et al.
(2003) in AlAs quantum wells. Drichko et al. (2012) mea-
sured magnetoresistance properties in two p-Si/SiGe/Si
quantum-well samples in a tilted magnetic field. In a
sample with p = 2 x 10" cm™2 they observed phase co-
existence and concluded that there was a first-order FM-
PM transition. However, in the second sample with p =
7.2 x 10'° ¢cm™2 no transition was observed. Stoner or
RPA-like theories have been used to discuss FM transi-
tions in quantum Hall systems (Burkov and MacDonald,
2002; Lopatnikova et al., 2004), and for the pseudospin
FM realized in bilayer Quantum Hall systems there is ev-
idence for a first-order transition (Lee et al., 2014; Schlie-
mann et al., 2001; Zou et al., 2010).
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B. Open problems

We finally mention some open problems.

1. Additional work is needed to disentangle Griffiths sin-
gularities and critical singularities near the FM QPT in
disordered metals. Since Griffiths singularities gener-
ically are stronger on the PM side of the transition
(Motrunich et al., 2000), the QPT is best studied from
the FM side. Although Griffiths singularities exist in
weaker forms also on the FM side, the existence of a zero-
field magnetization uniquely implies long ranged FM or-
der, so the singular behavior of the zero-field magnetiza-
tion itself can distinguish between Griffiths singularities
and critical singularities. The relation between Griffiths
physics and the Harris criterion has been discussed by
Vojta and Hoyos (2014) and Vojta et al. (2014).

The NFL behavior observed in many clean materials in
large parts of the phase diagram has been reviewed by
Stewart (2001) and remains incompletely understood.
One manifestation is the T3/2 behavior of the resistiv-
ity that was mentioned in Sec. IV.A. An explanation
in terms of columnar fluctuations, which is applicable
to MnSi, has been proposed by Kirkpatrick and Belitz
(2010). However, because of the large variety of materi-
als where a T3/2 resistivity is observed, it is likely that
more than one mechanism can lead to this behavior. For
a related discussion of ZrZns, see Smith et al. (2008).

Similarly, weak-localization and Altshuler-Aronov effects
in weakly disordered FMs deserve more attention. The
T-dependence of the resistivity can be complicated, with
many contributions from very different sources (Butenko
et al., 1990; Mizutani et al., 1988; Yildiz et al., 2009).

2. In the presence of magnetic impurities, or impurities
with a large spin-orbit coupling, the soft fermionic modes
in the disordered case will be suppressed (Belitz and
Kirkpatrick, 1994; Lee and Ramakrishnan, 1985), and
the nature of the FM QPT is unclear. It is possible that,
once the generic soft modes have been eliminated, the
transition will resemble the one in disordered AFM met-
als, but not much is known about this case.

3. There are materials in which no FM transition has
been observed, but that nonetheless display very inter-
esting properties. One of these is YFesAlyg. It crys-
tallizes in the eponymous orthorhombic structure with
a single Fe site (Kerkau et al., 2012). Initial experi-
ments identified correlated FM behavior (Strydom and
Peratheepan, 2010). Further detailed studies on single
crystals found anomalies in the magnetic susceptibility
and the specific heat which obey a peculiar NFL field-
temperature scaling (Park et al., 2011; Wu et al., 2014).
In addition, FM correlations have been found in NMR
experiments (Khuntia et al., 2012). These observations
have been interpreted as indicating that the material is



close to a FM QPT. However, no FM transition has been
detected so far at temperatures down to 50mK, even
upon doping with a small surplus of Fe (Strydom et al.,
2013). On the contrary, Fe excess or deficiency drive
YFe;Alyg away from the critical behavior. The low-T'
resistivity shows a Kondo-like logarithmic increase be-
low 30K with a high py ~ 75 uf2em (RRR = 2), which
puts YFeo Al in the group of strongly disordered sys-
tems (cf. Sec. I1.C.2). However, single-crystal structure
refinement did not find any deviation from the ideal com-
position (Kerkau et al., 2012), so the origin of the large
resistivity is not clear. The observed scaling behavior
and the lack of a magnetically ordered phase in YFesAlyq
need further investigations. We also mention that in the
closely related system YbFe;Al g strong FM correlations
have been observed at low T' (Khuntia et al., 2014). In
this material, the Yb-derived electrons at low T form a
nonmagnetic intermediate-valent state and therefore the
Fe atoms alone are responsible for the FM correlations,
as is the case in YFegAlyg.

4. There are materials that display a transition from a
metallic AFM state to a FM at low T. Two examples
are CeRuaGes (Raymond et al., 1999a), and CeRuaAl,B
(Baumbach et al., 2012). In both cases, the AFM-FM
transition is first order, whereas the transition from a PM
to an AFM at a higher Neel temperature is second order.
It is plausible that the QPT from a metallic AFM to a
FM in clean systems is first order for the same reasons
as that from a metallic PM to a FM, but no theory is
available for this case.

A related issue is the detailed structure of the phase di-
agrams discussed in Sec. II.D. These systems all must
display a Lifshitz point, and at least two QPTs. In clean
systems, the QPT from the FM phase to the modulated
phase is expected to be first order, but this needs exper-
imental confirmation. In disordered systems, it may well
be a novel type of QCP. Similarly, the Lifshitz point may
be a multicritical point with very interesting properties.

5. An old question is what ingredients in a model are nec-
essary for producing itinerant FM (e.g., Varma (2010), or
Shimizu (1964), and references therein). It has long been
suspected that in simple electron-fluid models there is no
FM phase (Ceperley and Alder, 1980; Chang et al., 2010),
although some recent Quantum Monte Carlo studies sug-
gest otherwise (Pilati et al., 2010, 2014). This topic has
received much attention recently in the context of optical
lattices, especially an experiment that reported itinerant
FM in a Fermi gas of ultracold atoms (Jo et al., 2009).
However, subsequent experiments by the same group cast
doubt on the original interpretation of the data (Sanner
et al., 2012). FM solid-state systems typically have a
complicated band structure. Whether or not FM can
occur in optical lattices is an open question. If it does,
the transition is expected to be first order for the same
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reasons as in clean solid-state systems (Duine and Mac-
Donald, 2005), and a quantum Monte Carlo study of a
2-d Stoner Hamiltonian suggests that the strength of the
first-order transition depends on the range of the inter-
action (Conduit, 2013).

6. Quenches, i.e., rapid changes of external parameter
values, at T' = 0 in both clean and disordered metallic
FMs are interesting. Belitz et al. (2007) have shown that
the coupling of the OP to the fermionic soft modes leads
to qualitatively new effects for the late-stage coarsen-
ing. Gagel et al. (2014) have shown that there is univer-
sal pre-asymptotic behavior in general quantum quench
problems due to long-range boundary effects. In FM
metals this effect is expected to be even more interesting
because of the coupling to the fermionic soft modes.

7. The experimental coexistence curve appears to be ex-
tremely steep in many FM systems, see, e.g., Figs. 5, 10,
and the phase diagrams for ZrZns measured by Uhlarz
et al. (2004) and Takashima et al. (2007), but determin-
ing the coexistence curve from different observables can
lead to different detailed shapes (Kabeya et al., 2010).
Studies of the detailed shape, by pressure-cycling in the
p-T plane, or field-cycling in the p-H plane, would be
interesting. Theoretically, the shape of the coexistence
curve can be determined from the Clapeyron-Clausius
equation, which has been discussed for quantum Hall sys-
tems by Zou et al. (2010) and for QPTs in general and
FMs in particular by Kirkpatrick and Belitz (2015b).

8. Without trying to be exhaustive, we mention a few
other FM materials that may be candidates for suppress-
ing T via pressure or chemical substitution: NpNiSiy, a
Kondo-lattice system with Tc = 51.5 K (Colineau et al.,
2008); SryRu301p, a layered FM with T = 148 K (Cao
et al., 1997 and Crawford et al., 2002, see also Sec.
I1.B.4); the enhanced PM TiBes which shows metamag-
netism at 5T (Wohlfarth, 1980), and TiBey_,Cu, which
shows a transition to a FM ordered state (Acker et al.,
1981; Giorgi et al., 1979). The latter system was inten-
sively investigated in the early 1980s, but a detailed and
conclusive phase diagram does not exists. Since recent
band-structure calculations (Jeong et al., 2006) suggest
that TiBe, is close to an AFM instability, it would be
interesting to revisit the phase diagram of TiBes_,Cu,.



Appendix A: List of acronyms

AFM antiferromagnet, or antiferromagnetism,
or antiferromagnetic

CDW charge-density wave

CEF crystalline electric field

CEP critical end point

DIV dangerous irrelevant variable

FM  ferromagnet, or ferromagnetism, ferromagnetic
LGW Landau-Ginzburg-Wilson

NFL non-Fermi liquid

PM  paramagnet, or paramagnetic

RG  renormalization group

QCP quantum critical point

QCEP quantum critical end point

QPT quantum phase transition

RG  renormalization group

RRR residual resistance ratio

Appendix B: Definitions of critical exponents

Let T be the temperature, ¢ the dimensionless dis-
tance from criticality at 7' = 0, and h the magnetic field.
Consider the correlation length &, the magnetization m,
the magnetic susceptibility x, and the specific-heat co-
efficient v = C/T as functions of ¢, T, and h, and the
susceptibility also as a function of the wave number k.
We define critical exponents as follows.

Correlation length:

Et—0,T=0)c|t|™ , €t=0T=0)ocT " .

(B1)

Order parameter:

m(t — 0,T=0,h=0)cx (-t)",

m(t=0,T —0,h=0) o TP

m(t=0,T =0,h — 0) oc h/? . (B2)
Order-parameter susceptibility:

x(t—=0,T=0k=0)x[t|7,

xt=0,T—=0;k=0)cT T |

x(t=0,T =0,k —0) o 1/k>". (B3)

Specific-heat coefficient:

Yt —=0,T=0)x[t|™™ , F(t=0,T—=0)xT T .
(B4)

v, B, 7, 0, and n are defined in analogy to the corre-
sponding exponents at a classical phase transition. The
definition of & deviates from the one of the classical ex-
ponent customarily denoted by «, which is defined in
terms of the specific heat rather than the specific-heat
coefficient. At a classical phase transition, @ coincides
with a. ar, vy, Br, and ~r reflect the fact that a QPT

can be approached either in the T" = 0 plane, or from
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T > 0. The definition of S7 in Eq. (B2) is purely formal,
see Kirkpatrick and Belitz (2015a) and discussion after
Eq. (3.58).
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