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Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction be-
tween charge carriers in two closely spaced but electrically isolated conductors induces
a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical
current is passed through the other. The magnitude of the effect depends on the exact
nature of the charge carriers and microscopic, many-body structure of the electronic
systems in the two conductors. Drag measurements have become part of the standard
toolbox in condensed matter physics that can be used to study fundamental properties of
diverse physical systems including semiconductor heterostructures, graphene, quantum
wires, quantum dots, and optical cavities.
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I. FRICTIONAL DRAG

Inner workings of solids are often studied with the
help of transport measurements. Within linear response,
the outcome of such measurements is determined by the
properties of the unperturbed system, which are often
the object of study. In a typical experiment a current is
driven through a conductor and the voltage drop along
the conductor is measured. In conventional conductors
at low temperatures the resulting Ohmic resistance is
mostly determined by disorder (which is always present in
any sample) (Lifshitz and Pitaevskii, 1981; Ziman, 1965),
while interactions between charge carriers lead to correc-
tions that affect the temperature dependence of transport
coefficients (Altshuler and Aronov, 1985).

In his pioneering work, Pogrebinskii (1977) suggested
an alternative measurement that involves two closely
spaced, but electrically isolated conductors (hereafter re-
ferred to as “layers”). In such a system, an electric cur-
rent I1 flowing through one of the layers, known as the
“active” layer, induces a current (or, in an open circuit,
a voltage V2, see Fig. 1) in the other, “passive” layer by
means of “mutual friction”. By this one typically un-
derstands scattering between charge carriers belonging
to different layers due to long-range interactions. These
scattering events are accompanied by energy and momen-
tum transfer from the carriers in the active layer to the
carriers in the passive layer, effectively “dragging” them
along. At the simplest level, such friction effects can be
described by introducing a phenomenological relaxation
rate. In the case of frictional drag, the corresponding rate
τ−1D generally depends on the exact nature of the charge
carriers, interlayer interaction, and microscopic structure
of the electronic system. Thus, measurements of this re-
laxation rate provide additional insight into microscopic
properties of interacting many-body systems.

A related phenomenon, where a quasiparticle flow in-
stigates a partial transfer of energy and momentum be-
tween separate, but interacting subsystems of quasiparti-
cles, is known as “phonon drag” (Gurevich, 1946a,b; Her-
ring, 1954) and manifests itself in a rising thermoelectric
power in semiconductors at low temperatures (Fredrikse,
1953a,b; Geballe, 1953; Geballe and Hull, 1954). In the
presence of a temperature gradient, lattice vibrations be-
come anisotropic since the phonons travel preferentially
from hot to cold (providing a mechanism for thermal con-
duction). Interacting with electrons, the phonons effec-
tively drag them towards the cold end of the sample,
creating an excess charge density (this process will con-
tinue until the electrostatic field created by the accumu-

FIG. 1 Schematic showing the drag signal V2 induced by the
current I1. [From Price et al. (2007). Reprinted with permis-
sion from AAAS.]

lated charge will counterbalance the drag effect). In a
nonequilibrium system of electrons and phonons, their
mutual drag is intertwined with heating effects and af-
fects charge transport (Gurevich and Mashkevich, 1989).
The resulting correction to the standard transport theory
is important in thermoelectric measurements.

In contrast, frictional drag in double-layer systems is
not a correction: in the absence of the interlayer interac-
tion, charge carriers in two disjoined conductors are in-
sensitive to each other (therefore, any drag effect should
necessarily vanish in the limit of infinitely remote lay-
ers). In other words, the drag phenomenon simply does
not exist in noninteracting systems! Consequently, ini-
tial experimental work on mutual drag was devoted to
quantitative measurement of the strength of interactions
between quasiparticle subsystems in various semiconduc-
tor devices including p-modulation-doped GaAs quan-
tum wells (Höpfel and Shah, 1988; Höpfel et al., 1986),
capacitively coupled two- and three-dimensional (2D-
3D) electron systems in AlGaAs/GaAs heterostructures
(Solomon and Laikhtman, 1991; Solomon et al., 1989),
2D electron systems in AlGaAs/GaAs double quantum
wells (Eisenstein, 1992; Gramila et al., 1991, 1992, 1994;
Solomon and Laikhtman, 1991), and electron-hole bilay-
ers (Sivan et al., 1992). Drag between 3D systems was
numerically simulated in Jacoboni and Price (1988). At
low temperatures and for closely spaced layers, the inter-
layer scattering rate τ−1D appeared to be dominated by
the Coulomb interaction (Price, 1983, 1988).

Coulomb drag between spatially separated electron
systems is ultimately caused by fluctuations (or inhomo-
geneities) of the charge density in the two layers (Zheng
and MacDonald, 1993). Indeed, an infinite layer with
uniformly distributed electric charge creates a uniform
electric field in the normal direction that does not exert
any lateral force upon the carriers in another layer. If
both layers are in the Fermi-liquid state, then the usual
phase-space argument (Gramila et al., 1991) yields the
quadratic temperature dependence τ−1D ∝ T 2 in qualita-
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tive agreement with the observed behavior at low enough
temperatures. More detailed analysis of the experimen-
tal data revealed the presence of additional mechanisms
leading to frictional drag, such as the indirect interlayer
interaction mediated by phonons (Gramila et al., 1993;
Noh et al., 1999; Rubel et al., 1995, 1996), plasmon effects
(Hill et al., 1997; Noh et al., 1998), and thermoelectric
phenomena (Solomon and Laikhtman, 1991).

Theoretically, it was realized early on that mutual
Coulomb scattering between electrons in the two layers
results in the exchange of both energy and momentum
(Boiko and Sirenko, 1988; Maslov, 1992; Price, 1983).
Initial calculations aimed at energy and momentum re-
laxation in a nondegenerate 2D electron gas (2DEG)
due to proximity to a 3D conductor (Boiko and Sirenko,
1988, 1990) were followed by investigation of transport
properties in coupled 2D and 3D systems (Boiko et al.,
1992; Laikhtman and Solomon, 1990), 1D systems cou-
pled to conductors of arbitrary dimensionality (Sirenko
and Vasilopoulos, 1992), coupled 1D wires (Gurevich
et al., 1998; Tanatar, 1996, 1998; Tso and Vasilopoulos,
1992), and quantum Hall edge states (Orgad and Levit,
1996). Following the groundbreaking experiments in
AlGaAs/GaAs double quantum wells (Eisenstein, 1992;
Gramila et al., 1991), a lot of work was devoted to
drag between two degenerate 2DEGs. While the purely
Coulomb mechanism (Flensberg et al., 1995; Jauho and
Smith, 1993; Kamenev and Oreg, 1995; Zheng and Mac-
Donald, 1993) does capture the most qualitative features
of the effect, other mechanisms of momentum transfer
may also contribute to the observed behavior. In samples
with larger interlayer spacing (d ∼ 50-500nm) as much
as 30% of the measured signal was attributed to phonon-
mediated interactions (Gramila et al., 1993). These mea-
surements appeared to be consistent with the virtual-
phonon exchange mechanism (Tso et al., 1992, 1994).
Other suggested scattering mechanisms involved acoustic
(Bønsager et al., 1998a) and optical (Hu, 1998) phonons,
plasmon effects (Flensberg and Hu, 1994) and coupled
plasmon-phonon modes (Güven and Tanatar, 1997a). Bi-
layers subject to strong magnetic fields were shown to
form interlayer correlated states (Girvin and MacDonald,
1997; Varma et al., 1994). For superconducting layers, in-
terlayer magnetic interaction due to spontaneously cre-
ated vortices has also been suggested (Shimshoni, 1995).

Mutual Coulomb scattering has been studied also in
a hybrid device (Huang et al., 1995) comprising normal
(Au/Ti) and superconducting (AlOx) 2D films separated
by an insulating (Al2O3) layer. In that case, as well as in
“cross-talk” measurements in superconductor–insulator–
normal-metal trilayers (Giordano and Monnier, 1994),
the phenomenological Drude-like description of drag in
terms of τ−1D does not apply. The Drude description also
fails when the system is subjected to a strong magnetic
field: in contrast to the naive description, numerous ex-
periments (Feng et al., 1998; Hill et al., 1996, 1998; Jörger

et al., 2000c; Lok et al., 2001a,b; Patel et al., 1997; Rubel
et al., 1997a,b) show significant dependence of the mea-
sured drag resistivity ρD on the applied field, especially
in the extreme quantum regime (Lilly et al., 1998). More
sophisticated theoretical calculations on Coulomb drag
in quantum Hall states (Shimshoni and Sondhi, 1994),
superfluid condensates in paired electron-hole layers (Vi-
gnale and MacDonald, 1996), drag of composite fermions
(Kim and Millis, 1999; Ussishkin and Stern, 1997, 1998;
Zhou and Kim, 1999), vortex drag (Vitkalov, 1998), non-
dissipative drag (Rojo and Mahan, 1992), supercurrent
drag (Duan and Yip, 1993), as well as drag between
charged Bose gases (Tanatar and Das, 1996) and meso-
scopic rings (Baker et al., 1999; Shahbazyan and Ulloa,
1997a,b) have confirmed the expectation that the drag re-
sistivity reflects not only the exact character of interlayer
interaction, but also the nature of elementary excitations
in each layer and their fundamental properties.

After the turn of the century, drag measurements be-
came part of the standard toolbox in condensed matter
physics. They have been used to investigate properties
of electron-electron scattering in low-density 2D electron
systems (An et al., 2006; Kellogg et al., 2002a); signatures
of metal-insulator transition in dilute 2D hole systems
(Jörger et al., 2000a,b; Pillarisetty et al., 2002, 2005a,b);
quantum coherence of electrons (Kim et al., 2011; Price
et al., 2008, 2007) and composite fermions (Price et al.,
2010); exciton effects in electron-hole bilayers (Croxall
et al., 2008; Keogh et al., 2005; Morath et al., 2009; Sea-
mons et al., 2009); exotic bilayer collective states (Eisen-
stein, 2014), especially the quantum Hall effect (QHE)
at the total filling factor νT = 1 (Finck et al., 2010; Kel-
logg et al., 2003, 2002b; Schmult et al., 2010; Spielman
et al., 2004; Tutuc et al., 2009); compressible quantum
Hall (QH) states at half-integer filling factor (Muraki
et al., 2004; Zelakiewicz et al., 2000); integer QH regime
(Lok et al., 2002); Luttinger liquid effects (Debray et al.,
2001; Laroche et al., 2008, 2014); Wigner crystallization
in quantum wires (Yamamoto et al., 2002, 2006, 2012);
and one-dimensional (1D) sub-bands in quasi 1D wires
(Debray et al., 2000; Laroche et al., 2011). More gener-
ally, interlayer interaction and corresponding transport
properties have been studied in hybrid devices compris-
ing a quantum wire and a quantum dot (Krishnaswamy
et al., 1999); a SC film and a 2D electron gas (Fa-
rina et al., 2004); Si metal-oxide-semiconductor systems
(Laikhtman and Solomon, 2005); quantum point contacts
(Khrapai et al., 2007); insulating a-SiNb films (Elsayad
et al., 2008); ferromagnetic-antiferromagnetic-SC trilay-
ers (Cuoco et al., 2009); nanosize CdSe-CdS semiconduc-
tor tetrapods (Mauser et al., 2010); electron-hole scatter-
ing in quantum wells (Prunnila et al., 2008; Takashina
et al., 2009; Yang et al., 2011); graphene monolayers
(Gorbachev et al., 2012; Kim et al., 2011; Kim and Tu-
tuc, 2012; Titov et al., 2013a); and hybrid graphene-
semiconductor systems (Gamucci et al., 2014).
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On the theory side, the variety of suggested extensions
and generalizations of the original drag problem is even
richer. The theory of Coulomb drag between two 2DEGs
was extended to dilute 2D hole systems (Hwang et al.,
2003) and to the cases where one allows for certain tun-
neling processes between the layers (Oreg and Halperin,
1999; Oreg and Kamenev, 1998), interlayer disorder cor-
relations (Gornyi et al., 1999; Hu, 2000a), in-plane po-
tential modulation (Alkauskas et al., 2002), and disor-
der inhomogeneities (Apalkov and Raikh, 2005; Spivak
and Kivelson, 2005; Zou et al., 2009, 2010). Theory of
Coulomb drag between composite fermions was gener-
alized to include phonon-mediated coupling (Bønsager
et al., 2000; Khveshchenko, 2000). Mutual friction was
also suggested to occur between non-Fermi-Liquid phases
including Luttinger liquids (Flensberg, 1998; Klesse and
Stern, 2000; Nazarov and Averin, 1998), Wigner crys-
tals (Baker and Rojo, 2001; Braude and Stern, 2001),
and strongly localized electrons (Raikh and von Oppen,
2002). Drag or similar measurements of interlayer in-
teractions were also considered for composite (or hy-
brid) systems comprising ballistic quantum wires (Gure-
vich and Muradov, 2000, 2005; Raichev and Vasilopou-
los, 2000a; Wang et al., 2005), coupled 2D-1D systems
(Lyo, 2003), nonequilibrium charged gases (Wang and
da Cunha Lima, 2001), multi-wall nanotubes (Lunde
et al., 2005; Lunde and Jauho, 2004), quantum point
contacts (Levchenko and Kamenev, 2008a), few level
quantum dots (Moldoveanu and Tanatar, 2009), opti-
cal cavities (Berman et al., 2010a, 2014), coupled meso-
scopic rings (Yang and MacDonald, 2001), supercon-
ductors (Levchenko and Norman, 2011), and normal-
metal–ferromagnet–normal-metal structures (Zhang and
Zhang, 2012). Other developments include mesoscopic
fluctuations of Coulomb drag (Narozhny and Aleiner,
2000; Narozhny et al., 2001), frictional drag mediated
by virtual photons (Donarini et al., 2003) and plasmons
(Badalyan et al., 2007), exciton effects in semiconduc-
tors (Laikhtman and Solomon, 2006) and topological in-
sulators (Mink et al., 2012), interlayer Seebeck effect
(Lung and Marinescu, 2011) and spin drag (Badalyan
and Vignale, 2009; D’Amico and Vignale, 2000; Duine
et al., 2011, 2010; Duine and Stoof, 2009; Flensberg
et al., 2001; Glazov et al., 2011; Pustilnik et al., 2006;
Tse and Das Sarma, 2007; Vignale, 2005). Recently, the
focus of the theoretical work was shifted towards the
drag effect in graphene-based devices (Narozhny, 2007;
Narozhny et al., 2015; Song et al., 2013; Tse et al., 2007)
and strongly interacting high-mobility double-layers with
low-density carrier concentration (Apostolov et al., 2014;
Chen et al., 2015).

Given the rather large amount of literature devoted to
frictional drag, it seems unreasonable to cover all pos-
sible angles in a single paper. Early work on frictional
drag was reviewed by Rojo (1999). Various experimen-
tal aspects were discussed in reviews on exciton conden-

sates (Eisenstein, 2014; Snoke, 2002), electron-hole bilay-
ers (Das Gupta et al., 2011), strongly-correlated 2D elec-
tron fluids (Spivak et al., 2010), and 1D ballistic electron
systems (Debray et al., 2002). A discussion of drag in
strong magnetic fields was included in a review of mag-
netotransport in 2D electron systems (Dmitriev et al.,
2008). In the present review, we limit ourselves to the dis-
cussion of standard (“electrical”) Coulomb drag. Spin-
related phenomena and thermoelectric effects are beyond
the scope of this review.

II. COULOMB DRAG IN SEMICONDUCTOR
HETEROSTRUCTURES

In an idealized experiment, a constant (dc) current I1 is
passed through the active layer, keeping the passive layer
isolated at the same time (such that no current is allowed
to flow in it), see Fig. 1. The voltage V2 induced in the
passive layer is proportional to I1 and the coefficient1

RD = −V2/I1, (1)

is a direct measure of interlayer interactions.
In his original paper, Pogrebinskii (1977) derived the

Drude-like description of transport in double-layer sys-
tems comprising two coupled equations of motion

dv1
dt

=
e

m1
E1 +

e

m1c
[v1 ×B]− v1

τ1
− v1 − v2

τD
, (2a)

dv2
dt

=
e

m2
E2 +

e

m2c
[v2 ×B]− v2

τ2
− v2 − v1

τD
, (2b)

where e is the electric charge, vi, mi, and Ei are the
drift velocities, effective masses, and electric fields in the
two layers, and the nonquantizing magnetic field B is
assumed to be uniform. Intralayer impurity scattering
processes yielding the Drude resistivity in the two layers
are described by the mean free times τi. The last term
in each of Eqs. (2) describes the mutual friction between
the charge carriers in the two layers that tends to equalize
drift velocities. If treated phenomenologically, the model
(2) describes two distinct types of carriers coupled by the
friction term, but does not explicitly require them to be
spatially separated (Cui et al., 1988; Hänsch and Mahan,
1983; Söderström et al., 1996).

Solving the equations (2), one finds the resistivity ma-

trix ρ
(ij)
αβ [hereafter the indices i, j = 1, 2 denote the two

layers and α, β = x, y – spatial coordinates orthogonal to
B = Bez; the “layers” described by Eqs. (2) can repre-
sent 2D or 3D conductors, see Sec. VI for the 1D case].

1 The minus sign in Eq. (1) is motivated by Eq. (3a). An alterna-
tive definition without the explicit minus sign is also widely used
in literature.
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The “drag resistivity” (also called the transresistivity or
the drag coefficient) is given by the Drude-like formula

ρD = −ρ(12)xx = m2/(e
2n1τD). (3a)

The expression (3a) is independent of the magnetic field.
This statement has the same status as the absence of
the classical magnetoresistance2. Indeed, the single-layer
longitudinal resistivity derived from Eqs. (2) is given by

ρ(11)xx =
m1

e2n1

(
1

τ
+

1

τD

)
. (3b)

In most cases, drag is rather weak (τD � τ) and the usual

Drude formula remains a good approximation for ρ
(11)
xx

(Eisenstein, 1992; Rojo, 1999). The single-layer Hall co-
efficient is unaffected by the presence of the second layer
and is determined solely by the carrier density

ρ(11)yx = B/(n1ec). (3c)

Within the applicability of the Drude model, frictional
drag is purely longitudinal: “Hall drag” does not occur3

ρHD = ρ(12)yx = 0. (3d)

At the phenomenological level, the drag resistivity (3a)
is independent of the disorder strength. Moreover, in the
“clean” limit τ →∞ the inter- and intralayer resistivities
tend to the same value and the resistivity matrix becomes
degenerate (the corresponding conductivities diverge):

ρ(11)xx (τ →∞) = ρD(τ →∞). (4)

Thus a system comprising two capacitively coupled, ideal
conductors is characterized by non-zero resistivity and
exhibits perfect drag!

A. Interlayer Coulomb interaction

The “Drude formula” (3a) for the drag resistivity be-
comes falsifiable provided that something is known about
the properties of the “drag rate” τ−1D (e.g. its dependence
on temperature, carrier density, interlayer separation,
and other experimentally relevant parameters). To the
leading order, the contribution of the interlayer Coulomb
interaction to τ−1D can be calculated within the Born
approximation (or equivalently, using Fermi’s Golden
Rule) (Jauho and Smith, 1993; Laikhtman and Solomon,

2 In this Section we are discussing the simplest situation, where
both τD and τ are unaffected by weak enough magnetic fields.

3 Under the assumptions of the present Section, magnetic field
has no effect on drag. Hence, up until Sec. II.G we focus on
the zero-field, longitudinal transport. Drag in magnetic field is
discussed in Secs. II.G, IV.E, and VII.A.

FIG. 2 (Color online) Aslamazov-Larkin diagrams describing
the lowest-order contribution to drag. The solid lines refer to
quasiparticle Green’s functions and the wavy lines describe
the interlayer interaction. The left and right triangles corre-
spond to non-linear susceptibilities of the two layers.

1990). In the language of Feynman diagrams, the corre-
sponding process (Flensberg et al., 1995; Kamenev and
Oreg, 1995; Zheng and MacDonald, 1993) is described by
the Aslamazov-Larkin diagrams (Aslamazov and Larkin,
1968) shown in Fig. 2.

The effective interlayer interaction can be found as a
solution to the Poisson equation for the potential of a
point source belonging to one of the layers. In principle,
this can be done for any system of coupled conductors.
Coupling between a 2DEG and a 3DEG was considered in
Laikhtman and Solomon (1990). A double quantum well
system was discussed in Jauho and Smith (1993) where
the finite width of the wells was taken into account by
assuming a specific form of the electron wave function
in the direction perpendicular to the layers. However,
the obtained results are qualitatively the same as in the
simplest case of purely two-dimensional layers.

If electrons in each layer are confined to move in a 2D
plane, the “bare” Coulomb potential4 has the form5

V11 = V22 = 2πe2/q, V12(q) = (2πe2/q)e−qd. (5)

Here e is the electron charge and d is the interlayer sep-
aration that determines the maximum value (or rather,
the order of magnitude thereof) of the momentum q that
can be transferred between the layers5:

q � 1/d. (6)

Taking into account dynamical screening within the usual
Random Phase Approximation (RPA) modifies the in-
terlayer interaction (Das Sarma and Madhukar, 1981;
Halperin et al., 1993; Santoro and Giuliani, 1988; Stern
and Halperin, 1995), but does not change the exponen-
tial decay at large q. The resulting retarded interaction
propagator can be written as

DR12 =− 1

ΠR
1 ΠR

2
4πe2

q sinh qd+
[

q
2πe2 + ΠR

1 + ΠR
2

]
eqd

. (7)

4 Although electrons are confined to move in two dimensions, they
interact by means of “real, 3D” Coulomb interaction.

5 While discussing the theory, we use the natural units where
temperature and relaxation rates are measured in energy units
(~ = kB = 1). We attempt to restore the Planck’s constant in
final expressions for the drag resistivity and while discussing ex-
perimental findings.
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Here ΠR
i is the single-layer retarded polarization opera-

tor. It is quite common [see, e.g., Jauho and Smith (1993)
and Laikhtman and Solomon (1990)], to include the di-
electric constant ε of the insulating spacer into the “bare”
potential. Since the same ε should enter the expression
for the inverse Thomas-Fermi screening length

κ = 2πe2ν = 2πe2ΠR(q < 2kF , ω = T = 0), (8)

the dielectric environment can be taken into account by
expressing the results in terms of κ (ν denotes the ther-
modynamic density of states of the 2DEG). For high car-
rier densities (Gramila et al., 1991), Eq. (7) can be sim-
plified (Kamenev and Oreg, 1995) by assuming the small
screening length, κd� 1 [see Eqs. (20) and (33b) below].

The condition (6) allows one to distinguish the follow-
ing two regimes (Kamenev and Oreg, 1995):

(i) if the interlayer separation is large compared to the
mean-free path d� `, then it follows from Eq. (6)
that q � 1/`; in this case the motion of charge car-
riers is diffusive;

(ii) in the opposite case, d� `, transport is domi-
nated by ballistic propagation of charge carriers
with 1/d� q � 1/`, see Eq. (36) below. Most
measurements (Gorbachev et al., 2012; Gramila
et al., 1991) are performed on ballistic samples.

The majority of analytic (Rojo, 1999) and numerical
(Moško et al., 1992) work on Coulomb drag in semicon-
ductor heterostructures was performed treating the in-
teraction (7) in the lowest order of perturbation theory.
For generalizations see Secs. II.D and II.F.

B. Kinetic theory of ballistic drag

Ballistic motion of charge carriers in semiconductors
can be described by using the kinetic equation approach,
where impurity scattering is taken into account within
the simplest τ -approximation (Jauho and Smith, 1993;
Laikhtman and Solomon, 1990; Pogrebinskii, 1977). One
starts with the generic Boltzmann equation

∂fi
∂t

+vi∇fi+
(
eEi +

e

c
[vi ×B]

) ∂fi
∂p

= −δfi
τ

+Iij , (9)

where fi is the distribution function (in layer i = 1, 2), Iij
is the collision integral due to interlayer Coulomb inter-
action, τ is the transport impurity scattering time, and
δfi is the nonequilibrium correction to the distribution

function. Here we will only consider degenerate electron
systems [as realized in semiconductor heterostructures
(Gramila et al., 1991)]. Weak deviations from the equi-

librium Fermi-Dirac distribution function f
(0)
i (as appro-

priate within linear response) are described by (Lifshitz
and Pitaevskii, 1981)

δfi≡fi−f (0)i ≡f
(0)
i

[
1− f (0)i

]
hi=−T [∂f

(0)
i /∂ε]hi. (10)

Here we only consider the steady state and uniform fields

∂fi/∂t = 0, ∇fi = 0. (11)

The latter condition physically means that the sample
size is large compared to the length scale of typical re-
laxation processes in the system, see also Sec. IV.D.

In the absence of interlayer interaction, the task of find-
ing linear-response transport coefficients from Eq. (9) is a
textbook problem (Seeger, 2002; Smith and Jensen, 1989;
Ziman, 1965). Under the above assumptions, the theory
is qualitatively equivalent to the Drude theory (2) yield-
ing the standard results (3b) and (3c). Not surprisingly,
taking into account the collision integral Iij leads to the
Drude-like description of the drag resistivity (3a) and
(3d). The advantage of the present “microscopic” calcu-
lation is that now we can determine the phenomenologi-
cal relaxation time τD in terms of the model parameters.

The standard perturbative calculation (Boiko et al.,
1992; Jauho and Smith, 1993; Laikhtman and Solomon,
1990; Lifshitz and Pitaevskii, 1981) amounts to finding
the nonequilibrium distribution functions hi in the two
layers to the leading order in the interlayer interaction
and the electric field E1 applied to the active layer. Then
one uses the definition of the electric current (here the
sum runs over all of the single-particle states)

ji = e
∑

vδfi, (12)

and finds the current j2 in the passive layer. The coeffi-
cient of proportionality between j2x and E1x defines the
drag conductivity σD. The drag coefficient ρD can then
be obtained by inverting the 2×2 conductivity matrix3

ρD =
σD

σ1σ2 − σ2
D

≈ σD
σ1σ2

, (13)

where σi is the longitudinal conductivity in layer i; the
latter relation follows from the smallness of the effect

σD � σi, (14)

as observed in experiment (Eisenstein, 1992; Rojo, 1999).
This way, one finds for the phenomenological “drag rate”

τ−1D =
m1

16πe2τ2n2T

∞∫
−∞

dω

sinh2[ω/(2T )]

∫
d2q

(2π)2
|D12(ω, q)|2Γx1(ω, q)Γx2(ω, q). (15)
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Similar expression6 can be derived for ρD and σD. The
nonlinear susceptibility (also known as the rectification
function) Γi(ω, q) (in layer i) is a response function re-
lating a voltage V (ri)e

iωt to a dc current it induces by
the quadratic response:

J =

∫
dr1

∫
dr2Γ(ω; r1, r2)V (r1)V (r2), (16)

with J being the induced dc current. From gauge invari-
ance

∫
dr1Γ(ω) =

∫
dr2Γ(ω) = 0.

The same result follows from the standard Kubo for-
mula approach within the diagrammatic perturbation
theory (Flensberg et al., 1995; Kamenev and Oreg, 1995),
memory function formalism (Zheng and MacDonald,
1993), and more general Boltzmann-Langevin theory of
stochastic kinetic equation (Chen et al., 2015).

1. Electron-hole asymmetry and rectification

The rectification function Γ(ω, q) is the central object
in the perturbative theory of Coulomb drag. The ex-
pression (15) of the interlayer relaxation rate in terms of
Γ(ω, q) explicitly demonstrates the key role of electron-
hole asymmetry in the leading-order drag effect7.

Indeed, in order to induce a voltage (or generate a cur-
rent) in the passive layer, one needs to somehow move the
charge carriers. This is achieved by transferring momen-
tum from the active layer. The macroscopic state of the
electronic system in the active layer is characterized by
the finite electric current driven by an external source.
In a typical electron gas, there are two kinds of excita-
tions - “electron-like”, with energies ε > EF above the
Fermi energy (i.e. the occupied states outside the Fermi
surface), and “hole-like”, with ε < EF . These quasipar-
ticles are oppositely charged. As the current is driven
through the active layer they move in opposite directions,
see Fig. 3. Then the active layer can be characterized by a
nonzero total momentum only if there is some asymmetry
between electron-like and hole-like quasiparticles. Like-
wise, in the passive layer the momentum is transferred
equally to electrons and holes, such that the resulting
state can carry current only in the case of electron-hole
asymmetry. In conventional semiconductors (Kamenev
and Oreg, 1995), the electron-hole asymmetry appears
due to curvature of the conduction band spectrum [lead-
ing to the energy dependence of the density of states

6 The three quantities ρD, σD, and τ−1
D are proportional to each

other and differ only by trivial prefactors, see Eqs. (3a) and (13).
All three are used in literature on equal footing.

7 Another known effect of the electron-hole asymmetry in elec-
tronic systems is the thermopower described by the Mott formula
(Lunde et al., 2006, 2007; Mott and Jones, 1936).

FIG. 3 Schematic illustration of the momentum transfer due
to interlayer interaction. As the current I1 is driven through
the active layer, electrons and holes are moving in the oppo-
site directions since they carry the opposite charge. Such a
state has non-zero total momentum only due to electron-hole
asymmetry. Once the momentum is transferred to the passive
layer, the electrons and holes there are pushed in the same di-
rection. This process can induce a voltage again only due to
electron-hole asymmetry.

(DoS) and/or diffusion coefficient]. Consequently, in the
Fermi-liquid theory the electron-hole asymmetry can be
expressed (Narozhny et al., 2001) as a derivative of the
single-layer conductivity σ1(2) with respect to the chem-
ical potential (assuming either a constant impurity scat-
tering time or diffusive transport). The simple estimate
∂σ1(2)/∂µ ∼ σ1(2)/µ then explains the typical smallness
of the effect (Gramila et al., 1991; Sivan et al., 1992;
Solomon et al., 1989), see Eq. (14).

The same arguments can be applied to any system con-
taining carriers with opposite signs of the electric charge.
For instance, one can consider semimetals (or even band
insulators at high enough temperature) where the electric
current can be carried by electrons from the conduction
band and holes from the valence band. A particularly
interesting example is graphene (see Sec. IV), which ex-
hibits exact particle-hole symmetry at the charge neu-
trality point (Katsnelson, 2012). At that point, the non-
linear susceptibility of graphene (73) vanishes (Narozhny,
2007; Tse et al., 2007) implying the absence of the drag
effect. In contrast, experiment (Gorbachev et al., 2012)
shows nonzero drag resistivity at charge neutrality, which
in addition is greatly enhanced by the external magnetic
field (Titov et al., 2013a).

Indeed, the outlined physical picture is not univer-
sal. In fact, it only describes a particular (although
often dominant) scattering process, where momentum
is transferred from an electron-hole pair in the active
layer to another electron-hole pair in the passive layer.
Technically, this process is described by the leading-
order perturbation theory, see Fig. 2, yielding Eq. (15).
Higher-order processes [including the so-called “third-
order” drag (Levchenko and Kamenev, 2008b; Schütt
et al., 2013), see Sec. II.D, and the effect of the corre-
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lated disorder (Gornyi et al., 2000, 1999; Schütt et al.,
2013; Song et al., 2013), see Sec. IV.F] may result in ad-
ditional contributions which are less sensitive to electron-
hole symmetry.

In conventional heterostructures, higher-order pro-
cesses remain subleading at least within the temperature
range where most of the experiments are performed, see
Sec. II.D. Specifically in the ballistic regime, the dom-
inant contribution to drag is indeed given by Eq. (15)
[with the corresponding drag resistivity (3a)] and is de-
termined by the nonlinear susceptibility, which in the
simplest case of energy-independent impurity-scattering
time τ is given by (Kamenev and Oreg, 1995)

Γ(q, ω) =
2

π
eτq

ω

vF q
θ(vF q − ω). (17)

As shown in Kamenev and Oreg (1995), the resulting
expression (17) for the nonlinear susceptibility is propor-
tional to the imaginary part of the single-layer polariza-
tion operator

Γ(q, ω) =
2eτq

m
ImΠR(q, ω), (18)

where (for two-dimensional, noninteracting electron gas
in the ballistic regime)

ImΠR(q, ω) = ν
ω

vF q
θ(vF q − ω). (19)

Within the kinetic theory, one can observe Eq. (18) al-
ready at the level of the collision integral (Giuliani and
Quinn, 1982); hence many authors [see, e.g. Jauho and
Smith (1993); Shimshoni and Sondhi (1994); Ussishkin
and Stern (1997); and Zheng and MacDonald (1993)]
proceed to express Eq. (15) in terms of ImΠR(q, ω) in-
stead of the nonlinear susceptibility. Under the assump-
tion of energy-independent impurity-scattering time τ
and neglecting intralayer correlations (Flensberg et al.,
1995; Kamenev and Oreg, 1995), such calculations lead
to the correct result [see Eq. (21) below]. At the same
time, within such an approach the physics of electron-
hole asymmetry remains hidden. Generalization to more
general settings is also nontrivial: the relation (18) is
by no means a general theorem (Flensberg et al., 1995;
Kamenev and Oreg, 1995; Narozhny and Aleiner, 2000;
Narozhny et al., 2012); for explicit examples of the two
quantities being inequivalent see Secs. III and IV.

2. Drag resistivity in ballistic samples.

In the limit of strong screening, κd� 1, one can ap-
proximate (Kamenev and Oreg, 1995) the interlayer in-
teraction propagator (7) by the expression

DR12 = − πe2

κ1κ2

q

sinh qd
. (20)

Combining Eq. (20) and the nonlinear susceptibility (18)
with the interlayer relaxation rate (15) and Eq. (3a),
one finds the following expression for the drag resistiv-
ity (Flensberg and Hu, 1994; Jauho and Smith, 1993;
Kamenev and Oreg, 1995; Zheng and MacDonald, 1993)

ρD =
~
e2
π2ζ(3)

16

T 2

EF1EF2

1

κ1κ2kF1kF2d4
. (21a)

The same result can be also expressed8 in terms of the
interlayer relaxation rate (15) [e.g., using Eq. (3a)]

τ−1D =
π2ζ(3)

16

n1
m2

T 2

EF1EF2

1

κ1κ2kF1kF2d4
. (21b)

Physically, these expressions8 can be understood based
on the Fermi Golden Rule [which was explicitly used in
the solution of the kinetic equation (Jauho and Smith,
1993; Laikhtman and Solomon, 1990)]. Indeed, there are
three basic elements that combine into the result (21):
(i) the phase space available for electron-hole pairs in
the two layers, which is limited by temperature, hence
τ−1D ∝ T 2; (ii) the electron-hole asymmetry, which results
in the overall smallness of the effect, τ−1D ∝ (EF1EF2)−1;
and (iii) the matrix element of the interlayer interaction,
determining the dependence on the interlayer separation;
in the ballistic case the matrix element is dominated by
small-angle scattering (Gramila et al., 1991).

The drag resistivity (21) – and especially the quadratic
temperature dependence – is often quoted as the “Fermi-
liquid” result. However, Eq. (21) was obtained under
a number of assumptions: (i) κd� 1, (ii) d� `, and
(iii) T � Td ∼ vF /d ∼ EF /(kF d). The latter assumption
appears only implicitly and is often overlooked.

Indeed, substituting the interaction propagator (20)
and the nonlinear susceptibility (17) into Eq. (15), one
finds that except for the θ-function in Eq. (17) the fre-
quency and momentum integrals factorize. The exponen-
tial decay of the corresponding integrands allows one to
estimate the typical values of transferred energy ω ∼ T
and momentum q ∼ 1/d. Assuming T � Td, this yields
ω < vF q, which automatically satisfies the θ-function.
Based on this observation, one may omit the θ-function
and subsequently extend the integration limits in both
integrals in Eq. (15) to infinity. The remaining integra-
tion is straightforward and yields Eq. (21).

At higher temperatures, T � Td, the θ-function in
Eq. (17) is not satisfied automatically. Physically, it rep-
resents kinematic restrictions on the phase space avail-
able to electron-hole pairs associated with predominantly

8 Most expressions for ρD (Flensberg and Hu, 1994; Flensberg
et al., 1995; Jauho and Smith, 1993; Rojo, 1999; Zheng and Mac-
Donald, 1993) can be reduced to Eqs. (21) using the following
simple relations, valid under the assumptions of this Section:
EF = πn/m, n = EF ν, νD = EF τ/π, where D = v2F τ/2 is the
diffusion constant and ν = m/π is the density of states.
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small-angle scattering (Gramila et al., 1991). The fre-
quency integration is now cut off at vF q (or Td), rather
than T , which leads to the linear temperature depen-
dence [first reported in Gramila et al. (1991) and Solomon
and Laikhtman (1991), see also Jauho and Smith (1993),
and recently rediscovered in Chen et al. (2015)],

ρD(T � Td) =
~
e2

π3

360

1

(kF d)3(κd)2
T

EF
. (22)

This behavior may be observable in samples with either
nondegenerate 2DEGs or large interlayer separation. In
the latter case, Td � T � EF , both layers are perfectly
described by the Fermi liquid theory which is not synony-
mous with quadratic temperature dependence of trans-
port coefficients.

3. Plasmon contribution

The approximate form of the interlayer Coulomb in-
teraction (20) appears justified in the “ballistic” regime
where the dominant interlayer relaxation processes are
characterized by relatively large momentum transfers
ω < vF q. The imaginary part of the single-particle po-
larization operator (19) vanishes at smaller momenta (or
larger frequencies) making the above calculations con-
sistent. At the same time, approximating the interlayer
interaction propagator (7) by Eq. (20) one completely
neglects a possible contribution of plasmon modes, that
(within the simplest RPA approach) can be found by
setting the denominator of Eq. (7) to zero. At zero tem-
perature and for ω � vF q (where ImΠR = 0), the polar-
ization operator is known to be given by (Stern, 1967)

Π(q, ω) ' −nq2/(mω2).

Using this expression and expanding the bare Coulomb
potential in small momenta, yields the acoustic (“−”)
and optical (“+”) plasmon modes with dispersions

ω− = eq
√

2πnd/m, ω+ = e
√

4πnq/m.

Both of these modes lie outside of the particle-hole con-
tinuum and in the parameter region, where the nonlinear
susceptibility (17) vanishes. Hence, one may conclude
that the plasmons cannot contribute to frictional drag.

However (Flensberg and Hu, 1994), at finite tempera-
tures thermally excited quasiparticles and plasmons may
coexist in the same parameter region, which may result
in an additional contribution to drag. In order to ac-
curately describe the plasmon contribution to ρD, one
has to consider intralayer equilibration due to electron-
electron collisions (Chen et al., 2015) which gives rise to
two important features: (i) the polarization operator ac-
quires nonvanishing spectral weight within the high fre-
quency part of the spectrum at ω > vF q (Flensberg and

FIG. 4 (Color online) Schematic illustration for the drag re-
sistivity at high temperatures showing the plasmon peak at
T ∼ Th. The asymptotic dependences are exaggerated for
clarity. Definitions of the three crossover scales are given in
the main text. [Reproduced from Chen et al. (2015).]

Hu, 1994); and (ii) the plasmons acquire finite life-time
(Hruska and Spivak, 2002; Mishchenko et al., 2004) that
regularizes the pole in the interaction propagator.

The theory discussed in the preceding Sections is based
on the implicit assumption that the intralayer equilibra-
tion is the fastest process in the system. Characteriz-
ing inelastic electron-electron scattering by the quasi-
particle lifetime τee, one finds that the standard the-
ory – and hence Eq. (22) – is valid as long as the time
τee is much smaller than the interlayer scattering time,
τee � τD and at temperatures below the corresponding
threshold T � Tc ∼ EF

√
kF /(κ2d).

At higher temperatures, T > Tc, the system enters the
collision-dominated regime, where Coulomb drag is dom-
inated by plasmons. In this regime, Chen et al. (2015)
find a stronger temperature dependence

ρD(Tc < T < Th) ' ~
e2

1

(kF d)4
T 3

E3
F

. (23)

The rise of the plasmon contribution to drag persists
so long as the quasiparticle decay rate remains small
compared to the plasma frequency (at the wave vec-
tor 1/d), i.e. up to the third crossover temperature
Th ∼ EF

√
kF /κ 4

√
1/κd. At temperatures above the

crossover, T > Th, the electronic system enters the hy-
drodynamic regime that can be understood on the basis
of the classical Navier-Stokes hydrodynamics (Apostolov
et al., 2014). In this limit the drag resistivity decays as

ρD(T > Th) ' ~
e2

1

(kF d)2(κd)3
EF
T
. (24)

The resulting temperature dependence of the drag co-
efficient is summarized in Fig. 4. The nonmonotonicity
of ρD originates from the delicate interplay of various
scattering channels in the electronic system. Perhaps the
most striking feature of the theory of Chen et al. (2015) is
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that intralayer collisions promote stronger drag. Indeed,
should one naively continue Eq. (22) up to the tempera-
tures of the order Th one would underestimate the actual
maximum value of ρD by

√
kF d� 1.

C. Effects of potential disorder

In ballistic samples, potential disorder played a very
limited role. In fact, the resulting drag resistivity (21)
is independent of the impurity scattering time τ . In dif-
fusive samples with d� ` only small momenta q � 1/`
can be transferred between the layers. Typically this re-
sults in a small contribution to the drag resistivity, which
in ballistic samples can be neglected. This is not always
the case – at low enough temperatures drag is dominated
by mesoscopic fluctuations which are mostly due to pro-
cesses with small momentum transfers, see Sec. III.

Coulomb drag in diffusive systems was considered in
Zheng and MacDonald (1993) using the memory func-
tion formalism and in Kamenev and Oreg (1995) using
the diagrammatic technique. To the lowest order in inter-
layer interaction, one can use the Kubo formula analysis
(Kamenev and Oreg, 1995; Narozhny and Aleiner, 2000)
to derive the expression for the drag conductivity (S is
the area of the sample)

σD =
1

16πTS

∫
dω

sinh2 ω
2T

DR
12Γ

x
23D

A
34Γ

x ∗
41 , (25)

where numerical subscripts indicate spatial coordinates,
and are implied to be integrated over. Averaging over
disorder restores translational invariance. In the absence
of interlayer disorder correlations [this special case was
considered in Gornyi et al. (1999)], the nonlinear suscep-
tibilities in each layer have to be averaged independently
of each other. Then one recovers the drag relaxation
rate (15), where each quantity should be understood as
disorder-averaged, i.e. 〈Γ x23〉 → Γx(q).

1. Drag resistivity in diffusive regime

In the diffusive regime, the nonlinear susceptibility Γ
can be found from Ohm’s law (Landau et al., 1984),

j = σ̂E − eD∇n, (26)

where σ̂ is the conductivity matrix and D is the diffusion
coefficient (in two dimensions D = v2F τ/2). Combining
Eq. (26) with the continuity equation, one finds the linear
response of the carrier density n to the electric field E

〈n(q, ω)〉 =
1

e

iqασαβEβ(q, ω)

−iω +Dq2
. (27)

FIG. 5 (Color online) Disorder averaging of the nonlinear
susceptibility (Kamenev and Oreg, 1995). The dotted lines
represent the diffuson ladder (Altshuler and Aronov, 1985).

where 〈. . . 〉 indicates averaging over disorder. Nonlinear
response follows from the density dependence of the con-
ductivity jdc = Re (∂σ/∂n)n(q, ω)E(−q,−ω), and yields

〈Γ γ〉 =
2ν

e

∂〈σγδ〉
∂n

qδ
ωDq2

ω2 +D2q4
. (28)

In the absence of a magnetic field 〈σαβ〉 = σδαβ , and
the nonlinear susceptibility (28) is parallel to q. The
disorder-averaged conductivity is linear in the carrier
density, ∂σαβ/∂n ≈ σαβ/n. As a result,

〈Γ 〉 = 2q
eνD

EF

ωDq2

ω2 +D2q4
. (29)

This expression can be recast into two equivalent forms.
Noting the similarity between Eq. (29) and the standard
diffusive form of the polarization operator (Altshuler and
Aronov, 1985; Smith and Jensen, 1989)

ΠR(q, ω) = ν
Dq2

−iω +Dq2
, (30)

one finds (Kamenev and Oreg, 1995)

〈Γ 〉 = 2q
eD

EF
ImΠR(q, ω). (31)

Furthermore, one can emphasize the fact that the den-
sity dependence of the conductivity σ is a manifestation
of electron-hole asymmetry by rewriting the fraction in
Eq. (31) as (Narozhny and Aleiner, 2000)

〈Γ 〉 = 2eqD
∂ ln(νD)

∂µ
ImΠR(q, ω). (32)

In the simplest case8, this expression can be obtained
directly from Eq. (28) by noticing that ∂σαβ/∂n =
(∂σαβ/∂µ)(∂µ/∂n) = (∂σαβ/∂µ)(1/ν) and using the
Einstein relation. The same result can be found eval-
uating diagrams shown in Fig. 5.

The diffusive approximation for the interlayer interac-
tion follows from Eqs. (7) and (30). Focusing on small
momenta q � 1/d, one can obtain alternative expressions
for the interaction propagator by either expanding the
bare matrix element (5) in small qd (and subsequently
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limiting the momentum integration from above) or keep-
ing the exponential in Eq. (5) intact, leaving the mo-
mentum integral converging in the ultraviolet. The for-
mer approach was taken in Narozhny and Aleiner (2000).
Generalizing to inequivalent layers one finds

DR12 = − 1

q2
(−iω +D1q

2)(−iω +D2q
2)

(ν1D1 + ν2D2)[−iω + (1 + κ∗d)D∗q2]
, (33a)

where

κ∗ = 4πe2
ν1ν2
ν1 + ν2

, D∗ =
(ν1 + ν2)D1D2

ν1D1 + ν2D2
.

The latter alternative was taken in Kamenev and Oreg
(1995), where in addition (just as in the ballistic case)
the limit κd� 1 was used. As a result, the interaction
propagator takes the form

DR12 = − πe2q

κ1κ2 sinh qd

−iω +D1q
2

D1q2
−iω +D2q

2

D2q2
. (33b)

With logarithmic accuracy, the resulting drag coeffi-
cient is independent of the distinction between the two
and can be written as (Kamenev and Oreg, 1995)

〈ρD〉 =
~
e2

π2T 2

12EF1EF2

1

κ1κ2kF1kF2`1`2d2
ln
T0
2T

. (34a)

The only difference between using the two expressions for
the interaction propagator in Eq. (33) is the exact value
of T0. Using Eq. (33a) in the limit κ∗d� 1, one finds

T0 =
4πe2ν1D1ν2D2

(ν1D1 + ν2D2)d
,

while Eq. (33b) leads to (Kamenev and Oreg, 1995)

T0 = min{κ1D1,κ2D2}/d.

Both expressions are of the same order of magnitude and
coincide for the case of identical layers.

The result can be expressed also in terms of the inter-
layer relaxation rate (Zheng and MacDonald, 1993)

1

τD
=
π2

12

n1
m2

T 2

EF1EF2
ln
T0
2T

1

κ1κ2kF1kF2`1`2d2
. (34b)

Equivalently, one can use Eq. (32) and express the drag
conductivity (Narozhny and Aleiner, 2000) as (here the
layers are assumed to be identical for simplicity)

σD =
e2

~
π2

3

(~T )2

g2(κd)2

(
∂

∂µ
(νD)

)2

ln
T0
2T

, (35)

where the derivative highlights the crucial role of the
electron-hole asymmetry in the leading-order drag effect.

The diffusive result for the drag resistivity (34) appears
to be rather similar to its ballistic counterpart Eq. (21).
Indeed, disregarding the numerical prefactors and the
logarithm in Eq. (34), one finds

ρdiffD /ρbalD ∼ d2/(`1`2). (36)

FIG. 6 (Color online) Leading weak localization corrections
to the nonlinear susceptibility (Kamenev and Oreg, 1995).
The black, parallel dotted lines represent the diffuson ladder
(Aleiner et al., 1999; Altshuler and Aronov, 1985). The blue,
crossing lines represent the Cooperon (Gorkov et al., 1979).

This relation may serve as an a posteriori justification
for the statement that the drag effect in samples with
d� ` is dominated by ballistic propagation of carriers
with momenta `−1 � q � d−1. Carriers with small mo-
menta q � `−1 also participate in drag, but their contri-
bution is small [according to Eq. (36)] and is typically
neglected.

2. Weak localization corrections

The nonlinear susceptibility (29) and drag coefficient
(34) were obtained as the leading approximation in the
standard perturbation theory of disordered metals (Alt-
shuler and Aronov, 1985), controlled by the large param-
eter g = 25.8kΩ/R� representing the dimensionless con-
ductance of the layers (with R� being the layer (sheet)
resistance). Within the assumptions adopted in this Sec-
tion8 g ∼ νD ∼ kF ` ∼ EF τ � 1.

The next-order terms in the perturbation theory are
known as quantum corrections to transport coefficients
(Aleiner et al., 1999; Altshuler and Aronov, 1985). Phys-
ically, they describe leading interference processes that
arise in the course of subsequent scattering events. Al-
though the resulting contribution to transport is propor-
tional to a small factor 1/g, quantum corrections domi-
nate the temperature and magnetic field dependence of
transport coefficients at low temperatures.

To the leading order in 1/g, one may distinguish
three types of corrections: (i) interference between self-
intersecting, time-reversed scattering paths leads to a
positive correction to resistivity, known as the weak lo-
calization correction (Abrahams et al., 1979; Altshuler
et al., 1980; Gorkov et al., 1979); (ii) coherent scattering
off Friedel oscillations yields the Altshuler-Aronov cor-
rection (Altshuler and Aronov, 1979; Finkelstein, 1983,
1984; Zala et al., 2001); and (iii) in small, mesoscopic
samples interference between scattering paths gives rise
to universal conductance fluctuations (Altshuler, 1985;
Lee and Stone, 1985). The latter effect has a direct
counterpart in double-layer systems, namely mesoscopic
fluctuations of Coulomb drag discussed in Sec. III. At
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the time of writing, no qualitative interference effect due
to electron-electron interaction has been identified for
drag measurements. At the technical level, the third-
order drag effect (see the following Section) bears certain
resemblance to the Altshuler-Aronov diagrams (Gornyi
and Narozhny, 2014). Here we discuss the weak localiza-
tion correction to Coulomb drag (Flensberg et al., 1995;
Kamenev and Oreg, 1995).

In the absence of interlayer disorder correlations [such
effects were discussed in Gornyi et al. (1999)], impurity
scattering is confined to each individual layer. It should
come as no surprise that the same mechanism behind the
weak localization correction to single-layer conductivity
(i.e., interference between time-reversed, self-intersecting
paths) yields a correction to the nonlinear susceptibility.
Technically, this interference mechanism is described by
a “maximally crossed” element of the diagram technique
known as the Cooperon (Gorkov et al., 1979). Diagrams
for the corresponding corrections to the nonlinear suscep-
tibility are shown in Fig. 6 [further corrections, e.g. two-
Cooperon diagrams, considered in Flensberg et al. (1995)
and Kamenev and Oreg (1995) were found to be sublead-
ing]. The resulting nonlinear susceptibility is given by

〈Γ 〉 = 2q
eνD(τ−1ϕ , 0)

EF

ωD(ω, q)q2

ω2 +D2(ω, q)q4
, (37)

where the renormalized diffusion coefficient in two dimen-
sions in (Gorkov et al., 1979)

D(ω, q) = D

(
1− 1

πkF `
ln

1

ωτ

)
, (38)

and τϕ is the dephasing time (Altshuler et al., 1980). The
result (37) is valid in the first order in δD = D(ω, q)−D.

The resulting leading-order weak localization correc-
tion to Coulomb drag is (Kamenev and Oreg, 1995)

δρD
ρD

= − 1

πkF1`1
ln

1

2Tτ1
− 1

πkF2`2
ln

1

2Tτ2
, (39)

where ρD is given by Eq. (34). The result (39) is simi-
lar to the weak localization corrections in 2D (Altshuler
et al., 1980; Gorkov et al., 1979), except that in Eq. (39)
the logarithmic singularity is cut by temperature rather
than by the dephasing time.

In conventional 2DEG, weak localization effects re-
sult in a dependence on a weak magnetic field (Altshuler
et al., 1980). Here, the characteristic scale of the mag-
netic field would beHc ∼ T/(eD). Similar scale describes
intralayer interaction corrections to magnetoresistance
(Altshuler and Aronov, 1985), making the weak local-
ization corrections to the drag coefficient hard to observe
experimentally (Kamenev and Oreg, 1995).

D. Third-order drag effect

The leading contribution to Coulomb drag, Eqs. (15),
(25), describes the effect to the lowest order in the inter-

FIG. 7 (Color online) Typical diagrams describing higher-
order drag effects. Left: third-order drag (Levchenko and
Kamenev, 2008b). Right: the effect of interlayer disorder
correlations (Gornyi et al., 1999; Hu, 2000a).

layer Coulomb interaction, see Fig. 2. Since the particles
belonging to different layers interact through a layer of an
insulating material, certain weakness of the effective in-
teraction is intuitively expected. In many-body electron
systems the Coulomb interaction is usually screened and
the perturbative analysis gives a reasonable account of
most basic observable quantities (Altshuler and Aronov,
1985; Ziman, 1965). Consequently, the vast majority of
theoretical studies of Coulomb drag are devoted to the in-
vestigation of the lowest-order effect. Notable exceptions
are given by the studies of the interlayer correlated states,
either in the context of quantum Hall devices (Girvin and
MacDonald, 1997; Kim et al., 2001; Stern and Halperin,
2002; Stern et al., 2000; Yang, 1998; Yang and MacDon-
ald, 2001) or quantum wires (Klesse and Stern, 2000;
Nazarov and Averin, 1998), as well as strongly corre-
lated intralayer states, such as Wigner crystals (Baker
and Rojo, 2001; Braude and Stern, 2001) or Anderson
insulators (Raikh and von Oppen, 2002).

The “single-particle” drag resistivity, Eqs. (21), (34),
is determined (besides the interlayer interaction) by the
quasiparticle phase space, electron-hole asymmetry (see
Sec. II.B), and disorder effects (see Secs. II.C and III). At
T = 0 or at a point of exact electron-hole symmetry (e.g.,
in neutral graphene, see Sec. IV), these factors may con-
spire to nullify the effect. Then ρD may be determined by
higher orders of the perturbation theory, implying that
saturation of drag resistivity at low temperatures should
not necessarily point towards a strongly correlated state.

To the third order in interlayer interaction (see Fig. 7
for the “skeleton” diagram), Coulomb drag was first dis-
cussed in Levchenko and Kamenev (2008b) in the diffu-
sive regime, Tτ � 1. It was shown that the third-order
drag contribution remains finite at zero temperature9:

ρ
(3)
D (T < h/τ) = 0.27(h/e2)g−3(κd)−2. (40)

This surprising result was attributed (Levchenko and
Kamenev, 2008b) to the singular behavior of matrix el-
ements in the diffusive regime. In single-layer systems,

9 More precisely, the result is valid down to lowest temperatures
T ∼ τ−1e−πg . Below this scale the diffusive approximation
breaks down.
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similar enhancement of the matrix elements leads to sin-
gular interaction effects (Altshuler and Aronov, 1985).
Here, the divergence of the matrix elements is compen-
sated by the smallness of the phase space yielding the
T -independent contribution to the drag resistivity.

The third-order effect (40) does not rely on electron-
hole asymmetry (technically, the third-order diagram in
Fig. 7 contains four-point vertices instead of the trian-

gular vertices in Fig. 2). Hence, ρ
(3)
D is independent of

EF . This provides an additional explanation of the T -
independent result (40): in the diffusive regime there is
no other scale for a temperature dependence.

Another contribution to drag that is insensitive to
electron-hole symmetry is due to interlayer disorder cor-
relations (Gornyi et al., 1999; Hu, 2000a). For tempera-
tures higher than the inverse interlayer coherence time,
but still in the diffusive regime, τ−1g � T � τ , one finds

ρD(τ−1g � T� τ−1tr ) ∼ (h/e2)(k2F d
2κ`)−2 ln(Tτg), (41)

which might dominate over Eq. (34).
While the above higher-order effect have not been ob-

served in semiconductor samples, they may provide an
explanation of the observed nonzero drag resistivity in
neutral graphene (Gorbachev et al., 2012), see Sec. IV.

E. Transconductance due to tunneling bridges

A qualitatively different mechanism of transconduc-
tance takes place in the double-layer systems with point-
like shortages (bridges) or when the insulating layer
is sufficiently thin such that electrons may tunnel be-
tween the two layers (Oreg and Halperin, 1999; Oreg and
Kamenev, 1998; Raichev, 1997). Such bridges can be
present in metallic double-layer systems due to device
fabrication imperfections, or they can be introduced on
purpose (Giordano and Monnier, 1994).

One should distinguish two mechanisms of transresis-
tivity due to tunneling. The first one is essentially classi-
cal and originates from a voltage drop in the passive layer
due the current leaking directly from the active layer.
This mechanism can be simply visualized and understood
using a resistive network model where the two layers
are connected in parallel by a set of resistors (Raichev,
1997). Applying the Kirchhoff’s laws to such a circuit,
one finds that for sufficiently long samples, L >

√
Dτ12

(here τ12 is the mean intralayer scattering time associated
with the interlayer tunneling conductance per unit area
σ⊥ = e2ν/τ12), half of the current supplied to the active
layer leaks into the passive one. In this case, the sign
of the drag effect is reversed compared to the standard
result (3a) and ρD is given by the resistance of a single
layer of a doubled width. This classical effect is practi-
cally insensitive to temperature. Furthermore, the tun-
neling rate τ12 is strongly dependent to a Fermi-surface

FIG. 8 Top: two diagrams contributing to the transconduc-
tance that are second order in tunneling matrix element de-
noted by a cross. Full lines with arrows are electron Green
functions, dashed lines represent diffusons, and wavy lines
screened interactions. Two additional diagrams with arrows
in the opposite direction should be included. The numbers
indicate the layer index. Bottom: examples of diagrams con-
tributing to the transconductance that are fourth order in
tunneling. Diagrams with interaction lines connecting “up-
per” and “lower” Green functions, as well as diagrams with
an opposite direction of electron lines are also implicit. [Re-
produced from Oreg and Kamenev (1998).]

mismatch between the layers, and thus may be affected
by a gate voltage or an in-plane magnetic field (Berk
et al., 1995; Boebinger et al., 1991), which gives an ex-
perimental knob to control the magnitude of the classical
tunnel drag resistivity.

The second, purely quantum effect was suggested by
Oreg and Halperin (1999) and Oreg and Kamenev (1998).
Here drag originates from the intralayer exchange corre-
lations due to wave-functions overlap of carriers in dif-
ferent layers (that may exist in the presence of interlayer
tunneling). The sign of the quantum effect is negative for
the carriers of the same charge, i.e. the same as in the
above classical effect. This mechanism yields a strongly
temperature dependent drag resistivity, which saturates
to a constant value at zero temperature. The latter fea-
ture is an indication that the exchange contribution to
drag resistivity does not require electron-hole asymme-
try. Hence, even for a small tunneling rate, this mecha-
nism may become stronger that the standard effect (3a)
at low enough temperatures.

The interplay between tunneling, Coulomb interaction,
and intralayer disorder scattering yields the three energy
scales: τ−112 , κdτ−112 , and τ−1. Here the factor of κd
stems from the screening effects. At high temperatures,
T > τ−1, the quantum drag resistivity can be computed
to the lowest order in tunneling (the corresponding di-
agrams are shown in Fig. 8, top panel). Furthermore,
since for Tτ � 1 the motion of electrons is ballistic, one
can omit disorder ladders (diffusons) in these diagrams.
Then the transconductance is given by the temperature-
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independent expression (Oreg and Kamenev, 1998)

σD = −e
2

~
π

32

1

κd
vF τ

2

dτ12
. (42)

At lower temperatures, T < τ−1, the diffusive charac-
ter of the electron motion should be taken into account.
The drag resistivity can be still computed to the leading
order in tunneling using the same set of diagrams in Fig. 8
(top panel), but with insertion of disorder renormaliza-
tions. As a result, one finds the following temperature-
dependent contribution to the transconductance (Oreg
and Kamenev, 1998)

σD = −e
2

~
1

24π

ln(κd)

κd
1

Tτ12
. (43)

In the diffusive limit, such singular temperature depen-
dence is not entirely unexpected. Indeed, the diagrams in
Fig. 8 (top) are analogous to the Altshuler-Aronov correc-
tions to the conductivity of 2D systems, which are known
to be logarithmically singular (Altshuler and Aronov,
1985; Zala et al., 2001). In the present context, the in-
terplay of tunneling and Coulomb interaction makes this
singularity stronger.

The above quantum physics becomes even more pro-
nounced at lower yet temperatures, T < κdτ−112 , where
the quantum drag mechanism is dominated by coherent
tunneling of electrons to the passive layer and back to
the active one accompanied by intralayer Coulomb inter-
actions, see Fig. 8 (bottom). In this regime, the temper-
ature dependence is even stronger (Oreg and Kamenev,
1998)

σD = −e
2

~
3ζ(3)

8π4

ln(Tτ12)

(Tτ12)2
. (44)

The low-temperature divergence in the transconduc-
tance (43) and (44) should be cut off by the finite size
effects at the Thouless energy, ET = D/L2. Interestingly
enough, for large systems, L�

√
Dτ12, there is an addi-

tional temperature range, ET < T < τ−112 , where the ex-
change contribution to σD is due to multiple tunneling
processes. In that case, the transconductance becomes
logarithmic in temperature (Oreg and Kamenev, 1998)

σD = −e
2

~
1

8π2
ln

1

Tτ12
. (45)

Up to the factor of 1/4, this result coincides with the
standard Altshuler-Aronov correction to the 2D conduc-
tivity (Altshuler and Aronov, 1985; Zala et al., 2001).
This extra numerical factor is not accidental and reflects
the essence of the drag measurement setup, where the
current is allowed to flow in one part of the system only
while the induced potential is measured in another part.

FIG. 9 Left panel: temperature dependence of the drag resis-
tivity GaAs double-quantum-wells. The additional scale on
the right provides the corresponding values of the momentum-
transfer rate (see main text for more details). The inset shows
an idealized energy diagram for a double-quantum-well struc-
ture indicating the ground subband energy E0 and the Fermi
energy EF . [Reproduced from Gramila et al. (1991).] Right
panel: Temperature dependence of the interlayer momentum
transfer rate divided by T 2. The three sets of data were mea-
sured in samples with interwell barrier widths of 175Å, 225Å,
and 500Å. [Reproduced from Gramila et al. (1992).]

F. Comparison to experiment

The theory outlined in the preceding sections describes
an idealized phenomenon of mutual friction between two
two-dimensional electron systems. The electrons were
assumed to belong to a parabolic band, with energy-
independent impurity-scattering time and negligible in-
tralayer correlations. Clearly, such assumptions can be
realized in any experimental sample only approximately.

Coulomb drag between two two-dimensional electron
gases was first observed by the group of J. Eisenstein
(Eisenstein, 1992; Gramila et al., 1991) in GaAs double-
quantum-wells, see Fig. 9. Detailed comparison of the
experimental data to the quantitative predictions of the
Coulomb drag theory showed that the latter accounts for
about 50% of the measured values10. This was judged
as sufficient evidence of the relevance of the Coulomb
mechanism of frictional drag. Also, the overall reduction
of the drag resistance with the increase of the interwell
barrier width (see Fig. 9) was in rough agreement with
Eq. (21b). At the same time, the data (see the right
panel in Fig. 9) show noticeable deviations from the T 2

behavior predicted by Eqs. (21) and (34), indicating that
other scattering mechanisms might also be important.

One additional mechanism (Gramila et al., 1991) is
due to electron-phonon interaction. This suggestion was

10 The momentum relaxation time reported in Gramila et al. (1991)
is twice smaller than Eq. (21b). In addition, the paper cited
unpublished calculations of MacDonald, Gramila, and Eisenstein
involving a more realistic modeling of finite-width quantum wells.
In particular, these calculations were reported to include vertex
corrections to the RPA interaction propagator (7). Hence, it is
difficult to judge whether that factor of 2 has played any role in
the actual analysis of Gramila et al. (1991).
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FIG. 10 Left panel: calculated τ−1
D /T 2 (solid curves) com-

pared to the data of Gramila et al. (1991). A less opti-
mal choice of a fitting parameter yields results shown by
the dashed curves. Inset: calculated contribution of virtual-
phonon exchange processes to τ−1

D /T 2). [Reproduced from
Tso et al. (1992).] Right panel: calculated ρD/T

2 for vari-
ous values of the phonon mean free path and d = 500Å (solid
curves). The dots show the data of Gramila et al. (1992). The
dotted line represents the contribution of the modified plas-
mon pole. Inset: the crossover of the T 6 to T temperature
dependence. [Reproduced from Bønsager et al. (1998a).]

developed theoretically in Badalyan and Rössler (1999);
Bønsager et al. (1998a,b); and Tso et al. (1992) and ex-
perimentally in Jörger et al. (2000a); Noh et al. (1999);
and Rubel et al. (1995), see Fig. 10.

Both the Coulomb and phonon drag mechanisms as-
sume smallness of the transferred momentum q [see, e.g.,
Eq. (6)], which is fully justified for samples with the small
screening length, κd� 1. In addition, for low-density
samples with closely spaced layers (i.e., for kF d ∼ 1)
backward scattering processes with q ∼ 2kF may become
important (Kellogg et al., 2002a). The contribution of
such processes to drag shows the T 2 lnT temperature
dependence [in contrast to Eq. (21)]. While such log-
arithmic correction is difficult to ascertain, the experi-
ment (Kellogg et al., 2002a) shows sizable deviations from
Eq. (21) with the observed unusual density dependence of
ρD suggesting the importance of the 2kF scattering pro-
cesses. Quantitative theoretical description of these re-
sults was later achieved in Asgari et al. (2008) and Yurt-
sever et al. (2003) using a numerical approach based on
the effective interaction scheme developed in Kukkonen
and Overhauser (1979) and Vignale and Singwi (1985).

Further corrections to the single-particle Coulomb
mechanism are associated with the plasmon contribu-
tion. As shown in Flensberg and Hu (1994), plasmons
are expected to be most important at intermediate tem-
peratures, T ∼ 0.5TF . This prediction was tested experi-
mentally in Hill et al. (1997), see the left panel in Fig. 11,
and in Noh et al. (1998). While the theoretical results
show qualitative agreement with the data, discrepancies
persist. Taking into account many-body correlations [see,
e.g., Swierkowski et al. (1995)] improves the agreement,
but further advances in many-body theory are necessary
before a more precise quantitative description of the cor-
relation effects in double-layer structures is achieved.

FIG. 11 Left panel: measured ρD/T
2 for various values of the

carrier density, n1 = n2. Dashed lines represent the results of
Flensberg and Hu (1994) adjusted for the sample parameters
of the experiment. Solid lines show the results of additional
calculations taking into account intralayer many-body corre-
lations within the Hubbard approximation. [Reproduced from
Hill et al. (1997).] Right panel: measured ρD/T

2 for differ-
ent carrier densities. Inset: (a) peak position temperature vs
matched layer density; (b) ρD vs density ratio for T = 860,
730, and 600mK. [Reproduced from Pillarisetty et al. (2002).]

The discrepancies between the simple single-particle
description and laboratory experiments are by no means
universal, especially since many measurements were per-
formed in very different systems. One of the first drag
experiments (Solomon et al., 1989) was performed on a
hybrid 2D-3D system. This device showed considerable
thermoelectric effects masking the purely Coulomb con-
tribution to drag. Experiments on electron-hole systems
(Sivan et al., 1992) showed behavior that could not be ac-
counted by neither the phonon, nor plasmon corrections.
Instead, generalized RPA (taking into account exchange
processes to all orders) (Tso et al., 1993) appears to yield
satisfactory agreement with observations of Sivan et al.
(1992) at low temperatures. Apparently, the traditional
RPA overestimates screening which results in the under-
estimated drag resistivity.

Experiments on dilute 2D hole systems (Pillarisetty
et al., 2002, 2004) show marked enhancement of the drag
resistivity, along with the stronger temperature depen-
dence (empirically, ρD ∝ T 2.5 at low temperatures, fol-
lowed by a crossover towards a sublinear temperature
dependence at T ' EF ). These systems are character-
ized by rather high values of the dimensionless Wigner-
Seitz radius11 (Ando et al., 1982; Giuliani and Vig-
nale, 2005) rs ' 20–40 and also exhibit signs of a metal-
insulator transition in single-layer measurements (Pil-
larisetty et al., 2005b). The data obtained in Pillarisetty

11 Physically, the dimensionless Wigner-Seitz radius can be under-
stood as the ratio of the average potential energy to the aver-
age kinetic energy of the electronic system. In 2D systems it
can be estimated as rs = e2m∗/(~2ε

√
πn) = (

√
2/ε)[e2/(~vF )],

where m∗ is the band mass and ε is the dielectric constant.
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et al. (2002) are not explained by taking into account
corrections due to phonons (Bønsager et al., 1998a), plas-
mons (Flensberg and Hu, 1994), or many-body effects
(Swierkowski et al., 1995), as follows from the density
dependence of the measured drag illustrated in the right
panel of Fig. 11. The lack of adequate theoretical descrip-
tion of these experiments is not surprising, given that the
regime of relatively high rs remains an unsolved problem
in single-layer (bulk) systems as well.

Croxall et al. (2008) and Das Gupta et al. (2008) re-
port anomalous drag in electron-hole bilayers. Below
T = 1K, the measured drag resistivity exhibits an up-
turn that may be followed by a downturn, although ρD
does not seem to vanish for T → 0. The observed upturn
may indicate exciton formation (Hu, 2000b; Vignale and
MacDonald, 1996), however neither the observed viola-
tion of Onsager reciprocity, nor the apparent downturn
at lower temperatures are anticipated by the theory. The
effect of density imbalance on the drag upturn was stud-
ied in Morath et al. (2009). The data were interpreted in
terms of a pairing-fluctuations mechanism based on the
theory of Hwang and Das Sarma (2008b). The theory
accounts for most qualitative features of the effect, how-
ever the predicted peak in ρD at equal layer densities was
not observed in experiment (Morath et al., 2009).

Further experiments demonstrate interesting correla-
tion effects such as Wigner crystallization in quantum
wires (Yamamoto et al., 2006, 2012), exciton forma-
tion in electron-hole bilayers (Seamons et al., 2009), or
quantum Hall effect (Girvin and MacDonald, 1997; Lilly
et al., 1998), see Sec. VII.A. Clearly these phenom-
ena cannot be described by the simple theory presented
in this Section. At the same time, single-particle ef-
fects are still important at relatively low temperatures
(T . 0.2TF ) in traditional semiconductor heterostruc-
tures hosting two-dimensional electron systems and even
more so in graphene (see Sec. IV), where interlayer sep-
aration can be as small as several interatomic distances
(Gorbachev et al., 2012).

1. Phonon effects

Electrical resistivity due to electron-phonon scattering
is a standard topic in condensed matter physics (Ziman,
1965). At temperatures higher than the Debye frequency
T � ωD, it exhibits linear behavior ρ ∝ T , that is ob-
served in a wide class of materials including high-mobility
2DEG (Stormer et al., 1990) and graphene (Efetov and
Kim, 2010). At low temperatures T � ωD [in low density
electron systems the crossover occurs at a lower scale, the
so-called Bloch-Grüneisen temperature T � TBG < ωD
(Stormer et al., 1990)] the phonon contribution is rapidly
decreasing as ρ ∝ T 5 in metals (Bloch, 1930; Grüneisen,
1933) and heterostructures (Price, 1984; Stormer et al.,

1990) and as ρ ∝ T 4 in graphene (Efetov and Kim, 2010;
Hwang and Das Sarma, 2008a).

Qualitative physics of electron-phonon interaction in
semiconductor double-quantum-well heterostructures is
captured by the following interaction Hamiltonian

Hep =
1√
V

∑
λ,λ′;k

∑
Q;η

Mη
λ,λ′(Q)Fλ,λ′(qz)

×
[
b̂†η(−Q) + b̂η(Q)

]
ĉ†λ(k)ĉλ′(k + q). (46)

Here Q = (q, qz) is the 3D wave vector of a phonon with
polarization η, k is the 2D electron wave vector, Mν

λ,λ′

is the bulk electron-phonon matrix element corrected by
the subband form-factor

Fλ,λ′(qz) =

∞∫
−∞

dzξλ(z)ξ∗λ′e
iqzz, (47)

where ξλ(z) is the bound state wave function associated
with the quantized motion in the subband λ. This Hamil-
tonian was used to study effects of interaction between
electrons and longitudinal optical phonons in Das Sarma
and Mason (1985) and to calculate quasiparticle proper-
ties in weakly polar 2DEG in Jalabert and Das Sarma
(1989). In double-layer systems, the Hamiltonian (46)
was used to describe interlayer interaction mediated by
acoustic phonons in Bønsager et al. (1998a) and Zhang
and Takahashi (1993) and by optical phonons in Hu
(1998).

Electrons experience the phonon-mediated interaction
(46) alongside the Coulomb interaction. The propaga-
tor of the effective interlayer interaction can be obtained
within the RPA (Bønsager et al., 1998a; Jalabert and
Das Sarma, 1989; Zhang and Takahashi, 1993) similarly
to Eq. (7). The result can be represented in the form
D12 = (V12 +D12)/ε(q, ω), where D12 is the propagator
of the phonon-mediated interaction and ε(q, ω) is the ef-
fective dielectric function for interlayer interactions that
is also determined by the sum of the Coulomb interac-
tion (5) and the phonon propagator. Thus the phonon
and Coulomb mechanisms are generally not independent
of each other. However, the Coulomb interaction con-
tributes only to small momentum transfers (6), while the
phonon contribution peaks at q ∼ 2kF (Bønsager et al.,
1998a). Neglecting interference between the two, one
can estimate the effect of phonon-mediated interaction
by considering only the phonon part D12 → D12/ε(q, ω).

A simple analytical estimate for the strength of the
phonon-mediated interaction in GaAs/AlGaAs systems
was suggested in Bønsager et al. (1998a). In this ma-
terial, electron-phonon interaction is due to the defor-
mation potential and piezoelectric effect. It turns out,
that the deformation mechanism dominates (except for
very low electron densities). Assuming infinite phonon
mean free path, the corresponding (unscreened) effective
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interaction has the form

D12 = −CDPω
2e−d
√
q2−ω2c−2

l

νkF cl
√
c2l q

2 − ω2
, (48)

where cl is the velocity of longitudinal acoustic phonons
and CDP ≈ 2.7× 10−3kF /(106cm−1). The smallness of
electron-phonon coupling constants implies weakness of
the phonon-mediated interlayer interaction as compared
to the Coulomb interaction. However, the effective inter-
action (48) diverges near ω ≈ clq leading to a logarithmic
divergence in the drag resistivity. Although this diver-
gence is removed by either dynamic screening or phonon
relaxation, the above argument illustrates the reason be-
hind the relative strength of the phonon-mediated inter-
layer interaction.

Detailed calculations of the phonon-mediated drag re-
sistivity have been performed numerically by several au-
thors. Tso et al. (1992) showed that combining the
phonon and Coulomb mechanisms of mutual friction ac-
counts for the nonparabolic temperature dependence ob-
served in GaAs/AlGaAs devices (Gramila et al., 1991),
see the left panel of Fig. 10. A refined discussion of the
phonon mechanism was given in Bønsager et al. (1998a),
see the right panel of Fig. 10. It was shown, that the tem-
perature dependence of the phonon contribution to drag
exhibits a crossover from linear to T 6 behavior around the
Bloch-Grüneisen temperature (see the inset in Fig. 10),
explaining the peak in the drag resistivity, Fig. 9. In ad-
dition, it was shown that there exists a collective mode
that can be found setting ε(q, ω) = 0. This mode is simi-
lar to the usual plasmon and results from coupling of the
electrons from both layers to the phonons with ω ∼ clq.
A similar mode resulting from interaction between elec-
trons and optical phonons was discussed in Güven and
Tanatar (1997a,b). A detailed analysis of the mutual
friction due to optical phonons is given in Hu (1998).

2. Interlayer interaction beyond RPA

The expression (7) for the dynamically screened in-
terlayer Coulomb interaction has been obtained within
the RPA. While capturing the qualitative physics of the
effect, this representation is by no means exact. In par-
ticular, RPA-based calculations seem to underestimate
the value of ρD as compared to experimental data (Sivan
et al., 1992). A pedagogical discussion of the RPA and
possible approaches to interacting many-body systems
that go “beyond” the RPA can be found in Giuliani and
Vignale (2005). Most of these approaches are not para-
metrically justified. The results of the calculations are
typically compared to either experimental data or com-
puter simulations.

Coulomb drag between electron and hole layers within
the generalized RPA approach was considered in Tso

et al. (1993). The resulting ρD is about twice larger
than that calculated within RPA, but still about twice
smaller than the experimental data. Furthermore, it
was understood in Swierkowski et al. (1995) that the
true temperature dependence of ρD should exhibit a
crossover from the T 2 dependence at low temperatures
to a power-law at higher temperatures. However, the
local field approach [or the Singwi-Tosi-Land-Sjölander
method (Singwi et al., 1968)] used in this work still fails
to reproduce ρD(T ) measured in Sivan et al. (1992), al-
though yields roughly the same magnitude of the effect
(in contrast to the above RPA and generalized RPA cal-
culations). This approach was further extended to drag
between two 2DEG in Swierkowski et al. (1996, 1997).
The results of that work suggest that many-body corre-
lations enhance interlayer interaction and improve agree-
ment with experiments. Nevertheless, experiments [see,
e.g., Hill et al. (1997) and Fig. 11] show, that existing
theoretical methods are still incapable of providing pre-
cise quantitative description of real systems.

A detailed consideration of Coulomb drag resistivity
based on an extrapolation of Fermi-liquid-based formu-
las to the region where intralayer correlations are strong
has been carried out by Hwang et al. (2003) in an at-
tempt to address the striking data of Pillarisetty et al.
(2002) in low density and high mobility hole bilayers.
The observed drag was two to three orders of magnitude
larger than previously reported values. The calculations
of Hwang et al. (2003) were different from that leading to
Eq. (21a) in several points, all of them leading to an in-
crease of the drag resistivity: (i) Hubbard approximation
was employed to obtain the polarization operator, which
accounts for the exchange-driven local field corrections;
(ii) experimentally measured dependence of conductivity
on density was used to extract the electron-hole asym-
metry factor; (iii) large-momentum transfer component
was included to calculate drag; (iv) finite thickness of
quantum wells was included to calculate form-factors of
Coulomb matrix elements; (v) lastly, phonon contribu-
tion was added. Combining all these factors, Hwang et al.
(2003) were able to account for most of the results of the
measurements within a Fermi liquid approach.

G. Single-particle drag in magnetic field

The semiclassical Drude model described by Eqs.(2)
predicts that the drag resistivity is independent of the
magnetic field. Moreover, there is no “Hall drag”: the
direction of the induced motion of charge carriers in the
passive layer is expected to coincide with that of the driv-
ing current. These predictions contradict numerous ex-
periments [see, e.g., Eisenstein and MacDonald (2004);
Finck et al. (2010); Lilly et al. (1998); Muraki et al.
(2004); Nandi et al. (2012); and Rubel et al. (1997b)]
showing that Coulomb drag is not only sensitive to mag-
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netic field, but in fact the drag resistivity can be greatly
enhanced once the field is applied.

In single-layer measurements, magnetoresistance is
usually associated with either (i) multi-band systems, or
(ii) quantum effects. A close analog of the former can be
found in graphene-based systems, see Gorbachev et al.
(2012), Titov et al. (2013a) and Sec. IV. The latter ef-
fects are manifest in strong, quantizing magnetic fields
leading to emergence of a qualitatively different behavior
(Eisenstein and MacDonald, 2004; Girvin and MacDon-
ald, 1997) discussed in Sec. VII.

The situation somewhat simplifies if the field is tuned
close enough to the point where the Landau levels in the
two layers are half-filled. In this case, the many-body
state in each layer can be viewed as a Fermi liquid of
composite fermions (Halperin et al., 1993). Long range,
interlayer interaction between these excitations can lead
either to a “single-particle” drag effect (Kim and Millis,
1999; Sakhi, 1997; Ussishkin and Stern, 1997, 1998), or
to novel correlated states, see Sec. VII. Alternative ap-
proaches include magnetodrag due to electron-phonon in-
teraction (Badalyan and Kim, 2003), semiclassical theory
(Brener and Metzner, 2005), diagrammatic theory in high
Landau levels (Bønsager et al., 1996, 1997; Gornyi et al.,
2004; von Oppen et al., 2001), self-consistent Hartree ap-
proximation (Tso et al., 1998), and the effect of magneto-
plasmons (Khaetskii and Nazarov, 1999; Manolescu and
Tanatar, 2002).

1. Hall drag in weak (classical) magnetic field

Recall that the standard single-band Drude theory (2)
does not allow for any dependence of the drag resistivity
on the magnetic field and in particular predicts zero Hall
drag, see Eq. (3d). The same conclusion can be reached
using diagrammatic perturbation theory (Kamenev and
Oreg, 1995). This result is justified by the assumption of
energy-independent impurity scattering time τ . Lifting
this assumption (Hu, 1997), one can show that a weak
Hall drag signal may appear

ρHD ∝ sT 4, s =
∂τ(ε)

∂ε

EF
τ(EF )

. (49)

As argued in Hu (1997), this effect is hard to observe
in conventional semiconductor heterostructures where in-
tralayer relaxation processes are dominated by electron-
electron interaction: in this case the nonequilibrium dis-
tribution function quickly relaxes to a drifted Fermi-
Dirac distribution and hence the impurity scattering time
is effectively almost independent of energy, i.e. s� 1.

Hall drag in weak magnetic fields was studied in Pa-
tel et al. (1997). The experimental device comprised two
180Å-wide quantum wells separated by 100Å and exhib-
ited measurable tunneling between the layers, contrary

to the assumptions of Hu (1997). Hall drag in graphene
(Titov et al., 2013a) was attributed to a different mech-
anism, see Sec. IV. Other observations of Hall drag were
performed in the quantum Hall regime (see Sec. VII),
where the effect is much stronger (von Oppen et al., 2001)
than Eq. (49).

2. Coulomb drag of composite fermions

All of the previous discussion was based on the un-
derlying physical picture of weakly interacting fermions.
Typically, this picture becomes invalid in a strong, quan-
tizing magnetic field. The only exception to this state-
ment is the peculiar state at the half-filled Landau level.
This state can be described as a Fermi liquid of composite
fermions (Halperin et al., 1993). Each composite fermion
is an electron with two attached flux quanta (Jain, 1989),
that interacts with the others both electrostatically and
by means of a Chern-Simons interaction.

Composite fermions can be characterized by linear re-
sponse functions similar to those of electrons. In partic-
ular, their respective single-layer resistivities are related
to each other by (Halperin et al., 1993)

ρ̂el = ρ̂cf +
2h

e2

(
0 1
−1 0

)
. (50)

If one is interested in the relation between conductivities
of the electrons and composite fermions, then one has
to invert the resistivity matrices in Eq. (50). Clearly,
the electronic conductivity is not identical to that of the
composite fermions.

Extending Eq. (50) to the case of a double-layer sys-
tem, one obtains a similar relation for the 4× 4 resistivity
matrices (Ussishkin and Stern, 1997). If interlayer inter-
action is weak enough, so that composite fermions in a
given layer are not sensitive to the Chern-Simons field of
the other layer, then similarly to Eq. (50), longitudinal
resistivities of the electrons and composite fermions are
the same and hence

ρelD = ρcfD . (51)

Again, conductivities (in particular, drag conductivities)
of electrons and composite fermions are not equivalent.

The quantity measured in drag experiments is the elec-
tronic drag resistivity ρelD, Eq. (13). Given the equality

(51), one can calculate either ρcfD or ρelD. The former ap-
proach was developed in Kim and Millis (1999), while
the latter was considered in Ussishkin and Stern (1997).
Both calculations are based on the standard lowest-order
perturbation theory and yield similar results (albeit with
a rather different interpretation12). The calculation of

12 The subquadratic temperature dependence (53) of the drag re-



19

Kim and Millis (1999) consists evaluating Eq. (15) for
composite fermions and using the correspondence (51).
Alternatively (Ussishkin and Stern, 1997), one can treat
the problem in purely electronic terms assuming that in-
terlayer interaction is dominated by the direct Coulomb
coupling [the assumption which justifies Eq. (51)]. At
the same time, single-layer electronic response functions
(such as ImΠR) can be calculated within the composite-
fermion approach of Halperin et al. (1993).

Within RPA (including the response of composite
fermions to the external, Coulomb, and Chern-Simons
potentials) and in the limit q � kF , ω � vF q, the elec-
tronic density-density response function (the polarization
operator) is given by (Halperin et al., 1993)

ΠR(q, ω) =
dn

dµ

q3

q3 − 8πiωkF (dn/dµ)
, (52)

where dn/dµ is the thermodynamic compressibility of
the ν = 1/2 state. At large momenta, ImΠ−1 ∝ q−3;
consequently (Ussishkin and Stern, 1997), the momen-
tum integration in Eq. (15) is dominated by the region
q ≈ kF (T/T0)1/3 [i.e., determined by poles of the inter-
layer interaction, rather than Eq. (6)]. As a result, the
temperature dependence of the drag resistivity is weaker
than in the absence of magnetic field (Stern and Us-
sishkin, 1997; Ussishkin and Stern, 1997)

ρD = 0.825(h/e2)(T/T0)4/3, (53)

where the characteristic temperature depends on the car-
rier density n, interlayer spacing d, dielectric constant ε,
and thermodynamic compressibility

T0 =
πe2nd

ε

[
1 +

ε

2πe2d

(
dn

dµ

)−1]
.

The same temperature dependence was reported in Kim
and Millis (1999) and Sakhi (1997).

For realistic parameter values similar to those of the
experiment of Lilly et al. (1998), the drag resistivity (53)
is much larger than the zero-field result (21). This fact
is associated with the smallness of the typical momenta
involved in the interlayer scattering processes and slow
relaxation of density fluctuations in the ν=1/2 state.

The effect of disorder on drag in the ν=1/2 state was
considered in Stern and Ussishkin (1997). In the diffusive
regime, the polarization operator is given by the stan-
dard form (30) and hence the drag resistivity is given by
Eq. (34), albeit with a different diffusion coefficient than

sistivity at ν=1/2 was interpreted in Kim and Millis (1999) as a
signature of the non-Fermi-Liquid nature of composite fermions.
In particular it was related to the similar power law in the self-
energy of the composite fermions leading to the ω ∼ q3 scaling
of the typical frequencies.

FIG. 12 (Color online) Coulomb drag measurements at
ν=1/2. Left panel: the top plot shows the experimental
ρD(T ) (solid line) compared to the theory of Stern and Us-
sishkin (1997); the bottom plot shows the field dependence.
The inset shows ρD at B = 11.45T for two values of the driv-
ing current. [Reproduced from Lilly et al. (1998).] Right
panel: (A) circuit schematic; (B) ρD(T ) (dots) vs Eq. (53);
(C) ρD(B) for different temperatures, T = 0.05− 5.6K. The
vertical line corresponds to the B field at which the points
plotted in panel (B) were measured. [Reproduced from Price
et al. (2010).]

the same system would have in the absence of magnetic
field. The result is much larger than at B = 0. In the
diffusive regime, this follows from the observation that
the longitudinal conductivity (or the diffusive constant,
which encodes all microscopic details) at ν=1/2 is much
smaller than at B=0.

Although the above theory is qualitatively similar to
the experimental observations (Lilly et al., 1998) (e.g.
drag at ν = 1/2 is much larger that at B = 0; the tem-
perature dependence in clean samples is subquadratic),
theoretical calculations significantly underestimate the
overall value of ρD as compared to the experiment of
Lilly et al. (1998). Yang (1998) suggested, that the rea-
son for the discrepancy is that the interlayer separation in
the samples of Lilly et al. (1998) was close to the critical
value, where the system forms an incompressible inter-
layer state (for a detailed discussion of correlated states
see Sec. VII). An alternative suggestion by Ussishkin
and Stern (1998) attributes the unexplained features of
the experiment (including the extrapolated nonvanish-
ing drag at T = 0) to pairing fluctuations of composite
fermions. The two scenarios could be distinguished by
measuring Hall drag, which vanishes in the latter theory.
Finally, the anomalous temperature dependence shown
in the inset of the lower left panel in Fig. 12 appears to
be qualitatively similar to the effect of mesoscopic fluctu-
ations of Coulomb drag, see Fig. 13. A later experiment
(Price et al., 2010) reported both the magnitude and tem-
perature dependence of Eq. (53) to be in good agreement
with the measured data.
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III. MESOSCOPIC FLUCTUATIONS OF COULOMB
DRAG

Universal conductance fluctuations (Altshuler et al.,
1991) is a quantum interference effect which is a manifes-
tation of the wave nature of electrons. As the same elec-
trons are responsible for Coulomb drag, it is natural to
expect that the drag resistivity also exhibits mesoscopic
fluctuations. The drag fluctuations were first studied the-
oretically in Narozhny and Aleiner (2000) and Mortensen
et al. (2001, 2002a) and then observed experimentally
(Kim et al., 2011; Price et al., 2008, 2007, 2010).

In a disordered system, it is impossible to track each
individual impurity and one uses a statistical approach.
Impurities are described by a distribution function and
each physical quantity is treated as being random. Ob-
servables correspond to average values of the random
physical quantities with respect to the distribution of im-
purities. If a system is large enough, it can be viewed
as a combination of smaller parts, which become sta-
tistically independent if they are separated by distances
larger than any relaxation length. Then instead of av-
eraging over a statistical ensemble, one can average over
the volume of one large system.

In the problem of electronic transport, averaging over
the system volume can be understood as averaging over
all possible paths that an electron can take moving be-
tween points A and B (Aleiner et al., 1999; Altshuler
and Aronov, 1985; Altshuler et al., 1991). Such paths
can cover all of the system volume and thus experience
all possible local impurity configurations, making the av-
erage over the system equivalent to ensemble averaging.

Consider two paths between the points A and B. The
total transmission probability is determined by the abso-
lute value of the sum of the corresponding quantum am-
plitudes (Altshuler and Lee, 1988; Altshuler et al., 1991):

W = |A1 +A2|2 = |A1|2 + |A2|2 + 2|A1||A2| cos(ϕ1−ϕ2),

where ϕ1(2) are the quantum-mechanical phases that an
electron accumulates along the paths. Typically, the
phases ϕ1(2) are random (or incoherent). As a result, the
interference term vanishes upon averaging over all pos-
sible paths (or impurity configurations), leading to the
semiclassical sum of transition probabilities 13

〈cos(ϕ1 − ϕ2)〉 = 0 ⇒ W = W1 +W2, W1(2) = |A1(2)|2.

Random quantities can be characterized not only by
their average value, but also by higher moments of their

13 In special cases of coherent paths (for instance, time-reversed
paths) the phase difference is exactly zero. Then the interfer-
ence term does not vanish and leads to quantum corrections to
semiclassical transport properties, such as the weak localization
correction (Altshuler and Aronov, 1985; Altshuler et al., 1991).

statistical distribution, which may be sensitive to the in-
terference term even if the phases ϕ1(2) are still random.
Indeed, fluctuations of the transition probability

〈[W − 〈W 〉]2〉 = 4W1W2〈cos2(ϕ1 − ϕ2)〉 = 2W1W2.

are completely determined by the interference term.
Fluctuations of the transmission probability result in

fluctuations of transport coefficients. The effect of such
fluctuations can be observed only in small enough sam-
ples (Altshuler et al., 1991). Indeed, in order justify the
concept of the phase associated with a given electronic
path, the length of the path should be less than a typical
inelastic relaxation length Lϕ, otherwise coherence would
be lost before the electron reaches point B (Anderson
et al., 1979). At the same time, the path length should
be larger than the mean free path in the system (other-
wise electron motion along the path would be determin-
istic). Therefore, typical paths (and hence, the sample
sizes) should be characterized by intermediate lengths L

`� L� Lϕ.

Fluctuations observed at such length scales are known as
“mesoscopic fluctuations” (Altshuler et al., 1991).

A. Drag fluctuations in conventional diffusive samples

Mesoscopic fluctuations of the usual conductance (Alt-
shuler et al., 1991) are known as the “universal conduc-
tance fluctuations” (UCF). The universality is manifest
when T � ET , where ET is the Thouless energy of the
sample (i.e. in small samples or at low temperatures;
in the diffusive regime, ET = D/L2 = g/(2πνL2), with g
being the dimensionless conductance and ν – the DoS).
Then the fluctuations are characterized by the universal
value

δσ ' e2

~
,
〈
δG2

〉
≈ e4

h2
,

√
〈δG2〉
〈G〉2

' 1

g(L)
, (54)

where G = ge2/h is the conductance of the system. The
latter equality emphasizes the fact that the dimensionless
conductance is a function of the system size.

In larger samples, 〈δG2〉 is a function of temperature
and the sample size. Arguments leading to Eq. (54) are
valid only for coherent samples (Altshuler et al., 1991).
At larger length scales, L� Lϕ the coherence is lost, and
the disorder averaging should be performed by dividing
the sample into patches of the size Lϕ. Individual self-
coherent patches (54) can be combined as a network of
random conductors. This yields (in dimension d)〈

δG2(L)
〉
'
〈
δG2(Lϕ)

〉
(Lϕ/L)

d
. (55)

The patches of the size Lϕ remain self-coherent as long
as T � ET (Lϕ). At higher temperatures, thermal aver-
aging should be performed up to energies of order T ,
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suppressing the conductance fluctuations〈
δG2(Lϕ)

〉
' (e2/h)2ET (Lϕ)/T.

The conductance fluctuations of the sample become〈
δG2[L;T >ET (Lϕ)]

〉
'(e2/h)2(Lϕ/L)d~/(Tτϕ), (56)

where τϕ = E−1T (Lϕ) is the dephasing time (Altshuler
et al., 1980).

The fluctuations (56) are only observable in mesoscopic
samples. Assuming the samples to be “metallic”, g � 1,
the UCF (54) yield only a small correction to the average
value of conductance. For example, in the experiment of
Price et al. (2007) the single-layer resistance fluctuates
by about 200mΩ around the average of about 500Ω.

Now, we apply the above arguments to Coulomb drag
(Narozhny and Aleiner, 2000). The drag conductivity
depends on (i) the phase space available to electron-
hole excitations; (ii) matrix elements of the interlayer
interaction; and (iii) electron-hole asymmetry, expressed
through the energy dependence of the density of states
(or, the density dependence of the single-layer Drude con-
ductivity). This can be schematically summarized by

σD '
e2

~

(
∂

∂µ
ln g

)2

×
(

phase
volume

)
×
(

matrix
element

)
. (57)

The average drag conductivity [cf. Eqs. (34) and (35)]
can then be understood (up to the logarithmic factor) by
estimating the phase volume by T 2, the matrix element
by (κd)−2 (coming from static screening), and the factor
of the electron-hole asymmetry by E−2F .

Fluctuations of the drag conductivity can also be esti-
mated with the help of Eq. (57). Consider first the low-
est temperatures T � ET , where the sample is effectively
zero-dimensional (0D). The phase space is then only lim-
ited by temperature, yielding the usual factor of T 2. The
factor of the electron-hole asymmetry in Eq. (57) is a
random quantity with the typical value ∼ E−2T , since the
Thouless energy is the typical scale of mesoscopic effects.
Interaction matrix elements in 0D are independent of en-
ergy (Aleiner et al., 1999); fluctuations are determined
by off-diagonal elements that contain a small factor of
g−2. As a result, one finds the variance of the drag con-
ductivity that strongly exceeds the average

δσD ∼
e2

~
T 2

g2E2
T

,

√
〈δσ2

D〉
〈σD〉

' E2
F

g2E2
T

' L4

`4
� 1. (58)

The quadratic temperature dependence of the variance
of the drag conductivity (Narozhny and Aleiner, 2000)
for mesoscopic samples (L� Lϕ, T � ET ) was also ob-
tained in the context of quantum circuits [see Sec. V and
Levchenko and Kamenev (2008a)] and within the random
matrix theory (Mortensen et al., 2001, 2002b).

In order to extend the 0D argument to larger sam-
ples, L� Lϕ, we again divide the system into patches of
the size Lϕ. Since the patches are largely uncorrelated
(due to the loss of phase coherence), they can be com-
bined as a network of random conductors, see Eq. (55).
Each patch can be analyzed similarly to the 0D case.
However, now the interaction matrix elements become
energy-dependent on the scales larger than ET , decreas-
ing with the transmitted energy ω as |M |2 ∼ ω−2. Thus
the energy transfer is limited by the Thouless energy of
the patch ω ∼ ET (Lϕ) = τ−1ϕ , rather than temperature.
As a result, the phase space is limited by Tτ−1ϕ , rather
than the usual T 2. The fluctuations of the density of
states (which determine the factor of electron-hole asym-
metry) should now be calculated on the scale of tempera-
ture rather than the Thouless energy. This suppresses the
fluctuations in each layer by the factor of

√
ET (Lϕ)/T .

Combining the above estimates, we find

δσD(Lϕ) ∼ e2

~
Tτ−1ϕ

g2E2
T (Lϕ)

ET (Lϕ)

T
∼ e2

~g2
, (59)

which is T -independent, in contrast to the 0D result (58).
Final the Coulomb drag fluctuations in 2D samples can

be estimated by combining Eqs. (55) and (59):〈
δσ2
D(L)

〉
∼ e4

~2g4
L2
ϕ

L2
∼ e4

~2g4
ET (L)τϕ ∝

1

T
. (60)

The temperature dependence of the fluctuations (60) is
contained in the dephasing time τϕ ∼ g/T (Altshuler and
Aronov, 1985). At high enough temperatures, T � T ∗,
the fluctuations are small [the average value of σD (35)
is representative], but for T � T ∗ fluctuations dominate,
see Fig. 13. The crossover temperature T ∗ can be found
by setting the relative fluctuation to unity

T ∗ ∼ EF (g2nL2)−1/5.

The fluctuation-dominated regime is characterized by
typical values of σD determined by Eq. (60) rather than
the average. In particular, the temperature dependence
of the measured drag conductivity in this regime appears
almost saturating as σD ∝ 1/

√
T . The value of the pref-

actor in this expression is sample-dependent and has a
random sign. If temperature is decreased further, then
eventually (although probably only in theory) one may
reach the regime where T < ET . Then the sample will
become effectively zero-dimensional and the quadratic
temperature dependence σD ∝ T 2 will be restored. In
this regime of lowest temperatures, fluctuations greatly
exceed the average [see Eq. (58)] and therefore the coef-
ficient in the quadratic temperature dependence will be
random (with random sign). The temperature depen-
dence of a typical drag signal is sketched in the left panel
of Fig. 13 (cf. the inset in the right panel of Fig. 13; see
also the inset in the lower left panel of Fig. 12 and the
discussion of the data of Lilly et al. (1998) in Sec. III.C).
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FIG. 13 (Color online) Left: Qualitative picture of the typical
measured drag signal. At high enough temperatures T > T ∗

the average drag conductivity (35) is representative, σD ∝ T 2,
with positive coefficient (blue curve). Below T ∗ (left of the
dotted line), fluctuations dominate and the sign of the mea-
sured signal becomes random, i.e. dependent on a particu-
lar configuration of disorder. For T < T ∗ the temperature
dependence weakens to σD ∝ 1/

√
T (the corresponding tran-

sition region in shown in green). At very low (most likely,
experimentally inaccessible) temperatures T < ET � T ∗, the
quadratic temperature dependence is restored, but with a ran-
dom coefficient (red curves), as fluctuations in the effectively
0D system are much stronger than the average, see Eq. (58).
Right: Measured drag resistance as a function of carrier den-
sity in the passive layer for T = 1, 0.4, 0.24K (from top to bot-
tom). Inset: the temperature dependence of the same data
for the two values of n2 denoted by vertical dotted lines in
the main plot. The line indicates the T 2 dependence. [From
Price et al. (2007). Reprinted with permission from AAAS.]

The above qualitative picture is in full agreement with
microscopic calculations (Narozhny and Aleiner, 2000).
The average square of the drag conductivity has the form

〈
σαβD σα

′β′

D

〉
=
(
δαα

′
δββ

′
+ δαβ

′
δα
′β
) 〈
σ2
D

〉
, (61a)

〈
σ2
D

〉
=
e4

~2
γ

18π3

(
32 ln 2− 14

3

)
ET τϕ lnκd
g4(κd)3

, (61b)

where γ = 1.0086. Comparing Eq. (61) with the average
drag conductivity in the diffusive regime (35), one finds
the cross-over temperature T ∗ = EF (16πg2nL2)−1/5.

For heterostructures used in Gramila et al. (1991) and
Lilly et al. (1998), the value of T ∗ can be estimated as
T ∗ ≈ 0.2K, which is below the temperature range of these
experiments. Hence, the average drag coefficients (34)
and (35) were sufficient to account for the observed effect
with no trace of the random sign predicted by Eqs. (61).

More recently, drag fluctuations were observed in dif-
fusive graphene-based double-layer samples (Kim et al.,
2011; Kim and Tutuc, 2012), see Fig. 14. The temper-
ature dependence δσD ∝ T−1/2 [following from Eq. (61)
and the assumption that the main phase-breaking mech-
anism in the device is electron-electron scattering (Alt-
shuler and Aronov, 1985)] appears to be in agreement

FIG. 14 (Color online) Mesoscopic fluctuations of Coulomb
drag in graphene. At low temperatures the fluctuations fully
obscure the average drag. The curves are shifted for clarity;
the horizontal dashed lines indicate 0Ω for each curve. [Re-
produced from Kim et al. (2011).]

with the experimental data. Other aspects of this exper-
iments are specific to graphene. The fluctuations appear
to be more pronounced in the vicinity of the charge neu-
trality point. However, at the time of writing, a theory
of drag fluctuations in graphene has not been developed.
There is also no explanation for the most puzzling feature
of the data reported in Kim and Tutuc (2012) showing
an apparent violation of Onsager reciprocity as the drag
fluctuations depend only on the charge density in the
passive layer and not in the active layer.

The result (61) is valid for homogeneous 2D diffusive
samples in the absence of magnetic field. The random-
ness (i.e. the sample to sample variation) of the sign
of the effect should be contrasted with the determinis-
tic sign change of the drag resistivity suggested for bi-
layer systems with in-plane periodic potential modula-
tion (Alkauskas et al., 2002). Drag signals of both signs
have been observed in vertically integrated 1D quantum
wires (Laroche et al., 2011). While the observed effect
has been argued (Büttiker and Sánchez, 2011) to have
a mesoscopic origin (Mortensen et al., 2001) dominated
by charge fluctuations (Levchenko and Kamenev, 2008a;
Sánchez et al., 2010), the data appear to be not ran-
dom, but reproducible. Very similar data were obtained
in the subsequent experiment (Laroche et al., 2014) and
interpreted with the help of the Luttinger Liquid theory
(Pustilnik et al., 2003) (see Sec. VI).

Closing this Section, we note that strong fluctuations
of Coulomb drag ultimately follow from strong fluctua-
tions of the nonlinear susceptibility. The fact that the
fluctuations of the drag resistivity exceed the average is
related to the overall smallness of the drag effect due to
electron-hole symmetry. A related phenomenon is the
fluctuations of the electro-acoustic current7 determined
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by the same nonlinear susceptibility.

B. Giant fluctuations of Coulomb drag

The predictions of the fluctuation theory (Narozhny
and Aleiner, 2000) were put to the test in the dedicated
experiment (Price et al., 2007). Both the UCF and drag
fluctuations were measured in the same structure. The
observed UCF have shown the usual behavior (Altshuler
et al., 1991). A direct comparison of the correlation fields
for the UCF and drag fluctuations confirmed that both
effects depend on the same coherence length Lϕ (Aleiner
et al., 1999) and have the same quantum origin. Surpris-
ingly, the observed giant drag fluctuations (Price et al.,
2007) greatly exceeded the original prediction (Narozhny
and Aleiner, 2000). This discrepancy was attributed to
the fact that the experiment was performed in the bal-
listic regime (Narozhny et al., 2002; Zala et al., 2001).

Let us remind the reader (see Sec. II) that the in drag
measurements difference between “diffusive” and “ballis-
tic” samples is in the relation between the mean-free path
` and interlayer separation d. The latter sets the upper
limit for the interlayer momentum transfer due to the ex-
ponential decay of the Coulomb interaction (5). Thus, if
the mean free path is small `� d, then q � d−1 � `−1

and the effect is dominated by the diffusive motion of
charge carriers. In “cleaner” samples with ` � d,
both small q � `−1 and large `−1 � q � d−1 momen-
tum transfers are possible. The conventional statement,
that in such samples Coulomb drag is dominated by bal-
listically moving carriers (Kamenev and Oreg, 1995), fol-
lows from observing that processes with large momentum
transfers yield a much larger drag resistivity Eq. (21)
compared with the diffusive result (34), see Eq. (36).

Coherence properties of electrons are also sensitive to
the nature of their motion. The dephasing time τϕ is
a manifestation of inelastic electron-electron scattering
(Aleiner et al., 1999; Altshuler and Aronov, 1985). The
conventional theory of interaction effects in electronic
systems (Altshuler and Aronov, 1985) yields the follow-
ing estimate for the dephasing time in diffusive systems

τ−1ϕ (Tτ � 1) ∼ (T ln g)/g. (62a)

At higher temperatures, transport is dominated by pro-
cesses with one or few successive impurity scatterings.
In this “ballistic” regime (Zala et al., 2001), the dephas-
ing time exhibits somewhat stronger temperature depen-
dence (Narozhny et al., 2002)

τ−1ϕ (Tτ � 1) ∼ (T 2/EF ) ln(2EF /T ). (62b)

In Eqs. (62a) and (62b) the parameter distinguishing the
diffusive and ballistic regimes is Tτ which is independent
of the interlayer separation. This is to be expected since

FIG. 15 Drag fluctuations in ballistic samples. The lines rep-
resent the asymptotic power laws, see Eq. (63). The inset
shows the measured dephasing time. The lines in the inset
represent the power laws from Eq. (62). [Adapted from Price
et al. (2007). Reprinted with permission from AAAS.]

the theory leading to Eqs. (62a) and (62b) was devoted
to two-dimensional systems and not bilayers.

The effect of the external magnetic field on the single-
layer conductance fluctuations analyzed in Price et al.
(2007) demonstrates the expected crossover between the
ballistic and diffusive results :

τ−1ϕ ∝

{
T, Tτ . 1,

T 2, T τ & 1.
(62c)

The same sample where Coulomb drag is dominated by
the ballistic motion of electrons with large interlayer mo-
mentum transfers, `−1 � q � d−1, may exhibit both the
diffusive and ballistic behavior of single-layer transport
properties, e.g. of the dephasing time (62).

Similar crossover was observed also in the drag fluc-
tuations that exhibited strikingly different temperature
dependence at large and small Tτ (Price et al., 2007):

〈
δσ2
D

〉
∝

{
T−1, T τ . 1,

T−4, T τ & 1.
(63)

The crossover temperature in Eq. (63) was found to be
about the same as in Eq. (62). This coincidence raised
the question of whether the large magnitude of the ob-
served drag fluctuations and their unexpected temper-
ature dependence (63) had the same origin that would
involve large momentum transfers `−1 � q � d−1 [given
that the small momentum transfers lead to Eq. (61)].

Scattering processes characterized by large momentum
transfers q � 1/` involve two electrons at a distance that
is smaller than the average impurity separation. Thus,
the effect should be determined by local electron proper-
ties. Local properties, such as the local DoS, are known
to exhibit mesoscopic fluctuations stronger than those of
the global properties (responsible for drag fluctuations
in the diffusive regime). In particular, fluctuations of the
local DoS are given by (Lerner, 1988)

δν2 ∼ (ν2/g) ln[max(LT , Lϕ)/`], (64)
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where LT =
√
D/T is the thermal length.

Contribution of processes with large momentum trans-
fers to drag fluctuations can be estimated using Eqs. (57)
and (55). Electron-electron scattering can be described
with the help of “ballistic” expressions discussed in
Sec. II.B. As small angle scattering plays the dominant
role, the matrix element of the interlayer interaction is
proportional to the ratio of the mean-free path to the
interlayer separation |M |2 ∼ g−2`2/(κ2d4). As this in-
teraction is static, the phase space is only limited by T .
Assuming that the fluctuations of the nonlinear suscepti-
bility are dominated by fluctuations of the local density
of states (64), one finds (up to a logarithmic factor)

δσD(Lϕ) ∼ e2

~
T

gET (Lϕ)

`2

κ2d4
, (65)

where the thermal smearing was taken into account sim-
ilarly to Eq. (59). This leads to the estimate for the drag
fluctuations in the whole sample (Price et al., 2007)

〈
δσ2
D

〉
∼ e4

~2
`4

g2κ4d8
T 2

E2
T (Lϕ)

L2
ϕ

L2
∝ T 2τ3ϕ. (66)

The result (66) contains two falsifiable predictions: (i)
the magnitude and (ii) the temperature dependence of
the drag fluctuations. In comparison with Eq. (61), the
prefactor in Eq. (65) contains the large factor `4/d4 and
moreover, g2 instead of g4 in the denominator. Con-
sequently, the drag fluctuations (66) are much stronger
than the diffusive prediction. At the same time, using the
temperature dependence of the dephasing time (62), one
immediately recovers the measured temperature depen-
dence of the drag coefficient (63). The crossover between
the two temperature regimes in Eqs. (63) and (66) is il-
lustrated in Fig. 15.

C. Drag fluctuations at the half-filled Landau level

Mesoscopic fluctuations of Coulomb drag of compos-
ite fermions were studied theoretically in Narozhny et al.
(2001) and experimentally in Price et al. (2010). De-
spite the significant increase in the magnitude of drag of
composite fermions relative to that of normal electrons
(Jörger et al., 2000c; Lilly et al., 1998; Muraki et al., 2004;
Zelakiewicz et al., 2000) the fluctuations of the drag re-
sistivity can still exceed the average, resulting in an al-
ternating sign of the measured drag resistivity.

Qualitatively, one can estimate the fluctuation effects
using Eq. (25). Similarly to the B = 0 case, drag fluctua-
tions stem from the fluctuations of the nonlinear suscep-
tibility. In the diffusive regime, 〈Γ〉 is given by Eq. (28)
with the polarization operator having the standard form
(30), although with a different diffusion constant (Stern
and Ussishkin, 1997). In contrast to the B = 0 case, the
ν = 1/2 state is characterized by a large Hall conduc-
tivity. This leads to the nonlinear susceptibility being
approximately orthogonal to the transferred momentum
q [unlike Eq. (31)].

Fluctuations of Γ (and thus of the drag resistivity)
result from mesoscopic fluctuations of ∂σ/∂n. Other pa-
rameters, such as the compressibility and the diffusion
constant can be taken at their average values (their fluc-
tuations are much smaller than the averages). To es-
timate fluctuations of ∂σ/∂n, one can express the con-
ductivity in terms of the response functions of composite
fermions using Eq. (50). On average, the conductivity
matrix of composite fermions is diagonal. Assuming the
large dimensionless conductance of composite fermions,
gcf � 1, the electronic longitudinal conductivity is in-
versely proportional to gcf , meaning smallness of the
electronic dimensionless conductance

g ≈ 1/(4gcf )� 1. (67)

This is the reason one needs to perform calculations in the
composite-fermion basis: the B = 0 theory of Sec. III.A
is justified by the small parameter 1/g.

Adapting the B = 0 theory to the case of composite
fermions, Narozhny et al. (2001) found the fluctuations
of the nonlinear susceptibility (28) of a coherent sample
of size L in the ν = 1/2 state to be large

δΓ ∼ iq e
h

L2

g2cf
ImΠR,

〈δΓ2〉
〈Γγ〉2

∼ k4FL
4

g4cf
� 1, (68)

similarly to Eq. (58). This is already an observable con-
clusion: in a fully coherent sample in the diffusive regime,
fluctuations of the acoustoelectric current (determined by
the same nonlinear susceptibility) are much larger that
its average. The result (68) is justified as long as the

thermal LcfT ≡
√

~Dcf/T and phase breaking Lcfϕ length
scales of composite fermions are much larger than L.

For larger samples, the global phase coherence is lost
and one has to employ the averaging procedure described
in Sec. III.A. The system can be divided into L2/(Lcfϕ )2

self-coherent patches of the size of the phase-breaking
length of composite fermions Lcfϕ . Summing up contri-
butions of all patches according to Eq. (55), one finds

〈ρ2D〉 =
h2

e4
1

g4cf (κd)2

(
Lcfϕ
L

)2

min

1, α1

(
g2cfTτ

cf
ϕ

κd~

)2
min

[
α3, α2

(
Tτ cfϕ /~

)2]
, (69)
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FIG. 16 (Color online) A cartoon illustration of the phase-
breaking mechanism at ν = 1/2. A random flux in the system
can be generated by charge density fluctuations with the op-
posite signs of excess local charges in the two layers.

where α3 ≈ 0.2(32/9π) = 0.23 and the coefficients α1,2

are of order unity (Narozhny et al., 2001).
The magnitude of the mesoscopic fluctuations depends

on the precise source of phase breaking, but their temper-
ature dependence is robust: all generic models of phase
breaking in two dimensions (Altshuler and Aronov, 1985)
lead to 1/τϕ ∝ T in the diffusive regime. In the ν = 1/2
state phase breaking comes from the quasi-elastic scat-
tering of composite fermions off the thermal quasi-static
fluctuations of the Chern-Simons magnetic field. This
mechanism can be illustrated using a cartoon shown in
Fig. 16. Consider a density fluctuation where the excess
charges in the two layers have opposite signs. Such a
fluctuation is accompanied by a random flux that inter-
acts with the composite fermions leading to the loss of
coherence. The energy of this fluctuation is of order T . It
can also be estimated as the energy of a simple capacitor,
2πe2d/[ε(Lcfϕ )2] ' T , where ε is the bulk dielectric con-

stant and Lcfϕ is the typical size of the density fluctuation
with the electron number of the order of unity creating
the random flux of approximately Φ0. As a result,

1/τ cfϕ ' gcfT/(κd). (70)

Substituting the above estimate into Eq. (69), one finds
(assuming gcf � κd)

〈ρ2D〉 '
h2

e4
2πe2d

TεL2g6cf
.

Using realistic parameters (Lilly et al., 1998) (i.e. L '
100µm; d = 300Å; T = 0.6K; R = 3kΩ/� leading to
gcf ≈ 8; and 〈ρD〉 = 15Ω/�), the magnitude of the drag
fluctuations can be estimated as δρD ≈ 0.3Ω, which is
much smaller than the experimental data of Lilly et al.
(1998), see the lower left panel of Fig. 12. That exper-
iment remains poorly understood. For lower tempera-
tures and smaller samples, the theory predicts stronger
fluctuations (i.e. exceeding the average). Such strong
fluctuations were observed in Price et al. (2010), albeit
again with a substantially larger magnitude that follows
from the above estimate, see Fig. 17.

The dephasing time due to above mechanism of quasi-
elastic scattering of composite fermions on thermal fluc-

FIG. 17 (Color online) Mesoscopic fluctuations of Coulomb
drag at ν = 1/2, T = 50mK. Upper panel: comparison of δρD
as a function of the filling fraction ν obtained by varying ei-
ther the carrier density or magnetic field. The red curve shows
a different measurement run demonstrating the reproducibil-
ity of the fluctuations. Similarity of the periods of ρD(n)
and ρD(B) is the proof of composite-fermion drag. Lower
panel: autocorrelation function of the fluctuations shown in
the upper panel. Squares represent ρD(B) and circles - ρD(n).
[Reproduced from Price et al. (2010).]

tuations of the Chern-Simons field appears to be shorter
than the temperature scale Tτ cfϕ � 1. This does not cre-
ate any additional complication since most of the phase
breaking results from scattering off the Chern-Simons
field fluctuations whose dynamics (with characteristic
frequency T/gcf ) is very slow compared to τ cfϕ , but fast
compared to the time of the experiment. Field fluctua-
tions which are static on the scale of the experiment time
affect the mesoscopic fluctuations only by affecting gcf .
Field fluctuations that are faster than that scale make the
potential landscape seen by the composite fermions time
dependent, and lead to a suppression of the mesoscopic
fluctuations by partial ensemble averaging.

Consider the correlation function

〈ρD(B)ρD(B+δB)〉−〈ρD(B)〉〈ρD(B+δB)〉 = F1

(
δB

B∗

)
,

with the field B near the ν = 1/2 value. An experimental
study of the decay of this correlation function is a way
to measure Lcfϕ : the characteristic magnetic field of the

decay is B∗ ∼
(
Lcfϕ
)−2

Φ0. The decay of this correlator
as a function of density

〈ρD(n)ρD(n+ δn)〉 − 〈ρD(n)〉〈ρD(n+ δn)〉 = F2

(
δn

n∗

)
.

also yields Lcfϕ : the characteristic density change n∗ at
which it decays is expected to correspond to half of an
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electron in a phase coherent region, i.e. n∗ =
(
Lcfϕ
)−2

/2.
This statement holds as long as the composite fermion
cyclotron radius is much larger than its mean free path,
i.e., for |ν − 1/2| < (2gcf )−1.

The ratio of the above characteristic field B∗ to the
characteristic density n∗ yields two flux quanta

B∗

n∗
' 2Φ0. (71)

This should be contrasted to the zero field case, where

B∗ → Φ0

L2
ϕ

, n∗ → kF `

L2
ϕ

⇒ B∗

n∗
' Φ0

g
.

At B = 0 the electrons do not carry any attached flux.
Therefore the characteristic density n∗ corresponds to
a change in the chemical potential of order τ−1ϕ . Con-
sequently, observation of the ratio (71) in a laboratory
experiment serves as a verification of the concept of the
flux attachment and the fact that charge carriers in the
system are indeed composite fermions.

In single-layer measurements of mesoscopic fluctua-
tions, the ratio (71) has been reported in Kvon et al.
(1997). In double-layer systems, mesoscopic fluctuations
of Coulomb drag were investigated in Price et al. (2010),
where it was shown, that the fluctuations of drag resis-
tivity obtained either by varying of the magnetic field
(with n = const) or by varying the carrier density (hold-
ing B constant) exhibit the same characteristic scale (or
a “period”), if plotted as a function of the filling fac-
tor ν = nh/eB, see Fig. 17. The similarity of the two
“periods” is equivalent to the ratio (71).

IV. DRAG IN GRAPHENE-BASED DOUBLE-LAYER
DEVICES

The physical picture of frictional drag outlined in the
preceding Sections is based on the following assumptions:
(i) each of the layers is in a Fermi-liquid state, which at
the very least means µ1(2) � T ; (ii) electron-electron in-
teraction does not contribute to the intralayer transport
scattering time; (iii) the interlayer Coulomb interaction
is assumed to be weak enough, α = e2/vF � 1, such that
ρD is determined by the lowest-order perturbation theory
(Flensberg and Hu, 1994; Flensberg et al., 1995; Jauho
and Smith, 1993; Kamenev and Oreg, 1995; Zheng and
MacDonald, 1993) leading to Eq. (15). Most of the exper-
iments in semiconductor devices (Eisenstein, 1992; Rojo,
1999) were performed on samples with high carrier den-
sity, where µ1(2) � T [with the notable exception of Pil-
larisetty et al. (2002)].

Lifting one or more of the above assumptions leads
to significant changes in the drag effect. Recently drag
measurements were performed in a system of two parallel
graphene sheets (Gorbachev et al., 2012; Kim et al., 2011;
Kim and Tutuc, 2012; Titov et al., 2013a). This system

FIG. 18 (Color online) Summary of the parameter regimes
and the resulting drag coefficient in graphene for identi-
cal layers, µ� min(T/α, v/d), and uncorrelated disorder.
Bottom row (below the curve 2, τ−1 � α2T 2/µ): solutions
to the quantum kinetic equation, see Sec. IV.B. Curve
1 (τ−1 = α2µ2/T ) separates the two regimes in Eq. (104).
Middle row (α2T � τ−1 � T ): the region where the QKE
approach overlaps with the perturbation theory (Narozhny

et al., 2012). The third-order contribution ρ
(3)
D = O(α3) yield-

ing nonzero drag at µ = 0 is shown in red. Upper row

(τ−1 � T ): the diffusive regime, where ρ
(3)
D saturates for

τ−1 � T/α2). [Reproduced from Schütt et al. (2013).]

offers much greater flexibility compared to prior experi-
ments in semiconductor heterostructures. The graphene-
based system allows one to scan a wide range of chemi-
cal potentials (by electrostatically controlling carrier den-
sity) from the Fermi-liquid regime to the charge neutral-
ity (or Dirac) point µi = 0. Moreover, using hexagonal
boron nitride as a substrate (Ponomarenko et al., 2011;
Titov et al., 2013a), one can decrease disorder strength in
the system and reach the regime, where transport proper-
ties of the two layers are dominated by electron-electron
interaction, τ � τee. In addition, modern technology al-
lows for a controlled growth of boron nitride yielding de-
vices with a relatively wide range of the interlayer separa-
tions, which can be as low as d = 1nm (corresponding to
only three atomic layers!). While the experiments (Gor-
bachev et al., 2012; Kim et al., 2011; Kim and Tutuc,
2012; Titov et al., 2013a) were performed at relatively low
temperatures T < vg/d (vg is the quasiparticle velocity in
graphene), the range of temperatures available for these
measurements (typically, 4− 240K) is much wider than
in earlier studies. In a parallel development, Coulomb
drag measurements in graphene double ribbon structures
were reported in Chen and Appenzeller (2013).

In graphene one can reach parameter regimes, which
were inaccessible in semiconductor samples, see Fig. 18:
(i) near charge neutrality, the chemical potential may be-
come smaller then temperature, µ1(2) � T ; the electronic
system becomes nondegenerate; (ii) low-energy excita-
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tions in graphene are characterized by the linear Dirac-
like dispersion; there is no Galilean invariance in the sys-
tem and transport properties are strongly affected by
electron-electron interaction (Katsnelson, 2012; Schütt
et al., 2011). Moreover, electrons interact by means of
3D nonrelativistic Coulomb interaction, which breaks the
Lorenz invariance of the Dirac Hamiltonian.

Nondegenerate systems were considered in thee early
work on frictional drag (Boiko and Sirenko, 1988; Ja-
coboni and Price, 1988; Pogrebinskii, 1977; Price, 1983)
in the context of semiconductors, where elementary ex-
citations are typically modeled by quasiparticles with
parabolic dispersion. In that case, electron-electron in-
teraction plays a subleading role in single-layer transport
(due to Galilean invariance). In contrast, in ultra-clean
graphene near the Dirac point single-layer transport is
dominated by electron-electron interaction (Narozhny
et al., 2012; Schütt et al., 2011).

The low-temperature degenerate regime T � µ can be
achieved by, e. g., electrostatically tuning the carrier den-
sity away form charge neutrality. In this case the system
is expected to exhibit the same qualitative behavior as
the semiconductor devices. Indeed, in ballistic samples
and under the additional assumption of the small screen-
ing length κd� 1, one recovers (Narozhny et al., 2012;
Tse et al., 2007) the standard expression for the drag
resistivity (21), albeit with an extra factor N = 4 reflect-
ing higher degeneracy of the single-particle spectrum in
graphene. However, this regime might be outside of the
experimentally accessible parameter range of drag mea-
surements in graphene-based samples (Gorbachev et al.,
2012; Kim et al., 2011; Kim and Tutuc, 2012; Titov et al.,
2013a).

For weaker doping, the assumption of the small screen-
ing length is invalid and the standard result (21) has
to be modified (Narozhny et al., 2012). A perturbative
treatment can still be developed as long as the transport
properties of both layers are dominated by disorder (i.e.,
τee � τ). If electron-electron interaction is weak enough

α2Tτ min(1, T/µi)� 1, (72)

then the drag conductivity is given by the standard ex-
pression (25). Close to the Dirac point (µi � T ), this
yields ρD ∝ µ1µ2. At intermediate densities (µ ∼ T ), the
drag coefficient reaches a maximum and then decays to-

wards the asymptotic limit (21). This decay is character-
ized by a long crossover from the logarithmic behavior at
µi > T to the standard result (21) that is only achieved
for small screening lengths, κd� 1. As a result, the den-
sity dependence of ρD(µi & vg/d) cannot be described by
a power law. Partially due to this fact, several conflicting
results for ρD have been reported in literature (Amorim
and Peres, 2012; Carrega et al., 2012; Hwang et al., 2011;
Katsnelson, 2011; Lux and Fritz, 2012; Peres et al., 2011;
Song and Levitov, 2012, 2013; Tse et al., 2007).
A. Perturbative regime in ballistic samples

The perturbation theory is valid when transport prop-
erties of the sample are dominated by potential disorder,
such that τ � τee, see Eq. (72). In ballistic samples the
mean-free path is large compared to the interlayer sep-
aration `� d. For experimentally relevant temperature
range T < vg/d, the latter condition is compatible with
the more standard condition for ballistic transport in dis-
ordered systems Tτ � 1. The resulting parameter range
occupies the middle row of the “phase diagram” shown
in Fig. 18 between the line Tτ ' 1 and curve 2.

Perturbative calculations in the ballistic regime can be
performed using either the diagrammatic (see Fig. 2), or
kinetic-equation approach (see Sec. II.B). In both cases,
one arrives at the expression similar to (15), where the
nonlinear susceptibility and screened interlayer interac-
tion (and hence the polarization operator) have to be
specified for Dirac fermions in graphene.

1. Nonlinear susceptibility in graphene

In contrast to the theory reviewed in Sec. II, here we
are interested in a wide range of chemical potentials in-
cluding the Dirac point µ = 0. The nonlinear susceptibil-
ity and polarization operator in graphene for arbitrary µ
and T were derived in Narozhny et al. (2012). Assuming
the long, energy-independent impurity scattering time τ
and neglecting intralayer interaction, the nonlinear sus-
ceptibility has the form

Γ(ω, q) = −2
eτq

π
g
( ω

2T
,
vgq

2T
;
µ

T

)
, (73)

where [with W = ω/(2T ), Q = vgq/(2T ), and x = µ/T ]

g (W,Q;x) =



√
W 2

Q2 − 1

1∫
0

dz
z
√

1− z2
z2 −W 2/Q2

I(z;W,Q;x), |W | > Q

−
√

1− W 2

Q2

∞∫
1

dz
z
√
z2 − 1

z2 −W 2/Q2
I(z;W,Q;x), |W | < Q

. (74)
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I(z;W,Q;x) = tanh
zQ+W + x

2
− tanh

zQ+W − x
2

+ tanh
zQ−W − x

2
− tanh

zQ−W + x

2
. (75)

Under the same assumptions, the polarization operator is given by

ΠR =
q

4π2vg

1∫
0

1∫
0

dz1dz2

z1
√

(1− z21)(1− z22)

[
(z−21 − 1)

(
Q

z2Q+W + iη
+

Q

z2Q−W − iη

)
J1(z−11 , z2, x) (76a)

+ (1− z22)

(
Q

z−11 Q+W + iη
+

Q

z−11 Q−W − iη

)
J2(z−11 , z2, x)

]
,

where

J1(2)(z1, z2, x) = tanh
(z1 + z2)Q+ x

2
+ tanh

(z1 + z2)Q− x
2

∓ tanh
(z1 − z2)Q+ x

2
∓ tanh

(z1 − z2)Q− x
2

. (76b)

The perturbative calculation amounts to using the polar-
ization operator (76) to determine the effective interlayer
interaction (7) and then evaluating the drag conductivity
[cf. Eqs. (15) and (25)] (Tse et al., 2007)

σαβD =
1

16πT

∑
q

∫
dω
|DR12|2

sinh2 ω
2T

Γβ1 (ω, q)Γα2 (ω, q), (77)

using the nonlinear susceptibility (73). The drag resis-
tivity is then given by Eq. (13). For arbitrary µ and T
this calculation has to be performed numerically (Lux
and Fritz, 2012; Peres et al., 2011). At the same time, all
qualitative features of the drag effect can be elucidated
by using simple limiting values.

The nonlinear susceptibility (73) decays exponentially
for q � max(µ, T ). In the vicinity of the Dirac point,
T � µ, the integral that determines the function
g(W,Q, x) cannot be evaluated in terms of elementary
functions. It can be shown, however, that in this case the
nonlinear susceptibility is proportional to µ/T (Narozhny
et al., 2012)

g(x� 1) ∝ µ/T, (78)

which could be expected since drag is supposed to vanish
– or, more precisely, to change sign – at the Dirac point.

In the degenerate limit T � µ, the dimensionless func-
tion g(W,Q, x) may be approximated by

g(x� 1, |W | < Q) ≈ 4W

Q

√
1− W 2

Q2

sinhx

coshQ+ coshx
.

(79)
Furthermore, for µ� vF q � ω ∼ T (or Q�W ) the
nonlinear susceptibility becomes similar to the standard
(Kamenev and Oreg, 1995) “Fermi-liquid” expression for
the ballistic regime (17)

g(x� 1, |W | � Q) ≈ 4ω/(vgq), (80)

where the extra factor of 4 corresponds to extra degen-
eracy of Dirac fermions in graphene (Amorim and Peres,
2012; Tse et al., 2007).

The relation (18) between Γ and ImΠ is not satisfied in
graphene. This follows from a direct comparison between
their respective integral representations. In particular,
the nonlinear susceptibility (73) vanishes at the Dirac
point due to exact electron-hole symmetry, Γ(µ = 0) = 0
(Tse et al., 2007), while the polarization operator (76)
remains finite, ImΠ(µ = 0) 6= 0 (Schütt et al., 2011).

Similarly to the usual Lindhard function (Giuliani and
Vignale, 2005; Lindhard, 1954), the polarization operator
in doped graphene has the simple static limit

ΠR(ω = T = 0) = 2kF /(πvg). (81)

At the Dirac point, the result is somewhat different

ΠR(µ = ω = 0) =

{
q/(4vg), T � vgq,

4T ln 2/(πv2g), T � vgq.
(82)

2. Lowest-order perturbation theory

We now use the above approximations to find the limit-
ing expressions for the drag resistivity in the perturbative
regime (Narozhny et al., 2012).

In the simplest limit Nαµ� T , the perturbative ap-
proach is justified automatically. In this case, the single-
layer conductivity is determined by weak impurity scat-
tering and has the form

σ0 = e2Tτ h0 (µ/T ) , (83a)

where

h0(x) =
2

π

∞∫
−∞

dz|z|
cosh2

(
z + x

2

) =
2

π

{
x, x� 1,

2 ln 2, x� 1.
(83b)

In this limit screening is ineffective and for µi, T � vg/d
the interlayer spacing drops out of the problem. Then
we may use the “bare” Coulomb potential (5), while the
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frequency and momentum integration in Eq. (77) are de-
termined by the nonlinear susceptibility (73).

Close to the double Dirac point, µi � T , the nonlinear
susceptibility can be approximated by Eq. (78), while the
remaining integration is dominated by frequencies and
momenta of order temperature, ω, vgq ∼ T , yielding a
dimensionless coefficient. The resulting drag resistivity
is given by

ρD(µi � T ) ≈ 1.41α2(~/e2)(µ1µ2/T
2). (84a)

If only one of the layers is tuned close to the Dirac
point, µ1 � T � µ2, the drag conductivity (77) is in-
dependent of the properties of the second layer, as the
integration in Eq. (77) is still determined by the region
ω, vgq ∼ T . The single-layer conductivity in the second
layer is still determined by µ2, see Eq. (83). As a result,

ρD(µ1 � T � µ2) ≈ 5.8α2(~/e2)(µ1/µ2). (84b)

In the opposite limit µi � T , the nonlinear susceptibil-
ity is given by Eq. (79). Now the momentum integral in
Eq. (77) is logarithmic and is dominated by large values
of momentum Q�W . The ratio of the hyperbolic func-
tions in Eq. (79) is similar to the step function: it’s equal
to unity for Q� x and vanishes at larger values of mo-
mentum Q� x. Therefore x effectively acts as the upper
cut-off and the momentum integral can be approximated
by a logarithm

∞∫
W

dQ

Q

sinh2 x

(coshQ+ coshx)
2 ≈ ln

x

W
. (84c)

Consequently the drag coefficient is similar to the stan-
dard results of Sec. II

ρD(µ2 > µ1 � T ) ≈ α2 ~
e2

8π2

3

T 2

µ1µ2
ln
µ1

T
. (84d)

This is to be expected, since at low temperatures T � µi
the phase-space argument yielding the T 2 dependence is
justified and the electron-hole asymmetry determines the
dependence on the chemical potential. The logarithmic
factor is beyond such qualitative estimates (the result
(84d) was calculated with logarithmic accuracy).

a. Static screening for vanishing interaction strength

For slightly stronger interaction (i.e. smaller dielectric
permittivity of the insulating substrate) or slightly larger
interlayer spacing the condition Nαµi � T, µi � vg/d
breaks down and one needs to take into account static
screening. Static screening corresponds to the approxi-
mation (81) to the polarization operator. If the interac-
tion strength is still small α → 0, then the interaction
can be described by

DR12 = −
2παv2g

vgq + 2Nαµ
e−qd, (85)

FIG. 19 (Color online) Sketch of the drag conductivity (in
the units of α2e2τ2; identical layers) as a function of the
chemical potential illustrating the results (86). The blue line
shows the quadratic dependence (84a) in the vicinity of the
Dirac point. If T � Nαvg/d, then the region (iia) should
be replaced by (ii): the logarithmic dependence T 2 ln(1/α)
should be replaced by T 2 ln[vg/(Td)], and the limits vg/d and
T/(Nα) should be exchanged. [Reproduced from Narozhny
et al. (2012).]

where N = 4 is due to spin and valley degeneracy. The
additional constant in the denominator affects the loga-
rithmic integral (84c). As the chemical potential is be-
ing increased away from the Dirac point, the following
regimes may be gradually achieved [here we discuss these
regimes for the case of identical layers; generalization to
the case of two inequivalent layers is straightforward]:

(i) Nαµ� T � µ� vg/d. This regime is identical to
the above arguments leading to Eq. (84d).

(ii) Nαµ� T � vg/d� µ. If the chemical potential
is increased beyond the inverse interlayer spacing, then
the momentum integration in Eq. (84c) is cut off by vg/d
instead of µ. The logarithmic behavior of the drag con-
ductivity will be modified and σD no longer depends on
the chemical potential

σD ∼ α2e2T 2τ2 ln[vg/(Td)]. (86a)

(iia) T � Nαµ� µ� vg/d. In this case one finds in-
stead of Eq. (86a)

σD ∼ α2e2T 2τ2 ln[1/(Nα)]. (86b)

(iii) T � Nαµ� vg/d� µ. Increasing the chemical
potential further leads to the regime where the static
screening can no longer be neglected. Now the lower in-
tegration limit in Eq. (84c) is effectively given by the
inverse screening length rather than the frequency. The
upper limit is still determined by the interlayer spacing.
Therefore the drag conductivity again depends logarith-
mically on the chemical potential (Katsnelson, 2011)

σD ∼ α2e2T 2τ2 ln[vg/(Nαµd)], (86c)

but now this is a decreasing function, indicating the exis-
tence of the absolute maximum of the drag conductivity
as a function of the chemical potential.
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(iv) T � vg/d� Nαµ� µ. Finally, if the chemical
potential is so large that the screening length becomes
smaller than the interlayer spacing the momentum inte-
gral in Eq. (84c) is no longer logarithmic. As the inte-
gration is now dominated by momenta large compared to
T , the nonlinear susceptibility may be approximated by
Eq. (80), leading to the standard Fermi-liquid result

σD =
ζ(3)

4

e2τ2T 2

(kF d)2(κd)2
, κ = 4αkF , (86d)

which differs from that of Kamenev and Oreg (1995) [see
Eq. (21)] only by the factor reflecting valley degeneracy
in graphene (Amorim and Peres, 2012; Katsnelson, 2011;
Tse et al., 2007). The above results are illustrated in
Fig 19.

b. Static screening for intermediate interaction strength

The results (84) and (86) rely on the interaction weak-
ness. For stronger interaction, Nα > 1, (i) the approxi-

mation (85) might be unjustified and the full expression
(7) for the interaction propagator should be used; (ii)
the four regimes (86) may not exist, since it might hap-
pen that T/(Nα)� T < vg/(Nαd)� vg/d. In this case,
perturbative analysis can still be justified in the degener-
ate regime, µ� T , where there are two distinct regimes,
(a) µ� vg/d, and (b) µ� vg/d (Narozhny et al., 2012);
the latter regime is usually identified with the Fermi-
liquid result (86d). As the single-layer conductivity is
still large and dominated by disorder, the condition (72)
can be somewhat relaxed:

τee � τ ⇒ τ−1� α2T 2/µ ⇒ α2Tτ � µ/T. (87)

Proceeding under the assumptions of static screening and
the ballistic regime (i.e., the dominant contribution to the
effect comes from large momenta vgq > ω), the result of
momentum integration is determined by the upper limit
and can be assumed independent of ω. The frequency
and momentum integrals factorize and neglecting W/Q
under the square root in Eq. (79) one finds

σD = α2e2T 2τ2f0

(
µ

T
;α;

Td

vg

)
, f0(x;α;λ) ≈ 32

3

∞∫
1

dQQ3e−4λQ

[(Q+ α̃(x))2 − α̃(x)2e−4λQ]
2

sinh2 x

(coshQ+ coshx)
2 , (88)

where

α̃(x) = Nαx/2. (89)

The results for weaker interaction, Eqs. (86), can be re-
covered from Eq. (88) by neglecting terms proportional
to α̃2 in the denominator [which corresponds to approx-
imating the interlayer interaction (7) by Eq. (85)]. In
the limit µ� vg/d, the function f0 depends on a single
parameter

f0(xλ� 1) ≈ f̃0(4λα̃), (90a)

parameter region drag coefficient

µ� T ρD ∼ nT−2

T � µ� vg/d ρD ∼ T 2n−1 ln(αNn1/2d/vg)

µ� vg/d ρD = ρFLD ∼ T 2n−3d−4

TABLE I Asymptotic expressions for the drag coefficient to
the leading order of perturbation theory assuming “realistic”
interaction strength αN & 1, identical layers n1 = n2 = n,
and the experimentally relevant situation T < vg/d. In the
opposite regime T � vg/d all results for ρD should be divided
by Td/vg (Lux and Fritz, 2012; Narozhny et al., 2012).

where

f̃0(y) =
32

3

∞∫
0

dZZ3e−Z

[(Z + y)2 − y2e−Z ]
2 . (90b)

The function (90b) describes the crossover between the
regimes (iii) and (iv) of Eqs. (86) (see Fig. 19). This can
be seen by evaluating the integral in the two limits (here
γ0 ≈ 0.577216 is the Euler’s constant)

f̃0(y � 1) ≈ −32/3 (ln y + γ0 + 11/6) , (91a)

f̃0(y � 1) ≈ 64ζ(3)y−4. (91b)

Numerically, this crossover spans a large interval of values
of the chemical potential such that the Fermi-liquid result
(86d) is practically unattainable in graphene-based drag
measurements (Tutuc et al., 2009), see Fig. 20.

In experiment one typically measures carrier density
rather than the chemical potential (Gorbachev et al.,
2012; Kim et al., 2011; Kim and Tutuc, 2012; Titov et al.,
2013a). In graphene, the electron density is given by

n =

∞∫
−∞

dε|ε|
πv2g

[
tanh

ε

2T
− tanh

ε− µ
2T

]
. (92a)
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Using the asymptotic expressions

n =
1

πv2g

{
µ2, µ� T,

(4 ln 2)µT, µ� T,
(92b)

one can obtain the qualitative dependence of ρD on n,
see Table I.

The strongly doped, Fermi-liquid regime has attracted
the most attention in literature. Most authors report the
standard ρD ∼ T 2n−3d−4 behavior (Amorim and Peres,
2012; Carrega et al., 2012; Hwang et al., 2011; Katsnel-
son, 2011; Narozhny et al., 2012; Tse et al., 2007) assum-
ing the energy-independent impurity scattering time.

3. Energy-dependent scattering time

In graphene, the impurity scattering time strongly de-
pends on the type of disorder and on energy (Katsnel-
son, 2012). In particular, for Coulomb scatterers (Ando,
2006; Cheianov and Fal’ko, 2006; Nomura and MacDon-
ald, 2006, 2007) or strong short-range impurities (Ostro-
vsky et al., 2006)

τ(ε) = τ20 |ε|. (93a)

For weak short-ranged disorder (Shon and Ando, 1998)

τ(ε) = γ/|ε|. (93b)

Moreover, quenched disorder in graphene experiences
logarithmic renormalization (Aleiner and Efetov, 2006).

Drag in the presence of Coulomb impurities was first
considered in Hwang et al. (2011) and Peres et al. (2011).
Both papers reported a stronger dependence of the drag
coefficient on the carrier density and interlayer separa-
tion, ρD ∼ T 2n−4d−6. This result was later disputed
in Amorim et al. (2012); Carrega et al. (2012); and
Narozhny et al. (2012). These authors showed that the
energy (or momentum) dependence of τ is qualitatively
irrelevant for the asymptotic behavior of ρD. In the de-
generate limit, microscopic calculations lead to the same
results with τ(µ) substituted in place of τ . Close to the
neutrality point, the drag coefficient acquires an addi-
tional logarithmic factor

ρD(µi � T ) ∼ α2(~/e2)(µ1µ2/T
2) lnTτ(T ). (94)

4. Plasmon contribution

The dynamically screened interaction propagator con-
tains plasmon poles, that may (see Section II.B) af-
fect the resulting drag resistivity. Theoretically, plas-
mons were studied in graphene monolayers (at T = 0)
in Hwang and Das Sarma (2007); Schütt et al. (2011);

FIG. 20 (Color online) Results of the numerical evaluation of
the drag coefficient in the case of identical layers. The squares
represent the calculation of Eq. (25) with the only approxima-
tion that the polarization operator in the screened interlayer
interaction (7) was evaluated in the absence of disorder. The
red line corresponds to the same calculation, with the po-
larization operator replaced by Eq. (81). The blue line was
calculated with the approximate expression (90b), valid for
µ� vg/d. Left panel: α = 0.01, Td/vg = 0.1. Right panel:
α = 0.3 and Td/vg = 0.2; log-log scale. The straight green
line represents the Fermi-liquid result (86d). [Reproduced
from Narozhny et al. (2012).]

and Wunsch et al. (2006) and in double-layer graphene
systems in Badalyan and Peeters (2012); Profumo et al.
(2012); and Stauber and Gómez-Santos (2012). Renor-
malization of the plasmon spectrum due to electron-
electron interaction was considered in Abedinpour et al.
(2011). Experimentally, plasmons were observed in
graphene on SiO2 substrate (Fei et al., 2011, 2012),
graphene-insulator stacks (Yan et al., 2012a), and in
graphene micro-ribbon arrays (Ju et al., 2011). Bound
states of plasmons with charge carriers, the so-called
“plasmarons” were observed in Bostwick et al. (2010) and
Walter et al. (2011). Plasmons subjected to high mag-
netic field were studied in Yan et al. (2012b). For reviews
of graphene plasmonics see Grigorenko et al. (2012) and
Luo et al. (2013). More recently, plasmonic excitations
in Coulomb coupled N -layer graphene structures were
studied in Zhu et al. (2013).

Within the above perturbative approach, i.e., Eq. (72),
and for low enough temperatures, µ, T � vg/d, the
plasmon contribution to drag is subleading (Narozhny
et al., 2012). The plasmon pole appears in the region
ω > vgq. Similarly to the situation in semiconductor de-
vices (Sec. II.B), double-layer graphene systems admit an
acoustic (ω ∼ q) and an optical (ω ∼ √q) plasmon modes
(Das Sarma and Madhukar, 1981; Principi et al., 2012).
In the case where the plasmon decay rate is small (as
determined be either weak Coulomb interaction or weak
disorder), one can use the δ-function approximation to
the interlayer interaction propagator (Flensberg and Hu,
1995). The corresponding contribution to the drag con-
ductivity contains a small factor g2|D|2 ∼ α3 for small
momenta vgq ∼ αT (or α4 for vgq ∼ T ). If the energy
dependence of the scattering time is taken into account,
the small parameter is α2Tτ , see Eq. (72).

The above conclusion is illustrated in Figs. 20 show-



32

ing a comparison between the full numerical evaluation
of the perturbative drag coefficient using Eqs. (7), (73),
(76), and (77) and the same calculation within the ap-
proximation of static screening (85). Numerical modeling
of experimental samples, see Figs. 21 and 22 below, in-
cludes the contribution was automatically by using the
dynamically screened interaction propagator (7).

At the same time, quantitative description of ex-
periments, especially in devices with wider interlayer
spacing, might be significantly affected by such aspects
as inhomogeneous dielectric background (Badalyan and
Peeters, 2012; Carrega et al., 2012) and hybridization be-
tween phonon and plasmon modes (Amorim et al., 2012).
Plasmon-mediated drag between graphene wave-guides
was suggested in Shylau and Jauho (2014).

5. Drag between massless and massive fermions

Graphene-based double-layer devices can be used to
observe Coulomb drag between massless and massive par-
ticles by coupling Dirac fermions in monolayer graphene
to quasiparticles with parabolic dispersion in either bi-
layer graphene (Scharf and Matos-Abiague, 2012) or a
usual 2DEG (Principi et al., 2012; Scharf and Matos-
Abiague, 2012). Experimental realizations were reported
in Fisichella et al. (2014) and Gamucci et al. (2014).

Theoretical analysis of Principi et al. (2012) and Scharf
and Matos-Abiague (2012) is based on the standard ex-
pression (77). Both works focus on the low-temperature,
degenerate regime T � µ. As expected, in the case of
strong screening κd� 1, both works reproduce the stan-
dard result (21). For κd� 1, the resulting drag coeffi-
cient is still quadratic in temperature, but contains also
a logarithmic factor reminiscent of Eqs. (86). Principi
et al. (2012) report a d-independent drag in the spe-
cial case kg = k2D (which implies a density mismatch
between the layers due to the difference in the degen-
eracies of single-particle states). In the low-density limit
n→ 0 this yields ρD ∝ n−1, similarly to the results of
Carrega et al. (2012), see also Table I. On the other
hand, Scharf and Matos-Abiague (2012) report ρD ∝ n−2
in the limit d→ 0 and for ng = 2n2D. Such discrepancies
in the asymptotic behavior of ρD may appear due to the
complicated structure of the nonlinear susceptibility in
graphene, see Eqs. (86) and Fig. 19.

The predicted T 2 dependence is observed in experi-
ment (Gamucci et al., 2014) in the 10K< T < 40K range,
although with the smaller magnitude. At higher temper-
atures, a violation of Onsager reciprocity was observed.
This was attributed to the interlayer current. Most inter-
estingly, at lower temperatures T < 10K, the measured
drag shows a marked upturn that may indicate a phase
transition at Tc ∼ 10− 100mK, see Sec. VII.B.

The system of coupled Dirac and Schrödinger quasipar-

FIG. 21 (Color online) Results of the numerical evalua-
tion (lines) of the drag coefficient and comparison with the
data (symbols) of Kim et al. (2011). The interlayer spacing
(d = 14nm) and dielectric constants of the insulating mate-
rial were chosen to represent the experimental device. Inset:
the relation of the carrier densities and gate voltage, obtained
from the electrostatic model of the sample. [Reproduced from
Peres et al. (2011).]

ticles was also considered in Balram et al. (2014), where
it was found that interspecies interaction plays a signifi-
cant role in determining collective (plasmon) modes.

6. Numerical evaluation of the drag coefficient

The above discussion demonstrates that already at the
perturbative level, the drag conductivity (77) exhibits
multiple asymptotic dependencies. Consequently, virtu-
ally every paper on the subject presents results of numer-
ical evaluation of Eq. (77). In contrast to the earlier work
on semiconductor devices (see Sec. II), most authors fo-
cus on the density (or chemical potential) dependence
rather than on the T -dependence. The overall shape
of ρD(n) curves is qualitatively the same in all calcula-
tions. At the Dirac point, drag vanishes, ρD(n = 0) = 0
(this conclusion does not agree with the experiments of
Gorbachev et al. (2012) and Titov et al. (2013a), see
below). Deep in the degenerate (or low-temperature)
regime, T � µ, κd� 1, the drag coefficient reaches the
standard decaying result (21). Therefore, for interme-
diate densities there has to be a maximum, roughly at
µ ∼ T . The corresponding shape is shown in Fig. 20.

Peres et al. (2011) presented detailed numerical cal-
culations aimed at describing the experimental findings
of Kim et al. (2011), see Fig. 21. This calculation in-
cluded electrostatic modeling of the device (which in-
cluded two insulators, SiO2 and Al2O3), dynamically
screened (within RPA) electron-electron interaction, and
the realistic model of Coulomb impurities. For doped
graphene layers, the results of the calculation show ex-
cellent agreement with the data.

Theoretical modeling of ultra-clean graphene double-
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FIG. 22 (Color online) Results of the numerical evaluation
(Titov et al., 2013b) of the drag coefficient (red line) and the
experimental data (green dots) (Ponomarenko, 2013) in the
case fo identical layers. The values of T = 240K and d are
taken from the experiment. The only fitting parameter is the
energy-independent impurity scattering time (once the value
of αg is chosen). The polarization operator was calculated
at T = 240K and in the presence of disorder (in the ballistic
regime).

layers (using boron nitride as a substrate as well as insu-
lating spacer) based the theory of Narozhny et al. (2012)
was performed by Titov et al. (2013b), see Fig. 22. In
this calculation, the polarization operator was calculated
at the experimental temperature in the presence of dis-
order, in contrast to the T = 0, free-electron expression
(76). The use of full, dynamically screened Coulomb in-
teraction ensured that all plasmon-related features were
taken into account automatically. Choosing realistic val-
ues (Kozikov et al., 2010; Peres et al., 2011) for the effec-
tive coupling constant, the only fitting parameter in this
calculation was the impurity scattering time τ , which was
taken to be energy-independent similarly to the above
discussion. Such calculation was also able to reproduce
the data (Ponomarenko, 2013) in the doped regime.

The results shown in Figs. 21 and 22 confirm the ap-
plicability of the perturbative approach to Coulomb drag
in doped graphene. In contrast to similar calculations
aimed at semiconductor devices (see Sec. II), these the-
ories are able to reach quantitative agreement with the
experimental data with the minimum of fitting param-
eters. This implies that frictional drag in graphene is
dominated by Coulomb interaction, with phonons play-
ing only a subleading role. The latter conclusion can
be expected, given that electrons in graphene are phys-
ically confined to move in a two-dimensional plane and
the rigidity of the crystal lattice (Katsnelson, 2012).

B. Hydrodynamic regime

The perturbation theory outlined in Sec. IV.A can be
justified either in the case of weak interaction α� 1 or
in the degenerate regime µ� T , see Eq. (72). At the
same time, the applicability condition (72) involves the
impurity scattering time τ : the perturbation theory fails
if the system is “too clean”, or in other words, if elec-
tronic transport is dominated not by disorder, but rather
by electron-electron interaction. The latter affects trans-
port properties of graphene due to the absence of Galilean
invariance: the velocity of Dirac fermions v = v2gp/ε is
independent of the absolute value of the momentum and
therefore total momentum conservation does not prevent
velocity (or current) relaxation. As a result, electron-
electron scattering is characterized by its own transport
relaxation time, which may become smaller than the scat-
tering time due to potential disorder, τee � τ .

“Ultra-clean” graphene double-layers were discussed in
Narozhny et al. (2015); Schütt et al. (2013); and Titov
et al. (2013a) within the framework of the quantum ki-
netic equation. In principle, solving the kinetic equation
in a strongly interacting system is a formidable problem,
that cannot be solved in general terms using presently
available analytic methods. However in graphene, one
can take advantage of the kinematic peculiarity specific
to Dirac fermions. Indeed, scattering of particles with
almost collinear momenta is enhanced since the momen-
tum and energy conservation laws coincide. This re-
stricts kinematics of the Dirac fermions (Fritz et al.,
2008; Kashuba, 2008; Schütt et al., 2011) and leads to
the singularity in the collision integral. This singular-
ity leads to the fast thermalization of particles within
a given direction and allows one to derive macroscopic
- or hydrodynamic - equations that generalize Eq. (2)
for interacting Dirac fermions. In monolayer graphene,
this approach was discussed in Foster and Aleiner (2009);
Fritz et al. (2008); Kashuba (2008); Müller and Sachdev
(2008); and Svintsov et al. (2012). An alternative macro-
scopic approach to Coulomb drag in graphene14 has been
suggested in Song et al. (2013); Song and Levitov (2012,
2013).

1. Collinear scattering singularity

Singular behavior of the collision integrals in the case of
collinear scattering of the Dirac fermions (Arnold et al.,
2000; Fritz et al., 2008; Kashuba, 2008; Müller et al.,

14 The theory of Song et al. (2013); Song and Levitov (2012, 2013)
relies on correlations of the disorder potential in the two layers,
see Sec. IV.F.
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2009; Schütt et al., 2013) is central to the hydrodynamic
approach to transport in graphene.

The general form of the kinetic equation in layer i is
given by Eq. (9) with the addition of the intralayer col-
lision integral. If the system is weakly perturbed from

equilibrium, then the distribution function can be writ-
ten in the form (10). Weak deviations from equilibrium
are associated with the smallness of the nonequilibrium
correction h, allowing one to linearize the collision inte-
grals (Lifshitz and Pitaevskii, 1981). The linearized form
of the collision integrals is given by

Iij =
∑

1,1′,2′

w12,1′2′f
(0)
j,1 f

(0)
i,2

[
1− f (0)j,1′

] [
1− f (0)i,2′

]
[hj,1′ + hi,2′ − hj,1 − hi,2] , (95a)

where the function

w1,2;1′,2′ =
∣∣〈1, 2|U |1′, 2′〉∣∣2(2π)3δ(ε1 + ε2 − ε1′ − ε2′) δ(k1 + k2 − k′1 − k

′
2), (95b)

determines the probability of scattering from states 1′, 2′

into states 1, 2 (within the Fermi Golden Rule approx-
imation). Here 〈1, 2|U |1′, 2′〉 is the interaction matrix
element. The indices i, j = 1, 2 denote the two layers15.

In graphene, the interaction matrix elements are most
conveniently expressed in the basis of the eigenstates of
the Dirac Hamiltonian |ε, ev〉 labeled by their energy ε
and the unit vector ev = v/vg pointing in the direction
of velocity (for a given spin and valley projection):

∣∣〈1, 2|U |1′, 2′〉∣∣2 = |U (q)|2 1 + e
(1)
v e

(1′)
v

2

1 + e
(2)
v e

(2′)
v

2
.

(96)
Here q = k1 − k′1 is the transferred momentum and the
two fractions are the “Dirac factors” (Katsnelson, 2012).
Now one can separate quantities related to the initial and
final states in the function w12,1′2′ by using the identities

δ(ε1 + ε2 − ε′1 − ε′2) =

∫
dωδ(ε1 − ε′1 + ω)δ(ε2 − ε′2 − ω),

δ(k1+k2−k′1−k
′
2) =

∫
d2q δ(k1−k′1+q)δ(k2−k′2−q).

The δ-functions yield ε′1 = vg|k1 + q| and hence allow one
to sum over the states 1′ and 2′ in the collision integral
(95). Each of these sums result in a diverging factor16.∑

1′

∝ 1√
v2gq

2 − ω2
. (97)

15 In the perturbative approach of Sec. II.B, the kinetic equation
(9) contained only the interlayer collision integral. Therefore,
one could associate the states 1 and 2 with the active and passive
layers and avoid extra layer indices.

16 In Sec. IV.A, the nonlinear susceptibility (73) did not exhibit
this divergence due to an accidental cancellation that is specific
to the particular case of energy-independent impurity scattering
time. In a more general situation the cancellation does not occur
and as a result the rate τ−1

D contains an extra logarithmic factor,
see Eq. (94).

One can see that the divergence corresponds to collinear
scattering by examining the angle ϕk1q at the light cone:

cosϕk1q(ω = vgq) = 1 ⇒ ϕk1q = 0 (or π).

Hence, the argument of one of the above δ-functions van-
ishes: ε′1 = ε1 + ω. Similar conclusion follows for the mo-
mentum k2. Thus, all momenta are collinear.

Physically, the divergence (97) represents the fact that
for the linear spectrum the energy and momentum con-
servation laws coincide. Consequently, any relaxation
rate obtained by integrating the collision integral (95)
over the state 2 will be logarithmically divergent. In
order to regularize this divergence, one has to go be-
yond the Golden-Rule approximation and take into ac-
count renormalization of the spectrum (Abrikosov and
Beneslavskii, 1971; González et al., 1999; Son, 2007).
This leads (Arnold et al., 2000; Fritz et al., 2008) to the
appearance of a large factor | ln(α)| � 1 in generic re-
laxation rates in graphene. In disordered graphene, this
singularity is also cut off by disorder-induced broadening
of the momentum-conservation delta-function (Narozhny
et al., 2012).

2. Macroscopic linear-response theory in graphene

The collinear scattering singularity (97) allows for an
approximate, yet nonperturbative solution of the kinetic
equation in graphene (Fritz et al., 2008; Kashuba, 2008;
Narozhny et al., 2015; Schütt et al., 2013). The idea
is to find zero modes of the collision integral and build
macroscopic equations for the corresponding currents.

The standard perturbative description of Coulomb
drag is based on the energy-independent approximation
for the nonequilibrium distribution function (10). This
constant solution of the kinetic equation describes the
single zero mode of the intralayer collision integral corre-
sponding to conservation of the electric charge (or the
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number of particles). Macroscopic charge flow is de-
scribed by the electric current (12). Integrating the ki-
netic equation, one finds the macroscopic equation for j
equivalent to the Drude theory, see Eqs. (2). Such solu-
tion is justified by the condition (72), which means that
the collision integral in the kinetic equation is dominated
by disorder.

In contrast, in “ultra-clean” graphene the collision in-
tegral is dominated by Coulomb interaction. Using the
collinear scattering singularity (i.e., for | ln(α)| � 1), one
can neglect all but the zero modes of I [treated as an inte-
gral operator acting on hi(ε)]. In practice, this means re-
taining only those terms in the power series of the distri-
bution function hi which correspond to either zero modes
of the collision integral, or to its eigenmodes with nondi-
vergent eigenvalues. Fritz et al. (2008); Kashuba (2008);
and Schütt et al. (2013) have developed the following
two-mode approximation

hi =
(
a
(i)
0 + a

(i)
1 ε
)
v. (98)

The vectors ai can be expressed in terms of the two
macroscopic currents in graphene, the electric current
(12) and the energy current

Qi =
∑

εvδfi. (99)

The appearance of inequivalent currents is the essential
feature of graphene physics. In general, the collision inte-
gral has three nondecaying eigenmodes; hence Narozhny
et al. (2015) have used the three-mode approximation:

hi =
(
a
(i)
0 + a(i)

s sign(ε) + a
(i)
1 ε
)
v. (100)

The sign(ε) mode is described by the imbalance current
(Foster and Aleiner, 2009)

P i =
∑

sign(ε)vδfi. (101)

Integrating the kinetic equation with the help of either
of the above approximations for the nonequilibrium dis-
tribution function, one obtains macroscopic equations for
the currents j, Q, and P , that generalize the Ohm’s law
for graphene 17. Solutions of these equations yield linear
response transport coefficients. Note, that this approach
does not rely on the Kubo formula. In particular, the
drag coefficient can be obtained without the use of the
perturbative expressions (15) or (77).

The simplest macroscopic equation describes the en-
ergy current. In an infinite sample, where all quantities
are homogeneous, the equation reads (Schütt et al., 2013)

ev2gnE + (v2g/c) [j ×B] = Q/τ, (102)

17 The full three-mode equations are too cumbersome to reproduce
here, the interested reader is referred to Narozhny et al. (2015).

where n is the carrier density in graphene (92). The col-
lision integral does not contribute to Eq. (102) due to
energy conservation. In the limit µ� T , all currents are
equivalent, such that j(µ� T ) ≈ (e/µ)Q(µ� T ), and
Eq. (102) becomes equivalent to the Ohm’s law (26). In
this limit, the Galilean invariance is restored, all relax-
ation rates due to electron-electron interaction vanish,
and all three macroscopic equations become equivalent.

At the charge neutrality point n = 0, the equation
(102) yields (v2g/c) [j ×B] = Q/τ . This simple-looking
relation illustrates all the essential qualitative features of
linear response transport in graphene. Firstly, in the ab-
sence of disorder, τ →∞, the equation becomes sense-
less, at least when the system is subjected to external
magnetic field. Physically, this means that in the ab-
sence of disorder the assumption of the steady state in an
infinite system becomes invalid: under external bias, the
energy current increases indefinitely. Secondly, if the sys-
tem is stabilized by disorder, but B = 0, then one finds
Q = 0. Finally, if the system is subjected to external
magnetic field, the electric and energy currents are or-
thogonal, j ⊥ Q. This leads to appearance of classical,
positive magnetoresistance (Müller and Sachdev, 2008;
Narozhny et al., 2015)

δR(B;µ = 0) ∝ (v4gτ/c
2)(B2/T 3), (103)

as well as magnetodrag in graphene, see Sec. IV.D below.
These results are in sharp contrast with the standard
Drude theory, see Eqs. (3).

3. Coulomb drag in weakly disordered graphene.

Close to charge neutrality and in the presence of weak,
uncorrelated disorder α2Tτ � 1 (i.e. τ−1 � τ−1ee ), the
drag resistivity in the absence of magnetic field was found
in Schütt et al. (2013) and has the form

ρD(µi � T ) ≈ 2.87
h

e2
α2µ1µ2

µ2
1 + µ2

2 + 0.49T/(α2τ)
. (104)

As long as any (even infinitesimal) disorder is present, ρD
vanishes at the double Dirac point ρD(µ1 = µ2 = 0) = 0,
and grows sharply in its immediate vicinity, see Fig. 23. If
only one of the layers is tuned to the Dirac point (median
lines in Fig. 23), the drag resistivity always vanishes

ρD(µ1 = 0, µ2 6= 0) = ρD(µ1 6= 0, µ2 = 0) = 0.

If one varies the carrier density in one of the layers
through the Dirac point, then the drag resistivity changes
sign. In the color maps in Fig. 23 this is represented by
the color change between neighboring quadrants. The
same sign pattern of the drag resistivity (in zero magnetic
field) were observed in experiments of Gorbachev et al.
(2012); Kim et al. (2011); and Kim and Tutuc (2012).
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FIG. 23 (Color online) Leading-order drag coefficient in the
ballistic regime as a function of carrier densities (in units of
1011cm−2) for d = 9nm. Left: ρD at T = 250K; the upper
panel refers to ultra-clean graphene τ−1 = 0.5K; the lower left
panel shows the evolution of ρD with increasing disorder from
τ−1 = 0 to τ−1 = 50K. Right: ρD for τ−1 = 50K; the lower
panel shows ρD for T = 150, 200, 250, and 300K. [Reproduced
from Schütt et al. (2013).]

At the double Dirac point in the absence of disorder,
one finds (for B = 0) ρD(µ1 = µ2 = 0) ∼ α2

gh/e
2. This

peculiar feature is shown in Fig. 23 by the black curve
in the lower left panel. It is however unlikely that this
result is relevant to the nonzero drag resistivity at the
Dirac point observed in Gorbachev et al. (2012). A pos-
sible explanation for this observation is provided by the
higher-order effects (Schütt et al., 2013).

For intermediate disorder strength, α2T � τ−1 � T ,
the applicability region of the hydrodynamic approach
overlaps with that of the conventional perturbation the-
ory reviewed in Sec. IV.A and one recovers perturbative
results, see Fig. 18.

Finally, let us stress the novel qualitative feature of
the hydrodynamic approach: the electron-hole asymme-
try does not play a definitive role in the drag effect. In-
deed, the “drag rate” τ−1D dominates the observable ef-
fect only under the standard assumptions of the Fermi-
liquid behavior in the two layers. On the contrary, in the
vicinity of the Dirac point in graphene, another scatter-
ing process, the interplay of fast interlayer energy and
current relaxation which is insensitive to the electron-
hole asymmetry, becomes important. Further examples
to such novel behavior are presented in Section IV.D.

C. Diffusive regime

In strongly disordered graphene samples or, equiva-
lently, at the lowest temperatures, Tτ � 1, the electron
motion becomes diffusive. In this regime, the standard
perturbative approach based on Eq. (77) is applicable.
In particular, the polarization operator has the standard

form (30). The nonlinear susceptibility can be found us-
ing the argument leading to Eq. (28). In graphene close
to the Dirac point, µ� T � τ−1, the derivative of the
longitudinal conductivity with respect to the carrier den-
sity is independent of the precise nature of disorder and
is given by (Schütt et al., 2013)

∂σ/∂n ∼ nv4τ4.

In contrast to the theory reviewed in Sec. II, in graphene
the Thomas-Fermi screening length is much longer than
the interlayer spacing κd� 1; hence one finds the fol-
lowing expression for the drag resistivity

ρD
(
µi � T � τ−1

)
∼ (h/e2)α2µ1µ2Tτ

3, (105)

vanishing at µi = 0 due to the electron-hole symmetry.
In the degenerate regime, µ� T , one recovers the

usual quadratic temperature dependence of the drag re-
sistivity. The behavior of ρD in the diffusive regime is
summarized in Fig. 18 (the upper row). The “Fermi-
liquid” result (34) is only recovered in the academic limit
of strong screening κd� 1. This regime is not shown in
Fig. 18 since in graphene it can be reached only at the
extreme values of the chemical potential, see Fig. 20.

Calculations of the lowest-order drag resistivity in the
diffusive regime are essentially the same in any system,
see Sec. II.C. As shown in Fig. 18, the behavior of ρD
at the lowest temperatures may be dominated by higher-
order drag effects.

D. Giant magneto-drag in graphene

Although the effect of classical magnetoresistance in
multi-band systems is well known in semiconductor
physics (Seeger, 2002), the equivalent effect in Coulomb
drag was only recently observed in graphene-based de-
vices (Gorbachev et al., 2012; Titov et al., 2013a). One
of the reasons is that the majority of earlier drag mea-
surements were performed in double-well semiconductor
heterostructures. Then each of the layers is represented
by a two-dimensional electron gas that is formed by elec-
trons occupying the lowest level in the quantum well at
the interface between two semiconductors in the device.
In contrast in graphene, the conductance and valence
bands touch at the Dirac point and as a result, both
electrons and holes participate in transport phenomena
at low doping.

The experimental data on magnetodrag in graphene
(Gorbachev et al., 2012) is shown in Fig. 24 18. There

18 Notice, that Gorbachev et al. (2012) adopted an alternative def-
inition of the drag resistivity ρDxx = E2x/j1x. Therefore in this
Section we will discuss the off-diagonal resistivity ρ12xx = E2x/j1x
rather that ρD that is defined in the rest of the paper with the
opposite sign.
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FIG. 24 (Color online) Left: Off-diagonal resistivity ρ12xx in
magnetic field, measured in a graphene-based double-layer de-
vice. The two graphene sheets are kept at “opposite” carrier
densities n1 = −n2 = n and T = 150K. [Reprinted by permis-
sion from Macmillan Publishers Ltd: Nature Physics, Gor-
bachev et al. (2012)] Right: Mechanism of magnetodrag at
charge neutrality. Upper panel: in an infinite system quasi-
particle currents in the two layers (denoted by P i) flow in
the same direction, leading to positive ρ12xx. Lower panel: in a
thermally isolated system no net quasiparticle flow is possible;
the quasiparticle currents in the two layers have opposite di-
rections yielding negative ρ12xx. [Reproduced from Titov et al.
(2013a).]

are two outstanding features in Fig. 24. At high carrier
densities (or in the degenerate regime), the effect of the
magnetic field is relatively weak. This observation is con-
sistent with the expectation, that transport properties of
doped graphene are dominated by one of the two bands
(the contribution of the other being exponentially sup-
pressed). In the vicinity of the Dirac point both types of
carriers contribute to transport. Moreover, the leading
contribution to drag at zero field vanishes right at the
neutrality point due to exact electron-hole symmetry of
the Dirac spectrum. Once the magnetic field is applied,
the system develops a drag signal which is no longer de-
termined by electron-hole asymmetry. As a result, the
drag resistivity near the Dirac point in the presence of
weak magnetic field is much higher than the maximum
value in zero field, see e.g. Fig. 22.

The classical, two-band mechanism of magnetodrag in
graphene at charge neutrality can be readily illustrated in
the case, where the system size is much larger than any
characteristic length scale, such that the two graphene
sheets may be considered effectively infinite. In this case
(see Fig. 24), the driving current in the active layer, j1,
corresponds to the counter-propagating flow of electrons
and holes with zero total momentum (due to the exact
electron-hole symmetry). Once the weak magnetic field is
applied, electrons and holes are deflected by the Lorentz
force and drift in the same direction. The resulting quasi-
particle flow, P 1, carries a nonzero net momentum in the
direction perpendicular to j1. This momentum can be
transferred to the passive layer by the interlayer Coulomb

FIG. 25 (Color online) Off-diagonal resistivity ρ12xx in mag-
netic field, measured in a graphene-based double-layer device.
Both graphene sheets are kept at the same carrier density
n1 = n2 = n and at T = 240K. Solid symbols represent the
experimental data. [Reproduced from Titov et al. (2013a).]

interaction inducing the quasi-particle current, P 2, in the
same direction as P 1. The Lorentz forces acting on both
types of carriers in the passive layer drive the charge flow
in the direction opposite to j1. If the passive circuit is
open, this current is compensated by a finite drag voltage,
yielding a positive drag resistivity (Titov et al., 2013a).

This mechanism of magnetodrag at charge neutrality is
closely related to the anomalous Nernst effect in single-
layer graphene (Müller and Sachdev, 2008; Wei et al.,
2009; Zuev et al., 2009). Indeed, the quasi-particle cur-
rent is proportional to the heat current at the Dirac point.
The fact that the Lorentz force in the electron and hole
bands has the opposite sign is also the reason for the
vanishing Hall effect at charge neutrality.

Despite being qualitatively clear, the above description
of magnetodrag yields the induced drag voltage which has
the sign opposite to that observed in experiment (Gor-
bachev et al., 2012; Titov et al., 2013a), see Fig. 24. In
fact, the negative drag in Fig. 24 can only appear if the
quasiparticles currents in the two layers P 1 and P 2 have
opposite directions. According to Narozhny et al. (2015)
and Titov et al. (2013a), this is what happens in small,
mesoscopic samples used in experiment.

Consider the continuity equation for the quasiparticle
current P 1, including relaxation by electron-hole recom-
bination (Foster and Aleiner, 2009; Titov et al., 2013a)

∇P 1 = −(ρ1 − ρ0)/τph − (ρ1 − ρ2)/(2τQ), (106)

where ρi are the quasiparticle densities in the two layers,
ρ0 = πT 2/(3v2g) is the equilibrium quasiparticle density
at the Dirac point, τph describes the energy loss from the
system dominated by phonon scattering, and τQ charac-
terizes quasiparticle imbalance relaxation due to inter-
layer Coulomb interaction. The equation for the pas-
sive layer can be obtained by interchanging layer indices.
In the absence of quasiparticle recombination, hard-wall
boundary conditions at the sample boundaries allow only
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for the trivial solution. In contrast, taking into account
inelastic processes, one finds the nontrivial solution illus-
trated in Fig. 24: P 1 = −P 2.

Combining the continuity equation (106) with the hy-
drodynamic description of linear response transport in
graphene (with the additional gradient terms that ac-
count for inhomogeneity of physical quantities in finite-
size systems), one can describe the negative drag ob-
served in experiment (Narozhny et al., 2015; Titov et al.,
2013a), see Fig. 25. The exponential collapse of theo-
retical curves at high carrier density is an artifact of the
two-mode approximation adopted in Titov et al. (2013a).
The more accurate three-mode approximation (Narozhny
et al., 2015) includes thermoelectric effects formulated
in terms of energy currents; the corresponding hydro-
dynamic description yields only the power-law decay of
the magnetodrag at µi � T , in contrast to the exponen-
tial collapse shown in Fig. 25. As compared to lower-
temperature data (see Fig. 24), the results shown in
Fig. 25 exhibit qualitatively new features which can be
attributed to higher efficiency of relaxation processes at
higher temperature.

E. Hall drag in graphene

Hall drag measurements in graphene were reported
in Titov et al. (2013a). These experiments were per-
formed at relatively high temperatures T = 160− 240K,
where macroscopic coherence is not expected to exist.
While disorder effects in graphene are often attributed to
Coulomb scatterers characterized by mean free time that
is linear in energy, the measured Hall drag resistivity is
not small as would follow from a mechanism similar to
that suggested in Hu (1997) and von Oppen et al. (2001).

Instead, double-layer graphene samples demonstrate a
much simpler, yet still strong effect based on the coex-
istence of electron and hole liquids in each layer (Foster
and Aleiner, 2009). Consequently, the observed Hall drag
resistance, Fig. 26, is large when one of the layers is close
to the neutrality point and vanishes if two layers have
the same charge densities with opposite signs (a white
line running from the top left to bottom right corner in
the left panel Fig. 26).

Hall drag effect in graphene can be understood with the
help of the hydrodynamic theory (Narozhny et al., 2015;
Titov et al., 2013a). Indeed, given the presence of two
noncollinear currents in the model, it is not surprising
to see the nonzero Hall drag away from the Dirac point,
where both the conventional Hall effect and Hall drag
change sign together with the carrier density and thus
have to vanish 19. Hall drag also has to vanish in the

19 A similar two-fluid model was used in Song et al. (2013) to ex-

FIG. 26 (Color online) Left panel: Hall drag resistivity in
graphene as a function of gate voltages controlling carrier den-
sities in the two layers. White diagonal area corresponds to
vanishing Hall drag for n1 = −n2. Lines track positions of
maxima in single-layer resistivity in top (open symbols) and
bottom (solid symbols) layers. Right panel: Hall drag resis-
tivity as a function of carrier density for n1 = n2 = n. Blue
squares represent the experimental data. The red curve rep-
resents the theoretical prediction. [Reproduced from Titov
et al. (2013a).]

degenerate regime where only one band contributes to
transport and the standard single-band theory (2) holds.
However, this regime lies outside of the parameter range
of the experiment (Titov et al., 2013a). Thus, some Hall
drag signal is observed at all densities, but ρDxy decays
to rather small values as the density increases beyond
n ' 1× 1011cm−2. Interestingly enough, the data show
a sign change of ρDxy at n ≈ ±2× 1011cm−2. This rather
weak effect requires a more accurate consideration.

The right panel of Fig. 26 shows the results of the hy-
drodynamic theory alongside experimental data. This
calculation was performed without any fitting (Titov
et al., 2013a). The value of impurity scattering time τ
was determined from the measured single-layer resistiv-
ity. The effective interaction parameter was estimated by
the most plausible value for graphene on hBN, αg ≈ 0.2
[see e.g. Kozikov et al. (2010) and Reed et al. (2010) for
general considerations and the experimental evidence for
possible values of αg].

F. Higher-order effects in graphene

All theories of Coulomb drag in graphene discussed so
far were concerned with the leading-order contribution of
the interlayer interaction. Indeed, even the nonperturba-
tive results of the hydrodynamic approach were obtained
by solving the kinetic equation with the collision inte-
gral (95), where the transition probability was estimated
using the Fermi Golden Rule. All such theories predict

plain Hall drag in terms of the “energy-driven drag mechanism”.
Indeed, if one omits the interlayer frictional force, one would still
find nonzero Hall drag due to the interlayer energy relaxation.
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FIG. 27 (Color online) Schematic view of the drag resistivity
at low temperatures. The dashed line illustrates the third-
order drag effect. Left panel: The black solid line represents
the lowest order contribution to drag. The arrows indicate the
tendency of the two terms with the decrease of temperature
T → 0. Right panel: The purple solid line represents the
contribution of correlated disorder. [Reproduced from Schütt
et al. (2013).]

vanishing drag at the point of exact electron-hole sym-
metry [with the exception of the academic case of pure
graphene, see Eq. (104) and Fig. 23].

However, measurements (Gorbachev et al., 2012; Titov
et al., 2013a) reveal nonzero drag at the double Dirac
point, see Fig. 24. At the time of writing, there is no
consensus in the community regarding the origin of this
effect. At the same time, higher-order processes (see
Sec. II.D) are known to be insensitive to the electron-hole
symmetry and thus may provide a plausible explanation
(Titov et al., 2013a).

1. Third-order drag in graphene

The third-order drag effect in graphene was considered
in Schütt et al. (2013). The principle results are shown
in Fig. 18 in red. A schematic illustration of the relative
strength of the second- and third-order contributions is
given in the left panel in Fig. 27.

The third-order drag resistivity in the diffusive regime
can be found similarly to the conventional case, see
Sec. II.D. All microscopic details are masked by the
diffusive nature of electronic motion. However, due to
the relatively weak screening and the possibility to tune
the carrier density to the Dirac point, one finds a richer
physical picture with multiple parameter regimes.

The standard “Fermi-liquid” regime (Levchenko and
Kamenev, 2008b) corresponds to the condition

Nκ � max
{
d−1,

√
T/D

}
,

where N = 4 describes spin and valley degeneracy of
quasiparticle states in graphene. Here the temperature-
independent result (40) is reproduced, although with the
extra factors of N

ρ
(3)
D ∼ (h/e2)N−5g−3(κd)−2. (107)

At higher temperatures, one can achieve a different,
high-temperature regime with

d−1 � Nκ �
√
T/D.

In this case, the resulting drag resistivity decays rapidly

ρ
(3)
D ∼

h

e2
1

g3
1

(Nκd)2

(
Dκ2

T

)3/2

. (108)

The experiment of Gorbachev et al. (2012) was per-
formed on samples with the small interlayer spacing. In
the limit κd� 1, one finds three different temperature
regimes.

Close to the Dirac point and at lowest temperatures,
the drag resistivity is temperature-independent:

ρ
(3)
D (µ� T ;Tτ � α2) ∼ h/e2. (109)

Note, that this result is also independent of the strength
of the Coulomb interaction α!

At somewhat higher temperatures (or, equivalently, for
slightly weaker disorder strength), the third-order contri-
bution decays as function of temperature

ρ
(3)
D (µ� T � τ−1� α−2T ) ∼ (h/e2)(α2Tτ)−3/2.

(110)
These results are illustrated in the right panel in Fig. 27.

Away from the Dirac point, the third-order contribu-
tion decays as a function of the chemical potential (or
equivalently, carrier density) and quickly becomes sub-
leading, see the left panel in Fig. 27:

ρ
(3)
D

(
µτ � max

[
1, α−1(Tτ)1/2

])
∼ h

e2
1

(µτ)3
. (111)

As a result, ρ
(3)
D may only be detectable at low tempera-

tures and in vicinity of the Dirac point.

While estimating ρ
(3)
D (µ = 0), the single-layer conduc-

tivity was assumed to be of the order of the quantum
conductance σ ∼ e2/h, i.e. discarding localization effects.
Indeed, single-layer measurements on high-quality sam-
ples show temperature-independent conductivity down to
30mK (Tan et al., 2007) [possibly due to the specific char-
acter of impurities in graphene (Ostrovsky et al., 2007)].

For weak disorder or higher temperature the diffusive
approximation fails. Drag in vicinity of the Dirac point
can then be described by the quantum kinetic equa-
tion approach. The previously reviewed results, e.g.,
Eq. (104) were obtained by approximating the collision
integrals with the help of the Fermi Golden Rule, see
Eq. (95b). However, taking into account next-order ma-
trix elements yields a nonzero contribution, similar to the

above third-order result ρ
(3)
D .

Taking into account the second-order matrix element,
one can generalize the Golden Rule expression (96) by
using the combination

|U (1)
12 + U

(2)
12 |2 ' |U

(1)
12 |2 + 2Re{U (1)

12 [U
(2)
12 ]∗}. (112)
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Since U
(1)
12 ∝ α and U

(2)
12 ∝ α2, all relaxation rates will

now get an additional contribution of the order of α3. In
particular, the “drag rate” τ−1D gets a contribution that
is independent of the carrier density

τ−1D ∼ α2N(µ/T )2 + α3NT, (113)

which dominates near the Dirac point. In this case, one
may neglect the conventional, second-order drag contri-
bution; the result is (Schütt et al., 2013)

ρD ∼
h

e2
α3T + α4µ2τN

T + α2µ2τN
, µ� α1/2T, Tτ � 1.

Exactly at the Dirac point this yields

ρD ∼ (h/e2)α3. (114)

This result is illustrated in the right panel of Fig 27 by
the horizontal asymptote at Tτ � 1.

2. Interlayer disorder correlations

Within the conventional theory, charge carriers in each
layer scatter off an independent disorder potential. This
picture is clearly applicable to the cases where impu-
rities are mostly concentrated in the substrate insula-
tor sandwiching the double-layer structure. In the case
of the standard double-well heterostructures (Eisenstein,
1992; Gramila et al., 1991; Hill et al., 1997; Lilly et al.,
1998; Solomon et al., 1989), the random potential origi-
nates in the delta-doped layers providing charge carriers.
These layers are typically located on the outer sides of the
double-well structure. In graphene, disorder potential is
often attributed to the insulating substrate, in particular
to SiO2. Indeed, in graphene-based samples of Kim et al.
(2011) and Kim and Tutuc (2012), graphene monolayers
are exfoliated onto a thick SiO2 dielectric, while the in-
terlayer spacer consists of 14mm-thick Al2O3. In such a
structure, the impurity potential created by the silicon
oxide is likely to affect only the nearest monolayer.

In contrast, the samples of Gorbachev et al. (2012)
consist of graphene–hexagonal-boron-nitride heterostruc-
tures, where the interlayer spacer contains only few
atomic layers of the same insulator (boron nitride) that
is used as a substrate. In this case, impurity potential
originating from the interlayer spacer would be equally
felt by carriers in both graphene layers. Another sce-
nario for disorder correlation (Gorbachev et al., 2012;
Song and Levitov, 2012) involves interactions between
charge-density inhomogeneities forming due to impurity
potential in the two layers.

The effect of the correlated disorder in the drag mea-
surements is insensitive to the electron-hole symmetry

(Gornyi et al., 1999; Hu, 2000a), and thus may also pro-
vide an explanation (Schütt et al., 2013; Song and Levi-
tov, 2012) for the observed nonzero drag in graphene at
the Dirac point (Gorbachev et al., 2012).

At high temperatures, Tτ � 1, the effect of the corre-
lated disorder can be described by the skeleton diagram
similar to the third-order drag contribution, see the right
panel of Fig. 7. Interlayer disorder correlations can be
incorporated into the scattering amplitude, but now in-
stead of the second-order matrix element in Eq. (112),
one has to introduce an interlayer disorder scattering rate
1/(Tτ12). The resulting “drag rate” τ−1D is given by

1/τ corrD ∼ α2T/(Tτ12) = α2/τ12,

corresponding to the drag resistivity

ρcorrD ∼ α2/(Tτ12),

which overcomes the third-order drag contribution ρ
(3)
D ∼

α3 at 1/τ12 > αT . This happens in the perturbative
regime (1/τ > α2T for moderately correlated disorder,
τ12 ∼ τ), where the correlated-disorder contribution can
be calculated diagrammatically.

Macroscopic inhomogeneities can be described in terms
of macroscopic spatial fluctuations δµi in chemical poten-
tials of the two layers (Song and Levitov, 2012), charac-
terized by the correlation function

F
(µ)
ij (r − r′) = 〈δµi(r)δµj(r

′)〉 6= 0. (115)

Assuming the spatial scale of the fluctuations to be much
larger than all characteristic scales related to the parti-
cle scattering, one can solve the hydrodynamic equations
locally, yielding the local drag rate

1/τD(r) ∼ α2Nµ1(r)µ2(r)/T. (116)

Averaging over the small fluctuations of the correlated
chemical potentials, one arrives (Schütt et al., 2013) at
the correction to the universal third-order result (114),

∆ρD(µ = 0) ∼ h

e2
α2 F

(µ)
12 (0)

T 2

(
1 + α2NTτ

)
. (117)

Finally, in the ultraclean limit

1/τ � α2NF
(0)
ii /T, (118)

one can approximate the local drag resistivity by an ana-
log of Eq. (104):

∆ρD(r;µ = 0) ∼ h

e2
α2 δµ1δµ2

δµ1δµ1 + δµ2δµ2
. (119)

In particular, for perfectly correlated chemical poten-
tials, δµ1(r) = δµ2(r), the fluctuations drops out from
Eq. (119) and the local resistivity turns out to be inde-
pendent of r. In a more general case, the averaging over
fluctuations becomes nontrivial, but this can only affect
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the numerical prefactor in the final result. Thus, the cor-
related large-scale fluctuations of the chemical potentials
in the layers in effect shift the curve 1 in Fig. 18 upwards,
extending the validity of the fully equilibrated result,

ρD ∼ (h/e2)α2, (120)

to the case of finite disorder, Eq. (118), at the Dirac
point. This implies that in the case of correlated inhomo-
geneities the disorder-induced dip in the lower left panel
of Fig. 23 develops only for sufficiently strong disorder.

V. COULOMB DRAG AT THE NANOSCALE

The effects of Coulomb interaction are especially pro-
nounced at the nanoscale. In quantum dot devices one
can utilize the Coulomb-modified Fano resonance to de-
tect the electric charge (Johnson et al., 2004). Two-
level pulse technique was used to detect individual elec-
tron spin (Elzerman et al., 2004). Quantum dots were
also used as high-frequency noise detectors (Onac et al.,
2006). Transport measurements on adjacent but elec-
trically isolated quantum point contacts (QPCs) exhibit
a counterflow of electrons [i.e. detector current flowing
in the direction opposite to the driving current (Khra-
pai et al., 2007)]. In nanosize CdSe-CdS semiconductor
tetapods (Mauser et al., 2010), Coulomb drag-like effects
lead to photoluminescent emission.

Theoretically, Coulomb drag in a system of two elec-
trically isolated QPCs was considered in (Levchenko and
Kamenev, 2008a). Within the linear response the drag
mechanism was found to be similar to that in the bulk
2D electron systems. Remarkably, already for seemingly
modest drive voltages (much smaller than temperature)
the system crosses over to the nonlinear regime, where
the effect is dominated by the excess shot noise of the
drive circuit. Nonlinear transport was also found to be
crucial for drag effects in a system of parallel quantum
dots (Moldoveanu and Tanatar, 2009). An exciting new
development is the proposal to use the drag effects to
study transport properties of polaritons in optical cavi-
ties and, in particular, their superfluidity (Berman et al.,
2010a,b).

A. Quantum dots and quantum point contacts

Interactively coupled mesoscopic and nanoscale cir-
cuits, such as quantum wires (Debray et al., 2000, 2001;
Laroche et al., 2011; Morimoto et al., 2003; Yamamoto
et al., 2006), quantum dots (Aguado and Kouwenhoven,
2000; Onac et al., 2006) or point contacts (Khrapai
et al., 2006, 2007), provided new fruitful ways of study-
ing Coulomb drag phenomena and revealed a plethora of
interesting physics. These devices typically have dimen-
sions smaller than the temperature length LT = vF /T

FIG. 28 Left panel inset-(a) represents scanning electron mi-
crograph of the gate structure defined on top of the semi-
conductor heterostructure. The gates highlighted by dashed
lines are used to define a quantum dot (QD) on the left and a
quantum point contact (QPC) on the right. Inset-(b) shows
current IQD versus plunger gate voltage whereas inset-(c) dis-
plays QPC conductance GQPC as a function of the gate volt-
age. In such device the QPC is used as a noise generator and
the QD as a detector. Right panel shows current through the
QD, as a function of the plunger gate voltage, under the influ-
ence of shot noise generated by the QPC with characteristic
peaks. [Reproduced from Onac et al. (2006).]

and voltage-related length scale LV = vF /(eV ), and dif-
fer substantially from their two-dimensional quantum-
well counterparts in several important ways. (i) The
strength of Coulomb interaction is naturally enhanced by
reducing system size that should lead to more profound
dragging effect. (ii) Transmission across the device in
the drag (drive) circuit or both can be efficiently con-
trolled by the gate voltages that allows to open quantum
conduction channels one by one. (iii) The electron-hole
symmetry in such devices is broken much stronger than in
bulk systems. In mesoscopic devices this is due to a ran-
dom configurations of impurities, while in the quantum
nanocircuits the effect is due to the energy dependence of
transmission coefficients in Landauer picture of transport
(Büttiker et al., 1985; Landauer, 1957, 1970). (iv) Be-
cause of the above reasons, the quantum circuits may be
easily driven out of the linear response domain and cor-
responding voltage scale is parametrically smaller than
the temperature. (v) Ultimately, the mere mechanism of
drag in the nonlinear regime is different and governed by
the quantum noise fluctuations.

The most peculiar feature of the observed Coulomb
drag in such systems was that the drag current exhibited
maxima for specific values of the gate voltage, where the
drive circuit was tuned to an opening of another con-
ductance channel, see Fig. 28 for the illustration. This
hinted the importance of the electron shot noise in the
drive circuit, which was known to exhibit a qualitatively
similar behavior (Lesovik, 1989; Reznikov et al., 1995).
Indeed, electron current shot noise power is proportional
to the product of the transmission and reflection coeffi-
cients that is peaked between the conductance plateaus.
It was argued early on that drag may be interpreted as a
rectification of nearly equilibrium classical thermal fluc-
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tuations in the drive circuit (Kamenev and Oreg, 1995).
The extension of this idea to rectification of the quantum
shot noise was plausible and happened to be correct in
a certain regime. The subtlety of this picture was that
such a rectification is only possible due to electron-hole
asymmetry in both circuits, otherwise drag currents of
electrons and holes cancel each other. The mismatch
between transmission probabilities of electron and hole
excitations is maximal at the verge of an opening of
the new conduction channel, which implies that spikes
of drag conductance may originate form the asymmetry
alone rather than shot noise.

In order to get an insight into these delicate details con-
sider the linear response regime when drag conductance
gD can be expressed as follows (Levchenko and Kamenev,
2008a)

gD =

∫
dω

8πT

|Z12(ω)|2

ω2

Γ1(ω)Γ2(ω)

sinh2(ω/2T )
. (121)

Here Z12(ω) is the interactively-induced trans-impedance
relating local fluctuating currents and voltages between
the circuits (Geigenmüller and Nazarov, 1991). The cor-
responding rectification coefficients are given explicitly
by

Γi(ω) =
2e

RQ

∑
n

∫
dε[f(ε−)−f(ε+)][|tin(ε+)|2−|tin(ε−)|2]

(122)
where RQ = 2π~/e2 is the quantum of resistance, ε± =
ε±ω/2, f(ε) is the Fermi distribution function, and |tin|2
is the energy dependent transmission coefficient in the
transversal channel n of the circuit i = 1, 2. This expres-
sion admits a transparent interpretation: potential fluc-
tuations with frequency ω, say on the left of the quantum
point contact, create electron-hole pairs with energies ε±
on the branch of right moving particles. Consequently
the electrons can pass through the quantum point con-
tact with the probability |tin(ε+)|2 , while the holes with
the probability |tin(ε−)|2. The difference between the
two gives the net current flowing across the contact while
the Fermi functions in Eq. (122) take care of the statisti-
cal occupation of participating scattering states. Notice
that unlike in the Landauer formula for conductance of a
single quantum point contact where transmissions can be
treated as being energy independent, the energy depen-
dence of these probabilities in the drag formula is crucial
in order to have the asymmetry between electrons and
holes, and thus nonzero rectification Γi(ω). A particu-
lar functional dependence of Γ on frequency depends on
a model and details of device circuitry. It is instructive
to focus on a limit of a single partially open channel in
a smooth adiabatic quantum point contact. One may
think then of the potential scattering barrier across it as
being practically parabolic. In such a case its transmis-
sion probability is given by

|tin(ε)|2 = [exp[(eVgi − ε)/∆i] + 1]−1 (123)

where ∆i is an energy scale associated with the curva-
ture of the parabolic barrier in the point contact i, while
gate voltages Vgi move the top of the barrier relative
to the Fermi energy within each of the point contact.
This form of transmission was used to explain quantum
point contact conductance quantization (Glazman et al.,
1988) and it turns out to be useful in application to the
Coulomb drag problem. For the low temperature limit
T � ∆i using Eq. (123) in Eq. (122) and carrying out
energy integration yields

Γi(ω) =
2e∆i

RQ
ln

[
cosh(eVgi/∆i) + cosh(ω/∆i)

cosh(eVgi/∆i) + 1

]
.

(124)
In the opposite limit when T � ∆i one should replace
∆i → T . One should notice that for small frequency
Γi ∝ ω2 whereas trans-impedance Z12(ω) is practically
independent of frequency in this limit since its charac-
teristic scale is typically set by the inverse RC-time of
circuits. Assuming that T � max{∆i, τ

−1
RC} one arrives

at

gD
gQ

=
π2u2

6

T 2

∆1∆2

1

cosh2(eVg1/∆1) cosh2(eVg2/∆2)
,

(125)
where u = Z12(0)/RQ. The resulting expression for the
drag conductance exhibits peaks as a function of gate
voltage in drag or drive quantum point contact. Yet at
this level it has nothing to do with the shot noise peaks,
but rather reflects rectification of near-equilibrium ther-
mal fluctuations (hence proportionality to T 2) along with
the electron-hole asymmetry (hence a nonmonotonic de-
pendence on Vgi). However, one should realize that the
crossover to the nonlinear regime of transport in such
devices can occur at rather low voltages eV ∗ ∼ T 2/∆i

such that Eq. (121) becomes inapplicable already at
V > V ∗. More general considerations by (Chudnovskiy,
2009; Levchenko and Kamenev, 2008a; Sánchez et al.,
2010) revealed that for the out of equilibrium nonlinear
regime the drag current is due to the rectification of the
quantum shot noise and hence proportional to the Fano
factor

∑
n |tni|2[1 − |tni|2]. It again exhibits a generic

nonmonotonic behavior of drag with multiple peaks but
for the entirely different reason independent of asymme-
try factor. Nonlinear transport was also found to be cru-
cial for drag effects in a system of parallel quantum dots
(Moldoveanu and Tanatar, 2009).

Drag phenomena in quantum circuits can be naturally
connected to our earlier discussion of drag in mesoscopic
systems in Sec. III. Indeed, one or both circuits may
be represented by a multichannel quasi-one-dimensional
(or two-dimensional) mesoscopic sample. In this case∑
n |tn(ε)|2 = g(ε) is a dimensionless (in units R−1Q ) con-

ductance of the sample as a function of its Fermi energy.
As discussed above, such conductance exhibits universal
fluctuations, that is g(ε) = g + δg(ε), where g � 1 is
an average conductance and δg(ε) ∼ 1 is a sample and
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energy-dependent fluctuating part. Since the character-
istic scale of the energy dependence of the fluctuating
part is the Thouless energy ET one naturally finds from
Eq. (122) that corresponding mesoscopic fluctuations of
the rectification coefficient are of the order

Γ(ω) ∼ ± e

RQ

ω2

ET
(126)

This result ultimately leads to the an estimate of the
variance of drag in the form of Eq. (58)

Quantum Coulomb drag circuits provide a rich plat-
form to explore nanoscale transport far beyond ideas of
using them for high-frequency noise sensing. In particu-
lar, a different drag effect may also be observed in the ab-
sence of any drive current if one nanocircuit is made hot-
ter than the other - the cold circuit is expected to rectify
the thermal charge fluctuations of the hot circuit (Soth-
mann et al., 2012). Furthermore, interactively coupled
devices provide unique tools to test nonlinear fluctuation-
dissipation relations and its closely related Onsager sym-
metry relations in the far from equilibrium conditions
when detailed balance is explicitly broken (Bulnes Cue-
tara et al., 2013; Sánchez et al., 2010).

Other intriguing examples include nanosize CdSe-CdS
semiconductor tetapods (Mauser et al., 2010) where
Coulomb drag-like effects lead to photoluminescent emis-
sion. As an alternative to optical probes, electrical
read-out of a single electron spin becomes possible in a
Coulomb drag-like devices of interactively coupled QPC
and QD (Elzerman et al., 2004).

B. Optical cavities

Coulomb interaction is not exclusive to electrons and
can couple any charges. Moreover, even neutral, com-
posite objects may interact with charges by means of
an effective “polarization” or “charge-dipole” interac-
tion (Margenau and Kestner, 1969), which ultimately
stems from the Coulomb interaction between an external
charge and individual charged constituents of the com-
posite object. In particular, long-ranged interactions be-
tween spatially separated electrons and polaritons may
lead to interesting drag effects (Berman et al., 2010a,b;
Kulakovskii and Lozovik, 2004) that can be used, e.g., for
designing electrically controlled optical switches (Berman
et al., 2014).

Two-dimensional excitonic polaritons have been a sub-
ject of intensive research (Amo et al., 2009; Balili et al.,
2007; Kasprzak et al., 2006; Snoke, 2008). These ex-
citations appear as a result of resonant exciton-photon
interaction in a system consisting of an optical micro-
cavity and a quantum well embedded within the cavity.
The lower polariton branch is characterized by extremely
small effective mass raising the possibility of achieving

FIG. 29 Left: quasiparticle flow in the cavity polariton sub-
system induced by the electric current in the 2DEG at low
temperatures. Right: electric current in the 2DEG induced
by the optically excited flow in the polariton subsystem. [Re-
produced from Berman et al. (2010b).]

the Bose-Einstein condensation and superfluidity at rel-
atively high temperatures (Balili et al., 2007; Littlewood,
2007).

The optically excited excitons in microcavities should
not be confused with the spontaneously formed excitons
in double quantum wells discussed in Sec. VII.A. In par-
ticular, these excitons can be excited by laser pumping
in the single quantum well embedded within the cavity.
Now, if a second quantum well is added to the device
(Berman et al., 2010a), then Coulomb interaction binding
electrons and holes into excitons can be screened (Finkel-
stein et al., 1995; Gubarev et al., 2000) by a 2DEG popu-
lating the second well. As a result, the excitonic binding
energy is reduced and as the density of the 2DEG ap-
proaches a certain critical value, the excitons may disap-
pear altogether. The excitonic collapse manifests itself
through disappearance of the corresponding line in the
photoluminescence spectrum.

Keeping the electron density below the above critical
value, one obtains a system containing coexisting, spa-
tially separated excitons and electrons. The effective in-
teraction between electrons and excitons was considered
in Lozovik and Nikitkov (1999). This interaction leads
to mutual friction between the two systems that can be
observed by selectively exciting one of them by external
probes.

By focusing laser pumping on a particular region
within the cavity, one can generate a gradient of exciton
and polariton densities. These gradients induce a flow
of both polaritons and excitons. The long-range interac-
tion between the excitons (or the exciton component of
the polaritons) may transfer energy and momentum to
the electronic system in the second quantum well, gener-
ating an electric current or inducing voltage, similarly to
the standard drag effect discussed in Sec. II.

Alternatively, one can drive a current through the
2DEG. In this case, the mutual friction will lead to the
appearance of the exciton flow. These excitons are entan-
gled with cavity photons and their flow will create a flow
of polaritons. In other words, the long-ranged electron-
exciton interaction allows one to effectively “move” the
cavity photons by applying electric current to the 2DEG
(Berman et al., 2010a,b). The drag effects in microcavi-
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FIG. 30 (Color online) Schematic of the wedge-shaped micro-
cavity formed by two distributed Bragg reflectors (DBR) that
encompasses the embedded quantum wells. The excitons are
located in the quantum well (gray) between the reflectors. A
metal layer deposited on the upper DBR creates a Y-shaped
potential energy landscape for the polaritons. The driving
current runs perpendicularly to the stem of the channel in
the quantum well (green). Reprinted with permission from
Berman et al. (2014). Copyright (2014) American Chemical
Society.]

ties are schematically illustrated in Fig. 29.

Recently, Berman et al. (2014) have proposed to use
the drag effect in optical cavities for building an elec-
trically controlled optical switch, see Fig. 30. The po-
laritons are assumed to be created at a constant rate by
external laser pumping. The wedge-like shape of the mi-
crocavity is chosen in order the create a force driving
the polaritons along the cavity towards the Y-junction.
Without the drag effect, the polariton flux is distributed
equally between the two branches of the junction. Driv-
ing an electric current through a second quantum well
(shown in green in Fig. 30) results in a drag force in the
junction region that effectively redistributes the polari-
tons flux between the branches. Berman et al. (2014)
find that for realistic parameters of the device one can
achieve 90% accuracy of the switching of the polariton
flow.

VI. COULOMB DRAG BETWEEN PARALLEL
NANOWIRES

It is well-known that physics of electrons confined to
one spatial dimension (1D) is dominated by interactions.
Coulomb drag between two closely spaced but electri-
cally isolated quantum wires was used to observe Wigner
crystallization (Yamamoto et al., 2002, 2006, 2012) and
Luttinger-liquid effects (Debray et al., 2001; Laroche
et al., 2008, 2014). The effect was also used to study 1D
sub-bands in quasi-1D wires (Debray et al., 2000; Laroche
et al., 2011).

Early theoretical work on drag between 1D systems
(Gurevich and Muradov, 2000, 2005; Gurevich et al.,

1998; Hu and Flensberg, 1996; Raichev and Vasilopoulos,
2000a,b, 1999) was based on the Fermi-liquid approach
and targeted multiple-channel wires at high enough tem-
peratures, where electron correlation effects (other than
screening) are not important. Tanatar (1998) consid-
ered the role of disorder. It is however well-known, that
the Fermi-liquid theory fails for purely 1D systems, i.e.
single-channel wires (Giamarchi, 2004), quasi-1D wires
with single 1D subband occupancy (Laroche et al., 2014),
and systems comprising a small number of coupled 1D
channels. Coulomb drag between two Luttinger liquids
with point-like interaction region was discussed in Flens-
berg (1998) and Komnik and Egger (2001). Nazarov and
Averin (1998) considered two independent Luttinger liq-
uids coupled by interwire backscattering. Schlottmann
(2004a,b) used Bethe-Ansatz methods to solve the prob-
lem of two wires coupled by a particular δ-function po-
tential. Especially interesting is the prediction of the
Mott-insulator–type state corresponding to formation of
two interlocked charge density waves (CDW) in quantum
wires (Fuchs et al., 2005; Klesse and Stern, 2000) [see also
a recent preprint (Furuya et al., 2015)].

A theory of Coulomb drag based on the Tomonaga-
Luttinger liquid (TLL) theory (Haldane, 1981a,b; Lut-
tinger, 1963; Tomonaga, 1950) predicts a behavior that
qualitatively deviates from that in higher dimensions.
Below a certain crossover scale T ∗, the drag resistivity
between infinitely long quantum wires of equal electron
density is predicted to increase exponentially with de-
creasing temperature (Klesse and Stern, 2000)

ρD ∼ ρT exp(∆/T ). (127)

The energy gap ∆ and crossover temperature T ∗ are
complicated functions of the interwire distance d, width
of wires w, effective Bohr radius aB of the host mate-
rial, and electron density n. For widely separated wires
(kF d� 1) they are exponentially suppressed

∆ ∼ T ∗ ∼ EF exp [−kF d/(1−K)] , (128)

and the drag resistivity exhibits the high-temperature
power-law behavior20

ρD ∼ (h/e2)kFλ
2(T/EF )4K−3, (129)

for all practically relevant scales. Here K is the TLL
interaction parameter in the relative charge sector deter-
mined by the difference of the small-momentum intra-
and interwire couplings and λ is dimensionless interwire
backscattering potential strength.

The physical picture behind Eq. (127) is that at low
temperatures T < T ∗ the electrons in both wires form

20 In 1D, ρD = − limI1→0(1/L)(dV2/dI1), is the drag resistivity
per unit length (Klesse and Stern, 2000; Pustilnik et al., 2003).
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zigzag-ordered interlocked charge density wave (CDW).
Then a relative charge displacement can be created
only by overcoming a potential barrier, which ultimately
translates into transport via activation, and consequently
into Arrhenius-like behavior of drag.

For short wires, Klesse and Stern (2000) report a qual-
itatively different behavior. Here the CDW in one wire
may slip as a whole relative to the CDW in the other wire.
These instantaneous slips may stem from either thermal
fluctuations or tunneling events. The latter leads to the
drag resistance that tends to a finite, but exponentially
large (in the wire length L) value as T → 0. In contrast,
Ponomarenko and Averin (2000) find a vanishing drag
resistance, ρD ∼ T 2, regardless of whether the CDW is
formed or not.

For wires with different electron densities, Fuchs et al.
(2005) find that the drag resistance (127) is suppressed
by an additional exponential factor exp(−|δµ|/T ), where
δµ = µ1 − µ2 is the difference between the chemical po-
tentials µi in the two wires. The high-temperature result
(129) also becomes exponentially suppressed as soon as
|δµ| exceeds the temperature.

Allowing for a spin degree of freedom adds extra com-
plexity to the problem, since the system might be un-
stable towards gap opening in the spin sectors21. If this
does not happen (or at temperatures exceeding the spin
gaps), the system shows the same qualitative behavior as
above, but the exponent in Eq. (129) changes to 2K − 1.
However, if the single wires develop spin gaps, the drag
resistivity vanishes at T = 0 (Klesse and Stern, 2000).

At temperatures above T ∗, the charge sector is gapless
and the system can be described as two coupled wires
in the TLL phase. For quasiparticles with linear dis-
persion the only process contributing to drag is the in-
terwire backscattering characterized by large momentum
transfers q ∼ 2kF . This process can be described by the
usual drag formula (15), where one typically assumes the
nonlinear susceptibility to be proportional to the imagi-
nary part of the polarization operator (Fiete et al., 2006;
Pustilnik et al., 2003):

ρD =
h

e2

∫
dqdω

4π3

q2V 2
q

n2T

[ImΠ(q, ω)]2

sinh2(ω/2T )
, (130)

where Vq describes the interwire interaction. In the
limit qd� 1, the asymptotic form of Vq is given by

Vq = (e2/ε)
√

2π/(qd) exp(−qd). The polarization oper-
ator for the TLL model is known (Giamarchi, 2004). For
spinless fermions, the spectral weight of 2kF density fluc-

21 For a comprehensive discussion of ground state properties of ca-
pacitively coupled 1D systems see Carr et al. (2013) and Gia-
marchi (2004).

tuations is given by

ImΠ(q±, ω) = − sinπK

4π2u

(
2παT

u

)2K−2

(131)

×B
(
K

2
− i(ω − uq±)

4πT
, 1−K

)

×B
(
K

2
− i(ω + uq±)

4πT
, 1−K

)
,

where α ∼ k−1F is the short-distance cut-off of the TLL
theory, q± = q ± 2kF , u is the renormalized Fermi ve-
locity, and B(x, y) is the Euler beta-function. Using
Eq. (131) in the expression (130) one recovers Eq. (129),
which was obtained by Klesse and Stern (2000) by means
of a renormalization group analysis. In the perturba-
tive approach, the interaction parameter λ in Eq. (129)
is given by λ = V2kF /vF . This leads to the exponential
dependence of ρD on distance separating the wires [since
V2kF ∝ exp(−2kF d)]. The regime of spin-incoherent Lut-
tinger liquid and effect of disorder modify temperature
dependence of Eq. (129) (Fiete et al., 2006). In the
weakly interacting limit (K ' 1) the drag resistivity is
expected to grow linearly with temperature (Gurevich
et al., 1998; Hu and Flensberg, 1996).

In recent years, a lot of the attention was devoted to 1D
liquids with nonlinear dispersion [for reviews on this topic
see Deshpande et al. (2010); Imambekov et al. (2012);
and Matveev (2013) ]. In the TLL theory, the curvature
of the quasiparticle spectrum is described by an irrelevant
operator (in the renormalization group sense). However,
at high enough temperatures it might lead to important
effects and even mask the pure Luttinger behavior. In
the context of Coulomb drag (Aristov, 2007; Dmitriev
et al., 2012; Pereira and Sela, 2010; Pustilnik et al., 2003;
Rozhkov, 2008, 2009), this is particularly important since
nonlinearity of the band kinematically allows drag with
small momentum transfer, q ∼ T/vF � kF .

Analytic calculation of the dynamical structure factor
ImΠ(q, ω) for arbitrary interactions and nonlinear dis-
persion is a major challenge. However, such calculation
is readily available in the case of weakly interacting elec-
trons. At finite temperatures, but with the accuracy of
the order T � mv2F , the one-loop diagram yields

ImΠ(q, ω) =
m

4k

sinh(ω/2T )

cosh(qvF ξ+/2T ) cosh(qvF ξ−/2T )
, (132)

where ξ± = 2m(ω − vF q)/q2 ± 1. It is now tempting to
follow the conventional path and use this result for ImΠ
in the expression for the drag (130) to obtain

ρD ' (hkF /e
2)(V0/vF )2(T/EF )2, (133)

with the conclusion that curvature effects restore the
Fermi-liquid behavior of drag in 1D wires; further-
more, the contribution (133) would dominate over the
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backscattering component (129) already at temperatures
above T > EF e

−4kF d [in Eq. (133) V0 should be un-
derstood as Vq∼T/vF ]. At even higher temperatures,
(v/d) < T < EF , the same approach yields a saturating
drag resistivity, ρD ∼ (~kF /e2)(V0/vF )2(v/dEF )2, fol-
lowed by a falloff ρD ∝ 1/T 3/2 at T > EF . For non-
identical wires there appears an additional energy scale,
Tδ = kF |δv| describing splitting between symmetric and
antisymmetric plasmons modes in the double-wire sys-
tem, which is determined by the difference between Fermi
velocities in the wires δv = vF1 − vF2. Assuming that
Tδ � Td, Eq. (133) holds only for Tδ < T < Td, whereas
below Tδ drag resistivity due to forward scattering de-
creases as ρD ∝ T 5 with lowering temperature.

However, as shown by Dmitriev et al. (2012) the above
conclusions about the forward scattering contribution to
drag may be premature. The reason is subtle: the ex-
pression (130) was derived under the tacit assumption
that the intralayer relaxation processes due to electron-
electron interaction are faster than the interwire momen-
tum transfer. Now, in purely 1D systems relaxation is
determined by three-body collisions (Levchenko et al.,
2011; Lunde et al., 2007; Micklitz et al., 2010; Rieder
et al., 2014) as inelastic two-body interaction is forbid-
den by energy and momentum conservation. Same kine-
matic restrictions require that intrawire backscattering
responsible for equilibration involves states deep at the
bottom of the band. Because of the Pauli statistics, the
probability to find such a state unoccupied is exponen-
tially small. Consequently, the equilibration rate τ−1eq in

1D is exponentially suppressed, τ−1eq ∝ e−EF /T , and the
expressions (130) and (133) are difficult to justify.

At the same time, interwire backscattering with small
momentum transfer q ∼ T/VF � kF is also allowed in
1D systems with nonlinear spectrum. This process in-
volves a pair of scattering states: one near the Fermi level
and another at the bottom of the band. Dmitriev et al.
(2012) found a solution of two coupled kinetic equations
[cf. Eqs. (9)] yielding the drag resistivity in the form

ρD '
~kF
e2

(
V0
vF

)2
1

kF d

Td
T

√
EF
T
e−2EF /T . (134)

By comparing the exponential factors in Eqs. (134) and
(129), one can see that backscattering-induced drag fric-
tion due to soft collision (namely collisions with small
momentum transfer) dominate over direct backscattering
with 2kF momentum transfer at temperatures T > Td.
This is despite the fact that the contribution of soft col-
lisions being strongly suppressed compared to Eq. (133).

At even higher temperatures there exists delicate in-
terplay between the relaxation rates of two-particle in-
terwire backscattering with small momentum transfer
and triple-body intrawire chirality changing soft colli-
sions that determine behavior of ρD(T ). Each of these
scattering processes can be described by respective func-
tions D2(T ) and D3(T ), which physically correspond to

FIG. 31 (Color online) Left: measurement schematic (top)
and single-wire conductance quantization (bottom). Right:
temperature dependence of the drag signal for three different
samples (the magnitude of ρD in sample 2-L is divided by 200
for visibility). For samples 2-L and 2-C, the temperature de-
pendence was taken with no more than one 1D subband occu-
pancy in each wire, whereas the number of 1D subband occu-
pied in sample 3-R is known to be bounded by 0 < Ndrive ≤ 2
and 0 < Ndrag ≤ 3. [From Laroche et al. (2014). Reprinted
with permission from AAAS.]

diffusion coefficients in momentum space. Their func-
tional form is not universal and determined by the inter-
action model considered. Three-particle collisions domi-
nate provided that D3 > D2e

−EF /T . This condition im-
plicitly defines new crossover temperature scale Tc > Td
at which Eq. (134) crosses over to (Dmitriev et al., 2012)

ρD '
~
e2
D3

kFEF

(
EF
T

)3/2

e−EF /T . (135)

Notice that in this transport regime ρD is suppressed only
by a single exponential factor. In the case of short-ranged
interaction D3 ∝ T 2 whereas D2 is temperature indepen-
dent so that the pre-exponential factor in Eq. (135) scales
with T as T 1/2. In the case of Coulomb interaction this
scaling is different since D3 ∝ T 5.

Coulomb drag between true 1D systems was recently
observed by Laroche et al. (2014) in a system of verti-
cally integrated quantum wires where each wire has less
than one 1D subband occupied. The most striking the-
oretical prediction, i.e., the upturn in the temperature
dependence was revealed below the crossover tempera-
ture T ∗ ∼ 1.6K, see Fig. 31. However, a quantitative
comparison between the data and above theoretical re-
sults proved to be difficult. Using the experimental esti-
mates for the carrier density n1D =

√
n2D and interwire

distance d ' 40nm, one arrives at kF d ∼ 2. Then, from
Eq. (128) one finds the values for the Luttinger parameter
K ' 0.1− 0.2 (for samples 3-R and 2-C) corresponding
to very strong interaction that is beyond the applicabil-
ity of the bosonization theory of Klesse and Stern (2000).
On the other hand, fitting the high-temperature data to
the power-law behavior (129) yields K ' 1.5. This esti-
mate, however, should be approached with caution, since
Eq. (129) was derived for identical wires which is not the
case in experiment, where electronic densities in the par-
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ent 2D layers differ by about 20%. In that case one ex-
pects (Fuchs et al., 2005) an exponential suppression of
ρD. All these issues remain to be clarified both theoreti-
cally and experimentally.

VII. NOVEL MANY-BODY STATES IN DOUBLE-LAYER
SYSTEMS

When a double-layer system is subjected to a strong
magnetic field, the standard theoretical description of
Coulomb drag (Jauho and Smith, 1993; Kamenev and
Oreg, 1995; Zheng and MacDonald, 1993) fails: in con-
trast to naive expectations, numerous experiments (Feng
et al., 1998; Hill et al., 1996, 1998; Jörger et al., 2000c;
Lok et al., 2001a,b; Patel et al., 1997; Pillarisetty et al.,
2003; Rubel et al., 1997a, 1998, 1997b) show significant
dependence of the measured drag resistivity ρD on the
applied field, especially in the extreme quantum regime
(Lilly et al., 1998; Murphy et al., 1994; Nandi et al.,
2012).

Further experiments revealed the existence of novel
quantum Hall states that are specific to bilayer systems
and have no analog in single-layer samples. Early work
in this direction was reviewed in Eisenstein (1992, 1997).
Remarkably, the bilayer many-body states exhibiting the
quantum Hall effect (Murphy et al., 1994) may at the
same time support a condensate of indirect (or interlayer)
excitons (Finck et al., 2010; Nandi et al., 2012; Wiersma
et al., 2007). An interlayer exciton is a bound pair of an
electron from one layer and a hole from another layer of
the device. The exciton carries no electric charge. Nev-
ertheless, exciton transport (especially in the superfluid
state) leads to interesting electrical effects. The exper-
imental situation in the field is reviewed in Eisenstein
(2014) and Eisenstein and MacDonald (2004). Here we
focus on the manifestations of this exciting new physics
in the drag measurements.

A. Quantum Hall Effect in double-layer systems

In a seminal paper, Halperin (1983) has suggested a
generalization of the Laughlin wave function for the anal-
ysis of multi-component systems. The simplest example
of an extra degree of freedom that can be accounted for
using this approach is the electron spin. A double-layer
system provides another example, which is similar to the
spin-1/2 in some respects and is significantly different in
other. The two possible values of the layer index can
be represented by the two orientations of a pseudo-spin
(Stern et al., 2000; Yang et al., 1994). However, unlike
the real spin, the double-layer system does not possess
the SU(2) symmetry due to the difference between the
intra- and interlayer matrix elements of the Coulomb in-
teraction. Consequently, in the double-layer system the

FIG. 32 Phase diagram of the quantum Hall effect at νT = 1
in double-layer systems. ∆SAS is the tunnel splitting and
e2/(ε`) is the Coulomb energy. Each symbol corresponds to a
particular double-layer sample. Only the samples represented
by solid symbols exhibit a quantized Hall plateau at νT = 1.
The interlayer quantum Hall state exists also in the absence
of tunneling. [Reproduced from Murphy et al. (1994).]

energy eigenstates do not have to be eigenstates of the
total spin operator ŜT (Girvin and MacDonald, 1997).
As a result, states described by Halperin’s wave func-
tions that are not eigenstates of ŜT may be realized in
double-layers (Eisenstein et al., 1992; Suen et al., 1992).

In this review we are mostly interested in double-layer
systems where tunneling between the two layers is neg-
ligible. Such systems support novel many-body quan-
tum Hall states, that are specific to bilayers and arise
due to interlayer Coulomb interaction (Chakraborty and
Pietiläinen, 1987; Haldane and Rezayi, 1987). Yoshioka
et al. (1989) investigated a wide class of such states us-
ing Halperin’s two-component wave functions (Halperin,
1983). The ground state of the system crucially depends
on the ratio of the interlayer separation and magnetic
length d/`0. For a given filling factor, the magnetic
length `0 is proportional to the average separation be-
tween electrons in one layer. Therefore, the ratio d/`0
parametrizes the relative strength of intra- and interlayer
Coulomb interaction. Assuming truly two-dimensional
layers (i.e., setting aside complications that arise due to
the finite width of the quantum wells in GaAs samples),
one finds that the interlayer many-body states are stable
for d/`0 ∼ 1. At large d, the interlayer Coulomb interac-
tion is inefficient and then the system behaves as if one
connects two quantum Hall samples in parallel (Eisen-
stein, 1997). This observation can be illustrated with
the help of the typical phase diagram shown in Fig. 32
for the case of the total filling factor νT = 1 (Murphy
et al., 1994). In the opposite limit, d/`0 → 0, the sys-
tem approaches the SU(2)-symmetric point, and thus
the Halperin states that are not eigenstates of ŜT are
expected to collapse (Eisenstein, 1997).

Double-layers at the total filling factor νT = 1 and with
large interlayer separation (experimentally, d/`0 ∼ 2− 4)
behave as two weakly coupled systems of composite
fermions (i.e. each layer is at ν = 1/2) while exhibit-
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ing strongly enhanced drag as compared to the zero-field
case, see Sec. II.G. As the ratio d/`0 is decreased, ex-
periments (Kellogg et al., 2003, 2002b) show a gradual
development of the Hall drag signal and a non-monotonic
behavior of the longitudinal drag resistivity ρD. As d/`0
approaches the transition into the strongly correlated,
many-body state 22, ρD shows strong enhancement, fol-
lowed by a decrease. In the strongly coupled interlayer
νT = 1 state ρD practically vanishes. At the same time,
the Hall drag resistance develops a quantized plateau, see
Fig. 33. Similar behavior was observed in Tutuc et al.
(2009, 2004); and Wiersma et al. (2004)

Early theoretical work on drag in quantum Hall states
was focused on the non-dissipative drag (Duan, 1995;
Renn, 1992; Yang, 1998; Yang and MacDonald, 2001). In
contrast to the case of weak magnetic field (see Sec. II.G),
a strong, quantized Hall drag has been identified as a sig-
nature of the interlayer correlated states. The 2× 2 Hall
resistivity matrix (for the two layers) has been shown
(Renn, 1992; Yang, 1998) to be proportional to the Gram
matrix (Conway and Sloane, 1988; Read, 1990) describ-
ing topological order in the quantum Hall state (Wen,
1995):

ρxyij = (h/e2)Kij ⇒ ρxy12 = nh/e2, n > 0. (136)

Similar conclusion was reached in Yang and MacDonald
(2001) on general topological grounds.

Kim et al. (2001) have suggested to use the drag resis-
tivity to distinguish between various quantum Hall states
in double-layer systems at νT = 1. For the compressible
(weak-coupling) state at large interlayer separation, the
Hall drag resistivity vanishes, while the longitudinal drag
is determined by gauge-field fluctuations and is given by
Eq. (53). The compressible state exhibits a strong pair-
ing instability (Bonesteel, 1993; Greiter et al., 1991). If
Landau-level mixing is substantial (as it often is in exper-
imental samples), the paired state may be described by
the (3, 3,−1) Halperin wave function. This state resem-
bles a px + ipy superconductor of composite fermions. As
a result, it is expected to exhibit the quantized Hall drag
resistivity (136) with n = −1.

For smaller interlayer separation (d ' `0) the system
undergoes a transition into an incompressible, corre-
lated “quantum Hall ferromagnet” state described by the
(1, 1, 1) Halperin wave function. This state possesses a
gapless neutral mode and is characterized by the Hall
resistivity (136) with n = 1.

The nature of the transition between the compress-
ible, weak coupling state at large interlayer separation

22 Since the transition between the weakly and strongly coupled
quantum Hall states is still poorly understood, one should be
speaking in terms of the transition region instead of the precise
critical value of d/`0.

and the incompressible, strong coupling state at d ' `0
is not completely understood (Eisenstein, 2014; Finck
et al., 2010). Numerical evidence (Burkov et al., 2002;
Schliemann et al., 2001) suggests a first order transition
at T = 0, which contradicts the experimental observa-
tion of gradual development of the quantized Hall drag
(Kellogg et al., 2003, 2002b), see Fig. 33. Stern and
Halperin (2002) suggested a phenomenological descrip-
tion of the drag resistivity in the transition region. Pos-
tulating that in the transition region the system is split
into regions of the strong-coupling (1, 1, 1) phase and re-
gions of the weak-coupling compressible phase, they de-
scribe the transition as the point where the fraction f
of the sample occupied by the (1, 1, 1) phase reaches the
percolation threshold fc = 1/2.

In a system of identical layers, the linear response the-
ory can be formulated in terms of symmetric and anti-
symmetric states. Denoting the 2× 2 resistivity matri-
ces corresponding to symmetric and antisymmetric cur-
rents by ρs and ρa, one finds the drag resistivity as
ρD = (ρa − ρs)/2.

In the weak-coupling phase at d� `0, the drag resis-
tivity is very small, ρD � ρa(s). Neglecting ρD, one may
approximate the resistivities as (in units of h/e2)

ρa(d� `0) = ρs(d� `0) =

(
ε 2

−2 ε

)
, (137)

where ε = 1/(kF `tr)� 1 (within the composite fermion
model), kF = 4πn is the Fermi wave vector, n is the elec-
tronic density, and `tr is the transport mean free path.
For T < 1K, the experimentally measured values of ρD

are almost two orders of magnitude less than ε.
The strong-coupling (1, 1, 1) phase exhibits features of

the quantum Hall state for the symmetric currents

ρs0(d . `0) =

(
0 2

−2 0

)
, (138)

while for the antisymmetric currents it is a superfluid
(Stern and Halperin, 2002) ρa0(d . `0) = 0.

Analyzing the system close to the transition as a com-
posite system comprising regions of both phases, Stern
and Halperin (2002) have found a phenomenological ex-
pression for the drag resistivity

ρDxx =
8εf(1− f)(1− 2f)

ε2 + 4(1− 2f)2
. (139)

As f increases from zero, this drag resistivity grows from
zero [or rather, the very small value in the compressible
state that is neglected in Eq. (139)] reaching a maximum
at f∗ ≈ 1/2− ε/4 (for small ε) and again vanishing at
the percolation threshold, in qualitative agreement with
the non-monotonic drag observed in Kellogg et al. (2003,
2002b).
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FIG. 33 (Color online) Left: Hall (open dots) and longitudi-
nal (closed dots) drag resistance at νT = 1 and T = 50mK as
a function of the ratio d/`0. The two lower panels show the
temperature dependence of the location and the half-width
of the peak in RDxx. The lines are guides for the eye. [Re-
produced from Kellogg et al. (2003).] Right: Drag resistivity
and Hall drag resistivity in units of h/e2 for different temper-
atures. The end points represent the strong- (ρDxy = −1) and

weak-coupling (ρDxy = 0) regimes. The dashed line represents
Eq. (140). [Reproduced from Tutuc et al. (2009).]

Furthermore, using the semicircle law (Dykhne and
Ruzin, 1994), it can be shown that to the lowest order
in ε the drag resistivities satisfy the relation (Stern and
Halperin, 2002)

(ρDxy + 1/2)2 + (ρDxx)2 = 1/4, (140)

yielding vanishing Hall drag for the compressible state
(f = 0) and the quantized value (136) with n = −1 for
the (1, 1, 1) state at f > 1/2. Between the two extremes
the negative ρDxy varies monotonously. The apparent

discrepancy in the sign of ρDxy obtained by Stern and
Halperin (2002) and Kim et al. (2001) seem to stem
from the alternative definition of drag resistivities. Sim-
ilar predictions for transport coefficients, in particular
Eq. (140), but without the explicit phase separation were
obtained by Simon et al. (2003). An alternative model
invoking the coexistence of the two phases was suggested
by Spivak and Kivelson (2005).

The semicircle relation (140) was experimentally tested
in Tutuc et al. (2009), see Fig. 33. Instead of comparing
a number of double-well devices with different interlayer
separations (Kellogg et al., 2003), Tutuc et al. (2009) var-
ied the electron density and observed the transition be-
tween the strong-coupling state at νT = 1 and the weakly
coupled state at νT = 2. The data at intermediate tem-
peratures T ≈ 300K are in a good quantitative agreement
with the theory. At the same time, Eq. (140) is only ap-
proximate and is expected to hold if the drag resistivity
is much larger than the symmetric bilayer resistivity at
all fillings. Drag resistivity in the weak-coupling state is
also neglected. Given these approximations, the agree-
ment between the data and the phenomenological theory
of Stern and Halperin (2002) is satisfactory.

B. Interlayer exciton formation

Further experiments revealed the most intriguing fea-
ture of the strong-coupling quantum Hall state at νT = 1:
the presence of the exciton condensate capable of neutral
superfluid transport (Eisenstein, 2014; Eisenstein and
MacDonald, 2004). Originally envisioned for optically
generated excitons in bulk semiconductors (Blatt et al.,
1962; Keldysh and Kopaev, 1964; Keldysh and Kozlov,
1968; Moskalenko, 1962), the phenomenon has been pre-
dicted also for indirect excitons in double-layer systems
(Lozovik and Yudson, 1976; Shevchenko, 1976).

The quantized Hall effect along with the vanishing lon-
gitudinal resistivity at νT = 1 indicate a gapped spec-
trum of charged excitations. In these measurements
(Eisenstein, 2014; Eisenstein et al., 1992; Suen et al.,
1992), electrical currents in the two layers flow in the
same direction. In contrast, the condensate couples to
antiparallel or counterflowing currents (Kellogg et al.,
2004; Tutuc et al., 2004; Wiersma et al., 2004) and man-
ifests itself through vanishing Hall voltage. The simplest
explanation for this observation is based on charge neu-
trality of excitons: as neutral objects, excitons do not
experience the Lorentz force and hence no Hall voltage
develops when equal, counter-propagating currents are
flowing through the two layers.

Another spectacular manifestation of the exciton con-
densate is the Josephson-like tunneling anomaly (Finck
et al., 2008; Spielman et al., 2000; Tiemann et al., 2008a;
Wiersma et al., 2006, 2007; Yoon et al., 2010) that the-
oretically was predicted in Park and Das Sarma (2006)
and Wen and Zee (1992) and later discussed in Dolcini
et al. (2010).

Finally, the latest experiments revealing the existence
of the exciton condensate utilized the multiple connected
Corbino geometry (Finck et al., 2011; Nandi et al., 2012;
Tiemann et al., 2008a,b). For a theoretical discussion
of the superfluid flow in the Corbino geometry see Su
and MacDonald (2008). The advantage of the Corbino
samples is that they support the exciton flow through the
bulk (in contrast to the Hall bar samples where transport
is dominated by the edges).

Coulomb drag has played an important role in discov-
ering the interlayer correlated state (Eisenstein, 2014).
Quantized Hall drag measured in the simply connected
square geometry (Kellogg et al., 2002b) was one of
the first indications of anomalous in-plane transport in
double-layer systems at νT = 1. Remarkably, the quan-
tized Hall voltage has been found to be the same in both
layers. At first glance, this contradicts the boundary con-
ditions of the drag measurement: drag experiments in-
volve passing current through one of the layers and mea-
suring the induced voltage in the other, where no current
is allowed to flow. The absence of the current seems to
yield the absence of the Lorentz force and hence lead to
the standard conclusion that no Hall voltage should be
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FIG. 34 (Color online) Corbino Coulomb drag. Solid lines
show the drive and drag currents. The measurement was per-
formed at νT = 1, T = 17mK, and d/`0 = 1.5. Dashed lines
represent the results of simulations incorporating estimated
series resistances and measured Corbino conductivity. The
inset shows the measurement schematic. The resistances Ri
comprise both external circuit resistors and the resistances in-
trinsic to the device. [Reprinted by permission from Macmil-
lan Publishers Ltd: Nature, Nandi et al. (2012).]

induced in the passive layer, see Sec. II.G. However, this
argument does not take into account collective effects. In
the presence of the condensate, the driving current can
be decomposed into the symmetric and antisymmetric
parts (Stern and Halperin, 2002). While the symmetric
current carries the electric charge, the antisymmetric –
or counterpropagating – current is equivalent to the con-
densate flow. In the passive layer the two currents cancel
each other thus satisfying the boundary condition. At
the same time, it is the symmetric, charge-carrying cur-
rent that can couple to the magnetic field. This current
is shared between the layers, yielding the identical quan-
tized Hall voltage across both layers.

Similar arguments lead to the expectation of “perfect”
longitudinal drag (Su and MacDonald, 2008): the sym-
metric current shared between the layers should be re-
sponsible not only for the Hall, but also for the lon-
gitudinal voltage in the passive layer. This prediction
was tested in a dedicated experiment by Nandi et al.
(2012) using Corbino samples. Deviating from the stan-
dard setup, Nandi et al. (2012) have closed the electric
circuit in the passive layer and measured the induced cur-
rent, rather than the voltage. In this case, perfect drag
means that the induced current should be same in mag-
nitude as the driving current passed through the active
layer while flowing in the opposite direction. This is ex-
actly what has been observed by Nandi et al. (2012), at
least for small driving currents, see Fig. 34.

The above arguments neglect the impact of disorder
that might affect the presumed dissipationless excitonic
transport (Su and MacDonald, 2008) across the bulk of
the device (Fertig and Murthy, 2005; Fil and Shevchenko,
2007; Huse, 2005; Lee et al., 2011). Assuming a phe-

FIG. 35 (Color online) Coulomb drag in a graphene-2DEG
vertical heterostructure. Left: measured drag resistivity. The
dashed line represents the best fit for the standard temper-
ature dependence RD = aT 2, a = (5.8± 0.3)× 10−4ΩK−2.
Middle: a fit of the low-T upturn based on Eq. (141). The
critical temperature found from the fit is Tc ∼ 10− 100mK.
Right: the low-T upturn in a bilayer graphene-2DEG het-
erostructure. The fit based on Eq. (141) yields Tc ∼ 190mK.
[Reprinted by permission from Macmillan Publishers Ltd:
Nature Communications, Gamucci et al. (2014).]

nomenological resistance Rs of the excitonic system, one
still finds [neglecting the Corbino conductance (Nandi
et al., 2012)] perfect drag I1 = I2 = V/(R1 +R2 +Rs),
where Ri represent the net resistances in series with the
Corbino sample, see the inset in Fig. 34. As the mag-
nitude of R1 +R2 is expected to always exceed 2h/e2

(Pesin and MacDonald, 2011; Su and MacDonald, 2008),
the ability of the experiment to detect small values of
Rs is limited. The issue of dissipation in the excitonic
system might be clarified by future multi-terminal mea-
surements.

So far we have discussed experiments on the exciton
physics in double-layer systems comprising similar elec-
tronic layers (Eisenstein and MacDonald, 2004). It is
also possible to create devices with oppositely doped lay-
ers, the so-called electron-hole bilayers (Das Gupta et al.,
2011; Keogh et al., 2005). Coulomb drag measurements
in these systems (Croxall et al., 2008; Seamons et al.,
2009) do not provide a direct evidence of interlayer co-
herence, but nevertheless demonstrate an upturn in ρD as
the temperature is lowered below 1K. The upturn is seen
only in devices with smaller (20nm) interlayer separation
suggesting exciton formation.

A microscopic theory of Coulomb drag in proximity
to a phase transition was suggested by Hu (2000b) and
Mink et al. (2012, 2013). As the system approaches the
transition temperature Tc from above, the drag resistivity
was found to exhibit a logarithmic divergence

ρD = ρ0 +A ln[Tc/(T − Tc)], (141)

where ρ0 and A are two fitting parameters (Gamucci
et al., 2014). While qualitatively resembling the upturn
observed in electron-hole bilayers (Croxall et al., 2008;
Seamons et al., 2009), the theory accounts neither for a
subsequent downturn at the lowest temperatures, nor the
apparent violation of Onsager reciprocity (Croxall et al.,
2008) [although the latter might be related to heating
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effects (Seamons et al., 2009)]. The theory also does not
make falsifiable predictions regarding the dependence of
ρD on carrier densities in the two layers (Morath et al.,
2009) [at higher temperatures, where the data show the
standard T 2 dependence, the density dependence of ρD
is stronger than expected on the basis of the Fermi-liquid
many-body calculations (Hwang and Das Sarma, 2008b)].

The logarithmic temperature dependence (141) fits
well with the upturn in the drag resistivity observed in
Gamucci et al. (2014) in hybrid devices comprising ei-
ther a monolayer or bilayer graphene sheet and a GaAs
quantum well, see Fig. 35. In fact, the search for exciton
physics was one of the main motivations for experimental
studies of Coulomb drag in double-layer graphene-based
structures (Gorbachev et al., 2012; Kim et al., 2011).

Exciton condensation in graphene has attracted con-
siderable theoretical attention (Abergel et al., 2013;
Aleiner et al., 2007; Efimkin and Lozovik, 2011; Fil and
Kravchenko, 2009; Kharitonov and Efetov, 2008, 2010;
Lozovik et al., 2012; Lozovik and Sokolik, 2008; Min
et al., 2008; Pikalov and Fil, 2012; Sodemann et al., 2012;
Suprunenko et al., 2012; Zhang and Joglekar, 2008). Sev-
eral contradicting values of the transition temperature in
double-layer graphene systems have been reported. The
initial estimate (Mink et al., 2012; Zhang and Joglekar,
2008) of Tc close to room temperature appeared to be
too optimistic. Screening effects (Kharitonov and Efe-
tov, 2008, 2010) were shown to lead to extremely low
values under 1mk (Tc ∼ 10−7EF ). More recent investiga-
tions involving detail analysis of screened Coulomb inter-
action (Abergel et al., 2013; Lozovik et al., 2012; Sode-
mann et al., 2012), multiband pairing (Lozovik et al.,
2012; Mink et al., 2012), and pairing with nonzero mo-
mentum (Efimkin and Lozovik, 2011) suggest somewhat
higher values of Tc, making the transition experimentally
accessible.

High-temperature coherence and superfluidity has also
been suggested in thin films of topological insulators
(Efimkin et al., 2012; Mink et al., 2012, 2013; Seradjeh
et al., 2009).

The effect of exciton condensation on Coulomb drag
has been investigated in graphene numerically by Zhang
and Jin (2013) and in topological insulator films analyt-
ically in Efimkin and Lozovik (2013). The latter work
focused on the drag effect at temperatures exceeding Tc,
where the pairing fluctuations are expected to play an
important role. In addition to the Maki-Thompson-type
contribution (Hu, 2000b; Mink et al., 2012, 2013) to the
drag resistivity, Efimkin and Lozovik (2013) have ana-
lyzed the Aslamazov-Larkin-type contribution and found

δρALD ∝ [ln(T/Tc)]
−1. (142)

Far away from the transition, the result (142) decays log-
arithmically, similarly to Eq. (141), but close to the tran-
sition exhibits a stronger divergence δρALD ∝ (T − Tc)−1.

VIII. OPEN QUESTIONS AND PERSPECTIVES

The physics of the Coulomb drag in double-layer sys-
tems is well understood if both layers are in the Fermi-
liquid state (Flensberg et al., 1995; Kamenev and Oreg,
1995). The current in the passive layer is created by ex-
citing electron-hole pairs (each pair consisting of an oc-
cupied state above the Fermi surface and an empty state
below) in a state characterized by finite momentum. The
momentum comes from the electron-hole excitations in
the active layer created by the driving current. The mo-
mentum transfer is due to the interlayer Coulomb inter-
action. Therefore it follows from the usual phase-space
considerations that the drag coefficient is proportional
to the square of the temperature ρD ∝ T 2. Remark-
ably, this simple argument is sufficient to describe the
observed low temperature dependence of ρD. Deviations
from the quadratic dependence at higher temperatures
are primarily due to the effect of phonons and plasmons
(Rojo, 1999).

The universality of the Landau Fermi-liquid theory
(Altshuler and Aronov, 1985; Lifshitz and Pitaevskii,
1981) can be traced to the linearization of the quasi-
particle spectrum. Within this approximation all details
of the microscopic structure of the system are contained
in a limited number of parameters, such as the Fermi
velocity and density of states (DoS) at the Fermi level.
Many observable quantities (e.g. the electronic contribu-
tion to the specific heat, spin susceptibility, period of the
De Haas-van Alphen oscillations, etc.) can be expressed
in terms of these parameters and thus exhibit the “uni-
versal” behavior (as a function of temperature or external
fields). Same arguments can be applied to elementary ex-
citations in strongly doped graphene (µ� T ), where the
Fermi-liquid theory is expected to be applicable.

Coulomb drag belongs to a different class of observ-
ables. In conventional semiconductor devices, it reflects
the degree of electron-hole asymmetry in the system
vanishing in the approximation of linearized spectrum
(Kamenev and Oreg, 1995). The drag coefficient is deter-
mined by the subleading contribution taking into account
the curvature of the quasi-particle spectrum. Indeed, in
the passive layer the momentum is transferred equally to
electrons and holes so that the resulting state can carry
current only in the case of electron-hole asymmetry. Like-
wise, this asymmetry is necessary for the current-carrying
state in the active layer to be characterized by nonzero
total momentum. The electron-hole asymmetry mani-
fests itself (Narozhny et al., 2001; von Oppen et al., 2001)
in the energy (or chemical potential) dependence of such
quantities as the density of states, single-layer conductiv-
ity, and diffusion coefficient. Within the Fermi-liquid the-
ory (Kamenev and Oreg, 1995), the asymmetry is weak,
∂σi/∂µi ≈ σi/µi, leading to the drag effect, that is much
weaker than the single-layer conductivity.

Coulomb drag in non-Fermi-liquid systems is much
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more interesting. In particular, it has been used to study
novel strongly-correlated, many-body states in double
quantum wells (Eisenstein, 2014), graphene (Gamucci
et al., 2014), quantum wires (Laroche et al., 2014), and
optical cavities (Berman et al., 2014), where practical
applications in optical switches have been suggested. In
these systems, drag measurements have proved to be an
invaluable tool to study the microscopic structure of com-
plex, interacting many-body systems.

At the same time, our understanding of many of these
systems is incomplete. In contrast to the Fermi-liquid
theory, many aspects of the strongly-correlated many-
body states lack a detailed theoretical description. Con-
sequently, their transport properties, including Coulomb
drag, can be evaluated only with the help of heuristic
or phenomenological models. One can only hope that a
proper microscopic theory of these effects will eventually
be developed.

This brings us to the list of unresolved questions re-
lated to the theory reviewed in this paper and possible
direction of the field in the near future.

(i) At low enough temperatures and especially in
strong magnetic fields, double-layer systems may host
excitonic condensates (Eisenstein, 2014). In monolayer
graphene, such condensation is also possible, but for rea-
sonably weak interactions the condensation temperature
appears to be rather low (Aleiner et al., 2007; Kharitonov
and Efetov, 2008; Mink et al., 2012). Nevertheless, a pos-
sibility of interlayer correlated states in graphene-based
systems [and possibly in hybrid devices involving other
materials, (Geim and Grigorieva, 2013)] is rather exciting
and certainly requires theoretical attention.

(ii) The hydrodynamic approach of Sec. IV.B should
be extended to include thermoelectric effects in graphene-
based double-structures as well as in monolayer and bi-
layer graphene. As pointed out in Foster and Aleiner
(2009) and Narozhny et al. (2015), the quasiparticle im-
balance in graphene may play a decisive role in ther-
mal transport. Another promising direction may be
opened by generalization of the macroscopic linear-
response equations to a true, nonlinear hydrodynamics.
The relation between the quantum kinetic equation of
Zala et al. (2001) and the hydrodynamic approach [both
in graphene (Narozhny et al., 2015) and in 2DEG (An-
dreev et al., 2011; Apostolov et al., 2014)] is also of cer-
tain theoretical interest.

(iii) Dirac fermions can be found as low-energy exci-
tations not only in graphene, but also in topological in-
sulators (Bernevig and Hughes, 2013; Shen, 2013). An
extension of the present theory of Coulomb drag to var-
ious possible system configurations involving topological
insulators and/or hybrid devices involving topological in-
sulators, graphene, etc. appears to be very promising
(Mink et al., 2012).

(iv) Novel aspects of Luttinger liquid physics and role
of equilibration processes on drag can be further explored

with the edge states of quantum Hall systems or topo-
logical edge liquids of quantum spin Hall effect. Some
theoretical predictions have already being made (Zyuzin
and Fiete, 2010) and recent experimental advances (Al-
timiras et al., 2010; Du et al., 2015; König et al., 2013;
Roth et al., 2009) bring these exciting perspectives within
reach.

(v) Mesoscopic fluctuations of Coulomb drag in ballis-
tic samples should be further analyzed on the basis of
the microscopic theory. The theory should be further ex-
tended to the cases of Dirac fermions in graphene and
composite fermions at the half-filled Landau level. Ex-
perimental work in this direction has been already initi-
ated in Kim et al. (2011) and Price et al. (2010).

(vi) The third-order drag effect (see Sec. IV.F) bears a
certain resemblance to the well-known Altshuler-Aronov
corrections to single-layer conductivity (Altshuler and
Aronov, 1985; Zala et al., 2001). In Zala et al. (2001)
it was shown that the dominant contribution to conduc-
tivity at low (diffusive regime) and high (ballistic regime)
temperatures technically comes from different diagrams
describing conceptually similar, but at the same time dis-
tinct interference processes. Similarly, we expect that the
third-order drag contribution in ballistic regime might be
governed by scattering processes which are distinct from
those considered in Levchenko and Kamenev (2008a).

We would like to close this review by pointing out the
surprising richness of the Coulomb drag problem. The
original suggestion of a way to observe interwell inter-
actions in semiconductor heterostructures has developed
into a vibrant field of research where technological ad-
vances go hand in hand with theoretical developments.
New experiments with novel materials keep being devised
and stimulate new avenues for theoretical thinking. We
should be expecting to see further intriguing discoveries
being made related to frictional drag in the foreseeable
future.
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