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Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of
burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear
Alfvén waves and their self-consistent interaction with energetic particles in tokamak fu-
sion devices. More specifically, the review on the linear physics deals with wave spectral
properties and collective excitations by energetic particles via wave-particle resonances.
The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear
wave-energetic particle interactions. Both linear as well as nonlinear physics demon-
strate the qualitatively important roles played by realistic equilibrium nonuniformities,
magnetic field geometries, and the specific radial mode structures in determining the
instability evolution, saturation, and, ultimately, energetic-particle transport.

These topics are presented within a single unified theoretical framework, where experi-
mental observations and numerical simulation results are referred to elucidate concepts
and physics processes.

PACS numbers: 52.35.-g, 52.35.Bj, 52.35.Mw, 52.55.Pi, 52.55.Tn, 52.35.Sb;

52.35.-g Waves, oscillations, and instabilities in plasmas and intense beams

52.35.Bj Magnetohydrodynamic waves (e.g., Alfvén waves)

52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects,
mode coupling, ponderomotive effects, etc.)

52.55.Pi Fusion products effects (e.g., alpha-particles, etc.), fast particle effects

52.55.Tn Ideal and resistive MHD modes; kinetic modes
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I. INTRODUCTION

Since the mid 20th century, mankind has pursued magnetic fusion energy (MFE) research, which has reached a
crucial stage with the construction of the International Thermonuclear Experimental Reactor (ITER) (Aymar et al.,
1997; Tamabechi et al., 1991). The purpose of ITER is investigating the physics of burning plasmas, where deuterium-
tritium (D-T) fusion reactions

D + T — *He(3.52MeV) + n(14.06 MeV)

produce a-particles and neutrons. In ideal conditions for a fusion reactor, a-particles thermalize (slow down) due to
Coulomb collisions with the thermal plasma and sustain the fusion process by supplying the power input required to
keep the plasma in “ignition” condition. Thus, a-particles need to have sufficiently good confinement.

In toroidally symmetric magnetic fusion experimental devices (tokamaks); e.g., ITER, the geometry of the confining
equilibrium magnetic field By is conceived to ensure properly confined charged particle orbits, including fusion a-
particles. While transport due to classical collisional processes is sufficiently small, the concern is transport via



collective fluctuations driven unstable by a-particles via wave-particle resonances. Such collective instabilities may
be toroidal-symmetry breaking and, thus, lead to enhanced a-particle loss. Such “anomalous” enhanced loss is, of
course, detrimental to the success of MFE research.

In order to achieve wave-particle resonances, the a-particle characteristic dynamical frequencies need to match the
wave frequencies of collective instabilities. As, typically, a-particle velocity-space distribution function is isotropic
and, after slowing down due to Coulomb collisions, decreases with energy; i.e., velocity-space gradient is stabilizing,
no collective fluctuations around the cyclotron frequency (or “gyrofrequency”) will be excited. That is, the relevant
instability drive is due to the finite real-space gradients. The dynamical frequencies are, thus, associated with the
guiding-center motion; i.e., transit, bounce, and precessional frequencies in, e.g., a tokamak device. The corresponding
wave frequencies then fall inside the magnetohydrodynamic (MHD) regime (Alfvén, 1942, 1950); which are O(1072)
smaller than 2;, the ion gyrofrequency, for typical tokamak parameters. As to the three finite-frequency MHD modes,
the most relevant one is the nearly incompressible, anisotropic shear Alfvén wave (SAW); with dispersion relation
w = kjva. Here, kj = k- Bo/By is the parallel wave number and va = Bo//4m0mo is the Alfvén speed, with g0 the
plasma mass density. The compressional/fast Alfvén wave with wy >~ kva tends to have frequencies at least O(10)
higher than those of SAW and, generally, is more difficult to excite. The slow sound wave with ws >~ kjjc; (¢, is the ion
sound speed), meanwhile, is also typically stable due to significant ion Landau damping with T, ~ T;; where T, and
T; are, respectively, thermal electron and ion temperatures. The above discussion is also applicable to energetic/fast
(relative to the thermal background plasma) charged particles produced by auxiliary heating sources; such as radio-
frequency waves and/or neutral beam injection. Collective excitations of SAW instabilities by energetic/fast particles
(EPs) and the ensuing nonlinear consequences on EP confinement as well as, on longer time scales, the confinement
and stability of thermal background plasmas are, thus, crucial issues for both present-day MFE devices and future
burning-plasma experiments.

A. Historical review

Energetic particles in burning plasmas consist of electrically charged fusion products as well as supra-thermal ions
and electrons, generated by external power sources that are used for heating and current drive or, more generally,
for tailoring and controlling equilibrium plasma profiles. The possible detrimental roles of SAWs on EP confine-
ment in burning plasmas was brought to researchers’ attention since the pioneering works by (Belikov et al., 1968,
1969; Kolesnichenko and Oraevskij, 1967; Mikhailovskii, 1975a,b; Rosenbluth and Rutherford, 1975). In particular,
(Kolesnichenko and Oraevskij, 1967) suggested that instabilities may be caused by fusion products; and (Belikov et al.,
1968, 1969) showed for the first time the existence of SAW instabilities with w ~ kjv4 driven by mono-energetic EPs.
As the characteristic frequencies of EP motions in fusion devices are of the same order of those typical of SAWs, and
the SAW group velocity, meanwhile, is parallel to By, resonant wave-particle interactions may directly excite a variety
of SAWs as well as yield an efficient transport channel for EPs.

In the 80s, increasing theoretical attention was devoted to the analysis of the effects of fusion a’s in burning plasmas;
e.g., in the works by (Kolesnichenko, 1980) and (Tsang et al., 1981). However, the problem of SAWSs interactions
with EPs and of related transport processes became an issue of immediate practical interest at the time of the first
observation of the fishbone mode instability in the PDX tokamak (McGuire et al., 1983); causing dramatic global
losses of EPs due to a secular transport process (White et al., 1983). This instability has been explained as resonant
excitation of an internal kink mode and its self-consistent non-linear interplay with the EP non-uniform source (Chen
et al., 1984; Coppi and Porcelli, 1986). After fishbone observation and theoretical interpretation, MHD modes have
been considered on the same footing as SAWSs concerning their possible effect on EPs confinement. Essential physics
ingredients in these analyses were non-uniform equilibrium profiles of EP sources, of SAW continuous spectrum (Chen,
1988, 1994; Chen et al., 1984; Cheng et al., 1985), the corresponding continuum damping by phase mixing (Grad,
1969), the specific equilibrium geometries of magnetized plasmas, and the resultant frequency gaps inside the SAW
continuum (D’Ippolito and Goedbloed, 1980; Kieras and Tataronis, 1982; Pogutse and Yurchenko, 1978). In the same
years, further demonstration of the articulated role played by EPs in tokamak plasmas came with the evidence of
“sawtooth”! stabilization in plasma discharges with additional heating (Campbell et al., 1988) observed in the Joint
European Torus (JET) (Rebut et al., 1985). This was explained with the strong stabilizing effect of magnetically
trapped EPs on the internal kink mode (Coppi et al., 1988a; White et al., 1988); and is an important example of
plasma operation control by external power input.

1 This name is referred to the “shape” of the time trace of plasma electron temperature on the magnetic axis.



An important theoretical result was that discrete Alfvén Eigenmodes (AEs), such as Toroidal AEs (TAEs), can
exist essentially free of continuum damping in the frequency gaps of the SAW continuous spectrum (Cheng et al.,
1985). Experimental observations of TAEs (Heidbrink et al., 1991; Wong et al., 1991) and of lower frequency AEs
dubbed Beta induced AEs (BAEs) (Heidbrink et al., 1993b), and, most importantly, the evidence that these modes
may have significant impact on EP transport were the findings that finally have brought significant and continuing
attention to the physics of SAWs and EPs in burning plasmas. In fact, only a small fraction of fusion a’s or EP losses
can be tolerated in ITER without significantly degrading the fusion yield or damaging the plasma facing components
(Fasoli et al., 2007; ITER Physics Expert Group on Energetic Particles, Heating and Current Drive, ITER Physics
Basis Editors, 1999; Pinches et al., 2015).

Another important theoretical prediction was the existence of energetic particle continuum modes (EPM) (Chen,
1994); i.e., non-normal modes of the SAW continuous spectrum, which emerge as discrete fluctuations at the frequency
that maximizes wave-EP power exchange above the threshold condition associated with continuum damping. In this
respect, fishbones could be considered the first example of EPM. In the presence of EPM and/or fishbones, the low
critical level of tolerable EP losses in a fusion device can become more severe. In fact, being non-normal modes,
both fishbones and EPMs maintain maximum wave-EP power exchange and ensuing EP transport through their
nonlinear evolution by phase locking with resonant particles via frequency sweeping (Briguglio et al., 2007, 1998;
Vlad et al., 2004, 2013; Zonca et al., 2005, 2015b). In turn, phase locking is responsible for the secular transport
process first introduced by (White et al., 1983) to explain fishbone induced EP losses. Intuitively, secular losses of
EPs are characterized by a different energy spectrum than EP diffusive losses and tend to be more critical, since
resonant EPs are typically lost before significant thermalization (Chen, 1988; White et al., 1983). The self-consistent
non-linear interplay of EP spatial distributions with the EPM radial mode structures plays a crucial role in all these
processes. Experimental observations of EPMs and corresponding EP transport came right after their theoretical
prediction (Gorelenkov et al., 2000; Gorelenkov and Heidbrink, 2002). Meanwhile, first spectacular observations of
these phenomena, dubbed abrupt large amplitude events (ALE) (Shinohara et al., 2001), were reported in the JT-60U
tokamak (Shinohara et al., 2004) and are among the clearest experimental evidences of strong EP redistributions
along with observations of EP losses/redistributions in the DIII-D (Duong et al., 1993; Heidbrink and Sadler, 1994;
Strait et al., 1993) and NSTX tokamaks (Fredrickson et al., 2009; Podesta et al., 2011, 2009).

Since the early evidences of AEs and EPMs in tokamak plasmas, a whole “zoology” of modes have been observed
(Heidbrink, 2002), with a classification following the qualitative features of experimental measurements. All these
fluctuations can be actually understood and explained within the theoretical framework based on one single general
fishbone-like dispersion relation (GFLDR) (Zonca and Chen, 2014b,c), first introduced for the description of the
fishbone mode (Chen et al., 1984), and later on derived for different branches of SAW fluctuations, demonstrating its
general validity (Chen, 2008; Chen and Zonca, 2007a; Zonca et al., 2007a; Zonca and Chen, 2006, 2007). The usefulness
of the GFLDR theoretical framework stands in its capability of providing a simple description of the underlying physics
and extracting the distinctive features of the different AE/EPM branches that have been observed experimentally or
in numerical simulations. Furthermore, the GFLDR, also naturally introduces the spatiotemporal scales of the process
involved; explaining, thereby, the connection between MHD fluctuations, SAWs and drift wave turbulence (DWT).
The historical review of various experimental observations of AE/EPM and their theoretical interpretations is further
articulated in Secs. III and IV. Successful feedbacks between theory and experiment in this area were made possible
by the development of impressive diagnostic techniques as well as numerical simulation capabilities, accompanied by
detailed physics understanding. Meanwhile, one element of enrichment was brought by the fruitful exchanges between
MFE tokamak and stellarator expert communities (Kolesnichenko et al., 2011; Toi et al., 2011).

Of the two “routes” to nonlinear dynamics of EP-driven SAW instabilities (Chen and Zonca, 2013); i.e., nonlinear
wave-wave and wave-EP interactions (cf. Sec. IV), the former one was historically addressed first in the classic
work by Hannes Alfvén, demonstrating the existence of the pure “Alfvénic state”, where SAW can exist in uniform,
incompressible MHD plasmas independently of their amplitude due to the cancellation of Reynolds and Maxwell
stresses and the incompressible plasma motion produced by SAW (Alfvén, 1942, 1950; Walén, 1944). However,
nonlinear SAW-EP interactions have attracted most of the interest until very recently because of the important role
of EP transport in burning plasmas.

Within the first “route”, it is illuminating to explore the various nonlinear wave-wave interactions that could lead to
the breaking of the “Alfvénic state” (Chen and Zonca, 2013). The effect of plasma compressibility in the macroscopic
MHD limit was investigated by (Sagdeev and Galeev, 1969), demonstrating the decay instability of a SAW into an
ion sound wave (ISW) and a back-scattered SAW. Later, plasma compressibility effects were explored by (Hasegawa
and Chen, 1976) for micro-scale fluctuations with wavelengths of the order of the thermal ion Larmor radius. This
analysis not only generalized the MHD results on the decay instability, but demonstrated important consequences on
plasma transport due to the different features of scattered SAW fluctuation spectra. These processes are discussed in



Sec. IV.B, while Sec. IV.C analyzes examples of processes that could break the “Alfvénic state” in toroidal geometry
as well as lead to cross-scale couplings between MHD fluctuations, SAWs and DWT.

Within the second “route” (cf. Sec. IV.D), the first nonlinear analysis of “thermonuclear Alfvén instability” was
reported by (Belikov et al., 1974), using the quasilinear description of a weakly turbulent plasma (Drummond and
Pines, 1962; Vedenov et al., 1961). This case shows the important influence of original works on nonlinear wave-particle
dynamics in one-dimensional (1D) systems, investigated by pioneers in the early 60s; e.g., (O’Neil and Malmberg,
1968), adopting the paradigmatic case of the interaction of a supra-thermal electron beam with a plasma in a strong
axial magnetic field. This system provides the framework in which various processes were investigated and understood,
such as mode dispersion relations, Landau damping in a finite amplitude wave (Mazitov, 1965; O’Neil, 1965), and
nonlinear behavior due to wave-particle interactions [e.g., (O'Neil et al., 1971)]. The interest for the beam-plasma
system has been revived in the 90s, when it was proposed as a paradigm for interpreting experimental observation of
AEs excitation by EPs and related non-linear dynamics processes near marginal stability (Berk et al., 1996b, 1997b,
1992a; Breizman et al., 1997, 1993), based on their one-to-one correspondence with the evolution of the “bump-on-tail”
instability (Langmuir wave) in a 1D uniform plasma (Berk and Breizman, 1990a,b,c). This “bump-on-tail” paradigm,
recently reviewed by (Breizman and Sharapov, 2011), has been extensively applied for comparisons of theoretical
model predictions with experimental observations. There are, however, processes crucial to the dynamics of toroidal
plasmas; such as fishbone induced EP losses (White et al., 1983) as well as nonlinear EPM dynamics and ensuing EP
transport (Briguglio et al., 1998; Vlad et al., 2004; Zonca et al., 2000, 2005), which would require theoretical analyses
based on an alternative “fishbone” paradigm (Chen and Zonca, 2013; Zonca et al., 2015b). Magnetic field geometry
and plasma nonuniformities play major roles in this “fishbone” paradigm. In particular, nonlinear dynamics due to
the self-consistent interplay of fluctuations evolution and EP transport leads typically to secular EP losses due to
EPMs/fishbones and phase locking of fluctuations with resonant particles via frequency sweeping. Ultimately, it is
possible to demonstrate the unification of these two paradigms for nonlinear wave-EP interactions (cf. Sec. IV.D),
based on the solution of the Dyson equation for the EP distribution function (Al'tshul’ and Karpman, 1965, 1966).

Due to the intrinsic complexity involved in a self-consistent nonlinear description of SAW fluctuations with EPs, EP
transport in burning plasmas has typically been addressed by test-particle methods (Hsu and Sigmar, 1992; Sigmar
et al., 1992); i.e., removing the possible feedback of EP redistributions on a given fluctuation spectrum (cf. Sec. V). As
AE fluctuations are local in nature and have generally small intensity [cf., e.g.. (Heidbrink, 2008)], EP redistributions
by AEs are expected to be typically small, unless stochastization threshold of EP motions in phase-space is reached
in the presence of many modes. Realistic predictions of test particle transport in ITER are, however, still not
available. In fact, not only the threshold for stochastic EP transport is very sensitive to details of the underlying
physics and adopted model (White et al., 2010a,b), but predicting EP redistributions and losses requires necessarily
realistic sources, geometries and boundary conditions. Such thorough and detailed calculation of AE spectra in ITER
with comprehensive global gyrokinetic and/or extended hybrid MHD-gyrokinetic codes (cf. Sec. II) could be likely
available in the near future due to the progress in both computational capabilities and understanding of essential
physics ingredients.

B. Scope of the present review

The first and thorough experimental review of SAW and EP physics in burning plasmas is given by (Heidbrink and
Sadler, 1994). This work was followed by that by (Wong, 1999), which is focused on experiments in the Tokamak
Fusion Test Reactor (TFTR) (Grove and Meade, 1985) but still provides a general overview in this area. A dedicated
review of a-particle physics experiments in TFTR is given by (Zweben et al., 2000), while high performance D-T
experiments in JET (Gibson and the JET Team, 1998) were stable to SAW excited by fusion a’s (Sharapov et al.,
1999). Meanwhile, (ITER Physics Expert Group on Energetic Particles, Heating and Current Drive, ITER Physics
Basis Editors, 1999) give the first review of the physics of SAW and EPs in ITER plasmas, which was updated later
on (Fasoli et al., 2007), while the most recent review of this topic can be found in (Pinches et al., 2015).

Basic theoretical reviews can be found in (Mahajan, 1995), analyzing the general linear properties of the SAW
fluctuation spectrum; and in (Chen and Zonca, 1995), with a discussion of the complications and twists of SAW
physics in realistic toroidal geometries. A general overview of both linear and nonlinear SAW and EP physics is given
by (Vlad et al., 1999), along with a discussion of numerical simulation results using the hybrid MHD-gyrokinetic
model (Park et al., 1992). The work by (Pinches et al., 2004a) mainly focuses on the interplay between advancements in
nonlinear theory, also reviewed by (Breizman, 2006), and comparisons with experimental data. Other brief overviews
are available, with emphasis on the self-consistent interaction of nonlinear SAW dynamics with EP transport and
complex behavior in burning plasmas (Chen and Zonca, 2007a; Zonca et al., 2006).



Key issues for burning plasmas are summarized by (Heidbrink, 2002) and a general review of basic physics of SAWs
and EPs in toroidal plasmas is given by (Heidbrink, 2008). An updated view of experimental results since (Hei-
dbrink, 2002; Wong, 1999) and of the further progress in nonlinear theory comparison with experimental data is
presented by (Breizman and Sharapov, 2011). Very recent overview works, meanwhile, focus on the progress made in
developing innovative diagnostics techniques and on the modeling effort for the interpretation of the corresponding
observations (Gorelenkov et al., 2014; Sharapov et al., 2013); as well as on the kinetic models and numerical solution
strategies adopted in comparisons of numerical simulation results to experiments (Lauber, 2013). For stellarators, a
recent experimental review can be found in (Toi et al., 2011), while theoretical aspects are reviewed by (Kolesnichenko
et al., 2011), both with emphasis on the “affinity and difference between energetic-ion-driven instabilities in 2D and
3D toroidal systems”.

The scope of the present review is to provide a comprehensive analysis of physics processes involved with SAW
and EP behavior in burning plasmas within a unified and self-contained theoretical framework. As prevalent Alfvénic
fluctuations are in the MHD frequency range (Jw| < §2;), basic equations are derived from the nonlinear gyrokinetic
equation (Frieman and Chen, 1982) (cf. Sec. IT). Most detailed derivations, which interested readers can find in
(Zonca and Chen, 2014b,c), are omitted in Sec. II. The main scope of Sec. II is the discussion of fundamental physics
processes described by basic equations; especially their characteristic spatial and temporal scales.

Experimental observations and numerical simulation results are important elements of existing literature in this
area, and are referred to in this work as means for elucidating theoretical concepts. Thus, the present review offers
different levels of reading that are merged and integrated into the same narrative to address the different aspects
that may be of interest to theoreticians, modelers and/or experimentalists. The GFLDR. (cf. Sec. II1.C) provides the
foundation of the unified theoretical framework used throughout this work; and is derived and discussed in (Zonca
and Chen, 2014b,c). The present review shows the usefulness of the GFLDR theoretical framework in suggesting the
interpretation of experimental observations and numerical simulation results on the basis of the underlying physics. In
this respect, various models and computation techniques with different levels of approximation can also be employed
to validate and verify theoretical predictions.

The application of the GFLDR theoretical framework to nonlinear SAW and EP dynamics (cf. Sec. IV) allows
separating wave-wave and wave-EP nonlinear interactions based on the respective spatio-temporal scales, and unifying
the “bump-on-tail” and “fishbone” paradigms for nonlinear SAW-EP interactions (Zonca et al., 2015b) based on the
solution of the Dyson equation for the EP distribution function. It also naturally yields to the formulation of a
general nonlinear Schrodinger equation (NLSE) with integro-differential nonlinear terms (cf. Sec. IV.A), which can be
used to draw analogies between this area of MFE and neighboring fields of physics research; such as fluid turbulence,
condensed matter, nonlinear dynamics and complexity, fractional kinetics, and accelerator physics (cf. Secs. IV.D
and IV.E). This unified approach also elucidates the role of EPs as mediators of cross scale coupling and long time
scale behavior in burning plasmas (Zonca, 2008; Zonca et al., 2013; Zonca and Chen, 2008), reviewed by (Zonca et al.,
2015a).

In spite of the broad range of topics discussed by this review, it is far from being complete. A summary of relevant
issues left out of this work is given in Sec. VI, along with elements for reflections on some of the major research topics
in the MFE field for the next decade or so, in the perspective of ITER operations.

Il. BASIC EQUATIONS AND CONCEPTS

In this section, we consider a magnetized plasma in general geometry and briefly review equations for low-frequency
electromagnetic fluctuations, produced by the self-consistent charged-particle motion. The low-frequency ordering
in magnetized plasmas is referred, as usual, to oscillation frequencies that are much smaller than the ion cyclotron
frequency €);, where Q = eBy/(mc), with the subscript ¢ denoting ions, By denotes the strength of the local equilibrium
magnetic field, e stands for the generic particle electric charge and m for its mass. Similarly, subscript e refers to
electrons and subscript E denotes EPs, which may be ions and/or electrons.

A self-consistent description of low-frequency fluctuations is based on the derivation of gyrokinetic Maxwell equations
(Antonsen and Lane, 1980; Catto et al., 1981; Frieman and Chen, 1982)2, expressed in terms of moments of the
gyrocenter Vlasov (Boltzmann) distribution. Within this approach, one can systematically decouple (Rutherford and
Frieman, 1968; Taylor and Hastie, 1968) the the nearly periodic particle gyromotion (Kruskal, 1962; Northrop, 1963)
from the fluctuation dynamics. This is achieved in two steps (Brizard, 1989; Dubin et al., 1983; Hahm, 1988; Hahm

2 See (Brizard and Hahm, 2007) for a recent and comprehensive review.



et al., 1988), based on asymptotic decoupling of the fast gyromotion time scale from a set of Hamilton equations
by Lie-transform methods (Brizard, 1990; Littlejohn, 1982; Qin and Tang, 2004). First, the guiding-center Hamilton
equations are derived eliminating the gyroangle dependence due to the gyromotion of charged particles about By.
Second, the new gyrocenter Hamilton equations are obtained eliminating the gyroangle dependence in the perturbed
guiding-center equations due to the presence of electromagnetic fluctuations. In this way (Brizard and Hahm, 2007),
it is possible to construct the gyrocenter magnetic moment as adiabatic invariant corresponding to the fast and
nearly periodic particle gyromotion in the gyrocenter gyroangle, while the guiding-center magnetic moment adiabatic
invariance is modified by the introduction of low-frequency fluctuations (Taylor, 1967).

In the following, we discuss equations governing the low-frequency response of a quasineutral, finite-3, magnetized
plasma, with 3 = 87 P/Bg defined as the ratio between kinetic and magnetic energy densities. We describe the low-
frequency plasma oscillations in terms of three fluctuating scalar fields, having chosen to work in the Coulomb gauge:
the scalar potential perturbation d¢; the parallel (to b = By/By) magnetic field perturbation ¢ B; and the parallel (to
b) vector potential fluctuation §A). For the sake of simplicity and, hence, clarity, we have, unless otherwise explicitly
stated, neglected, in this review, plasma rotation effects; which may be important in practical applications (cf., e.g.,
Secs. III.C and V.B) and can be, in principle, included via extensions of the present theoretical framework.

A. Gyrokinetic ordering of physical quantities

The ordering of spatiotemporal scales and fluctuation strength is the usual one in gyrokinetic theory. The back-
ground plasma is described by means of the small parameter eg = p;/Lp, with p; denoting the ion Larmor radius
and

1
|piV InBy| ~ep  and ﬁ% InBy| ~ €5 . (2.1)

A similar ordering is introduced for the background Vlasov (Boltzmann) distribution function fo

1
|piV1n fo] ~ep and —glnfo

T ~el (2.2)

The usefulness of having separate orderings, based on e and ep, is the possibility of introducing e /e as an auxiliary
ordering parameter for exploiting the inverse aspect-ratio expansion in a/ Ry ~ € /ep, with a and Ry the torus minor
and major radii, respectively. The time-scale ordering of Eqgs. (2.1) and (2.2) is consistent with the transport time-scale
ordering (Hinton and Hazeltine, 1976), as noted in (Frieman and Chen, 1982).

Spatial and temporal scales in the fluctuation fields (d¢,0A),058)) and distribution function (§f) are described in
terms of the ordering parameters (e, , €,)

~e, K1, (2.3)

|kJ_pi|N6J_N1 and ’Qil

with k and w the wave vector and angular frequency, and the subscript L indicating the component perpendicular
to b. The ordering for k| is obtained from the condition that strong wave-particle interactions may be accounted for;
i.e., denoting by vy; the ion characteristic (thermal) speed

Ll
ki

€w
~— . 24
- (24)

w ~ k”vti and ‘

The ordering of Egs. (2.3) and (2.4) may be applied to either thermal ions, as usual, or to EPs, yielding to a broad range
of frequency and wavelength spectra of fluctuations that can be described within the present theoretical framework
(cf. Secs. I1.B, IL.D and IL.E as well as Sec. III).

When investigating fluctuations of the Alfvén branch, the |kj/kL| ratio reflects the frequency ratio of shear to
compressional waves. In most of this work (see Sec. IL.D and IL.E), we will assume that these frequency scales
are well separated; for this is the condition under which SAW/DAW (drift Alfvén wave) are most easily excited by
both thermal plasma and EPs in fusion plasmas. Meanwhile, when considering compressional Alfvén waves (CAWs),
the frequency ordering reads w/Q; ~ |ki|va/Qs ~ |kipi|/BY/?, so that the oscillation frequency can no longer be
considered small compared with ; for typical conditions in fusion plasmas. In this case, a high-frequency gyrokinetic
description of linear plasma dynamics may still be derived (Chen and Tsai, 1983; Lashmore-Davies and Dendy, 1989;



Qin et al., 2000, 1999a; Tsai et al., 1984), but its discussion is outside the scope of the present review. Note that, while
the condition |k /kL| ~ €,/e. < 1 is consistent with gyrokinetic ordering, it is, in general, not necessary (Brizard
and Hahm, 2007; Qin et al., 1998, 1999b).

The relative fluctuation levels are estimated by the ordering parameter €;

5f| |6B.| |6X.
o == ~ ~ 1 2.5
o fo ‘ By Ut Gt (2:3)
with X | the perturbed gyrocenter velocity (cf. Eq. (2.25) below)
= cOE | 0B e ev
’5XL’ ~ BO ~ UHB—O ~ ELE(&ZS Vg GLE?H(SAH (7 (26)

and T; stands for the ion characteristic (thermal) energy. Finally, due to the condition |k /k | < 1, the compressional
component of the magnetic field fluctuation®, 0By, satisfies approximately the perpendicular pressure balance (Chen
and Hasegawa, 1991)

Thus, B is ordered as

VL(SB”
Q;

0B
‘—”‘Nﬂeg <1 = ‘u

Bo ‘ ~ Besvg; (2.8)

which apply in general for both low- and high-3 magnetized plasmas. Here, = v? /(2By) is the magnetic moment.

In the next subsection, we summarize equations governing the low-frequency response of a quasineutral, finite-g,
magnetized plasma, which apply for arbitrary f3; i.e., both in space (Chen and Hasegawa, 1991), for 5 ~ 1, and
laboratory plasmas (Hahm et al., 1988), for § < 1. The simplified equations for § < 1, more readily adopted for
the description of DAW dynamics in tokamaks, which are the main focus of the present review, will be discussed in
Sec. II.D. Finally, the further limiting case of governing equations that may be generally adopted for investigating
DAW excitation by EPs in burning plasmas is given in Sec. IL.E.

B. Theoretical model and formal governing equations

Consistent with the gyrokinetic wavelength ordering, discussed in Sec. IL.A, we assume k)%, ~ \%,/p? = Q2 / wfn» <
1, with Ap the Debye length and w,,; the ion plasma frequency. Thus, Poisson’s equation becomes approximately the
quasineutrality condition

> e(f), =0, (2.9)

where ) implicitly indicates summation on all particle species and (...), denotes integration in velocity space.
The equation for B is readily obtained from the perpendicular component of the low-frequency Ampere’s law
(without displacement current, since |k|?>c? > |wl|?)

VL(SBH = H5B|| + VH(SBL +(Vb)-0B, + 4% Z e (b x 'Ul5f>v . (2.10)

Here, V| =b-V, V, =V - bV, K = b- Vb is the equilibrium magnetic field curvature and the perpendicular
magnetic field fluctuation can be expressed as

0B, = VJ_(SAH x b+ (b X R)6A|| + b x V||6AJ_ + (b X Vb) “0A . (2.11)
Last, the equation for A can be written in terms of the vorticity equation

5
V-&j:Bo-V<%)+V-6jL=O. (2.12)
0

3 This denomination is due to the fact that dB) modifies the magnetic energy density at order €.



Here, the fluctuating parallel current density is expressed in terms of A via the parallel component of the low-
frequency Ampere’s law
c

{92+ K2+ (VB) : (VB)] 64 + (V x b) 65,
[(Vb)-0AL]+ (k- Vb)-6A, + (b-ViA,) K} | (2.13)

5jj = —b-V x (V x §A) =
47

+(Vb): (VSA, )+ V-

while the fluctuating perpendicular current is obtained from the perpendicular component of the force balance

0 B jx B
Eé(gmu)——v-573+5< p > (2.14)

Here, as usual, we have introduced the fluctuating plasma mass density and flow
0om = Zm(df)v and  J (omu) Zm vif), (2.15)
as well as the perturbed stress tensor 6P
§P =Y m(vvif), . (2.16)

Equation (2.14) is readily solved for 67, and yields

0B 0 0B /B
14+ ——)djL= ib X | =0 (omu) + V-6P| —jilo— I + (]HO + 5]||) =L (2.17)
B0 By " |0t Bo By

Substituting back into Eq. (2.12), one obtains the general form of the vorticity equation

6B oJj Sy, Jio
Bo(b+ BO)'V<BO +0B, -V +5B|VH Bo +BO

—(o+34)-V (‘2 ) +V. {Biobx (%5(gmu)+vwﬂ =0 . (2.18)

Equations (2.9), (2.10) and (2.18) form the closed set of dynamic equations formally governing the low-frequency
response of a quasineutral, finite-3, magnetized plasma, once the perturbed particle distribution function d f is given
and the perpendicular magnetic field fluctuation is obtained by Eq. (2.11). Note that they still hold for finite
plasma rotation, about which no assumption has been made so far. Meanwhile, Eqs. (2.13) and (2.17) are considered
as definitions for dj; and dj, and Egs. (2.15) and (2.16) are used for § (¢, u) and 0P. In fact, given §A; and
0B = b-V x§A, and noting the Coulomb gauge V - A = 0, 6A, is uniquely determined. By construction,
Egs. (2.9), (2.10) and (2.18), for wavelengths that are much longer than the Debye length, are completely equivalent
to the gyrokinetic Maxwell equations (Brizard and Hahm, 2007), once the perturbed particle fluid moments are
expressed in terms of the perturbed gyrocenter fluid moments (Brizard, 1992). These equations are also equivalent
to the formulation adopted in most literature, once the parallel Ampere’s law is employed in the vorticity equation,
Eq. (2.18).

C. Ordering estimates of vorticity equation and physical time scales

Unlike most treatments available in the literature, the present theoretical framework does not assume any particular
ordering of the perpendicular wavelength with respect to characteristic equilibrium spatial scales: this is the reason
why Egs. (2.10), (2.11) and (2.13) maintain terms that depend on equilibrium geometry, which may be important
when treating long wavelength modes (Brizard and Hahm, 2007; Qin et al., 1998, 1999b). However, while the
nonlinear formal kinetic equations governing collisionless plasmas in the drift kinetic limit (vanishing Larmor radius)
are given by (Kulsrud, 1983), expressions of the perturbed particle in terms of the perturbed gyrocenter fluid moments
(Brizard, 1992), valid for general low-frequency fluctuations and at arbitrary wavelengths are still not available at
present. Nonetheless, Eqgs. (2.9), (2.10) and (2.18) allow a detailed discussion of the relative importance of various
contributions and, ultimately, the derivation of a set of reduced nonlinear equations, which will be used in the present
work.

The first term in the vorticity equation, Eq. (2.18), represents the linear magnetic field line bending, which we
denote to be O(1). The second one is its nonlinear extension, related with the perpendicular Maxwell stress, ordered
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as ~ € e5/e, (cf. Sec. IILA). The third term, representing the kink drive, is of order ~ ep/e;. Meanwhile, the
fourth to seventh terms containing 0 B) are, respectively, of order fes, fep /e, B%er/ep and B%€ ) €5/¢e,. The last two
terms in Eq. (2.18) represent the plasma inertia response and the stress tensor contribution, which includes the usual
Reynolds stress as well as the divergence of the nonlinear diamagnetic current. The linear plasma inertia response is of
order ~ w?/ kﬁv%, whereas its nonlinear contribution is an order ~ ¢5/e; higher. The stress tensor linear contribution

is of the same order as the inertia term, while the nonlinear pressure stress tensor response is ~ (egej_/ew)(oﬂ/kﬁvi);
the same as the Maxwell stress.

From these estimates, we note that while the perpendicular Maxwell stress and the pressure stress tensor contribu-
tion are of the same order, ~ € €5/€,, the inertia (polarization) nonlinearity is of order ~ €s5/e. Therefore, we can
anticipate that, for €2 ~ ¢, there will be a transition between nonlinear dynamics dominated by the polarization
response (Sagdeev and Galeev, 1969), where nonlinear MHD description is reasonably applicable, to a regime where
dominant nonlinear interactions are due to the pressure stress tensor and Maxwell stress, which is the typical condition
of gyrokinetic plasma behavior. This transition, first pointed out by (Hasegawa and Chen, 1976) for kinetic Alfvén
waves (KAWSs), will be further discussed in Sec. IV.B and has important consequence on the spectral features of
Alfvén waves and related transport processes (Chen and Zonca, 2011).

Applying the same orderings to other terms in Eq. (2.18), it can be also concluded that in tokamaks of current
interest, where 35 O(ep/er) ~ O(1071), the linear terms o 0B are ~ fep/e; and ~ B%er /e, ~ Ber/epS B and,
hence, generally negligible. However, more careful considerations are needed concerning the nonlinear behavior. For
€. > €2, the polarization nonlinearity overwhelms the Maxwell stress and the pressure stress tensor nonlinearity; and
the nonlinear § B contribution is negligible provided that

Oles/er) > O(Bes; BPeres)en) =  O(e[') > 0(/?/er) >001) > 8 ,

which is readily satisfied for laboratory plasmas. In the opposite limit, €, < €2, Maxwell stress and pressure stress
tensor are also typically larger than the nonlinear 6 B contribution, since

Oleres/ew) > O(Bes; BPeres/ew) -

However, for long wavelength incompressible SAW in uniform plasmas, satisfying w? = kﬁv%, Reynolds and Maxwell
stresses cancel exactly, yielding the well known properties of the Alfvénic state (Alfvén, 1942, 1950; Elsasser, 1956;
Hasegawa and Sato, 1989; Walén, 1944), discussed in Sec. IV.B. Although a realistic system can only approach the
Alfvénic state, it is in this case important to make sure that residual effects of non exact cancellations of Reynolds
and Maxwell stresses remain more significant than the 0 B nonlinear term.

Since it is possible to formally write w = wqy + i9;, with wp the typical (linear) mode frequency, significance of the
nonlinear terms also depends on the relative time scales of the phenomena they produce in the dynamic evolution of
the system. Ignoring the nonlinear § B contribution for €, < eﬁ_, thus, sets a minimum constraint on both the linear
(v) and nonlinear (757 ) rates; i.e.,

VL /wol ~ |wornr| ™t > O(Bes; BPeres/en) -

One, thus, needs to keep these self-consistency requirements in mind when making numerical simulations or theoretical
analyses either close to marginal stability condition and/or examining long time-scale behavior. In fact, nonlinear
Alfvén wave behavior and self-consistent interactions with EPs in fusion plasmas (see Sec. IV) are characterized by
™~L ~ ;' ~ epep BlwTt < ezt 'Q7. For typical low-8 toroidal plasmas [3S O(ep/er) ~ O(1071)], which
are the main focus of this work, oc 0B terms in Eq. (2.18) typically affect the mode dynamics on time scales that
are longer than 7. Thus, they can be consistently neglected in the present analysis. However, these terms may
become important when considering longer time scale behavior, e.g., Tnz, ~ €, w1, where 3% < €, /e, may not be
so well satisfied in tight aspect ratio tokamaks (Cox and MAST Team, 1999; Ono et al., 2000). These self-consistency
requirements on linear and nonlinear rates must also be obeyed when looking at mode nonlinear dynamics to explore
the global variations of plasma equilibrium on the transport time scale [see Egs. (2.1) and (2.2)]. Although this is an
important issue as the forefront of magnetic fusion research, it is outside the scope of the present review.

In the next subsection, the reduced nonlinear gyrokinetic form of governing equations are derived specifically for
low-$ plasmas, which may be readily adopted for the description of the DAW dynamics in tokamaks (Chen et al.,
1978; Frieman and Chen, 1982; Hahm et al., 1988; Hasegawa and Chen, 1976; Mikhailovskii and Rudakov, 1963; Scott,
1997; Tang and Luhmann Jr., 1976; Tang et al., 1980).
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D. Reduced equations for low-3 drift Alfvén waves
Since all the works under the present review are limited to time scales
lwornr| ™ ~ [y fwol > e

we may self-consistently neglect 0B terms (cf. Sec. II.C) and, following (Chen et al., 2001), derive the nonlinear

gyrokinetic vorticity equation by taking moments of the nonlinear gyrokinetic equation of (Frieman and Chen, 1982).

Note that this is equivalent to describing the gyrocenter Hamiltonian up to ~ €5 linear terms. For longer time scales,

we need to include ~ €% terms to ensure the exact conservation of the gyrokinetic energy (Brizard and Hahm, 2007).
It can be readily shown that the particle distribution function f can be written as:

_ OF 1 OF OF 1 OF
f=erV [F — % (% + B—()%) <6Lg>} + % [ 5¢ + —8—54 , (2.19)

where [ is the gyrocenter distribution function (Brizard and Hahm, 2007), e=?'V is the transformation from guiding-
center to particle coordinates, p = Q7'b x v, (---) denotes gyrophase averaging, £ = v?/2 is the energy per unit
mass, p is the magnetic moment adiabatic invariant u = v3 /(2Bp) + ... and,

0Ly = 60y — oA, = e# VoL = eV (56 - “Loay) . (2.20)

In Eq. (2.19), all terms that are not acted upon by e ”V are the adiabatic response of the particle distribution
function, the other terms obviously representing the non-adiabatic response of the guiding-center distribution. Up to
order O(es), one can further reduce Eq. (2.19) to the following decomposition for the fluctuating particle distribution
function (Frieman and Chen, 1982)

—p- 1 8F0 € 6F0 1 6F0
5f=e PV |69 — — 5 E 0+ — 0% 2.21
Fmee¥lag- SO0 o) 4 £ [T 0051 (2:21)
where the fluctuating gyrocenter distribution function 6 F is related to the non-adiabatic response d¢g as
€ 6F0
SF =06 ——— (6L 2.22
and dg obeys the following nonlinear gyrokinetic equation (Frieman and Chen, 1982)
8—1— V) + Vi|)dg=— 8<6L>8F+—be<JL>VF ——be(éL)V& (2.23)
or IV TR VL )0 m ot o€ °)” B g '
Here, the magnetic drift velocity vq is
b 2y (B oh)
Vg = ﬁ X (‘LLVBO + K'/U”) ~ Tb X K 5 (224)

where V By ~ kB in the low-/ limit and is consistent with well-known cancellations in the linear vorticity equation,
arising from the perpendicular pressure balance, Eq. (2.7), and plasma equilibrium condition (Hasegawa and Sato,
1989). In the long wavelength limit, Eq. (2.23) has to be slightly modified to account for the perturbed gyrocenter
motion at O(es) being given by (Brizard and Hahm, 2007)

% c Y ¢ (0B.g)

with (6B1g4) = V x b(dA),). As shown by (Qin et al., 1998, 1999b), this distinction is important for the linear
response only, for the nonlinear E x B convection and nonlinear line bending are small at €3 < €, (see Sec. ILB).
For simplicity and, hence, clarity, Eq. (2.23) assumes no equilibrium plasma rotation that, however, can be taken into
account by nonlinear gyrokinetic theory [cf., e.g., (Brizard and Hahm, 2007)].

The following nonlinear gyrokinetic vorticity equation (Chen et al., 2001) can then be derived from Eq. (2.23) acted
upon by Y- ee ”V and integrated in velocity space (Zonca and Chen, 2014b);
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5BL 5]” 8 2,LL 8F0 8F0 J02 —1 8
&<VW%BO'V)QE__V'X: mee \Pogg Yo ) (T ), Ve
b ! 256+ b 2) Jos
Y ecbx V{ LR A2 RASTIEE xn~VZ<m(uBo+vH)Jo g>v

+0B, -V (3'0) +3 e <J0 [B%)b XV (Jod¢b) - Vég] - Biob X VoV (J069)>

c e22udfy (1—J2
+B_0bXV5¢'V[V'Z<E@8—N( 2 )>le5¢} =0 . (2.26)

Here, Jy is the Bessel function of argument A and A\?> = 2uByk? /Q2. Nonlinear plasma behavior enters implicitly,
in the pressure curvature coupling with dg, and explicitly, through the perpendicular Maxwell stress (nonlinear line
bending) and the next to last term on the left hand side, which can be shown to be connected with nonlinear
diamagnetic response and gyrokinetic generalization of the Reynolds stress. Note that Eq. (2.26) is pertinent to the
short wavelength regime (eﬁ_ > €,), consistent with the gyrokinetic ordering discussed in Sec. II.A. In the € J_< €w
long-wavelength limit, it is necessary to include an additional term on the left hand side of Eq. (2.26), representing
the divergence of the nonlinear polarization current due to mass density fluctuation; i.e.,

c? 60m 0
—EV- (—QVL§5¢) . (2.27)

Om0oUy

Meanwhile, the quasineutrality condition Eq. (2.9) can be rewritten as

2 9% 2 n 2 _
Z<%%> 5¢+V'Z<%%%—? <%>> V.06 + 3 (edo(Ndg), =0 - (2.28)

The presence of Jy and of velocity space integrals involving d¢g in Eqgs. (2.26) and (2.28) shows that they are integro-
differential equations. Given that 6B, = [V x (bdA))|L and 6B = (V x b), 6A)*, these equations are closed by the
nonlinear gyrokinetic equation, Eq. (2.23), along with Eq. (2.25), and by the reduced form of the parallel Ampere’s
law, Eq. (2.13),

. Cc
5]|‘:Eb'VX(VX5A):—

e —V2 4 5%+ (Vb) : (Vb) + (V x b)} | 64 . (2.29)

Equations (2.26) to (2.29) are the governing gyrokinetic equations for low-8 DAWSs, adopted throughout this work to
investigate their nonlinear dynamics on time scales yp7nr ~ 1.

Equations (2.26) to (2.29) need to be supplemented by equations governing zonal structures, i.e. for fluctuations
that have k| = 0 identically in the whole plasma® and play crucial roles in regulating DAW dynamics, as shown in
Sec. IV. First, we note that Eqs. (2.26) and (2.28) are not independent for §¢, (Chen et al., 2001), with the subscript
z standing for zonal. While Eq. (2.26) governs the evolution of d¢., A, is governed by Eq. (2.29), with the zonal
current 6j), computed from the solution of Eq (2.23). Assuming, consistently throughout this review, that dj) is
carried by electrons and that k% 62 ~ €% 62/p? < 1, with §. = ¢/w,. the collisionless skin depth and wy,. the electron
plasma frequency, Eq. (2.29) for the zonal current becomes essentially 7)., ~ 0, which reads

0 c
&“W‘C_

b x V(SAH : V51/)> y (2.30)
By

z

after a straightforward calculation of § f.. from Eq. (2.23),

0 e 4 0 c
&5fze = i?Foe <§5A|| — B_ob X V(SAH V51/)> s

z

4 Note that 5BH obviously includes a further contribution due to § A | , which ensures that Eq. (2.7) is fulfilled; this contribution is assumed
to be accounted for implicitly, when using the expression of magnetic drifts given by Eq. (2.24), as discussed by (Chen and Hasegawa,
1991).

5 See (Diamond et al., 2005) for a recent review on the physics of zonal structures.
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with 01 defined by

b-Viy = ——£5AH , (2.31)

for given dA) with k| # 0. Note that Eq. (2.30) can also be readily derived from massless electron force balance
along By. When considering DAWSs excited by EPs, Eq. (2.26) can be further reduced, and this is done in the next
subsection.

E. Drift Alfvén waves excited by energetic particles in low-/ fusion plasmas

In burning plasmas, EPs are characterized by an energy density, which is comparable to that of the thermal plasma,
so that Bg ~ 3. However, due to the significantly higher energy To;/Tor = O(1072), the EP density is typically low,
nor/noi ~ Toi/Tor. Thus, it is generally possible to consider reactor relevant plasmas consisting of two components
(Chen et al., 1984): a core or thermal plasma component, essentially providing an isotropic Maxwellian background
made of electrons (e) and ions (i), and an energetic component (F), which is often anisotropic and non-Maxwellian.

A detailed discussion of the general wavelength and frequency orderings for the case of DAWSs resonantly excited
by EPs in space-plasmas was given by (Chen and Hasegawa, 1991) and later by (Zonca and Chen, 2006) for low-3
laboratory plasmas, where

nog/noi ~ Toi/Tor = O(1072)S i ~ BeS O(1071) . (2.32)

Meanwhile, most unstable EP driven modes are characterized by |kgpr|S 1 (Berk et al., 1992b; Chen, 1994; Fu and
Cheng, 1992; Tsai and Chen, 1993), where pg is the EP Larmor radius. More precisely, pp represents the characteristic
EP magnetic drift orbit width, corresponding to the relevant wave-particle resonance and typically larger than the EP
Larmor radius. Finally, thermal electrons typically have v > va, corresponding to 8 > m./m;, and, hence, can be
approximated as a massless fluid. These orderings, in addition to those of Sec. II.A and the low-/3 assumption used in
Sec. IL.D, allow us to further simplify Egs. (2.26) and (2.28), while maintaining an accurate description of nonlinear
dynamics of SAW excited by EPs.
From Eq. (2.23), the thermal electron response as a massless fluid (Jvoy V| > |0;] and [vdBL| > [c0EL]) is

0B B e 004 0F,, 0B, _
<b+ By )-V(Sge—— <mec ot  0& + By 'VFOE) ' (2.33)

Here, e denotes the positive electron charge and core electron response due to particles near the trapped to circulating
particle boundary has been neglected. Using Eq. (2.33) for a Maxwellian electron core to explicitly evaluate the
corresponding perturbed electric charge; and recalling Eq. (2.31), the quasineutrality condition, Eq. (2.28) acted upon
by (b+ 0B, /By) - V, can be cast as (Zonca and Chen, 2014b)

e B B
n;oe [b V (8¢ — 5¢)+B_l V&b} <b+ _l) VZ LtelR),) (2.34)

where £e denotes summation on particle species except for core electrons and equilibrium charge neutrality has
been used explicitly. Note that Eq. (2.34) is just the extended Ohm’s law

<b+ ‘fL) OE = — <b+ 5BL> VE , (2.35)

0 By ngee

having assumed isothermal electron response. Furthermore, the ordering of Eq. (2.32) allows ignoring the contribution
of EPs to the plasma density®, while the wavelength ordering |kgpr|S 1 indicates that €, < 1 for the core plasma
component. Thus, the quasineutrality condition, Eq. (2.28) or Eq. (2.34), at the lowest order reduces to the ideal
MHD approximation dE|| = 0 or ¢ = 1.

6 In doing so, some attention must be paid for applications to present day experiments, where supra-thermal particles may not be as
energetic and low-density as estimated in Eq. (2.32).
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The gyrokinetic vorticity equation is also greatly simplified with the additional ordering introduced in this subsection
and can be shown to yield [cf. (Zonca and Chen, 2014b) for details]

0B a7 ? dom\ 1 | 37 (Pori  Pole) oo 0
BO(V”-F?O'V)(B—O —EV' 1+@ E"FB—(% Qf + Q2E \al VJ_&(S(]S

c? dr (Pori  Poik 9 c 2 Jllo
+-bxV [? ( ot o )} Vit b VY (m (uBo + 1) Jodg) +6B. -V (E)
ec
+> 507 {bx V (V360) - V (udg), — bx Vg -V (uV3idg) — V2 [bx VgV (udg),]} =0 . (2.36)
#e

Here, we have used the definition Py, = <m,uBOFO>U and have adopted the long wavelength limit for both thermal
and energetic ions. In this way, note that energetic ions’, even though they do not contribute to plasma inertia
due to Eq. (2.32), contribute to both finite Larmor radius correction to the plasma inertia (KAW) (Briguglio et al.,
1995) as well as to the diamagnetic response (Lauber et al., 2012; Wang et al., 2011) (see Sec. III.C), for these terms
depend explicitly on perpendicular pressure. Note, also, that we have omitted the long wavelength formal expansions
of pressure gradient curvature coupling for simplicity and clarity of physics presentation.

In the case of highly energetic ions, the gyrokinetic vorticity equation, Eq. (2.26), formally viewed as fluctuating
charge continuity equation, i.e. V -dj = 0, can be read as currents in the core component balancing the “charge
uncovering” (charge separation) effect due to the large EP orbits (Berk et al., 1985; Rosenbluth, 1982). This interpre-
tation was originally proposed by (Rosenbluth, 1982) in stability analyses of Tandem Mirror and Elmo Bumpy Torus
configurations. The corresponding reduced form of Eq. (2.26) can then be obtained taking Jy — 0 in EP contributions,
while the thermal plasma component is still described by the long wavelength limit as in Eq. (2.36). This approach
to “charge uncovering” was re-proposed by (Mikhailovskii et al., 2004; Sharapov et al., 2004) to investigate the effects
of non-resonant EPs on MHD instabilities. A general description, valid for arbitrary wavelengths, can be obtained
by noting that magnetic drift orbits of highly supra-thermal EPs are typically much larger than their Larmor radius.
Thus, taking the drift kinetic limit (Jy = 1) for EPs is consistent with both small and large EP magnetic drift orbit
limits; and adequately renders both resonant as well as non-resonant EP dynamics, including their nearly adiabatic
response to short wavelength modes [cf. (Zonca and Chen, 2006) for an in depth discussion of these issues|. For
this reason, EP contribution to KAW and diamagnetic terms can be formally neglected in Eq. (2.36), which further
reduces to

5BJ_ 5]” C2 5Qm 1 3 POJ_i 2 0
B L. hid B N v 14 Em ) — 20 (20 =
’ (V * By V> (Bo 47TV + omo ) V4 * B2\ Q2 ViV at6¢
c? dr (Poig 2 ¢ § : 2 Jio

+> % {bx V (V269) - V (1dg), — b x Vég-V (uV3dg), — V3 [bx Vég-V (udg),]} =0 . (2.37)
#e

Here, the nonlinear stress tensor is due to thermal ions only; and Jy — 1 in the EP pressure gradient curvature
coupling term. It is also worthwhile noting that Eq. (2.37) correctly describes reactor relevant plasma conditions,
since Bg ~ (Tsq/7r)Bi and the energetic ion (collisional) slowing down time on thermal electrons, 754, is short compared
to the energy confinement time 75. Equation (2.37) is crucial for the validity of many of the hybrid MHD-gyrokinetic
descriptions of SAW excitations by energetic ions (Briguglio et al., 1995, 1998; Park et al., 1999, 1992; Todo and Sato,
1998; Todo et al., 1995), which have provided the first successful numerical simulation approach to this problem.

In the linear limit, Eq. (2.37) coincides with the gyrokinetic vorticity equation discussed by (Qin et al., 1998,
1999b) and, dropping KAW and diamagnetic terms as well, with the reduced form of the linear kinetic-MHD model
by (Brizard, 1994).

11l. LINEAR ALFVEN WAVE PHYSICS IN NONUNIFORM PLASMAS

Shear Alfvén waves are anisotropic electromagnetic waves existing in magnetized plasmas, which have parallel
wavelengths, A ~ L, comparable to the system size along the equilibrium magnetic field, By. They can, however,

7 Supra-thermal electrons, if present, give a negligible contribution to KAW and diamagnetic terms.
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have a wide range in the perpendicular wavelengths A\ |, p; < AL < L, with p; the ion Larmor radius and L, the
system size perpendicular to Bg. The SAW frequency is w ~ kjva ~ O(va/Lj) much less than the ion cyclotron
frequency €2;. Here, notations are those introduced in Sec. II.

SAW dynamics is, hence, of low frequency and macroscopic scales and, therefore, may cause significant perturbations
in the bulk of the plasma. Furthermore, SAW dynamics is nearly incompressible, whereas CAW and slow sound waves
tend to be stabilized by finite magnetic and/or plasma compression as well as finite ion Landau damping. These
are the primary reasons why SAWSs play many important roles in laboratory and space plasmas. Some examples
are (1) heating of laboratory (Chen and Hasegawa, 1974a; Grossman and Tataronis, 1973; Hasegawa and Chen,
1974; Tataronis, 1975) and solar corona plasmas (Ionson, 1982); (2) resonant interactions with EPs produced during
high-power neutral beam and/or radio-frequency laboratory heating experiments or with alpha particles produced
in D-T fusion plasmas (Belikov et al., 1968, 1969; Chen, 1988; Fu and Van Dam, 1989a,b; Kolesnichenko, 1980;
Kolesnichenko and Oraevskij, 1967; Mikhailovskii, 1975a,b; Rosenbluth and Rutherford, 1975; Tsang et al., 1981),
which is the main subject of this review work; (3) cross-field transport in magnetospheric plasmas; e.g., the dayside
magnetopause (Hasegawa and Mima, 1978); and (4) acceleration of electrons along the auroral field lines (Hasegawa,
1976).

One of the most important properties of SAW is that its group velocity v, is directed along By; i.e., vy ~ v4. In
nonuniform plasmas with spatially varying v4 this property can then lead to singular oscillations at the local SAW
frequency, for the wave energy is “confined” to the local field line. As the local SAW frequency varies continuously,
we then have oscillations which constitute the so-called SAW continuous spectrum or continuum (Grad, 1969). The
existence of SAW continuum then suggests that at the layer where the frequency of the applied radio-frequency source
matches the local SAW frequency, the wave equation has a singular point; leading to resonant wave absorption and
the Alfvén wave heating scheme (Chen and Hasegawa, 1974a,b; Grossman and Tataronis, 1973; Hasegawa and Chen,
1974). That the wave solution becomes singular is due to the inadequacy of ideal MHD approximation. Including
microscopic kinetic effects, such as finite ion Larmor radii (FLR), removes the singular behavior by allowing small
but finite v, across By. That is, we have the linear mode conversion of resonant SAW to KAW (Hasegawa and Chen,
1975, 1976).

More generally, plasma nonuniformity and equilibrium magnetic field geometry not only modify the SAW frequency
spectrum, causing the existence of gaps in the continuum (D’Ippolito and Goedbloed, 1980; Kieras and Tataronis, 1982;
Pogutse and Yurchenko, 1978), but may also cause collective oscillations; i.e., discrete AEs within the gaps (Cheng
et al., 1985). These fundamental concepts and processes of SAW in nonuniform plasmas are briefly reviewed in this
section, since basic theoretical reviews of linear SAW spectrum properties are available in the literature for both
1D systems (Mahajan, 1995) as well as axisymmetric toroidal (2D) plasmas (Chen and Zonca, 1995). Numerical
simulations of stability properties of SAW excited by EP in tokamak plasmas are extensively discussed by (Vlad
et al., 1999) and in the recent review by (Lauber, 2013), focused on kinetic models, numerical solution strategies, and
comparison to tokamak experiments. Similarities and differences of these physics with those of SAW in 3D toroidal
equilibria are given by (Kolesnichenko et al., 2011; Toi et al., 2011). This section is also devoted to the formulation of
the general fishbone-like dispersion relation (GFLDR), which provides an unified theoretical framework for describing
and understanding the various branches of SAW fluctuations (Zonca and Chen, 2014b,c). The GFLDR can also be
extended to nonlinear analyses and will be the starting point for our discussion of nonlinear SAW physics and their
interactions with EPs in Sec. IV.

A. Continuous spectrum, Kinetic Alfvén Waves and Global Alfvén Eigenmodes

Considering a 1D plasma slab confined in straight magnetic field (Chen and Hasegawa, 1974a; Goedbloed, 1984),
one can demonstrate that the governing equation for the plasma displacement in the direction of nonuniformity (say
x) becomes singular at

w?=wi(2) = kﬁ(z)vi(z) , (3.1)
and
w? = wi(@) = [1+03(@) /04 ()] K (@)d(), (3-2)

corresponding to the appearance of two continuous spectra; with vZ(z) = I'Py(x)/0mo(z) representing the sound
speed, and I'" the appropriate adiabatic index. Meanwhile, adopting the slow sound wave approximation (v% /vy — 0)
and assuming, for simplicity, that gy = oo(x) while By = Bye., it is possible to show that the plasma displacement
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0&, becomes logarithmically singular as the SAW resonance is approached. In fact, SAW group velocity is directed
along By. Thus, the latter one “piles up” wave energy at the radial location where the SAW spectrum is resonantly
excited, explaining the origin of “local singular oscillations” (Chen and Zonca, 1995).

Resonant excitation is connected with SAW resonant absorption (Chen and Hasegawa, 1974a,b). In fact, a finite
amount of wave energy can be absorbed at the SAW resonant layer. Meanwhile, the time-averaged energy absorption
rate is given by the Poynting flux into that infinitely narrow layer; and it occurs on time scales ~ (w;,Ax)_l,
with Az the perturbation “radial” extent®. Corresponding to this, the radial wave-vector |k;| ~ |w’(z)t| and,
thus, |k,| — oo as t — o0; i.e., the wave function becomes singular in the asymptotic time limit, in agreement
with the eigenmode analysis. While 6§, ~ (1/t)exp[—iwa(x)t] as t — oo because of phase mixing of the SAW
continuous spectrum (Barston, 1964; Grad, 1969; Sedlacek, 1971), the binormal (e, = e. X e,) plasma displacement
d&, ~ exp[—iwa(z)t] does not decay algebraically in time and represents the undamped oscillations at frequencies of
the SAW continuum; which are routinely observed in the Earth’s magnetosphere (Engebretson et al., 1987) and have
also been demonstrated by ideal MHD initial value numerical simulations [cf., e.g., (Vlad et al., 1999)].

When the ideal MHD model breaks down at very short scales, the typically most relevant new dynamics are
associated with charge separation; i.c., with the finite §F) fluctuations due to, e.g., FLR (p;), small but finite
electron inertia and finite plasma resistivity. In the presence of finite dE), additional effects due to wave-particle
interactions also appear, which yield collisionless wave dissipation (Landau damping). Incorporating such “kinetic”
effects essentially allows finite energy propagation across the resonant surfaces. Thus, wave energy will no longer
“pile up” at these radial locations and all wave-function singularities are removed on short scales. A dedicated
monograph on KAWs is given by the recent book by (Wu, 2012). Here, we limit our discussion to the case in which
me/m; < B < 1. Furthermore, for the sake of simplicity, we also assume (k2 + k;) p? = k% p? < 1. Tt is then possible
to show that the WKB local dispersion relation of KAWSs is an extension of Eq. (3.1)

w® = (1+ k3 pk) w3 , (3.3)
where (Hasegawa and Chen, 1975, 1976)
pi = [(3/4) (1 — i) + (To/Ti) (1 — ib.)] p} — inc®/(4mw) . (3.4)
Here, terms o« 3/4 and T./T; represent, respectively, FLR corrections to plasma inertia and parallel electric field, §;
and d. indicate ion and electron Landau damping contributions, and 7 is plasma resistivity.

That KAW possesses finite 0 | not only modifies the linear wave properties but also, perhaps more significantly,
the nonlinear particle and wave dynamics. More specifically, ) may lead to phase space transport; i.e., heating,
acceleration and cross-field transport (Chen, 1999; Hasegawa and Chen, 1976). In addition, KAW could break the
so called nonlinear pure “Alfvénic state” (Alfvén, 1942, 1950; Elsasser, 1956; Hasegawa and Sato, 1989; Walén,
1944) (cf. Sec. IV.B) and leads to enhanced rates of nonlinear mode-coupling effects; such as parametric decay
instabilities (DuBois and Goldman, 1965, 1967; Kaw and Dawson, 1969; Nishikawa, 1967) (cf. Sec. IV.B) as well as
generation of convective cells or zonal structures (Hasegawa et al., 1979) (cf. Secs. IV.B and IV.C).

In addition to the local oscillations of the SAW continuum, a global AE (GAE) (Appert et al., 1982; Goedbloed,
1984; Mahajan et al., 1983; Ross et al., 1982) may also exist in a 1D nonuniform plasma. Such global modes, if
destabilized by EPs, could affect confinement over a large region of the plasma. In order to minimize damping due to
coupling with the SAW continuum, global mode structures are preferentially excited near regions where the resonant
energy absorption rate o w’, vanishes; i.e., near an extremum of the SAW continuous spectrum (cf. Sec. IIL.B for
further discussion). Detailed analyses of mode structures, frequencies, and stability properties can be found in (Appert
et al., 1982; Goedbloed, 1984; Mahajan, 1995; Mahajan et al., 1983; Ross et al., 1982). In the presence of non-ideal
terms, as, e.g., resistivity or FLR effects, other discrete, closely spaced (in frequency), localized (in radius) kinetic
GAE modes (KGAESs) also exist in addition to GAEs (Mahajan, 1995). These modes “replace” the SAW continuous
spectrum, due to the trapping of KAW as a bound state in the radial region where the mode frequency exceeds the

local SAW continuum frequency. That non-ideal effects discretize the SAW continuum is a general result that will be
further discussed in Sec. II1.B.

B. Alfvén Eigenmodes and Energetic Particle Modes in two-dimensional toroidal plasmas

In nearly 2D or 3D toroidal devices, the main additional complication that modifies the SAW fluctuation spectrum
with respect to the 1D case is due to modulations of v4 along Bg. This causes the loss of translational symmetry for

8 Here, “radial” stands for the direction of nonuniformity, which is generally identified as the gradient of the equilibrium magnetic flux.
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SAWs traveling along Bg and sampling regions of periodically varying v 4. Similarly to electron wave packets traveling
in a 1D periodic lattice of period L [cf., e.g., (Kittel, 1971)], SAWSs in toroidal systems are characterized by gaps in
their continuous spectrum, corresponding to the formation of standing waves at the Bragg reflection condition; i.e.,

l , P

k:— _ 4
=5, ¥ T a2

teN | (3.5)
with L = 27 Lo the connection length® and v4 being a “typical” value of the Alfvén speed on the reference magnetic
surface. In tokamak plasmas, the existence of gaps in the SAW continuous spectrum was discussed by (D’Ippolito
and Goedbloed, 1980; Kieras and Tataronis, 1982; Pogutse and Yurchenko, 1978). In this case, given that Lo ~ qRy
for circular plasmas with large aspect-ratio Ro/a [see Sec. II, remark following Eq. (2.2)], ¢ being the safety factor
(representing the pitch of equilibrium magnetic field lines winding on a given flux surface), the dominant frequency
gap occurs at v4/(2¢Rp) and is due to the finite curvature of the system (Kieras and Tataronis, 1982). Other gaps
also generally exist at w = fva/(2qRp), due to either non-circularity of the magnetic flux surfaces (¢ = 2,3,...) (Betti
and Freidberg, 1991), to anisotropic trapped EP population (¢ = 1,2,3,...) (Van Dam and Rosenbluth, 1998) or
to finite-8 (mainly ¢ = 2, with 8 the ratio between kinetic and magnetic pressures) (Zheng and Chen, 1998a,b). A
low-frequency gap, corresponding to ¢ = 0, also exists because of finite plasma compressibility (Chu et al., 1992, 1993;
Turnbull et al., 1993) at w ~ ﬁil/QvA/Ro < va/Rp.

In order to nullify or minimize continuum damping, discrete AEs must be localized in the SAW continuum frequency
gaps and/or around radial positions where (d/dr)wa(r) = 0 (cf. Sec. IIL.A). The degeneracy of AE mode frequency
with the continuous spectrum is removed by equilibrium non-uniformities, which make it possible for these fluctuations
to exist as discrete modes. Continuing further the analogy with the 1D periodic lattice case, discrete AE can be
localized in the continuum frequency gaps because of MHD and/or kinetic effects due to both thermal plasma and/or
EPs, which play the role of “defects” (Chen and Zonca, 2007a; Zonca et al., 2006). The particular role of EPs in the
resonant excitation of SAWs was noted already in the late 60s and 70s along with the possible detrimental effects of
collective SAW fluctuations as well as of lower frequency MHD modes on EP confinement (see Sec. I.A).

Discrete AEs existing in the various frequency gaps have, accordingly, been given different names. The first example
is TAE (Cheng et al., 1985) for w ~ v4/(2qRy). This is a particularly important case, for it was the first demonstration
of the existence of AEs in toroidal plasmas, thereby fixing a paradigm for subsequent AE investigations. Other exam-
ples are the Ellipticity induced AE (EAE) (Betti and Freidberg, 1991, 1992) for w ~ v4/(¢Rp) and Non-circular trian-
gularity (or other shaping effects) induced AE (NAE) (Betti and Freidberg, 1991, 1992) for w ~ ¢v4/(2qRy) and ¢ > 3,
as shown by Eq. (3.5). The low frequency SAW continuum frequency gap at w ~ 61.1/2 (7/44+T./T;)"?v 4/ Ry (Kotschen-
reuther, 1986; Mikhailowskii, 1973; Zonca et al., 1996) deserves a special note, since the mode frequency can be
comparable with thermal ion diamagnetic (w.p;) and/or transit (wy;) frequencies; i.e., |w| ~ wyp; ~ wy;. This is the
frequency range where SAWs may exist as MHD fluctuations and/or their kinetic/resistive counterpart. We could
generally refer to this frequency gap as the Kinetic Thermal Ton (KTT) gap (Chen and Zonca, 2007a). In fact, the
ideal MHD accumulation point, w = 0 at kj = 0 from Eq. (3.5), is shifted by either the ion diamagnetic drift, as in the
Kinetic Ballooning Mode (KBM) case (Biglari and Chen, 1991), or by parallel and perpendicular ion compressibility,
as for BAE (Heidbrink et al., 1993b; Turnbull et al., 1993), or, more generally, by the combined effects of finite
ion temperature gradient (VT;) and wave-particle resonances with thermal ions, as for the Alfvén Ion Temperature
Gradient driven mode (AITG) (Zonca et al., 1999). For the AITG, the SAW continuum accumulation point could be
shifted to the complex w plane (Kotschenreuther, 1986; Mikhailowskii, 1973; Zonca et al., 1996) and, thus, become
unstable for modes with sufficiently short wavelength (A, 2 p;). The mode localization condition inside the frequency
gap then leads to the excitation of unstable discrete AITG even in the absence of EP drive (Nazikian et al., 2006;
Zonca et al., 1999, 1996, 1998). In this case, they are sometimes referred to as beta-induced temperature gradient
eigenmodes (Mikhailovskii and Sharapov, 1999a.b). The predominance of either ion diamagnetic drift (KBM) or
parallel and perpendicular ion compressibility (BAE) in the KTI frequency gap depends on both wave number and
plasma equilibrium nonuniformity: AITG are typically excited when both effects are of the same order (Zonca et al.,
1999, 1996). Thus, two bands of low-frequency Alfvénic activities are generally expected, with varying frequency-
dependent geodesic curvature coupling to the ion-acoustic wave (Chavdarovski and Zonca, 2009, 2014; Lauber et al.,
2009; Zonca et al., 2010), of which - in the long wavelength limit - the lower one refers to the ion diamagnetic fre-
quency, consistent with some recent numerical simulation results and experimental observations (Curran et al., 2012;
Lauber et al., 2012). Another low-frequency fluctuation branch also exists, characterized by strong coupling of the

9 It is the length of a magnetic field line connecting two distinct points on a magnetic surface where the SAW frequency is the same.
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SAW to the ion-acoustic wave and dubbed Beta induced Alfvén Acoustic Eigenmode (BAAE) (Gorelenkov et al.,
2007a,b, 2009), which, however, is affected by strong Landau damping, unless T./T; > 1 (Zonca et al., 2010). In
this respect, experimental observation of BAAEs in NSTX and JET (Gorelenkov et al., 2007a,b) with T./T; ~ 1 is
somewhat “puzzling”. Experimental evidence of BAAEs is also reported in DIII-D (Gorelenkov et al., 2009), ASDEX
Upgrade (Curran et al., 2012) and HL-2A (Yi et al., 2012). This “puzzle” may be actually understood with a proper
kinetic treatment of low frequency Alfvénic and acoustic modes, which demonstrates that strong coupling of KBM and
BAAE branches may occur and affect mode frequency, polarization and damping rate; suggesting such fluctuations
may indeed be observed in this “strong coupling” condition due to reduced damping (Chavdarovski and Zonca, 2014).

Consistently with the fact that degeneracy of AE frequency with the SAW continuum is removed by equilibrium
non-uniformities, various local plasma profiles can produce variants of the AEs mentioned above. In the case of TAE
with low magnetic shear values, |s| = |(r/q)(dq/dr)] < 1 typical of the plasma near the magnetic axis, they have
been dubbed core-localized TAE (Berk et al., 1995¢; Fu, 1995) or also tornado modes (Kramer et al., 2004) when they
are excited within the ¢ = 1 magnetic flux surface. GAE may also exist (cf. Sec. III.A), although they tend to be
more strongly damped due to coupling with the continuous spectrum (Cheng et al., 1988; Fu et al., 1989; Li et al.,
1987; Weiland et al., 1987), and are localized in both frequency and radial position near (d/dr)wa(r) = 0. A special
case of (d/dr)wa(r) =0 is given by hollow-g profiles, characterized by negative magnetic shear, s < 0, inside the the
minimum-q surface. For these equilibria, a frequency gap is formed in the local SAW continuous spectrum, where AE
can be excited (Berk et al., 2001) yielding the so called Alfvén Cascades (AC) (Sharapov et al., 2001) or Reversed
Shear AE (RSAE) (Kimura et al., 1998; Takechi et al., 2002). These modes have frequencies that are typically less
than that of TAEs, although there are experimental observations of RSAE near the EAE/NAE gaps (Kramer and
Fu, 2006; Kramer et al., 2008).

In addition, a variety of kinetic counterparts of ideal AE also exists, in analogy to the existence of KAW as
counterpart of SAWs, discussed in Sec. III.A. Typical examples are Kinetic TAE (KTAE) that are obtained when,
e.g., finite resistivity (Cheng et al., 1985) or FLR effects are accounted for, as in (Berk et al., 1993; Candy and
Rosenbluth, 1993, 1994; Mett and Mahajan, 1992a,b). Similarly, one could show that Kinetic BAE (KBAE) also
exist (Wang et al., 2011, 2010; Zonca et al., 1999, 1998) as the granularity of the SAW continuum becomes evident
when the plasma response is probed on sufficiently short spatial scales and sufficiently long temporal scales (Chen and
Zonca, 1995; Zonca and Chen, 1996). The most practically important consequence of KAW is their excitation by mode
conversion (Hasegawa and Chen, 1975, 1976), mostly via FLR effects, due to the radial singular structures of SAW
continuous spectrum (cf. Sec. ITI.A). For KAW are not generally absorbed locally nearby the mode conversion layer in
high temperature plasmas (Jaun et al., 1998, 2000; Kolesnichenko et al., 2005), mode structures and stability properties
of SAWs are truly kinetic and global in nature; and it becomes crucial to properly account for all these physics in
realistic comparisons with experimental observations and in stability predictions in reactor relevant conditions.

A final important class of Alfvénic fluctuations in 2D nonuniform systems is given by EPMs (Chen, 1994), which
are born at marginal stability as non-normal modes of the SAW continuous spectrum and are resonantly excited at
the characteristic frequency of EP motions. The excitation condition of EPM is independent of the existence of AE
inside the frequency gaps, but it requires that the mode drive is sufficiently strong to overcome continuum damping
(cf. Sec. III.C). Being connected with a condition on the beam energy density, EPM can manifest themselves in a
variety of different forms, the best known and first observed of which is the fishbone mode (McGuire et al., 1983); i.e.,
an internal kink oscillation with toroidal mode number n = 1, which is resonantly excited (typically) by the toroidal
precession resonance with magnetically trapped EPs (Chen et al., 1984). As for AE, the fishbone “gap-mode” also
exists, for weaker EP beam power density, in the low frequency KTI gap, dominated by diamagnetic response and
smoothly connecting with the ideal/resistive internal kink mode for vanishing kinetic effects (Coppi and Porcelli,
1986).

As all instabilities that tap the expansion free-energy from EP spatial gradients, AE and EPM have both linear
growth as well as transport rates (Chen, 1999) proportional to the mode number; thus, short wavelengths tend to be
favored. On the other hand, due to the orbit-averaging effect in wave-particle interactions, the typical lower bound
for A\ is set by the characteristic EP orbit width, pg, which, in toroidal devices, is determined by magnetic drifts
and is generally larger than Larmor radius (Berk et al., 1992b; Chen, 1994; Fu and Cheng, 1992; Tsai and Chen,
1993). For this reason, modes with A\ 2 pg are expected to play a dominant role for both resonant excitations of
collective SAWs/DAWs as well as for producing fluctuation enhanced EP transport. This condition corresponds to
NmazqS (1/pE) for the maximum toroidal mode number of linearly excited Alfvénic modes. Generally, AE in the same
gap have nearly degenerate frequency for the various toroidal mode numbers, as in the case of TAE (Cheng et al.,
1985). Moreover, each nth mode has ~ O(ngr/Ry) different possible realizations (radial eigenstates) of AE localized
at different radial locations. Thus, e.g., within the TAE gap we may expect ~ O(n?qr/Ry) AEs, forming a “dense
population of eigenmodes (lighthouses) with unique (equilibrium-dependent) frequencies and locations” (Chen and



19

Zonca, 2007a). In Secs. V and VI, the significant implications of this fact on the non-linear AE physics are discussed.
In the next subsection, we discuss how all this Alfvén Zoology (Heidbrink, 2002) can be described by one single

dispersion relation (GFLDR) written in a general “fishbone-like” form, which can be adopted for linear stability

studies as well as for systematic extensions to the nonlinear regime (cf. Sec. IV.A) (Zonca and Chen, 2014b,c).

C. The general fishbone-like dispersion relation

We assume that the equilibrium By can be expressed in the usual form
By =Ft)Vo+Vpx V¢ | (3.6)

where ¢ is the physical toroidal angle, identifying the symmetry of the system at equilibrium, and 1 is the poloidal
magnetic flux function. Moreover, we use a straight magnetic field line toroidal coordinates system (7,6, (), where
r is a radial-like coordinate depending only on the magnetic flux function ¢'°, while § and ¢ are periodic angle-like
variables, the latter being the ignorable (symmetry) coordinate of the plasma equilibrium. More precisely, ¢ is the
general toroidal angle defined by

(Bo-V({/By-V0)=q(r) , (3.7)

where q(r) is the safety factor profile and 6 is chosen such that the Jacobian J = (Vi x V- V()~! satisfies the
condition of J B2 being a flux function; i.e., (1,6, () are Boozer coordinates (Boozer, 1981, 1982). A scalar function
f(r,0,(), describing a generic fluctuating field, can be decomposed as Fourier series

f(r,0,¢) = Zei"CFn(r, 0) = Z ei"C_imefm)n(r) , (3.8)

nez m,ne”Z

where Z denotes the set of integers, and the toroidal Fourier components F, (r, ) are independent in the linear limit,
while the poloidal Fourier components f, () are not, due to the equilibrium geometry. Note that, for simplicity,
time dependences are assumed implicit. The GFLDR derivation is based on the construction of a nonlinear functional
form §L(0¢, 1)) from Eqgs. (2.26) and (2.28) (Chen and Hasegawa, 1991; Edery et al., 1992). The final result, can be
put in close connection with various forms of the MHD energy principle (Antonsen et al., 1981; Antonsen and Lee,
1982; Bernstein et al., 1958; Kruskal and Oberman, 1958; Porcelli and Rosenbluth, 1998; Rosenbluth and Rostoker,
1959; Taylor and Hastie, 1965; Van Dam et al., 1982), due to the fact that, in the long wavelength limit, Eqs. (2.26)
to (2.29) can be cast as Eqs. (2.34) to (2.37); i.e., they recover reduced MHD as a limiting case of nonlinear gyrokinetic
equations and their linearized form reduces to the kinetic MHD equations discussed in Sec. II.LE. When nonlinear
terms are included, 6L (d¢, §1) is generally not variational, although §£(d¢, 0¢) = 0 by definition, when the functional
is computed for the actual solution of Egs. (2.34) and (2.37).

The construction of the GFLDR assumes that fluctuations are characterized by two radial scales, due to the existence
of the SAW continuous spectrum. As a result, the contribution from regular regions, W, is readily separated from
that due to singular layers, —d1, yielding 0L = W — §I. Radial scale separation can be explicitly accounted for by
adopting the mode structure decomposition approach discussed by (Lu et al., 2012; Zonca et al., 2004a)'*, which, for
short wavelength modes, reduces to the well known “ballooning representation” (Connor et al., 1978, 1979; Coppi,
1977; Dewar et al., 1981, 1982; Glasser, 1977; Hazeltine et al., 1981; Lee and Van Dam, 1977; Pegoraro and Schep,
1978); and consists in writing a generic fluctuating field f(r, 0, (), decomposed as in Egs. (3.8), in the form

f(T‘, 0, C) = Z ein(—ime /OO ei(m—nq)ﬂfn(r, ﬁ)dﬁ

m,ne” o
= % e [ ey, i) )0 (39)
m,nez e

Equation (3.9) introduces and defines the projection operator Pp,, (r,9) : f(r,0,C) — fu(r,9), with f,(r,9) satisfying
regularity conditions at || — oo (Zonca and Chen, 2014b); and ¥ corresponds to an extended poloidal angle. In fact,

10 One possible choice is, e.g., r/a = (1 — 1#0)1/2/(7/’& - 1!10)1/2, with 1o the value of ¢ on the magnetic axis and v, its value at the plasma
minor radius r = a.

11 This representation relies solely on the Poisson Summation Formula and its general properties. A thorough discussion of these issues
and of applications of Eq. (3.9) to Alfvén waves is given by (Zonca and Chen, 2014b).
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multiplication by a periodic function p(f) in (r,8) space corresponds to multiplication by a periodic function p(¢J) in
(r,9) space and b -V + (JBg) *0y. Finally, when operating on a function in this “ballooning” representation, we
find

b 0

TB. 90 (3.10)

Vi~ Vr <—mq’z9 + %) +inV(+ Vo <6819 inq> —
¢’ denoting the radial derivative of ¢(r), defined by Eq. (3.7), with respect to r. Introducing the magnetic shear as
s=s(r)=rq'(r)/q(r) ; (3.11)
and adopting the notation
6V, =k, 6¢, and k2R2=-V2 (3.12)

it can be shown that I is given by (Zonca and Chen, 2014b)

27T202 Z |kg|(dip/dr)
|w|2 |2j32

(597 00 0% 01 ) sl (3.13)
r=rg,9=0

with the summation on all singular layer contributions left implicit. Furthermore, s9t is the adjoint of d¢ with the
definition by (Gerjuoy et al., 1983), 0¥, o+ = 0¥, (19,9 — 07) is used as normalization, and A,, is obtained from

. —1r . . 9—0t
00 ) [80T,,(9)095,(9) L (3.14)
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i.e., from the solution of Eq. (2.37) for &% = k% /k3 ~ s?0?|Vr|> > 1 with outgoing wave boundary conditions,
corresponding to causality constraints. Thus, Eq. (3.13) contains the information on the sharp varying structures of
SAW fluctuation associated with the continuous spectrum. Meanwhile, one can show (Zonca and Chen, 2014b)

a 191
OW = lim (271')3/ drdw/dT/ JdI Z e~ 2minat {PBn(T7 9) [5Bw - Pan(r, 9 + 2nl) {5—B}
91 —00 0 — 91 el 47T
et ? 1 Poii 2
+Pp_n(r,9) [at o ] Ppn(r, 0 + 27l) _EV . 5¢ b \v4 ) - VVido
A i
< : 2 Jll0
tpbs VZ<m(uBo+UH)J059> 1B, - V(Boﬂ} . (3.15)

Formally nonlinear terms due to core plasma dynamics (cf. Secs. II.D and II.LE) may be dropped in the expression of
OW (Zonca and Chen, 2014b). For the same reason, thermal ion FLR terms are dropped and d¢ = d1) is explicitly
imposed in Eq. (3.15). As in ideal MHD, most important destabilization effects come from the last two terms, the
“ballooning-interchange” and the “kink” drive, respectively (Freidberg, 1987; Furth et al., 1965; Greene and Johnson,
1968). Note that the expression of W is still nonlinear due to the implicit nonlinear response included in the
“ballooning-interchange” contribution, which also maintains FLR effects of EPs. Adopting the normalization for 6W
in Eq. (3.15) as in Eq. (3.13), it is possible to rewrite (Zonca and Chen, 2014b)

— (697 s 6001 ) OTW, (3.16)

271'202 Z |kg|(de/dr)
|w|2 |2JBQ

Thus, the GFLDR is derived from §£ = 6W — §I = 0 combining Egs. (3.16) and (3.13), and, for a single-n toroidal
mode, is given by

ils|Ap = OWhyp + Wy (3.17)

The generalized inertia term A, (w) accounts for the thermal ion response and can be extended to include EP effects
for long wavelength modes (Briguglio et al., 1995), as well as, for shorter wavelength modes, thermal ion FLR effects.
Meanwhile, A,, can also be modified to include stress tensor, Maxwell stress and polarization nonlinearity, by including
the corresponding terms from Eq. (2.37) (see Sec IV.C). Same as the inertia term, the potential energy 6W,, accounts
for both linear and nonlinear responses due to the presence of dg in Eq. (3.15). The right hand side of Eq. (3.17)
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also distinguishes between “fAuid” (6W,, ;) and “kinetic” (§W,) contributions to the potential energy §W,, (Chen
et al., 1984). The expression of W, ¢ is obtained from Eq. (3.16) using the “fluid” limit for the gyrokinetic particle
response dg in Eq. (3.15), while W accounts for the remaining “kinetic” particle response. In the low-frequency
limit (JA2| < 1), §W,,s is independent of w and reduces to the well-known MHD limiting forms. Meanwhile, §W,,(w)
is always a function of w, as it reflects resonant as well as non-resonant wave-particle interactions. Dispersion relations
in a form similar to Eq. (3.17) have been derived in many works on the effect of EPs on low frequency MHD modes
by precession resonance (Biglari and Chen, 1986; Chen et al., 1984; Coppi and Porcelli, 1986; Rewoldt and Tang,
1984; Spong et al., 1985; Weiland and Chen, 1985; White et al., 1985, 1990). Meanwhile, the generality of Eq. (3.17)
and its applicability to low-frequency MHD modes (Chen et al., 1984; Liljestrom and Weiland, 1992), as well as to
KBM (Biglari and Chen, 1991; Tsai and Chen, 1993) and higher frequency SAWs (Biglari et al., 1992; Chen, 1988;
Chen et al., 1989), was formulated by (Chen, 1994; Zonca et al., 1996) and formalized in (Chen and Zonca, 2007a;
Zonca et al., 2007a; Zonca and Chen, 2006, 2007; Zonca et al., 1999). When magnetic shear vanishes at one isolated
singular layer (s = 0 at r = ro where kj,, = kj0), it is possible to construct the (local) extension of Eq. (3.17) that,
for [A%2]| < 1, becomes (Zonca et al., 2007a)

. 5 5 . 9\1/2 ) ) 5, o\ 1/2 1/2 . .
WS (An - anOLO) [(U")kmoLo — (i/n) (An - k”nOLO) } = 0Wns + Wpy (3.18)

originally derived by (Hastie et al., 1987) for internal kink mode stability analyses, where

5?2 = 1"%q”(7“0)/q(1"0)2 . (3.19)

The GFLDR generally demonstrates the existence of two types of modes (Zonca and Chen, 2006): a discrete gap
mode, or AE, for ReA2 < 0; and an EPM (Chen, 1994) for ReA? > 0. The combined effect of §W,,; and §W,,
determines the existence conditions of AEs, and various effects in SW,, ¢ and W, can lead to AE localization in
various gaps; i.e., to different species of AE (Chen and Zonca, 2007a). The transition between AE and EPM is
generally continuous with varying plasma parameters and a net distinction is possible only when the distance of
the mode frequency from the SAW accumulation point (A, = 0) is larger than the mode linear growth rate, yr, or
the characteristic inverse nonlinear time, 757 (cf. Sec. IL.C). In the low-frequency limit (|A2| < 1), when the AE
frequency is above the SAW continuum accumulation point wy, the causality constraint for AE existence inside the
SAW frequency gap is (Chen and Zonca, 2007a; Zonca and Chen, 2014b)

SWos 4+ RedWoy > 0 . (3.20)
Similarly, for AE frequency below the SAW continuum accumulation point w,, the AE existence condition becomes
SWos + RedWoy <0 . (3.21)

For EPM, meanwhile, the iA,, term in Eq. (3.17) represents continuum damping and the threshold in EP drive for
mode excitation. In fact, near marginal stability,

(5an + Re&Wnk =0, = determineswg ,
aia || Imé Wi, — A,

= < , = determines v, . (3.22)
wo  (—wols|tORedW,, /Owp)

Equations (3.17) and (3.18) are global by construction and can be used for computing the (generally nonlinear)
mode dispersion relation. The fact that Eqs. (3.17) and (3.18) follow from a variational principle, at least in the
linear limit, allows evaluating W, ¢ and Wk by trial function method, thus, even with realistic mode structures
obtained numerically. Furthermore, A, can generally be computed by solving an ordinary (nonlinear) differential
equation with outgoing wave boundary conditions, Eq. (2.37) [or Eq. (2.26) in the same limit, accounting for full FLR,
effects (Connor et al., 1983)] for &2 = k% /k3 ~ s29?|Vr|?> > 1, which can be done analytically in many cases of
practical interest (Zonca and Chen, 2014b,c), or numerically. The generality of Eqs. (3.17) and (3.18) makes them
applicable to a variety of MHD modes as well (Zonca and Chen, 2014b,c); e.g., internal and/or external kink modes
by suitable extension of W, ¢ and W, expressions. Stability of these modes are expected to be strongly influenced
by plasma rotation, due to the ideal MHD coupling with sound (Betti, 1995; Bondeson and Ward, 1994) and Alfvén
waves (Gregoratto et al., 2001; Zheng et al., 2005), or due to resistive layer (Finn, 1995; Gimblett and Hastie, 2000)
and viscous boundary layer damping (Fitzpatrick and Aydemir, 1996). However, even stronger effects are expected
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when resonant interactions are accounted for with thermal ions at the bounce or transit frequencies (Bondeson and
Chu, 1996; Liu et al., 2004), or with either trapped thermal ions or electrons at the precession frequency (Hu and Betti,
2004). Experimental evidence also suggests the existence of EP driven external kink modes (Heidbrink et al., 2011;
Okabayashi et al., 2011), which are the EPM counterpart of the resistive wall mode (RWM) (Pfirsch and Tasso, 1971).
Recent reviews of the physics of internal kink (sawtooth) stabilization (Chapman et al., 2007; Graves et al., 2010,
2012) and analyses of high-g regimes for the DEMOnstration Power Plant (DEMO) (Chapman et al., 2011) confirm
the necessity of thorough kinetic models for the description of the plasma operation control in burning plasmas.

For short wavelength SAW with radially localized mode structures, the mode structure decomposition of Eq. (3.9)
reduces to the “ballooning representation”

’f‘ 0 C Z A an—im@ ‘/ei(7n—nq)19fOn(T7 0)d0

m,ne”

> An(r)etnemime / e m=nDIPp (1 9) [fou] dVY (3.23)

m,nez

where Pp,(r,0) : fon(r;ng —m) = fon(r,9) and the functions fo,(r;ng — m) are nearly invariant under radial
translations by multiples of (ng’) !, while the radial envelope functions A, () have characteristic spatial dependences
on meso-scales, intermediate between the perpendicular wavelength and the the equilibrium scale-length (Zonca,
1993a; Zonca and Chen, 1993). Because of the spatial scale separation between fo, (r;ng —m), A, (r) and equilibrium
nonuniformities, it is possible to use the eikonal Ansatz A, (r) ~ expi [ ng'0x(r)dr (Dewar et al., 1981, 1982). Thus,
Eq. (3.10) becomes

Vi ikgVr (s — sbi) +inV{ +ikyrVe (3.24)

and Eq. (2.37) can be rewritten as
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Here, we have introduced the notation 6<i>n = I%J_één, as in Eq. (3.12), and wipi = Wani + wari, with
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for Maxwellian thermal plasma ions, and k; = —iV . Furthermore, we have omitted the kink drive, for it scales

as n~! (cf. Sec. I1.C), and the nonlinear terms, since they are analyzed specifically in Sec. IV.C. Equations (3.13)

and (3.16), meanwhile, become
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Here, A, §W,, and other physical quantities are dependent on r, due to the global equilibrium profile variations. For
very localized modes, whose radial envelope variation A, (r) on meso-scales can be ignored, a direct comparison of
Egs. (3.16) and (3.28) yields 6W,, = |s|0W,, and the GFLDR becomes a local dispersion relation.

In the more general case, where global plasma nonuniformities play important roles, the GFLDR can be cast as

[ihy — (W5 +0Wi), | An(r) = Dp(r, 0k, w)Apn(r) =0, (3.30)

with D, (r, 0k, w) playing the role of a local dispersion function. This equation can be generally solved using the
fact that w = wg + 0, with wp the typical (linear) mode frequency (cf. Sec. II.C). In fact, we can describe the
spatiotemporal evolution of SAW wave packets in toroidal plasmas expanding the solutions of Eq. (3.30) about the
characteristics

Dy (7, Oko(r),wo) =0 . (3.31)

Then, letting A, (1) = exp(—iwot)Ano(r, t), with 9y A,o(r,t) ~ yrAno(r,t) ~ Tn1 Ano(r,t) (cf. Sec. TI.C and TV.A),
the spatiotemporal evolution equation for A, (r,t) is

oD, (.0 oD, i 0
93 a, ~ P9 h0) A,
Owo <Z 6t> 0t 0xo < ng’ or ko) ’

102D, ) 2 i 00ko
: S L9 ) A — G0 5 t) 32
+2 002, [< ng’ Or ko) 0 ng Or 0 Sn(r,t) (3.32)

The S, (r,t) on the right hand side can represent either a source term or nonlinear interactions (cf. Sec. IV.A). The
solution of Eq. (3.32) identifies important time scales, such as the inverse linear growth time, *yL_l, and the formation
time of the global eigenmode structure, 74, which is of the order of the wave packet bounce time between WKB
turning points (Zonca et al., 2004a). It can be shown that the global mode dispersion relation is (Zonca, 1993a,b;
Zonca and Chen, 1993)

Do(wp) = %nq’@kodr —kn=2r, [(eN. (3.33)

Here, k = 0 or k = 1, respectively, for librations or rotations of fy-characteristics of Eq. (3.31).

Detailed applications of the GFLDR, theoretical framework to various branches of the SAW spectrum in toroidal
plasmas (cf. Sec. II1.B) and their experimental observations are given by (Zonca and Chen, 2014c). In this work, we
are mainly interested in the extensions of those analyses to nonlinear phenomena (cf. Sec. IV).

IV. NONLINEAR ALFVEN WAVE BEHAVIOR AND SELF-CONSISTENT INTERACTIONS WITH ENERGETIC
PARTICLES

The ordering estimates of vorticity equation in Sec. II.C introduce two different nonlinear dynamic regimes in the
long wavelength limit. For ¢, > eﬁ_, nonlinear wave-wave interactions are determined by the polarization (inertia)
nonlinearity and the MHD plasma description is reasonably accurate. Meanwhile, for €, < €3, Maxwell stress and
pressure stress tensor nonlinearity become dominant and kinetic theory becomes necessary at increasingly shorter
wavelengths. Thus, the nonlinear dynamics of Alfvén waves crucially depends on the existence of the so-called
“Alfvénic state” (cf. Sec. I1.C), where Reynolds and Maxwell stress cancel exactly and large amplitude SAW can be
supported. Consequently, physics processes that are responsible for breaking the Alfvénic state are of great importance
for the nonlinear evolution of the SAW spectrum.

As anticipated in Sec. III, the GFLDR theoretical framework provides a useful starting point for our analyses of
nonlinear physics of SAW/DAW and EPs in burning plasmas. Section IV.A discusses the general theoretical approach
adopted here, which is formulated as a NLSE with integro-differential nonlinear terms. That equation is then used in
later sections to investigate nonlinear processes affecting DAW behavior.

Many of these issues can be analyzed and illuminated in uniform plasmas and are presented in Sec. IV.B, where the
finite ion compressibility effect (polarization nonlinearity) is analyzed in the long wavelength limit, showing that it
yields the decay of a SAW into another SAW and an ISW (Sagdeev and Galeev, 1969) (cf. Sec. IV.B.1). However, for
sufficiently short wavelength there is a transition to nonlinear behavior dominated by Reynolds and Maxwell stresses,
which requires accounting for wavelengths comparable with the ion Larmor radius (Hasegawa and Chen, 1975, 1976).
In this case, KAWs break the ideal Alfvénic state and the three wave SAW decay is taken over by the three wave
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KAW decay (Hasegawa and Chen, 1976). Such a transition has important consequences on plasma transport, since
SAW decay preserves the anisotropy of the initial k; spectrum, while KAW decay tends to make it isotropic (cf.
Sec. IV.B.2). These findings, thus, demonstrate that, in general, it may be necessary to adopt the kinetic description
in the study of DAW turbulence. The breaking of the Alfvénic state by KAWs also affects the nonlinear excitation
of convective cells, as shown in Sec. IV.B.3. Convective cells are the uniform plasma counterpart of zonal flows and
fields in toroidal systems. Studying convective cells, thus, provides useful insights to understanding the more complex
nonlinear interplay between Alfvén waves and zonal structures (ZS; cf. Sec. I1.D), which will be further discussed
later in this section and in Sec. VI within a broader physics framework.

In Sec. IV.C, we show how geometry of the plasma equilibrium and spatial nonuniformities affect, both qualitatively
and quantitatively, the nonlinear processes discussed above. The tokamak counterpart of the SAW decay process in
a uniform plasma is TAE frequency cascading via nonlinear Landau damping (Hahm and Chen, 1995), discussed
in Sec. IV.C.1. At shorter wavelengths, as in the KAW decay, polarization nonlinearity becomes subdominant; and
Maxwell stress and pressure stress tensor (including Reynolds stress; cf. Secs. II.B and II.D) nonlinear terms determine
the cross section of TAE frequency cascading. This analysis, however, remains to be carried out. In Sec. IV.C.2,
we also discuss the generation of ZS by finite amplitude TAE (Chen and Zonca, 2012; Spong et al., 1994; Todo
et al., 2010) as toroidal geometry analogue of the generation of convective cells by KAW. These various processes
may by themselves yield to TAE or AE saturation levels that possibly explain some experimental observations. More
generally, however, saturation levels (|0B,./Bo| ~ 1073) expected for the individual nonlinear interactions are larger
than observed values (|0B,./Bo|< 5 x 107%) [see, e.g., (Heidbrink et al., 2008)]. It is nonetheless important to identify
and keep these processes into account, especially in conditions where a number of nonlinear interactions may be
simultaneously active and ultimately determine the AE fluctuation amplitude. In addition to regulating turbulence
intensity and plasma transport, coherent nonlinear interaction of AE and ZS may influence fine structures of the
AE frequency spectrum (cf. Sec. IV.C.2), as it is the case of modulation interactions due to wave-particle nonlinear
dynamics (Fasoli et al., 1998) (cf. Sec. IV.D.3 and related discussion in Sec. IV.D.6). Finally, we analyze the AE
nonlinear interplay with the SAW continuous spectrum in nonuniform systems, which may either yield enhanced
continuum damping (Chen et al., 1998; Vlad et al., 1992; Zonca et al., 1995) (cf. Sec. IV.C.3) or nonlinear instability,
as in the case with finite amplitude MHD activity (Biancalani et al., 2010a,b, 2011) (cf. Sec. IV.C.4).

The nonlinear wave-particle interaction of AEs and EPMs with EPs is discussed in Sec. IV.D. We start from the
analysis of the nonlinear dynamics of a nearly monochromatic energetic electron beam in a 1D plasma (O’Neil and
Winfrey, 1972; O’Neil et al., 1971), given in Sec. IV.D.1, for this is the classical problem on which mode dispersion
relation and nonlinear behavior in a beam-plasma system were formulated and understood for the first time. The 1D
beam-plasma problem is also important for understanding aspects of the nonlinear interaction of AE with EPs. In fact,
there are currently two paradigms for discussing these physics. One is the “bump-on-tail” paradigm, which is based
on wave trapping in uniform plasma, including effects of source and dissipation'?, that occurs due to wave-particle
“resonance detuning”. This paradigm has been extensively developed by Berk, Breizman and coworkers (Berk and
Breizman, 1990a,b,c), and applied to explain experimental observations [cf. (Breizman and Sharapov, 2011) for a
recent review]. The other paradigm may be dubbed as the “fishbone” paradigm (Chen and Zonca, 2013; Zonca et al.,
2015b),; in which the role of magnetic field geometry and plasma nonuniformity is crucial, and wave-particle interaction
may be limited due to the finite radial localization of the mode structures; i.e., “radial decoupling” (Briguglio et al.,
1998; Chen et al., 1984; Zonca et al., 2005). Furthermore, the self-consistent interplay of instabilities and EP transport
may lead to secular EP losses due to phase locking of fluctuations and resonant particles via frequency sweeping (White
et al., 1983).

The nonlinear physics of the “bump-on-tail” paradigm are analyzed in Sec. IV.D.2, stemming from the original works
by (Berk and Breizman, 1990a,b,c). Its applications to AE experimental observations are discussed in Sec. IV.D.3,
which also addresses its underlying assumptions and its consequent validity limits. Some of these limitations can be
overcome by approximate numerical simulation models, based on perturbative treatment of EPs, which are presented
in Sec. IV.D.4. The “bump-on-tail” paradigm applies sufficiently close to marginal stability, when fluctuation induced
radial particle excursions are smaller than the mode radial wavelength. For sufficiently strong external power inputs
and, therefore, EP power density sources, nonlinear EP excursions explore regions of radially varying mode structures
and, thus, a transition typical of nonuniform plasmas is expected in the AE nonlinear dynamics (Zonca et al., 2005),
while EP redistributions occur on meso-scales. The general theoretical framework, formulated in Sec. IV.D.5, allows
describing the transition from uniform to nonuniform plasma behavior, illuminated by recent numerical simulation

12 Source and dissipation account for the generation of the EP population by external heating and/or current drive systems in toroidal
plasmas of fusion interest as well as for the relaxation of their distribution function via Coulomb collisions (Berk and Breizman, 1990a).



25

results (Briguglio et al., 2014; Wang et al., 2012; Zhang et al., 2012), and to unify “bump-on-tail” and “fishbone”
paradigms (Zonca et al., 2015b). Effects of such a transition become more important as drive strength increases,
and are most apparent for EPMs (cf. Sec. IV.D.6) and fishbones (cf. Sec. IV.D.7), which are characterized by the
nonperturbative interplay of nonlinear mode dynamics and EP transport processes.

Further remarks and discussion related with the general theoretical formulation of Sec. IV.A are presented in
Sec. IV.E, where possible interesting connections to other fields of physics research are also discussed.

A. General theoretical approach

Here, we further elaborate the GFLDR theoretical framework and derive a general form of governing equations for
addressing nonlinear physics of SAW/DAW and EPs in burning plasmas. Equation (3.32) describes the spatiotemporal
evolution of DAW wave packets in toroidal plasmas due to the influence of external sources and/or nonlinear dynamics.
From Eq. (3.30), a useful formal interpretation of the left hand side is obtained isolating linear terms in the local
dispersion function D, (7, 0xo(r),wp), while nonlinear and external source terms are collected on the right hand side.
Thus,

Sn(r,t) = =DNF + Ser(r,t) = (SWHE + oWNF)  —iAE + 557 (r,t) (4.1)

where S (r, t) explicitly denotes external sources, the superscript N L stands for nonlinear and the definition of the
various terms follows from Egs. (3.16) and (3.13) and Egs. (3.28) and (3.27). In general, S,(r,t) can be written
symbolically, in terms of amplitude expansion, as (Chen et al., 2005; Zonca et al., 2006)

n’,n"" #n

Sn (T, t) — S:?t(ﬁ t) = (Cn,O + CO,n) o AnO (7'7 t)AZO (7'7 t) + Z Cn’,n” o An’O(ru t)An”O(ru t) ) (42)

n’4+n''=n

where Cy, ,» are generally integro-differential operators, which imply non-local interactions in the n toroidal mode
number-space and whose composition with (action on) A.g, Ao is denoted by “o”; and A, and A, are, respectively,
the radial envelope functions of the zonal and n # 0 components. Here, we have included nonlinear dynamics that
modify the n = 0 “zonal” particle distribution function § F,, given by Eq. (2.22) (Zonca et al., 2000). Therefore, Ao
not only represents the amplitude of ZS, but it also symbolically indicates the nonlinear distortion of the equilibrium
particle distribution function. This distortion effect enters Eq. (4.1) through velocity space integrals, implying that
Ao, when accounting for interactions with 6F., is by itself a nonlinear function of A, and that the dependence
is quadratic, A,o o< |Anol?. As will be explained in Sec. IV.D.5.b, we refer to these contributions as phase-space
7S (Zonca et al., 2013, 2015b). Thus, the source term in Eq. (4.1) is intended to contain a cubic nonlinearity with
respect to the envelope function, A,o(r,t). The last term in Eq. (4.2) accounts for three wave interactions and, in
general, non-local spectral transfers. Combining all the various terms, Eq. (3.32) can be cast in the form of a NLSE
with integro-differential terms

ODE [ 9 dDE i 0 192DL i 0 i 9k
n (i) Anolrt L = = ko ) Auo(r ) + 5 |~ 5 — Ok | —— Ano(r,t
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= Sfft (T‘, t) =+ (Cn,O + CO,n) oA, (T‘, t)AZQ (T‘, t) =+ Z Cn’,n” o Anlo(f‘, t)An//o(T‘, t) . (43)

n’4n’'=n

Note that Eq. (4.3) describes both short wavelength modes, for which Eq. (3.32) was derived, as well as global long
wavelength modes with one isolated singular layer. The argument yielding Eq. (4.3) from Eqs. (3.30) and (3.32)
can be repeated for the GFLDR in the form of Eq. (3.17). As a result, one obtains Eq. (4.3) again, provided that
Oro = 0/0r = 0 is assumed; i.e., considering A,,o as the amplitude of the n mode at the singular layer (cf. Sec. IV.D.7).
The same also applies for the vanishing magnetic shear case, Eq. (3.18). Thus, we may consider Eq. (4.3) as the general
form of governing equations for addressing nonlinear physics of Alfvén waves and EPs in burning plasmas. Expressions
of the nonlinear-coupling operators, Cy, -, depend on the specific nonlinear interactions, and some examples will be
discussed in the remainder of this section.

Equation (4.3) demonstrates that observations of the EP driven DAW spectrum are expected to be largely described
by linear physics, as noted experimentally, e.g., by (Van Zeeland et al., 2006); while nonlinear dynamics can be
understood as coupling of relevant degrees of freedom on a time scale 7y ~ 7;1 [cf. Sec. II.C and (Zonca and
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Chen, 2014b; Zonca et al., 2015a,b) for an in depth discussion of this point]. Furthermore, Eq. (4.3) allows us to
readily recognize the various spatiotemporal scales for the nonlinear dynamic evolution of DAWSs. In addition to the
inverse linear growth rate, *yL_l, and the formation time of the global eigenmode structure 74 (Zonca et al., 2004a)
(cf. Sec. III.C), in fact, one can identify nonlinear processes and corresponding time scales separating ideal region
response from singular layer dynamics, as suggested by Eq. (4.1). Recalling that 7n ~ 721, different behavior is
expected for 74 < TN ~ 721, typical of AE, and for 74 ~ TN ~ 721, which generally applies for EPM.

Equation (4.3) is also a useful starting point for constructing reduced nonlinear dynamic models with various levels
of approximation for understanding selected aspects of the processes under investigation. Different terms entering
Eq. (4.3) can be evaluated either analytically or with simplified numerical descriptions; helping, thus, building models
with reliable predictive capabilities. Three wave couplings modify the nonlinear dynamics via the processes discussed
in Secs. IV.B and IV.C, which are the dominant nonlinear dynamics of the DAW spectrum caused by the core plasma
component (cf. Sec. II.LE) and affecting directly fluctuation induced transport of the thermal plasma. Meanwhile, for
a spectrum of low-amplitude fluctuations, |§B, /Bg| ~ 10~* with |71, /wo| ~ |woTnz| ™! < 1 as in the case of DAWSs
excited by EPs (cf. Sec. ILE), transport processes are dominated by wave-particle resonant interactions (White
et al., 1983, 2010a,b) and by the evolution of phase-space ZS (cf. Sec. IV.D). Nonlinear wave-wave couplings and
wave-particle interactions for DAW excited by EPs are historically considered separately, for the sake of simplicity and
clarity of the analysis. However, noting that the existence of the SAW continuous spectrum could lead to the excitation
of short-wavelength modes via resonant mode conversion of longer scale-lengths excited by EPs, EPs could, then, act
as mediators of cross-scale couplings (Zonca, 2008; Zonca and Chen, 2008)'3 and play a unique role in determining
complex behavior in burning plasmas (cf. also Secs. IV.E and VIL.B). Thus, a comprehensive understanding on the
nonlinear physics of DAW instabilities excited by EPs would require a self-consistent treatment of both nonlinear
wave-wave and wave-particle interactions and is beyond the scope of this review. In the following subsections, we will
mainly focus on nonlinear dynamics of single-n modes'®, and separate the analysis of wave-wave and wave-particle
nonlinear interactions in order to delineate more clearly the underlying physics mechanisms.

B. Nonlinear shear Alfvén waves in uniform plasmas

Let us first explore the simple limit of an infinite, uniform plasma with By = Bgz. Within the generally valid
approximation of quasi-neutrality condition and m; > m., we have the following one-fluid equation of motion

om(Or+u-Vu=-V-P+jx B/c, (4.4)

where o0, = Zj n;m; ~ n;m; and u ~ u,;. Equation (4.4) is readily obtained from Eq. (2.14) decomposing the stress
tensor as pressure and Reynolds stress, as usual; i.e., defining P = P + g, uu. Letting u = ug + du, etc., and noting
ug = jo = 0, Eq. (4.4) becomes,

(0mo + 00m0) (O + du - V)du = -V - P +§j x B/c . (4.5)

We further assume that SAW and CAW frequencies are well separated (V| > [V]) and 8 < 1. Thus, Egs. (2.7)
and (2.8) apply and only dynamics of SAW and ISW are kept. If we now further make the crucial assumption that
all the interacting waves are SAWs, which are nearly incompressible, we then have V - ju ~ 0 and 69, ~ 0, d P ~ 0.
Then, Eq. (4.5) becomes, approximately,

omo0iou = F? + 55 x By/c, (4.6)
where the nonlinear ponderomotive force FZ@ is defined as
F'? =§j x 6B/c— gmodu - Véu = —V(6B)?/(87) — Mz — Re;
and

Mxz = —(6B-V)§B/(47) ~ —(6B. - V)6 B /(47),

4.7
Re = 010 (6u - V)ou =~ 040 (du - V)ou (4.7)

13 This aspect has been recently explored in great detail by (Qiu et al., 2012) in connection with the analysis of radial structures of EP
driven geodesic acoustic modes (Berk et al., 2006; Fu, 2008).

4 Note that, in toroidal geometry, this corresponds anyhow to many coupled poloidal Fourier harmonics in Eq. (3.23) and, due to nonlinear
interactions, to the coupling of different radial states (not necessarily eigenstates) of the same toroidal mode n.
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are, respectively, the divergence of Maxwell and Reynolds stresses. The approximations are justified since § < 1 and
V1] > |Vl; both 6B and duy are, hence, suppressed here. Equation (4.6) may be regarded as the basic equation
for SAW interactions subject to the above constraints.

Equation (4.6) gives 07, as

6j. =031 + 6417, (4.8)

where 5.7'11) = (¢/Bo)b X pmoOtdu ] is the polarization current, and 6j(f) is the nonlinear current
5% = —(¢/Bo)b x E?. (4.9)
For SAW dynamics, Eq. (2.12) and Eq. (2.13), V26 A ~ V3 A = —(47/c)dj), yield the following vorticity equation
(b V) (—c/AT) VI 0A + VL 651 =0, (4.10)

where 0B = V x A, E = —(Vép + 0;0A/c) and 6A ~ JAyb. Thus, we have E, ~ -~V 0¢ and JE =
—b-Vip — 0:0A)/c. Adopting the flux function 1) defined in Eq. (2.31), Eq. (4.10) it can be written as

(c?/4n)(b- V)>V3 Y + 0,(V L - 0j1) = 0. (4.11)

We now make the final MHD approximations,

Suy ~ (¢/Bo)SEL x b= (c/By)b x V.5, (4.12)
and
SE| = —b- V(3¢ — 61b) ~ 0. (4.13)
Equation (4.11) then becomes
A[(b-V)? =020 V266 + 4n0, [V - 557 = 0, (4.14)
and
V.65 = —(¢/By)b- V x (Re + Mu). (4.15)

Equation (4.15) has the interesting properties that V| - 5jj_2) =0if Re+ Mx =0 or

U /va = £6B, ./ By. (4.16)
Equation (4.16) is the Walén relation (Walén, 1944). In terms of d¢ and 0 A, we have
dpw/va = £6A),/c,
or
O1(66u/v4) = F(b- V)5 = F(b - V)ibu. (4.17)
Equation (4.17) thus demonstrates that given the Walén relation, Eq. (4.16),
[(b-V)? —v3%07] 60 = O, (4.18)

and Eq. (4.14) is self-consistently satisfied regardless of the magnitude of §¢,, and dA,, or du ., and B ,,. This is
the celebrated Alfvénic state (Alfvén, 1942, 1950; Elsasser, 1956; Hasegawa and Sato, 1989; Walén, 1944). That is,
a purely co-propagating [0; + (b - V)]d¢,+ = 0 or counter-propagating [0; — (b - V)]d¢p,,— = 0 finite-amplitude SAW
is a self-consistent solution to the nonlinear SAW equation, Eq. (4.14). Nonlinear interactions thus can only occur
among oppositely propagating SAWs. There exist a vast amount literatures [see, e.g., (Biskamp, 1993)] investigating
the consequence of such interactions within the incompressibility and ideal MHD assumptions, and we will not go
into details here. Instead, the present paper will be focusing on effects relevant to fusion plasmas, which break the
constraints leading to the existence of Alfvénic states. More specifically, we shall, in the following sections, investigate
nonlinear SAW dynamics including effects of finite compressibility, ion Larmor radii and geometries.
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1. Effects of finite ion compressibility

By relaxing the incompressibility constraints, it was first shown by (Sagdeev and Galeev, 1969) that a SAW can
parametrically decay into an ISW and a back-scattered SAW. Specifically, let us consider the 3-wave interactions among
the pump SAW Qg = (wo, ko), the daughter ISW, Q, = (ws, ks), and the lower-side-band SAW, Q_ = (w_, k_), where
w_ =ws —wp and k_ = ks — ko. Note that, in the 25 mode, the dynamics is predominantly along By. One can then
show that the dominant nonlinear effect of SAW on the Qs mode enters via the parallel ponderomotive force; i.e.,

b-(6jL x0BL1), /c=—=V | (0BY), /(87) = —noeV 0y (4.19)

0B, =3} 0By exp(—iwgt+ik-x), (5Bi)s = 0By, -0B_, and d¢ys is the corresponding ponderomotive potential.
That is,

gmo(—iws)(SuHS e _iks|\ (5P5 + 6By - 5B,L/8ﬂ') . (420)

Applying the equation of state, we have dPs = (7T + viT;)dns = Téns. Continuity equation, nokydus = wsdns,
then yields

wiedoms = ka(SBOL -0B_, /(87), (4.21)
and, with ¢2 = T/m;,
€5 =1 — k3 /wi. (4.22)
As to the Q_ SAW sideband, the dominant coupling effect to Qg is via dg,,s in the polarization current; i.e.,
5.7'122 = (¢/Bp)b x [00msO0uL]_ = (¢/By)doms(iwo)b x du’, . (4.23)
The vorticity equation, Eq. (4.14), for the _ mode, then becomes
ea—k? 66— = (80ms/0mo) (koL - k—1)50; (4.24)
where
€A =1-— kz_”vi/wz_ ; (4.25)

and we have noted d¢g_ ~ d1pg_. Equation (4.21) along with Eq. (4.24) then yields the following parametric
dispersion relation

1 k_
esea = —ki | p?cos® O, (—”) |®o %, (4.26)

where &g = edpo /T, ps = s/ and 0, is the angle between ko, and k_, . For resonant decays, we have ws = iy +ws,,
Wsr = kgjjcs, wo =iy + (wer — wo) and (wo — wer) = |k—_|va, Eq. (4.26) then reduces to
2

Y Lo o 2 k—ll 2
= -k 0. — ) [Pol”. 4.27
Wolar 3 0L Ps COS <k0|| | Do ( )

Equation (4.27) shows that instability sets in when kg /k_; > 0. Since |wo| > |ws|, we have |w_| ~ wg or k_j =
kg — ko) = Koy or kg =~ 2kg), and meanwhile, w_/k_) ~ —va; i.e., the parallel phase velocity of the lower-sideband
SAW is opposite to that of the pump wave. Equation (4.27) also shows that the parametric instability maximizes
around 0, = 0; i.e., k_, aligns with kg, . This carries a significant implication to the transport process induced by
the SAW turbulence (cf. Sec. IV.B.2). Note also that including damping of SAW sideband and ISW in Eq. (4.27)
would lead to a threshold in |®g].

For fusion plasmas, we have, typically, T, ~ T; and the ISW becomes a quasi mode due to significant ion Landau
damping. In this case, we need to treat ions kinetically and the corresponding parametric decay process becomes a
non-resonant decay via nonlinear ion Landau damping (Cohen and Dewar, 1974; Kulsrud, 1978; Sagdeev and Galeev,
1969). Since nonlinearities enter via ion dynamics only, for the Q0 ion sound wave, we have dns./ng = edos/Te; with
0¢s being the self-consistent electrostatic potential, and

OInsi/no = —eXis(0ps + 0pps) - (4.28)
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Here, d¢ps is given by Eq. (4.19) and

Xis = (1/T)(Foikgv)/(ksjv) — ws))o = (1/T3) [1 + &5 Z(Es)], (4.29)

(...)y denotes [ dv(...), Fy; is taken to be Maxwellian, Z(&;) is the plasma dispersion function [cf., e.g., (Stix, 1992)],
& = ws/(|ks)[vei) and vy; = (27;/m;)'/2. Quasi-neutrality condition then gives

€sk00s = —TeXisObps; (4.30)
where
€sk = 1+ TeXis- (4.31)
Equations (4.19) and (4.30) then yield
€k 5;:;5 = _%mm 5B_,. (4.32)

Note that, for [ws| > |kgjvei|, Eq. (4.32) recovers the the fluid result of Eq. (4.21) with ¢ = T, /m,;.
Substituting Eq. (4.32) into Eq. (4.24), with ®; = ed¢o/T., and proceeding as in the previous one-fluid analysis,
one readily derives the following parametric decay dispersion relation

1 k_
€sh€A_ = ——Texisk?upf cos? 0. (—”) | % (4.33)

While € is a quasi mode since |Imeg| ~ O(1), Q_ remains a normal mode. Thus, let w_ = w_, + iy and w_, =
Wsr — wo = |k_|j|va; the imaginary part of Eq. (4.33) then yields, noting Texis = €sx — 1,

i_z - %kgwﬁ cos” 0, (IZTD ' Ti:rgzs ol ; (4.34)

where, from Eq. (4.29),
Imys = (1/T5)Im [§:Z(&s)] = (/) Ti)wsr (Foid (ks vy — wsr))o- (4.35)
Thus, the non-resonant decay maximizes around |w,| = |wo +w_,| & |kgve| = |ko| + k_jj|ves. Since |wo| =~ [w_r| >

|Ejveilo,—, maximal interaction requires kojk_j > 0; i.e., k_| ~ ko, kg =~ 2kg), and w_/k_| ~ —v,, similar to
resonant decay. Furthermore, form Eq. (4.34) and (4.35), the decay instability (v > 0) occurs when wg,. > 0; i.e.,
|w—r| = |wsr — wo| < wp; that is, the parametrically excited lower sideband SAW has a real frequency lower than wy,
lw_| = wo — 2kg| v, and a parallel phase velocity opposite to that of the pump wave. Again, including finite damping
of SAW sideband and ISW would lead to a threshold in |®g)].

We note that the current analysis has assumed (Chen and Zonca, 2011, 2013)

kLpsly — < |wo/Su] < 1. (4.36)

Equation (4.36) is the same condition derived in Sec. II.C, discussing the transition between nonlinear (MHD) dy-
namics dominated by the polarization response to a regime where dominant nonlinear (gyrokinetic) interactions
are due to the pressure stress tensor (cf. introduction to Sec. IV) and Maxwell stress. Thus, for SAWs with
k1 ps| > |wo/U[Y? ~ O(1071) typically, we need to employ the nonlinear gyrokinetic equation, Eq. (2.23), and
the parametric decay processes are significantly altered both quantitatively and qualitatively (cf. Sec. IV.B.2).

2. Parametric decays of Kinetic Alfvén Waves

We now consider three-wave interactions among g, 5 and Q_; with 8 < 1 as in Sec. IV.B.1, but |k, p;| formally
of O(1). Here, we only sketch the derivations and refer to (Chen and Zonca, 2011) for details. Following (Frieman
and Chen, 1982), we can adopt the nonlinear gyrokinetic theoretical framework of Sec. IL.D. Thus, assuming that
both electrons and ions have Fy = Fa; = noFp, with Fy taken to be Maxwellian, Eq. (2.21) yields

5f = —=(e/T)Frmdp +exp(—p-V)dg , (4.37)
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while Eq. (2.23) for dg becomes
(0 +vyb- V + (dug,) - V) 6g = (¢/T) Far0, (0Lg) . (4.38)

Here, we introduced the notation (dug,) = (¢/Bo)bx V (6Lg4). In terms of Fourier modes, Eq. (4.38) can be expressed
as

) (k”’l}” - wk) 6gk - (C/Bo)AZ:I [<5Lg>k’ 5gk~ - <6L9>k“ 591@/} = —iwk (e/T) FM <5Lg>k y (4.39)
where Aﬁ:, =b- (K| x k). Meanwhile, the quasineutrality condition, Eq. (2.28), becomes
(1 +T;/T¢) 6¢r = Ti/(noe) (Jkdgri — OGre)y - (4.40)

where e stands for the (positive) electron charge, and the vorticity equation, Eq. (2.26), can be written as

. . . k 7" 6] " (Sj ’
Zk||6]||k gbL (1 - Pk)6¢k = — k (5A|k/ I - 5A|\k” H(]: )
Ak// <[(Jka/ — Jk”)(SLk’(Sgk”i — (Jka// — Jk’)(SLk”égk’iDv , (441)

with 0jy, = (¢/4m)k? 6 A),. Here, <6Lg>k = Ji (60 — v”éA”/c)k = JioLg, Ji = Jo(kip) and k = k' + k”. Further-
more, by, = k% p? = k2 (T /m;) /2, T = (JEFoi)w = Lo(br) exp(—by), o is the modified Bessel function and |k p.| < 1
was assumed. On the right hand side of Eq. (4.41), the first term represents the usual Maxwell stress, whereas the
second term reduces to the well-known Reynolds stress for & p; < 1. Noting the ordering |kjvie| > [wi| > |kjvsl,
with vs, and vy; denoting electron and ion thermal velocities, and defining 0y = (wdA|/ck)) from Eq. (2.31), we
can readily recover the following linear KAW results (Hasegawa and Chen, 1975, 1976):

0Py [1 + 7 (1 - I‘k)] O = o0y (4.42)
where 7 = T, /T;, and the KAW linear dispersion relation (cf. Sec. III.A)

w?/ (kHUA) ~ opbr/ (1 -T%) . (4.43)

As to the excitation of ISW, Qg by the two KAWSs, Qy and Q_, we note that, due to the frequency ordering
discussed in Sec. IV.B.1, Q; is predominantly an electrostatic mode. Equation (4.39) can then be used to calculate
linear and nonlinear responses of dgs for both electrons and ions. Substituting these results into the quasi-neutrality
condition, Eq. (4.40), we then obtain

€sx0ps = —i(c/Bow_)AiB10p_ddg (4.44)

where
esk =1 +717+ 7106 Z(E) (4.45)
B =F (14 &2(&)) +0-00 (4.46)

esk is the short wavelength extension of e, introduced in Eq. (4.31), F} = (JsJoJ_Foi),,, Js, Jo, J— stand for Jo(k1 p)
computed at k¢, k1o, k1, respectively; and we have applied the corresponding linear KAW wave properties, noting
that Qg and Q_ are normal modes.

Since Q; could be a heavily damped quasi mode (cf. Sec. IV.B.1), we need to include both linear as well as nonlinear
responses of dgs in its coupling to Q_ via €y. The corresponding quasi-neutrality condition, Eq. (4.40), then becomes

5;/;,: o +o" }&b + D160 (4.47)

where o_ is defined in Eq. (4.42),

2r k
0(2):<Bofu/\8> T (14 €2(6)) (JI2), — 12 ofo- | 1000 (4.48)

and

Dl = —i(C/BOw_)A(S)T (1 +§SZ(§5)) Fl . (449)
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Proceeding in the same way, we may compute Eq. (4.41) for the KAW sideband. In this case, the Maxwell stress
does not contribute to the nonlinear dynamics, for 24 is a predominantly electrostatic mode. Thus, the parametric
decay is mediated by the generalized Reynolds’ stress in Eq. (4.41). Applying the results of dgs derived earlier, we
can obtain

K2 [(1 i a@) b=l66_

- (kfvi/a?)__édul = (D2/p})06:005 , (4.50)

where p? = 7p2 and o'® and D, are due to the nonlinear ion response
o = (¢/ Bow_ A5 (1 + £.2(80)) [(J3T2 For), — F1] [6gol* (4.51)
Dy = i(c/Bow_)AJT[(1 + &5 Z(&s)) Fr — €sZ(65)Ts — Tg] - (4.52)

Combining Eqs. (4.47) and (4.50), we then obtain the following equation for the Q_ KAW modified by the nonlinear
coupling between €2, and 2y modes;

by (EAK_ + 65422(7> 8¢ = i(c/Bow_ )AL B350 (4.53)
where bs_ = 7b_,
AR = [(1 “T) /b — (kﬁvi /w2)7 a} (4.54)

is the short wavelength extension of Eq. (4.25),

6542}){_ = [a@)/b_ - (kﬁv%/wz)_ 0(2)} , (4.55)

F, kijvi
ﬂ2 = (1—\_1> (esK - Us) 1- ((IL—Q bs—| —esx + 00

= [(ESK - Us) Fl/rs +o- (00 - 05)] /0—
B —eu . (4.56)

Combining Eqs. (4.44) and (4.53), the resultant parametric instability dispersion relation becomes

and

€sK (GAKf + Af)_ + XE42)_) =Ck |(I)0|2 s (457)

where ®¢ = edgo/Te, Cr = (AH)?,
AR = [(0s/T)(F2/Ts = G) + (0 — 2Fy/T, (4.58)

—aokyo/ky_)ooo— + g kyo/ky 1N |@o|?
X = e (\/T4) G| ®o|* (4.59)
N = (Qifwo)® pIAG?/ (0-bs-) (4.60)
G = (J§J? Foi), — F /T, (4.61)
and

H = (cgo- — F1o5/T5) . (4.62)

Note also that, in Eq. (4.61), G > 0 from Schwartz inequality. On the left hand side of Eq. (4.57), the Afl

term describes nonlinear frequency shift only, while the contribution o XE42)7 accounts for processes involving resonant

wave-particle interactions due to low-frequency nonlinear thermal ion response to €y and 2 KAW modes. Therefore,
this process involves spectral transfer of fluctuation energy towards the low-frequency region and is generally referred
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to as nonlinear ion Compton scattering (Sagdeev and Galeev, 1969). Meanwhile, the non-resonant scatterings of Qg
off the fluctuations due to the s mode are described by the right hand side, which, thus, accounts for shielded-ion
scatterings. Ignoring nonlinear frequency shift and keeping terms relevant to the stability analysis, the resultant
parametric dispersion relation becomes

€k (EAK, + x(jl) =0y |Do? . (4.63)

The term o xffl in Eq. (4.63) is absent in the previous drift-kinetic analysis (Hasegawa and Chen, 1975, 1976). This

can be understood, since |G| ~ O(k% p}) for |k1 p;| < 1 and the drift-kinetic analysis formally keeps only O(k? p?)

terms. Meanwhile, for |k p;| < 1, H ~ 7(by + b— + 7bob_ — bs) and the drift-kinetic results are nicely recovered.
For T.2, 5T}, both Q4 and Q_ are weakly damped normal modes, and Eq. (4.63) yields the following resonant-decay

dispersion relation

-1

_865Kr 8€AK7’I" (4 64)

_ s) = (AH|® ’
(v +7aa-) (v + vas) = (AH|Pol) Owsr Owa_y

where v is the parametric growth rate, 744— and 745 are, respectively, the linear damping rates of the KAW sideband
and ISW, and w4, and ws, are, meanwhile, the corresponding normal mode frequencies; i.e., eax—r(wa—r) = 0 and
€skr(wsr) =0, —0ear—r/Owa—r =~ 2(1 —=T_)/(wo,b_) and Oesk, /0w, >~ 20 /ws,. Note that, similar to Sec. IV.B.1
analysis for SAW, KAW parametric decay instability requires wo,ws > 0; i.e., —wg, < wa_, < 0, having chosen
wor > 0 without loss of generality.

For T, ~ T;, Qs becomes a quasi mode; while Q_ ~ —Q4 = — (w4, k4) remains a KAW normal mode. The growth
rate of the parametric decay instability is then given by

€A —r C
(v + vaa—) ( A7K> =Im {Xf) - i @

C Owa,
= [\0o|? [G/Ts + H?/|esi |*] Tmegic (4.65)
where, again, G > 0,
Ime,x = 70Im [§,Z,(65)] (4.66)

and & = (wo —war) /|kjjo — kjalvei- In Eq. (4.65), the G and H? terms correspond, respectively, to the nonlinear ion
Compton and shielded-ion scatterings. Note that for |k p;| ~ O(1), G ~ H? ~ |esk|, the two scattering processes
are additive and have comparable magnitudes. Same as in previous studies (Hasegawa and Chen, 1976; Sagdeev
and Galeev, 1969), Eq. (4.66) indicates that the scattering is maximized when kjokja < 05 i.e., backscattered KAW
daughter wave (since wo,wa, > 0), and v > 0 requires & > 0; i.e., wg > wa,, or the parametric decay process leads
to cascading in KAW frequencies. Note also that, while for |k p;| < 1 v increases with |k, |, it decreases as |k p;|~!
for |kipi| > 1; and, thus, the decay processes tend to maximize around |k p;| ~ O(1).
It is illuminating to compare the present results with those derived in Sec. IV.B.1. In fact, if in Eq. (4.63)

Cr = (Q/wo)*(bo /o) H? sin” 0, (4.67)
is replaced by
Cr = [rbo/ (e +7iTi/Te)) cos® b, , (4.68)

one readily recovers Eq. (4.26) in the MHD limit. For kyp; ~ O(1), H ~ O(1) and |C|/|C1| ~ O(Q2/wd) > 1. In
fact, for |k p;| <1,0- ~1, H ~ k% p?7 and |C|/|Cr| ~ (£ /wo)? (k1 pi)*; that is, consistent with general discussion
of Sec. I1.C, the kinetic process dominates for k2 p? > |wo /€| ~ 1072, typically. Thus, while the ideal MHD theory
holds for k2 p? < 1 in the linear physics description, it breaks down much earlier in nonlinear physics applications.
Furthermore, Cj, and C peak, respectively, at 6. = 7/2 and 6. = 0. Thus, while the ideal MHD results predict KAWs
are excited with k_, parallel to the pump ko), the kinetic excitation process shows that k_, is predominantly
perpendicular to ko . This difference has significant qualitative implications to plasma transport induced by KAWs.
More specifically, let the pump KAW be excited via resonant mode conversion and, thus, ko, ~ ko, Vr. Ideal MHD
theory would predict the KAW spectrum peaks along k, with little kg components in the b x Vr direction and,
hence, little radial transport. On the other hand, the kinetic theory would predict KAW spectrum with significant kg
components and, hence, significant radial plasma transport. These findings, thus, question the applicability of MHD
based theories for realistic comparisons with experimental measurements and observations of Alfvénic fluctuation
spectra and related transport even more severely than those stemming from accurate linear physics descriptions.



33

3. Nonlinear excitation of convective cells by Kinetic Alfvén Waves

Zonal structures (ZS), such as zonal flows, are known to play crucial roles in dynamically regulating plasma transport
in tokamak plasmas. The analogues in uniform plasma are the convective cells, which have been extensively studied in
the 1970’s (Chu et al., 1978; Lin et al., 1978; Okuda and Dawson, 1973; Taylor and McNamara, 1971) in the context
of cross-field transport (Shukla et al., 1984), especially with regard to potential applications to space plasmas. In
particular, it is worthwhile mentioning the extensive studies of convective cells excitation by KAW in the context of
generation of turbulence flows in the upper ionosphere (Sagdeev et al., 1978a,b).

As can be anticipated from previous discussion on the Alfvénic state, since SAW participating in the ZS nonlinear
generation are co-propagating along By, nontrivial finite nonlinear couplings have long been known to rely on de-
viations from the ideal MHD approximations. Nonetheless, previous theoretical analyses often rely on two limiting
assumptions: (i) neglecting FLR corrections to the Reynolds stress; (ii) decoupling between the electrostatic (ESCC,
described by d¢. only) and the magnetostatic (MSCC, described by dA), only) convective cells. Both assumptions,
as will be shown, could lead to erroneous conclusions on the spontaneous excitation of convective cells by KAW!S.
The details of the analysis are complicated and, in the following, we simply demonstrate that one needs to employ
the nonlinear gyrokinetic equation in order to properly account for the the finite non-ideal effects.

Let Q¢ = (wo, ko) be the pump KAW, Q, = (w,, k,) be the zonal mode, and Q4 = (w4, k4) and Q_ = (w_,k_)
be the, respectively, upper and lower sideband KAW. Here, we note that |w,| ~ 0, k., - b = 0, and wy = w, + wo,
ki =k, + kg. We also assume k, 1 kg, which maximizes the nonlinear coupling. Let us first consider how the
zonal mode is generated by KAWs. The vorticity equation, Eq. (4.10), for the Q, mode is given by V| -3, =0, or

2
. C .
—i 223 0mok206: = —(V1 - 57 (4.69)
0

where, in terms of Fourier modes d¢y and 0¢ = (kjjc/wi)dA|k, Eq. (4.15) becomes (Chen and Zonca, 2013)

3
L(2)\ 1 ¢ K2 pr2
(V057 >Z__§<B_O) Omo Z Ay (K = KT)

K4k =k,

(4.70)
Fioa ) (kiva
G G 0p 0pr — | —— O 0w | 5
Wi Wit
AF = (K| x k) - b was defined in Sec. TV.B.2 and in the Reynolds stress, Eq. (4.7), we have let
6’U,J_k = Zi(b X kJ_)Gk(S(bk, (4.71)

By

with G}, accounting for the ion FLR effects. In the small by limit, G G ~ 1 — (3/4)(bgr + by), having used the
notations of Sec. IV.B.2. Equation (4.70) provides the following illuminating perspectives in the long-wavelength
(|kLpil, |kLps] — 0T) limit. First, we have G — 1, and OB, — 0 for KAW, such that d¢ = d¢. Meanwhile,
lwr| = |kjval. The same limiting behaviors apply for KAW pump and sideband modes. Now with k” =k — k”,

k=0, wpr = w, —wp and |w.| < |wg|, we have kH = —k:” and wgr ~ —wyr; and thus, (V- 5_7J_ }. — 0 in this limit.
This, in fact, can be expected since, in the |k p;| — 0 limit, k¥’ and k" modes reduce to co-propagating ideal MHD
SAWSs; which do not interact nonlinearly.

It is, therefore, clear that in order to nonlinearly generate d¢, in uniform plasmas, one needs to introduce finite
|k 1 p;i| effects, which, in turn, induce finite (V - §7, ), by modifying the various terms mentioned above. To properly
take into account FLR corrections to the Reynolds stress, one needs to employ the nonlinear gyrokinetic equation.
Noting that, for the KAWSs, we have ve > |wy/k)| > v; and 09| ~ [6¢r|; Eq. (4.41) for the scalar potential 6¢. then
becomes, in the by < 1 limit,

C "
s sz(s L, = 2 Ak /I2 _ kl2
w (b 2B0p1 k/+k2 . ( L)

e dun [1—1(bk/+bk~>] - AN s b
wk/ W

15 See, e.g., the recent analysis and summary of previous literatures on this topic given by (Zhao et al., 2011).
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where the by terms inside the angle bracket may be regarded as the ion FLR corrections to Reynolds stress. Meanwhile,
the equation governing the vector potential, A, can be derived from Eq. (2.30) and is given by

SA = (i/2) > AF (0Aw 6A /K| Bo) . (4.73)
k' k' =k,

For the KAW sidebands, 2, and Q_, we have, from Eq. (4.40), noting |wx/k)| < v, and, again, b, < 1,

(14 7bg )0k — 8y, = —i(c/ Bo) AL, (8pr fwrr) (1 + 7bo) (86, — 84b.), (4.74)

where k = ky, k" = tko, k = k" + k., and 6¢, = (wod A /cko)). Furthermore, Eq. (4.41) can be shown to become
B2 [(1 = b /4)0k — (v} Jw})oun] = i(c/ Bo)AL. (K2 = k2)(0¢wn fwi)

X [(1 = 3bo/4)(6¢. — 6¢.) — (3/4)b=6¢.] . (4.75)

Equations (4.72) through (4.75) are the desired set of equations for ., Q_ and €, coupled via €.
To analyze the modulational stability properties of ., we first note that Qg is a normal KAW mode and, thus,
eaxo = 0, where, consistent with Eq. (4.54),

eaxk = 1= (3/4)by — (kjjvs /wi) (1 + 7by) (4.76)
is the KAW linear dielectric constant in the by < 1 limit. Letting €2, = i~y,, we then have
ear+ = £[2wo/(wo +i72)%][1 = (3/4)(bo + )] (= F A F 77/2w0), (4.77)

where A ~ (wo/2)(7 + 3/4)b, is the frequency mismatch between wy and the normal mode frequency of Q4 and Q_.
Substituting Eqs. (4.74) and (4.75) into Eq. (4.72), taking Eq. (4.77) into account and noting that, on the right hand
side of Eq. (4.72), k' = k_ and k" = kg as well as k' = k; and k" = —kg, we have

5. = —ag(8¢p. — 69.) /(72 + A?), (4.78)
where
| ckakor 860 | bol( + 3/4)(2bo + b.)]
oy = | =5 P . (4.79)
Similarly, Eq. (4.73) reduces to
0o = —ay (8¢, — 89.) /(72 + A?), (4.80)
where
| ckakor 860 |* bob (T + 3/4)
ay = | =g T (4.81)

Equations (4.78) and (4.81) then yields the following dispersion relation for the modulational excitation of the Q,
zonal mode

1= —(ag —ay)/(72 + A7) (4.82)

Note that ag — vy > 0. Hence, 42 = —w? < 0 and, KAW can not spontaneously excite convective cells or zonal
structures in the by < 1 limit; regardless of the 7 = T, /T; value (Chen and Zonca, 2013), consistent with some of
the recent results by (Zhao et al., 2011) and in contrast with the analysis of (Mikhailovskii et al., 2007; Onishchenko
et al., 2004; Pokhotelov et al., 2004).

Equations (4.78) and (4.80) are, respectively, the generating equations for ESCC and MSCC. Thus, it is readily
noted that they are excited by KAW simultaneously, as |d1)./d¢p.| = O(1). Artificially assuming that d¢, is suppressed
yields the incorrect ESCC dispersion relation, Eq. (4.82) with aw, = 0, but still the correct qualitative conclusion that
ESCC are not spontaneously excited by KAW in the long wavelength limit. However, the analogous assumption that
d¢, is suppressed delivers the erroneous MSCC dispersion relation, Eq. (4.82) with ay = 0, as well as erroneous claim
that MSCC can be spontaneously excited by KAW for b, < 1 [cf., e.g., the recent discussion given by (Zhao et al.,
2011)].
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C. Nonlinear mode-coupling of shear Alfvén waves in toroidal plasmas

In this section, we illustrate how equilibrium geometry and plasma nonuniformity can contribute to breaking the
Alfvénic state. As counterpart of a “pump” SAW exciting a lower frequency “daughter” SAW via nonlinear Landau
damping in a uniform plasma (cf. Sec. IV.B.1), Sec. IV.C.1 discusses TAE frequency cascading (Hahm and Chen,
1995). Similarly, Sec. IV.C.2 addresses the generation of ZS by finite amplitude TAE (Chen and Zonca, 2012; Spong
et al., 1994; Todo et al., 2010) as toroidal geometry analogue of convective cells generated by KAW (cf. Sec. IV.B.3).
Particular emphasis is given on the importance of spontaneous vs. forced generation of ZS (Chen and Zonca, 2012),
given their potentially important self-regulatory roles on Alfvénic oscillations and, more broadly, on DAW turbulence.

As geometry effects importantly affect the SAW continuous spectrum (cf. Sec. IIL.B), Sec. IV.C.3 discusses how
AE nonlinear effects modify the SAW continuum and, thereby, lead to enhanced continuum damping (Chen et al.,
1998; Vlad et al., 1992; Zonca et al., 1995). Finite amplitude MHD activity can also yield to deformation of the
SAW continuum, as illustrated in Sec. IV.C.4. However, due to a quasi-static helical deformation of the axisymmetric
tokamak equilibrium, this effect may be destabilizing for beta induced AEs (BAEs) (Biancalani et al., 2010a,b, 2011;
Marchenko and Reznik, 2009).

1. Toroidal Alfvén Eigenmode frequency cascading via nonlinear ion Landau damping

In uniform plasmas (Sec. IV.B), a pump SAW can parametrically excite a daughter SAW with a lower frequency and
opposite parallel phase velocity via nonlinear ion Landau damping. (Hahm and Chen, 1995) applied this frequency
cascading mechanism to the nonlinear saturation of TAE with high-n toroidal mode numbers. Due to realistic
equilibrium profile variations, there, in general, exists O(ng,) TAEs with the same toroidal mode number n. Here,
o is the safety factor at the outmost flux surface. Thus, for |ng,| > 1/e = Ry/r, many TAEs with different mode
frequencies may exist within the frequency gaps.

Following (Hahm and Chen, 1995), let kK’ be the pump wave, k be the decay wave, and k” = k — k’ be the ISW;
and applying the parametric decay dispersion relation, Eq. (4.34), to the wave intensity I, = |V ¢x|?, where (...)
denotes appropriate averaging of (...) over the radial TAE mode structure, we can obtain the following wave-kinetic
equation

0
— 1. = k) — My . I I 4.83
57k i (k) I Ek/ ke I e (4.83)
where
!
Imy;s m;
My = = X Ty (4.84)

2 e B
Xis and egy, are defined by, respectively, Eqs. (4.29) and (4.31), with w,, = w—w’ and kg = k| —k|", and we have summed
over all the k' pump modes. Now M}, - has a maximum frequency interaction width |w—w’| ~ |2k"‘ Vii| ~ v /qRo and,
thus, if the adjacent TAE’s frequency difference, |Aw| ~ |va/(ng?Ro)|, is smaller than vy;/(qRo) or /2 > [1/(nq)|,

we can replace the sum over k' by an integral over w’; that is, Eq. (4.83) becomes approximately

%I(w) =7 (W) (w) — I(w) /:JM dw' I (w")w' Vy(w — w'). (4.85)

Here, I(w’) is the continuum version of ), , I/ 6(w'—wir), war = wy, the upper TAE gap accumulation point frequency,
corresponds to the highest frequency of linearly unstable TAEs. Noting that I(w) has a frequency width typically of
the order of the frequency gap, ~ eva/(qRp), and Vs(w” = w — w’) being an odd function in w” with an interacting
width ~ vy;/(qRo), we can expand the integrand about w, assuming eva/(qRo) > vt /(qRg) or € > [31-1/2, and render
Eq. (4.85) into the following differential equation

0

0
&I(w) = v (W)I(w) + I(w)Uy (w)%(wl), (4.86)
where (Hahm and Chen, 1995)
Ui(w) = / ) (w—wHVs(w — wdw' ~ / W'V (w")dw"
Wy —w —00 (4.87)

i —
= 5[(1 + T)BoqRo]_2 =U,;.
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Here, 7 = T./T; and wy =~ wy, the lower TAE gap accumulation point frequency, corresponds to the low-frequency
end of I(w). Note that v, (w1) < 0 and, I(wy) =~ 0. At saturation, 9I /9t = 0; Eq. (4.86) then yields

WM

I(w) ~ (l/w)/ [y (w')/U1]dw'. (4.88)

w

Here, noting that the spectral transfer of the wave energy is toward the lower frequency, we have let I(w) ~ 0 at the

highest frequency end, wyy; i.e., I(w) tends to peak away from wys. The corresponding overall magnetic fluctuation
level, |6 B,/ Bo| =~ |ckodd/Boval, is then given by

. (?)2 (1+ 7)21/—2: /;M v (w)In (%) , (4.89)

1

0B,
By

where wa = v4/(qRy). Expanding w = wy + (w — w1), Eq. (4.89) gives the following estimate

2

0B,
2

By

. _
~—(147)? <7—L> 2, (4.90)
wa

with €.g = 1 — w1 /wpr, 71 a typical value of vz (w) and having noted |kg/k,| ~ e. Quantitatively, with the estimate
T /walS O(1072), o ~ € ~ 1071 and 75 1, Eq. (4.90) yields a saturation amplitude at |6 B,./Bo|<S 1073,

2. Nonlinear excitation of zonal structures by Toroidal Alfvén Eigenmodes

Since ZS varies predominantly only radially, the self regulation of DWT/DAW is achieved via spontaneous excita-
tions of modulational instabilities, and, consequently, the damping of the driving instabilities via scatterings to the
short-radial wavelength stable domain (Chen et al., 2000). However, while zonal electric fields and corresponding
zonal flows are widely measured in experiments with properties that are consistent with the general theoretical frame-
work (Diamond et al., 2005), zonal magnetic fields and currents, predicted theoretically (Chen et al., 2001; Diamond
et al., 2005; Gruzinov et al., 2002; Guzdar et al., 2001b), have been only recently observed in experiments in the
compact helical system (CHS) (Fujisawa et al., 2007).

As TAE plays crucial roles in the SAW instabilities in burning fusion plasmas, it is, thus, important to understand
and assess the possible roles of ZS on the nonlinear dynamics of TAE. First numerical analyses of this problem were
reported by (Spong et al., 1994). More recently, numerical simulation results by (Todo et al., 2010) showed that ZS
may be forced-driven by finite amplitude TAE, while the importance of spontaneous vs. forced generation of ZS has
been emphasized by (Chen and Zonca, 2012) (cf. Sec.IV).

We shall follow the theoretical approach of (Chen et al., 2000, 2001); which is also adopted in Sec. IV.B for our
treatment of convective cells generated by KAWSs in uniform plasmas. Thus, we shall consider the nonlinear couplings
among the pump TAE, Qp, the upper and lower sideband TAEs, Q21 and Q_, and the zonal mode €2,. We then have,
for example, §¢ = dpa + 0¢, and dpa = dpg + 0Py + dp_.

Assuming |k p;|* ~ |k.ps|?> < € = ro/Ro < 1, we adopt the ideal MHD approximation and obtain, from the
vorticity equation of the Q, mode, Eq. (4.72),

k2, v>
— W, X200, = _B%kzkgkgpf <<1 - 12A>> (AA, — AgA_); (4.91)
0

where yi. ~ 1.6¢%/2k2p? corresponds to the trapped-ion enhanced polarizability (Rosenbluth and Hinton, 1998),
ky = (x —j)/qRo, (-..)e = [dz|®o|*(...), (1)x = 1, o(z — j) = d¢no(r;ng — m) describes the radial dependence of
the mth poloidal harmonics [cf. Eq. (3.23)], and Ay and Ay are, respectively, amplitudes of the pump and sidebands.
Noting that |®¢|?(x) is localized at and even'® with respect to |z| = 1/2 with a width A, ~ O(e), Eq. (4.91) becomes

—iw, X200, = —(C/Bo)kzkgkgp?(l - wi/4w§)(A3A+ —ApA_) (4.92)

16 This is strictly valid for TAEs near SAW continuum accumulation points. However, TAE mode structures have generally mixed
parity (Chen and Zonca, 1995; Zonca, 1993a; Zonca and Chen, 1993, 1996). Here, we strictly follow (Chen and Zonca, 2012) and, for
simplicity, assume |®|?(x) is even, noting that the present analysis is readily generalized to mixed parity modes.
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where wa = va/(qRo). 6A) or 0¢. = wod A /cko), meanwhile, is given by the weighted averaging (...), of Eq. (4.73),
o), = i(ck.ko/woBo)(A§A+ + AgA_). (4.93)

Including the nonlinear correction to ideal MHD Ohm’s law, the nonlinear vorticity equations for the Q4 sidebands
can be rendered into a set of differential-difference equations (Chen and Zonca, 2012); which, after weighted averaging,
yields

Aseashs = —2i—kok.wobo < o ) (66 = 30)-, (4.94)
0 0
where by = p7(|[Vo®@o|?)s, by = p? (V4 Po|?) = bo + b, b, = k2p? and b_ = b;.. Meanwhile,
Wh
€At = 5 Aro(w)Do(w, k) ; (4.95)
€Eow w=wy

with g = 2(r/Ro+A"), A’ the radial derivative of the Shafranov shift, Do(w, k;) = —2I'_D(w, k.), 'y = (w?/w?)(1+
€0)—1/4, and D(w, k,) the TAE dispersion function consistent with Eq. (3.30) in the notations introduced in Sec. III.C.
Meanwhile, Ao = —2_Ap = (—T',T_)"/?, consistent with Eq. (3.14)7. Solutions of Do (w, k.) = 0 are w = Fwr(k.),
with the pump TAE frequency given by wy = wr(k, = 0). In the light of the general discussion of Sec. IV.A and of
Eq. (4.95), Eq. (4.94) can be considered as the implicit definition of oc ANZ term in Eq. (4.1), showing that the effect
of ZS on TAE nonlinear dynamics results in a renormalization of the (sideband) inertia. This, in general, is also the
case for other types of AEs (cf. discussion in Sec. IV.D.7).
Combing Eq. (4.94) with Eqgs. (4.92) and (4.93) and letting —iw, = 7, yield

c 2 w2\ wobo 1 1
8¢, = 2 | —kok, z 1——A) A 2(———) 8¢ — 1), 4.96
¢ (Bo ‘ ) Xiz( 4w ”Yzb+| o €A+  €A— (99 = 3¥) (4.96)
c 2 by 1 1
Sh, =2 | —kok. —A2<—+—>6—5 .. 4.97
w2 (gohok. ) oAl (ot ) (60 - 60 (4.97)

Noting that Do(w, k;) = £(0Do/0wo)(iv. F Ar), with Ap = wr(k,) — wo, Egs. (4.96) and (4.97) further reduce to,
in analogy with Eqs. (4.78) and (4.80),

2w 1\ b\ b 2o /w? (56 — 1))
5¢z:2(BiOk9kz|Ao|> (w_g__>< )0 € 2wo/wi (6¢ — V)

Wi 4) \xi: ) by Aro(wo) 9Do/0wy 72 + A%
(5¢ B 5¢)z
E —_— —_— 4.
T A (4.98)
2
c b A w3 /w? 2wo/wh (8¢ — o),
§ip, = —2 (—k9k2|A0|> <_0> <_T> owp/wa 2wo/wy ( ¢ Y)
By b+ wo AT()(WQ) 8D0/8w0 vZ + AT
_ (5¢ - 5¢)z
= —QyT 73 n A% . (499)
Equations (4.98) and (4.99) then yield the following desired dispersion relation
"yz2 = Qy1T — QpT — A% 3 (4100)

i.e., instability will set in when

2 2
c bo eowd/w? dwo/w? [AT b, ( w3 )} (AT>

kok.|A — — + 1-—= > — 4.101
(Bowo ok| 0|> by Aro(wo) 0Dg/0wo | wo  Xiz ( )

Note that, typically, |Az/wo| ~ O(eo) and [b.(1 — 1/4wd)/xiz| ~ 0(68/2/q2). Meanwhile, we typically have
w(0Dg/dwp) > 0 (Chen and Zonca, 2012). Thus, Eq. (4.101) becomes approximately

AT/OJQ > 0, (4102)

17 Here, for simplicity, we adopt the notations of (Chen and Zonca, 2012) and use Dg and Apg, symmetric with respect to lower and upper
continuum accumulation points, rather than D and A that, for TAE, is the notation for A, obtained from Eq. (3.14), having dropped
the subscript n for simplicity.
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and

2
c bo eowd/w? dwo/w? Ar
kok.|A — —_— . 4.103
(Bowo ok| O|> by Aro(wo) ODo/0wo ~ wo ( )

This inequality essentially determines the condition for the spontaneous excitation of the zonal field ., given by
Eq. (4.99), which dominates over the usual zonal flow §¢, because of the enhanced trapped-ion polarizability. The
sign of Ar/wy depends on the specific equilibria and plasma parameters, and must be computed for individual cases.
For the case of nearly circular plasmas with monotonic ¢ profiles, Ar/wy < 0 (Zonca, 1993a; Zonca and Chen, 1993),
so that Eq. (4.102) is violated. However, Eq. (4.101) can still be satisfied for mode frequencies in the upper TAE gap,
wg > w? /4, and small |A7 /wo|, with ¢, dominating over §¢,. Note that, especially when strongly driven by energetic
particles (EPs), TAE modes tend to be characterized by w3 < w?/4. This may provide a plausible explanation for
the numerical simulation results by (Todo et al., 2010), where the ZS response to TAE is found to be forced driven
rather than spontaneously excited (cf. also Secs. IV.C.3 and IV.D.4).

In order to give a quantitative estimate for the onset condition of the modulational instability, Eq. (4.101), we recall
that TAE linear stability analysis yields (Chen and Zonca, 2012)

cowd /wh dwg/w?h N
ATQ(wo) 6D0/8w0

Thus, considering b, S k2p? ~ epby and 2qRok)o =~ 1, the threshold condition for spontaneous excitation of the most
unstable zonal mode with by ~ €y becomes

2
& AT
kok.|A ~|—
(Bowo v | O|) wo

2 2
Pi

th 460q2R(2)

€ b b & ’
~Y 0 2 2 ~Y 5
kgpi o

0B,
By

(4.104)

For some typical tokamak parameters, this estimate yields |6B,/By|3, ~ O(107%), suggesting that spontaneous
excitation of ZS may be a process effectively competing with other nonlinear dynamics in determining the saturation
level of TAE and other AE modes; if constraints specified below Eq. (4.103) can be satisfied.

Coherent nonlinear interactions of AE and ZS, if spontaneously excited, in addition to playing important self-
regulatory roles in AE nonlinear dynamics, could also influence fine structures of the AE frequency spectrum. These
features in experimental observations [cf., e.g., (Fasoli et al., 1998) and the recent review by (Breizman and Sharapov,
2011)], are generally interpreted as evidence of modulation interactions due to wave-particle nonlinear dynamics (cf.
Sec. IV.D.3). In principle, it should be possible to discriminate these different underlying nonlinear physics processes
on the basis, e.g., of the different scaling of the frequency splitting with the “pump AE” amplitude, given by Eq. (4.100)
in the case of modulation interactions of TAE and ZS.

3. Toroidal Alfvén Eigenmode saturation via nonlinear modification of local continuum

Since the difference between TAE frequency and the lower or upper SAW continuum accumulation frequencies
is relatively small, |Aw|S (eva/qRo) with € = r/Rp, an efficient nonlinear saturation mechanism is via nonlinear
modification of the local SAW continuum structures, such that the frequency difference Aw vanishes, due to the
corresponding nonlinear frequency shift. Within the general theoretical framework of Sec. IV.A, this process is
accounted for by the oc AL term in Eq. (4.1). As the TAE frequency gap is due to the coupling of (m + 1,n) and
(m,n) modes, the contribution to ANL may be produced by (m = +1,n = 0) components of §E x b flow and § B
field line bending, rather than by the generation of ZS, discussed in Sec. IV.C.2. So far, two such mechanisms have
been proposed. One depends on the nonlinear modification in the magnetic surface structure (Zonca et al., 1995) and
the other depends on the nonlinear modification in the density structures (Chen et al., 1998). Although of different
underlying nature, these two processes are described by essentially the same nonlinear equations. Therefore, we will
discuss in some details only the former.

In general, mechanisms for nonlinear modification of the local SAW continuum structures at short radial scales,
mentioned above, yield mode saturation above a critical amplitude threshold because of the appearance of fine scales
in the mode structure; i.e., of enhanced mode damping in the presence of finite dissipation. This phenomenon may
be physically interpreted as mode conversion to short scale damped oscillations, produced by the TAE modes due
to the nonlinear SAW continuum distortion. Note, here, that this mechanism is different from that discussed more
recently by (Todo et al., 2010, 2012a,b), which is connected with power transfer to nonlinear driven oscillations, which
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are damped possibly through the fine structures connected with resonant excitation of higher toroidal mode number
continuous spectra (cf. also Sec. IV.D.4).

Let us consider a the local TAE structure that consists of toroidal mode number n and poloidal mode numbers
m and m + 1, with given frequency wg. The dominant nonlinear interactions yield a low frequency fluctuation with
(m=1,n=0) and a (2m+ 1,2n) component at 2wy, which can be expressed as (Vlad et al., 1992, 1995, 1999; Zonca
et al., 1995):

o Ckgo 8 %
91,0 Boor (00 n0mt1n)
02k90 % 0 0 «
5AH1-,0 - WOBO'UA (6¢m,n56¢m+1,n - 5¢m+1,n55¢m,n) ) (4105)
0  chgo (.0 0
56¢2m+1,2n - WOBO (2 or 5¢m,n or 6¢m+1,n
82 82
5¢m,nwé—¢m+l,n - 6¢m+1,nwé¢m,n> )
A2k 0 0
6A||2m+1,2n == _WOB:EA (6¢m+1,n§5¢m,n - 6¢m,n§6¢m+l,n> . (4106)

These equations can be derived from Eqgs. (2.35) and (2.37), neglecting thermal ion compressions and EP contribution
in the singular layer (cf. Sec. IIT). Furthermore, we have assumed |n| > 1 for simplicity and defined koo = —m/ro,
with 7o the radial position of the considered local TAE frequency gap. In particular, in Eq. (4.105), we have also
neglected the effect of thermal ion Landau damping, considering a very narrow TAE spectrum centered at wg. The
effect of ion Landau damping may become important for a broader TAE frequency spectrum; and can be included
in the present analysis following the derivations of Secs. IV.B and IV.C.1. It is also worthwhile noting that, due to
toroidal geometry, (2m, 2n) and (2m+2, 2n) Fourier modes are nonlinearly driven at 2wy in addition to the (2m+1, 2n)
harmonic given by Eq. (4.106). These modes, may locally interact with the SAW continuum, since the frequency gap
at ~ v4/(qRp) is very narrow for toroidal equilibria with circular flux surfaces (Zheng and Chen, 1998a,b). In this
case, the effect of the 2n nonlinear mode can be significant and contribute to the saturation of the “pump” TAE
mode (Todo et al., 2012b). More generally, however, the (2m,2n) and (2m + 2,2n) modes at 2wy do not locally
interact with the SAW continuum, due to the frequency gap at ~ va/(qRo) produced by finite magnetic flux surface
ellipticity (Betti and Freidberg, 1991). Therefore, in the typical case of elongated plasmas, the effect of (2m,2n) and
(2m + 2,2n) results in a nonlinear frequency shift O(e) smaller than that due to the (2m + 1,2n) harmonic given in
Eq. (4.106), and, thus, can be neglected (Vlad et al., 1992, 1995; Zonca et al., 1995).
Adopting the general notation of Eq. (3.23) for the fluctuating fields structure, let us define

1/2
U= 8\/§qu <&> <ﬁ—28> c dpon(r;ng —m) ,

70 € T. +T;
Ro\ /Bbs\? e
V =82 0 _° Sbon(ring—m—1) , 4.107
L L — n

where by, = k3o (T. + T;)/(m;Q?). Meanwhile, the dimensionless time can be defined as 7 = egvat/(4gRy); and the
corresponding dimensionless radial coordinate is x = (4/€9)(ng — m — 1/2). The effect of the nonlinearly driven
(m = 1,n = 0) and (2m + 1,2n) components on the “pump” TAE mode is obtained by direct substitution of
Egs. (4.105) and (4.106) into the coupled vorticity equations for (m,n) and (m + 1,n) modes near ry (cf. Sec. II).
The final governing equations are

(i0; — x) 0,U + 0,V — 02|V |*0,U = A |
(i0y + ) 0,V + 0,U — 82|U|?0,V = —A . (4.108)

Here, A and B (used below) are defined as

(8) = () (%) w5 (50 1109
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A(0) = A(6 = 0) and B(0) = B(f = 0), given the representation of the TAE fluctuation field as d®,, = A(6) cos(#/2)+
B(0)sin(0/2) (cf. Sec. IIT) (Cheng et al., 1985). The local TAE dispersion relation in the form of the GFLDR (cf.
Secs. III.C and IV.C.2) is obtained from the solutions of Eq. (4.108) with the matching condition

/ 0, Udx = —/ 0,Vdr = —nB . (4.110)

Since the ratio B/A depends only on 6Wf in the absence of EPs, Eq. (4.110) describes the nonlinear frequency shift
with respect to wo, produced by the finite TAE amplitude. It can be shown that, above a certain critical A = Ac(éWf),
the solutions of Eq. (4.108) start producing fine radial structures due to enhanced interaction with the local continuous
spectrum. The critical fluctuation level for this to occur can be estimated as

0B, Lo ey L (00" 4 i< 1024 e) (4.111)
— | ~ —c ~ — c S . . .
By ). 8|simg Ry ° 4]s|mq \ Ro / !

As /L((SWf) < 1 for some choice of plasma equilibrium profiles, (nonlinear) enhanced continuum damping may
effectively yield mode saturation.

Again, we note that the local SAW continuum may also be modified via nonlinear density changes (Chen et al.,
1998). The corresponding critical fluctuation level for enhanced continuum damping is given by

0B, A .
< Bo ) ~ (Be)' 7 A(0W)S 1072 AL(0) (4.112)
The critical amplitude in Eq. (4.112) is typically larger than that in Eq. (4.111). That is, the dominant mechanism

for nonlinearly enhanced continuum damping is expected to be due to the nonlinear modification in the magnetic
surface structure and plasma flow.

4. Alfvén Eigenmodes in the presence of a finite-size magnetic island

Theoretical analyses of Alfvénic fluctuations in the presence of a finite-size magnetic island were originally motivated
by the experimental observation of BAEs in FTU (Annibaldi et al., 2007), where they are excited without EP drive but
in the presence of a sufficiently large magnetic island (Buratti et al., 2005), as also reported in TEXTOR (Zimmermann
et al., 2005) and HL-2A (Chen et al., 2011).

Theoretically, the low-frequency magnetic island can be considered as a non-axisymmetric distortion of the tokamak
equilibrium, and the detailed analysis is given in (Biancalani et al., 2010a,b, 2011). This situation has evident analo-
gies with the formation of frequency gaps in the SAW continuous spectrum in helical devices [cf., e.g., (Kolesnichenko
et al., 2011; Toi et al., 2011)]. A case of particular interest is when the toroidal periodicity of the singular per-
turbations representing the SAW continuum coincides with that of the magnetic island, assumed to have (mq,no)
poloidal/toroidal mode numbers. In this case, the SAW continuous spectrum is qualitatively modified (Biancalani
et al., 2011). In particular, the BAE frequency is upshifted by the finite size magnetic island to
1/2

2.2 2112 2
nos~qo Wia wWa

WBAE = WBAEo |1+ (4.113)

4 T8 Whap-cap
Here, wpapo is the BAE frequency in the reference axisymmetric tokamak equilibrium without magnetic island, W;y
stands for the magnetic island (half) width, wparp—cap denotes the BAE continuum accumulation point frequency
defined as A2 (wpap_cap) =0, wa = va/(qoRo), go = mo/n0, ro the island O-point position, and s is the magnetic
shear. Equation (4.113) has been successfully tested against FTU experimental observations for sufficiently small
magnetic island width (Tuccillo et al., 2011).

The actual physics determining the threshold in magnetic island size for BAE excitation has not been fully clarified.
Two possible mechanism have been proposed so far: (i) the core plasma profiles, modified inside the finite size magnetic
island, along with the modified SAW continuum structures, may alter the stability properties of BAE modes and
eventually excite them even in the absence of EPs (Biancalani et al., 2011); (ii) the island-induced modification of
the thermal ion equilibrium distribution function (Smolyakov et al., 2007) may be sufficient to yield a change in sign
of ion Landau damping and cause mode excitation (Marchenko and Reznik, 2009).
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D. Nonlinear wave-particle dynamics

As remarked in the introduction to Sec. IV, there are currently two paradigms for discussing nonlinear interactions
of Alfvénic fluctuations with EPs in fusion plasmas (Chen and Zonca, 2013; Zonca et al., 2015b): the “bump-on-tail”
and the “fishbone” paradigms. It is possible to adopt the former one provided that the system is sufficiently close to
marginal stability. In particular, the nonlinear modification of resonant EP orbits must be small compared with the
characteristic fluctuation wavelength (Berk and Breizman, 1990b,c). Thus, this model can account only for local EP
transport in the presence of an isolated resonance; i.e., unless the threshold is exceeded for the onset of stochasticity in
the particle phase-space due to resonance overlap (cf. Secs. V.A and VI.A). The essential physics of the bump-on-tail
paradigm are the same as those originally introduced in the analysis of the temporal evolution of a small cold electron
beam interacting with a plasma in a 1D system (Al'tshul’ and Karpman, 1965, 1966; Mazitov, 1965; O’Neil, 1965;
O’Neil et al., 1971); and are discussed in Sec. IV.D.1. There, we also give the self-consistent nonlinear solution for
the low frequency beam distribution function in the presence of a periodic fluctuation, as derived by (Al'tshul’ and
Karpman, 1965, 1966). In fact, this is the solution of the Dyson equation for a 1D uniform plasma, which is the
starting point for its extension to nonuniform systems (Zonca et al., 2005) and provides the theoretical basis for the
construction of the fishbone paradigm later on. The dynamics of the nonlinear beam-plasma system with sources
and collisions are analyzed in Sec. IV.D.2, based on the original works by (Berk and Breizman, 1990a,b,c). These
include steady-state and bursting behaviors (periodic and chaotic) (Berk et al., 1996b, 1992a; Breizman et al., 1997,
1993), formation of hole/clump pairs in the resonant particle phase space (Berk et al., 1999, 1997b; Breizman et al.,
1997); and the existence of subcritical states (Berk et al., 1999). Applications of the 1D bump-on-tail paradigm to
AE experimental observations are discussed in Sec. IV.D.3, with notable examples being fine structures (frequency
splitting) of AE spectral lines (Fasoli et al., 1998) as well as AE adiabatic frequency chirping (Gryaznevich and
Sharapov, 2006; Pinches et al., 2004a; Vann et al., 2005), where the mode frequency sweeping rate is much less than
the wave-particle trapping frequency, |&| < w%. Section IV.D.3 also addresses the assumptions underlying the 1D
bump-on-tail paradigm and analyzes its validity limits.

One approximate method for analyzing finite AE mode width effects is based on perturbative treatment of EPs and
prescribed AE structures, which ultimately yields AE nonlinear dynamics in terms of time evolution of wave amplitudes
and phases (Chen and White, 1997). Numerical simulation results using this approach are presented in Sec. IV.D.4. In
fusion plasmas, however, EP effects are generally non-perturbative and modify the plasma dielectric response as well as
the fluctuation structure and frequency. This behavior is related with equilibrium geometry and plasma nonuniformity
effects via EP resonance conditions, which depend on EP constants of motion; and via finite mode structures, which
affect wave-EP interactions. These issues are analyzed in Sec. IV.D.5. First theoretically, yielding an estimate of
|7z /w]| for the transition from local redistributions to meso-scales EP transport and the corresponding shift from the
bump-on-tail to the fishbone paradigm. Then, these physics are illustrated by numerical simulation results (Briguglio,
2012; Briguglio and Wang, 2013; Briguglio et al., 1998; Wang et al., 2012; Zhang et al., 2012). At last, Sec. IV.D.5
derives the general equations for the nonlinear dynamics of phase-space ZS (PSZS) within the theoretical framework
of Sec. IV.A, yielding the generalization of the Dyson equation introduced in Sec. IV.D.1 (Al'tshul’ and Karpman,
1965, 1966) to nonuniform plasmas with the addition of sources and collisions. This result is then used to discuss the
unification of bump-on-tail and fishbone paradigms (Zonca et al., 2015b).

In general, the Dyson equation approach of Sec. IV.D.5 provides an exact description of nonlinear wave-particle
interactions for which a numerical solution is necessary. In nonuniform plasmas, with the mode frequency set by the
nonlinear dispersion relation, the nonlinear mode evolution is dominated by resonant EPs whose phase is locked with
the wave, since these maximize wave-EP power exchange while, at the same time, are most efficiently displaced by
the mode. Depending on the wave dispersive properties, the mode can nonlinearly modify its structure to further
enhance the wave-EP power exchange by tapping the steeper spatial gradient regions due to phase-locked resonant
EPs. When the mode can readily respond by readapting its frequency and/or mode structure to the modified EP
distribution, resonant EP radial motion is secular as long as wave-particle phase locking is maintained, as theoretically
predicted (White et al., 1983) and observed experimentally (Duong et al., 1993; Heidbrink, 2008). This process, dubbed
as “mode-particle pumping” in the original work by (White et al., 1983), was introduced to explain EP losses due to
fishbones in PDX (McGuire et al., 1983). It applies to nonlinear dynamics of radially extended EPM (cf. Sec. IV.D.6)
and fishbones (cf. Sec. IV.D.7), and is accompanied by fast non-adiabatic frequency chirping, || ~ w% with wp the
wave-particle trapping frequency for fixed w, that suppresses wave-particle trapping as shown in Sec. IV.D.5. The
ability to adapt and “follow” phase locked EPs is characteristic of EPMs, of which fishbones are the first and one
well-known example (Chen and Zonca, 2007a), and it is borne in the mode dispersion relation. In fact, non-adiabatic
chirping and phase locking can be preserved through the nonlinear phase because nonlinear wave-EP power transfer
balances the linear diffusive/dispersive response. Meanwhile, assuming phase locking and additional approximations
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(to be verified “a posteriori”) allows us to further simplify and solve the Dyson equation for the cases of EPM
(Sec. IV.D.6) as well as fishbones (Sec. IV.D.7). For EPM, in particular, Sec. IV.D.6 demonstrates that the general
NLSE with integro-differential nonlinear terms of Sec. IV.A reduces to a special case of the complex Ginzburg-Landau
equation (Conte and Musette, 1993; van Saarloos and Hohenberg, 1992), for which the convectively amplified EPM
wave-packet constitutes an attractor. Section IV.D.6, furthermore, discusses the radial modulation effects of the
self-consistent interplay of AE/EPM mode structures and EP transport, which are the analogue of the modulation
interaction of AE with ZS (Sec. IV.C.2) extended to generally include wave-particle resonance effects in the case of
PSZS; and, in general, can influence fine features of the AE/EPM frequency spectra (Sec. IV.D.3).

More generally, the study of convectively amplified EPM wave packets as soliton-like solutions of a complex NLSE
introduces interesting analogies with research fields other than plasma physics (c¢f. Sec. IV.D.6). These include
possible formulations of fractional derivative extensions of the NLSE as well as Fokker-Planck equation, based on a
first-principle physics model derived from general equations governing the nonlinear evolution of a nonuniform plasma
system with wave-particle resonant interactions that are responsible for nonlocal spatiotemporal behavior. Further
discussion of general implications of the theoretical framework introduced in Sec. IV.A is given in Sec. IV.E.

1. The physics of the collisionless nonlinear beam-plasma system

The temporal evolution of a small cold electron beam interacting with a plasma in a 1D system was described by
(O’Neil et al., 1971). Following the linear analysis of (O’Neil and Malmberg, 1968), let us consider a uniform 1D
beam-plasma systems, where electrons have density n and are Maxwellian, with a thermal speed vy significantly lower
than the electron beam drifting speed vp, such that thermal electron Landau damping is negligible. Beam electrons,
of density np < n, have a Lorentzian distribution with velocity spread vp, while thermal ions are considered as a
fixed neutralizing background.

The most unstable wave is a beam mode, which is nearly degenerate with the Langmuir wave; i.e., w = wgy +
Sw and k = ko + 0k, with wy = w, and ky = w,/vp. More precisely, introducing = = (5k/ko)(2n/np)'/?, y =
(6w/wo)(2n/np)'/3, s = (vg/vp)(2n/np)'/?, the most unstable mode for s = 0 has 2 = 0, y = —(1/2) + iv/3/2
and group velocity dw/0k = (2/3)vp. The half-width Ak of the linear growth rate spectrum is given by Ak =
(3/2)ko(np/2n)/3. For (ng/2n)'/? < 1, beam electrons are moving locally over a single wave with relative velocity
Av ~ (np/n)"/3vp. When the wave grows to an amplitude such ¢ ~ mAv? /e ~ (np/n)**mu? /e, the wave saturates
and starts oscillating (O’Neil et al., 1971). Meanwhile, the nonlinear evolution takes place in two stages (Shapiro,
1963a,b): first, the beam-plasma interaction heats the beam, as the nonlinear AvZ, vg; second, the beam distribution
is modified (flattened by phase mixing; cf. later) in velocity space by nonlinear interactions.

Following (O’Neil et al., 1971), we consider 6¢ = 0¢(t) exp(ikox) + c.c., v = z — vpt and wy = wy. A general
direct solution of the Poisson’s equation can be obtained assuming that, in one wavelength 27 /ko, the beam spatial
charge is made of i = 1,2, 3, ..., M charge sheets located at z; with charge (—2meng)/(Mko). Thus, recalling that the
plasma can be treated as a linear dielectric medium and that the wave is nearly monochromatic; and introducing the
normalized quantities &;(7) = koz;(t), 7 = wot(np/2n)'/3 and (1) = —(2n/np)*/3edpo(t)/(mv3),

. M
b(r) = 37 > exp[=ig ()] . (4.114)
&(7) = —id(r) exp [i&;(7)] + cc. (4.115)

are, respectively, the evolution equation for ®(7) = ®(0) exp (—i fOT y(7)dr' ), with y the normalized frequency variable
introduced above, and the equation of motion for the electron beam charge sheets. Equations (4.114) and (4.115)
recover the linear dispersion relation y® = 1, for the most unstable beam mode in the cold beam case. They describe
the early nonlinear evolution of the most unstable beam-plasma wave, under the single mode assumption. Numerical
solution shows that the fastest growing mode dominates the dynamics and grows until electrons are trapped and begin
sloshing back and forth in the wave. Then, the wave stops growing and begins oscillating about a mean value due to
energy exchange between electrons and the wave itself. This process is similar to the oscillatory behavior observed
with an externally launched large amplitude wave (Mazitov, 1965; O’Neil, 1965). Equations (4.114) and (4.115)
can be seen as dynamical system and formally obtained in the framework of Hamiltonian system theory (Antoni
et al., 1998; Mynick and Kaufman, 1978; Tennyson et al., 1994). An interesting aspect of this description is that
it results in a self-consistent Hamiltonian formulation, which is formally equivalent to that of the free-electron laser
dynamics (Antoniazzi et al., 2008). Using the same formulation, it has been recently shown (Carlevaro et al., 2014)
that the supra-thermal electron distribution function in the quasi-stationary states (intermediate out-of-equilibrium
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states) produced by the nonlinear evolution of the beam-plasma system are accurately predicted by the maximum
entropy principle proposed by Lynden-Bell (Antoni et al., 1998; Lynden-Bell, 1967).
Momentum and energy conservation can be derived from Egs. (4.114) and (4.115), respectively, as

M
@R+ 12 D) =0, (4.116)
=1
' 1 M .
Rey|®(7)|* + — Y &(1) =0, (4.117)
Y T 4M; T

yvielding Rey(r) = (1/4) >, §J2(7')/ > &;(1). Noting that Tmy(r) = (1/2)(d/d7)|®(7)|?/|®(7)|* by definition, the
nonlinear frequency oscillation is always downward, as shown by Eq. (4.117); and it occurs with a frequency which is
twice that of |®(7)| oscillations and maximum negative excursions corresponding to the minima of fluctuation intensity.
The excursions of both Rey(7) and Imy(7) are O(1), as can be estimated from the optimal ordering w ~ kot ~ w%.
On long time scales, the wave cannot be considered monochromatic any longer and the (total) energy dependence
of the particle trapping period causes the particle distribution function inside the separatrix to smooth out the
increasingly finer structures by phase mixing. This is the coarse-grain distribution function (Sagdeev and Galeev,
1969) and, when it is asymptotically formed on long time scales, the mode amplitude reaches a steady state (Mazitov,

1965; O’Neil, 1965)'®. Considering E, = F,sin¢ in the wave moving frame, particle motion is described by
& = (4wp/r?) [1 - K7sin’(€/2)] (4.118)

where w% = |ekFE,o/m| is the trapping frequency of deeply trapped particles, k? = 2eE,o/(kW + eEp) and W is
the total energy. This is the equation of a nonlinear pendulum, with x? < 1 describing rotations, x? > 1 denoting
oscillations or librations and x? = 1 defining the separatrix. Defining AW = (OW/dv)Av = const, the coarse-grain
distribution function is given by (O’Neil, 1965; Sagdeev and Galeev, 1969):

_ §Fo(v)Avde OF(wo/ko) § d¢/k
[f]_W_Fowo/koH 083 ) fd&/éo

where [f] = (2r)~* § fd€. For k* > 1, i.e., for trapped particles, it can be noted that [f] = Fy(wo/ko). Thus, the time
asymptotic coarse-grain distribution function takes up the constant value corresponding to the equilibrium particle
distribution at resonance. Meanwhile, for circulating particles, k2 < 1,

6F0(W0//€0) WwB/ko
ov kK(k)

, (4.119)

[f] = Fo(wo/ko) +

(4.120)

with K(x) the complete elliptic integral of the first kind. Note that the coarse-grain distribution is continuous at the
separatrix 2 = 1 but has discontinuous derivatives. The flattened coarse-grain particle distribution function in the
resonance region explains why the nonlinear oscillations eventually fade away due to phase mixing. This is exactly
the same time asymptotic state reached when a large amplitude plasma wave is externally driven, at a fluctuation
level corresponding to wg > vy, i.e., the Landau damping due to resonant wave particle interactions (Mazitov, 1965;
O’Neil, 1965). The main difference stands in the relative value of fluctuation amplitude oscillations. In the case of
a large amplitude wave, amplitude undergoes small oscillations about an essentially constant value. Meanwhile, for
the beam-plasma system, amplitude is fluctuating by an O(1) quantity about the mean value, as the system evolves
from the initial exponential growth, with wp < 7, to the saturation phase, with wp ~ vz (O’Neil and Winfrey,
1972; O’Neil et al., 1971; Onishchenko et al., 1970a,b; Shapiro and Shevchenko, 1971a,b). After resonant electrons get
trapped and begin sloshing back and forth in the wave, O(1) amplitude oscillations at wp and harmonics eventually
fade away, with the wave amplitude reaching a constant level at wg ~ 3v;, (Levin et al., 1972a,b).

A different approach to the beam-plasma problem was given by (Al'tshul’ and Karpman, 1965, 1966), based on the
general solution of the nonlinear Poisson equation

4

Bz = ——-i00k = 4%Tie/dwfk ; (4.121)

18 It is worthwhile noting the difference between this time asymptotic equilibrium state, characterized by the coarse-grain distribution
function (Sagdeev and Galeev, 1969), and the quasi-stationary states, which have been recently discussed (Carlevaro et al., 2014) in the
context of the Lynden-Bell approach (Lynden-Bell, 1967).
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with 0 fi obtained from the Vlasov equation

e 0
(O + ikv)o fr, = T Zl(k - Q)&bqu%fq ’ (4.122)

q

solved for assuming a monochromatic wave. This approach is relevant for the issues dealt with in Secs. IV.D.2
to IV.D.7 and is valid in the early nonlinear saturation phase. Furthermore, it touches important aspects of the
theory of nonlinear oscillations in collisionless plasmas. Here, we sketch its derivations and summarize the main
results. Recalling that the thermal plasma is a linear dielectric medium and w = wy, +0; for a nearly monochromatic
wave, (Wi, ko) = (wp, ko), Eq. (4.121) can be cast as

2 0 47
Jp§5¢k0 = k—gle/d’l)(stko 5 (4123)

where ~ e~™»! time dependences are extracted; and the subscript E stands for energetic beam electrons (cf. Sec. ILE)
and is dropped in the following for simplicity of notation. Introducing the standard definition

Ofr(t) = /+0° e S fr(w)dw ,  and  0fi(w) = x /0+00 e™ts fr.(t)dt (4.124)

oo 2w

for the Laplace transform, the solution of Eq. (4.122) for k = 0 is readily obtained as

~ 7 e ko +oo ~ ’ 8 o / n / 8 P / /
Jolw) = gt S8 [ o @) 50 4y = ) = B ) 5 8o = )] (4.125)
Meanwhile, assuming vanishing initial conditions for 6 fz, and u = v — wp/ko,
p € ko oo / 0 ; / /
0 fro(w) = o koa /_OO S0 (w )%fo(w —whdw' . (4.126)

By direct substitution of Eq. (4.126) back into Egs. (4.123) and (4.125), one readily obtains, respectively,

+o00 n / .
2 8 /dv // et r0w) 0 o(w — wdwdw | (4.127)
Wy 8

w — kou Ou

ﬁw—iﬂ—iﬁﬂ%ﬁ% N1 o (e bl = =)

27w w—w' + kou Ou

. . 0 1 0
+5¢7k0 (w/)(sd)ko (w”)% (m%fo (w - w/ — w”))} dw/dw” . (4128)
This last equation is the analogue of the Dyson’s equation [cf., e.g., (Kaku, 1993)] in quantum field theory, as noted
by (Al'tshul’ and Karpman, 1965, 1966). The physics processes described by Egs. (4.127) and (4.128) are schematically
depicted in Fig. 1. When Eq. (4.128) is solved by formal expansion in the field amplitudes, the lowest order solution
is fo(w) = iFy/(2mw). Assuming that

KRR

2T W — W,

Spno (w) = (4.129)

with d¢r, being the kg field in the linear approximation, the subsequent steps in the iterative solution of the “Dyson”
equation, Eq. (4.128), will have a second order pole at w = 0, corresponding to a secular term o ¢ in the t-representation
and to the second order diagram in Fig. 1 (b), and so on. Similarly, in the solution of Eq. (4.127), a second order
pole at w = wy, in the nonlinear expression on the right hand side corresponds to a secular term o ¢ exp(—iwg,t),
and so on. Even accounting for a complex frequency wg,, would replace the secular terms oc t¢ with terms o
(Rewy, /Tmwg, )¢ > 1 (Al'tshul’ and Karpman, 1965, 1966; Montgomery, 1963). For this reason, it is crucial to take
into account all terms in the Dyson series, as shown in Fig. 1 (¢, bottom frame). In general, Egs. (4.127) and (4.128)
can be written for a generic fluctuation spectrum of waves with |Imwy, /Rews,| < 1 assuming that the evolution of
the fluctuating fields is dominated by the nonlinear modification of fo (w), Eq. (4.128), rather than by the generation
of nonlinear harmonics in the fields and the distribution function. For the case of many waves with overlapping
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FIG. 1 (a) Diagram showing the generation of the distribution d fi due to the interaction of fo with the field d¢x, corresponding
to the solution of Eq. (4.126). (b) Nonlinear distortion of fo due to emission and absorption of the field d¢y. (c) The diagram of
the process is defined in the top frame, while the solution of the “Dyson” equation, Eq. (4.128), corresponds to the summation
of all terms in the Dyson series (bottom) (Al'tshul’ and Karpman, 1965, 1966).
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resonances, (Al'tshul’ and Karpman, 1965, 1966) have demonstrated that Eqs. (4.127) and (4.128) reduce to the well-
known quasilinear limit (Drummond and Pines, 1962; Vedenov et al., 1961). In this sense, they can be referred to as
generalized quasilinear equations (Galeev et al., 1965). Meanwhile, in the case of a nearly monochromatic wave with
constant amplitude in time, Eq. (4.129), (Al'tshul’ and Karpman, 1965, 1966) have shown that Eq. (4.128) admits a
solution which oscillates around the coarse-grain distribution in the resonant region, with a frequency spectrum given
by the wave particle trapping frequency wp and harmonics. More specifically,

Fo(u,t) = Fo(0) + kg i (%ﬁi 0 duw <k0u> {1 — cos (\/Wat)} , (4.130)

with the notation a? = v/2|ekoEy,/m| = V2w%, © = kou/a, Ye(z) = (20017 1/2) =12 =2 /2, (2) with Hy(x) the
Hermite polynomials, and 8, = [*_(dFy(0)/dx )t (x)dz. Note that Eq. (4.130) describes the oscillations of particles
trapped in the wave; which, however, do not decay in time as expected from phase mixing. It was pointed out by
(O’Neil, 1965) that this is due to the assumption of negligible harmonic generation at k = £ky(¢ > 2) in both d¢; and
0 [, which breaks down on long time scales.

2. The nonlinear beam-plasma system with sources and collisions

In a series of papers in 1990s, (Berk and Breizman, 1990a,b,c) reconsidered the nonlinear beam-plasma problem
(cf. Sec. IV.D.1) including sources and collisions, and applied it to the description of nonlinear dynamics of AEs
near marginal stability. In this case (Berk and Breizman, 1990a), the coarse-grain distribution function, Eq. (4.119),
maintains a residual slope (Zakharov and Karpman, 1962, 1963) inside the separatrix including the phase-space of
wave-trapped resonant particles, so that a steady state can be reached when the residual nonlinear drive balances
the background dissipation. The extension of this analysis to electrostatic waves in a plasma slab with a sheared
equilibrium magnetic field By, destabilized by an EP beam with a spatial gradient transverse to By, is discussed
by (Berk and Breizman, 1990b). Meanwhile, (Berk and Breizman, 1990c) further extend the same approach to AEs
destabilized by nonuniform EP sources. Assumptlons of these analyses generally involve: (i) one single low amplitude
wave, such that mode structures can be neglected!?; (ii) finite background dissipation independent of the finite
amplitude wave; and (iii) wave dispersiveness set by the background plasma and independent of the EP dynamics.

a. Steady-state saturation of the collisional beam-plasma system.

Steady state saturation level is reached when background dissipation balances wave drive reduced by nonlinear inter-
actions (cf. Sec. IV.D.1); i.e.,

d, ., nm _ nmwp O
T / ~ k2/d v [l = =29 (4.131)

19 When the Hamiltonian is accidentally degenerate, i.e., the resonance condition is verified for particular values of the action coordinates,
the maximum excursion of the action about the resonance scales as the square root of the perturbation strength [cf., e.g., (Lichtenberg
and Lieberman, 1983, 2010)]
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With a source term Q(v) and particle annihilation at a rate v(v), the Vlasov equation is
Of + 00, f +00,f = —v(v)f +Qv) . (4.132)

For v < wp, the lowest order time asymptotic [f] is still given by the coarse-grain distribution function, Eqgs. (4.119)
and (4.120), which is readily obtained with Fy(v) = Q(v)/v(v). At next order in v/wp, the small but finite residual
slope within the wave particle trapping region maintains a residual drive with respect to the linear expression (d1'/dt),,
which is given by (Berk and Breizman, 1990a)

(dT/dt) = 1.9 (v/wp) (dT/dt), . (4.133)

Thus, noting (dT'/dt)r, = —2yL W, Eqgs. (4.131) and (4.133) readily yield the saturation level wp ~ 1.9(v/va)7VL-
In order to emulate a beam slowing down, (Berk and Breizman, 1990a) also consider the case of a source at fixed
velocity vy and particle drag

Of + 00, f + 00, f = —v(v)f + Qod(v —vg) + adyf . (4.134)

Denoting the Heaviside step function as H, the corresponding equilibrium steady state solution is Fy = (Qo/a)X
exp[(v/a)(v — vo)]H (vg — v), which, again, yields the lowest order time asymptotic [f] in terms of the coarse-grain
distribution function by Egs. (4.119) and (4.120). For w% > ka, i.c., for a sufficiently large perturbation, the rate
at which particles cross a separatrix width in velocity space because of drag is veg = kawgl ~ v(w/wp). Thus,
wp > Veg > v and, for adiabatically growing wave amplitude, trapping regions cannot be filled by drag, so that the
distribution function eventually vanishes because of particle annihilation. In this scenario, a discontinuity is expected
in the particle distribution function near the separatrix and the residual nonlinear drive is enhanced

(dT/dt) = (16/72) (v /v?)(v/wp) (AT/dt),, . (4.135)

Using this expression, the steady state saturation level can be computed as for Egs. (4.131) and (4.133) above.
In a more realistic description with sources and sinks, the Vlasov equation is (Berk and Breizman, 1990b)

dif =vaOa(1 — N2)Oxf + (v/v*)0y [(v° +v2) f] + (47v5) 2Q8(v — wo) (4.136)

where the term o v4 on the right hand side accounts for pitch angle scattering, with A = v - By/(vBp). Depending on
the relative ordering of v and vg4, three different regimes can be identified: (i) v4(w?/w%) < v, where particles slow
down completely, without appreciable pitch angle scattering; (ii) vg(w/wp) < v < vg(w?/w%), particles slow down
one separatrix width without appreciable diffusion; (iii) ¥ < v4(w/wpg), particles are pitch angle scattered before they
slow down one separatrix width. The regime to be expected in fusion plasmas is (iii), for which the residual nonlinear
drive, given veg = vg(w?/w%) < wp, is given by (Berk and Breizman, 1990b).

(dT/dt) ~ (veg/wp) (dT'/dt), (4.137)
which, with help of Eq. (4.131), yields the respective saturation level.

b. Collisional beam-plasma system with periodic and chaotic pulsations.

Steady state solutions with constant amplitude are not the only possibility for nonlinear dynamics of the beam-plasma
system. Different scenarios are possible depending on the relative ordering of v, vegr ~ va(w?/w%) and 74 (Berk
et al., 1992a; Breizman et al., 1993). In Sec. IV.D.1, it is shown that, in a region of width Av ~ wg/ko near an
isolated resonance, a finite amplitude wave eventually yields to flattening of the (coarse-grain) distribution function
by phase mixing. Meanwhile, the distribution function is reconstructed at a rate veg, while energy is dissipated at
a rate 4. Thus, for 74 < veg, the predicted steady state level trapping frequency is larger than the linear drive
wp ~ YrVerr/7a and steady state solutions can be sustained (cf. Sec. IV.D.2.a). Conversely, for 74 > veg, the
background distribution is not effectively reconstructed and, after saturation at wg ~ 5, (cf. Sec. IV.D.1), the mode
amplitude decays at rate 74, so that fluctuation bursting can be expected. The typical interval between bursts scales
as ~ 1/vesr. Meanwhile, the transition between steady state and bursting behaviors takes place when wp ~ 7y, and
Veff = Vefip = l/do.)Q/wﬁ ~ v4 (Berk et al., 1992a; Breizman et al., 1993). Numerical particle-in-cell (PIC) simulations
of a single Langmuir wave excited by an inverted gradient Fy(v) = Q(v)/v(v) confirm analytical predictions about
bursting vs. steady-state saturation for the bump-on-tail problem (Berk et al., 1995b).

Changing the externally imposed dissipation for fixed 77, changes the qualitative features of numerical solutions of
the Vlasov-Poisson system obtained for a monochromatic wave (Berk et al., 1996b). In particular, wp = a(yr, —74) at
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the maximum oscillation amplitude, with a varying from o = 3.2 to a = 2.9 when ~,4/~z, is varied from ~4/vr = 0 to
va/vr = 0.6. More importantly, however, when v = 7, — 74 is reduced to a sufficiently low level, the amplitude of the
system oscillates rather than decay at a rate ~ 74 after reaching the peak amplitude at wp ~ . To investigate this
phenomenology near marginal stability, the Poisson’s equation, Eq. (4.121), can be replaced by (Berk et al., 1996b)

O E. = 47T6/d1)’05fk — vaFk. (4.138)
in order to introduce an imposed extrinsic damping. Equation (4.138) can be reduced to
2 0 A7 274
— — 0Pk, = — dvd ——9 ; 4.139
o, O P pe 26/ V0 fEk, o, T ( )

i.e., Eq. (4.123) adding an ad hoc background dissipation. Meanwhile, the Vlasov equation, Eq. (4.122), is modified
to account for source/sink and collision terms on the right hand side in the form of one of the models discussed above;
e.g., Eq. (4.132). Introducing E = Ey(t) cos & with £ = koz — wpt = kox (cf. Sec. IV.D.1), and dropping subscripts ko
and E in Eq. (4.139), the solution of Eq. (4.132) can be cast as

f=rfo+ i S fne™ +cc. (4.140)
n=1

Oufo+vfo=Q) —wh(t)ORedf; | (4.141)

b f1+iubfi +vofi = —(1/2)wh()0u (fo+0f2) (4.142)

and so on. Here, w%(t) = ekoFo(t)/m and u = kov — w,, while Eq. (4.139) becomes

w2 oo
%w% = —n—§% - Red frdu — yaw? . (4.143)
For monochromatic fluctuations (dropping ¢f2), Eqgs. (4.141) to (4.143) are the t-representation of Egs. (4.126)
to (4.129), with the addition of finite v, @ and 4. Near marginal stability, fo = Fy + 0 fo, with Fy = Q(v)/v(v), and
the problem can be solved iteratively, with a perturbative asymptotic expansion based on the ordering v = vr — vyq4 ~
v ~ |u| < vz and expansion parameter w3 /v? ~ w%/u? ~ w¥/y?* ~ (v/yr)"/?, which applies for wpt < 1 (Berk
et al., 1996b). The iterative solution corresponds to writing

¢
5fo = —/ e VG2 (1), Re(d fir, + .. )dt1
0

t
ofi = —(1/2)/ em WHUTI G ()80 fodt (4.144)
0

where § f11, is the linearized form of ¢ f1, obtained for fo — Fy = Q(v)/v(v). Introducing 7 = (v —va)t, ¥ = v/(vL—"a)
and A(7) = (w}/72)71/? /72, the validity limits of the asymptotic analysis impose 7 < (v/y2)~ /4 (from wpt < 1)
and A ~ U ~ 1. Meanwhile, the iterative solution of Eqs. (4.143) and (4.144) yields

T/2 T—22
iA =A- 1 / ! 22 A(T — z)dz/ AT — 2z — 2)A(T — 22 — x)e P2 H 0y (4.145)
dr 2 Jo 0

Here, the occurrence of the secular term oc 22 in the normalized time variable is due to the truncation of the Dyson

series (cf. Fig. 1), as discussed below Eq. (4.129). Equation (4.145) admits a fixed point solution Ay = 21/2#2, which

is stable for 0 > 7., ~ 4.38. For & < ¥, A(7) first oscillates and, for further decreasing 7, it looses the periodic

behavior, entering a chaotic regime (Breizman et al., 1997). Meanwhile, for sufficiently low values of 7 the system

exhibits a finite time singularity, which is unphysical and, again, due to the truncation of the Dyson series.

The work of (Berk et al., 1996b) was generalized by (Breizman et al., 1997) [cf. also (Berk et al., 1997a)] to the
generic case of weakly unstable modes excited by resonant wave-particle interactions, for which

] /2 T—2z2 .
diA =A- e“b/ 22A(T — z)dz/ AT — 2 — 2)A* (1 — 22 — 2)e P52y (4.146)
T 0 0

Here, the factor ¢® depends on the linear physics of the underlying mode. (Breizman et al., 1997) also investigated the
effect of replacing the source/collisional term —v(f — Fy) and Fy = Q(v)/v(v) with a diffusive-like collision operator
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v34(82/09%)(f — Fy), with Q = € = 9H/AI and (I,£) the action-angle coordinates of the relevant wave-particle
resonance. Thus, exp[—7(2z + x)] in Eq. (4.146) is replaced by exp[—322(22/3 + x)] with 7 = veg /7, yielding

) T/2 T—22 .
diA =A—¢? / 22A(T — z)dz/ At —z—x)A" (1 — 22 — x)eiVSZZ(QZ/BJFI)dx . (4.147)
T 0 0

Similar to Eq. (4.145), Eqgs. (4.146) and (4.147) also admit a fixed point for & > D.,.. At & = D, a first bifurcation
occurs and A(7) has a solution in the form of a limit cycle, which then goes through subsequent period doubling
bifurcations for further decreasing © and eventually becomes chaotic (Breizman et al., 1997; Fasoli et al., 1998; Heeter
et al., 2000). In the case of Eq. (4.147), D¢, =~ 2.05 for |¢| < 1 (Breizman et al., 1997).

Systematic numerical investigations of the Vlasov-Poisson system were carried out (Lesur et al., 2009; Vann et al.,
2005, 2003) in order to characterize the fully nonlinear solutions of Eq. (4.138) and of the Vlasov equation for
monochromatic waves with different source/sink and collisionality models. In particular, (Lesur et al., 2009) and,
more recently, (Lesur and Idomura, 2012) adopt a model collision term in the form of Eq. (4.132) and carefully
discuss the validity limits of aforementioned analytical works, comparing, where appropriate, fully nonlinear solutions
with analytic ones. It is shown that there are conditions where the thermal plasma does not respond as a linear
dielectric medium, e.g., when the resonance involves a finite amount of thermal electrons. The bifurcation diagram
in the (v4,7) parameter space, similar to that discussed by (Vann et al., 2003), confirms that, at fixed 74 and for
decreasing values of v, numerical solutions are damped, converge to a steady state (cf. Sec. IV.D.2.a), are periodic,
or chaotic, or characterized by frequency sweeping phase space structures. This latter behavior is discussed in
Sec. IV.D.2.c and corresponds to the parameter regime, where the analytic solutions of Eqs. (4.145) to (4.147) exhibit
finite time singularity. Furthermore, (Lesur et al., 2009) demonstrate the existence of subcritical states, consistent
with former numerical results that nonlinear excitation of phase space structures is possible if fluctuation is initialized
at sufficiently large amplitude, w? ~ (v + v)%2(yr)"Y/? (Berk et al., 1999). Metastable kinetic modes are also
investigated by (Nguyen et al., 2010b), where it is shown that purely nonlinear steady-state regimes are found by
numerical simulations, when the nonlinear reduction of the resonant damping rate due to thermal plasma is larger than
the corresponding reduction of the EP drive. Such processes may be relevant for BAE nonlinear dynamics, for which
purely nonlinear steady-state regimes regimes could exist for typical tokamak equilibrium conditions (Nguyen et al.,
2010a). Nonlinear instabilities of phase-space structures in both marginally unstable and linearly stable (subcritical)
regimes have been recently discussed by (Lesur and Diamond, 2013).

c. Nonlinear dynamics of phase-space holes and clumps.

For sufficiently small 7, Eqgs. (4.146) and (4.147) exhibit the same finite time singularity of Eq. (4.145) due to the
unphysical truncation of the Dyson series (cf. Fig. 1). This behavior suggests the existence of a fourth dynamic
regime of Eqgs. (4.145) to (4.147), in addition to steady-state (cf. Sec. IV.D.2.a), periodic and chaotic regimes (cf.
Sec. IV.D.2.b). It was investigated by numerically solving Eq. (4.139) and the Vlasov equation with a variety of
source/sink and collision models (Berk et al., 1999, 1997a,b; Breizman et al., 1997). In particular, it was found that
numerical solutions are characterized by the formation of pairs of phase space holes (Berk et al., 1970; Berman et al.,
1983; Dupree, 1982; Tetreault, 1983) and clumps (Berman et al., 1983; Dupree, 1970, 1972, 1982; Tetreault, 1983).
After formation, holes and clumps move away from the original resonance in velocity space, corresponding to energy
extraction from the particle distribution function and to respectively upward (hole) and downward (clump) frequency
sweeping phase space structures, which can be viewed as Bernstein-Greene-Kruskal (BGK) modes (Bernstein et al.,
1957). Since the work by (Breizman et al., 1997), the steady-state, periodic and chaotic regimes of the solution of the
Vlasov-Poisson system are referred to as “soft” nonlinear behavior, to discriminate them from the “hard” nonlinear
regime, where hole/clump structures are formed. The definition of a “hard” nonlinear regime is justified by noting
that, for fixed veg, sufficiently low © can be achieved for sufficiently strong net drive v = v, — 4. In the work by (Berk
et al., 1999), it was noted that this “hard” regime is not observed for v4/v.S 0.4. On the other hand, (Lesur et al.,
2009) show that frequency chirping is observed in numerical simulations for v;/vr as low as v4/vr = 0.2. In fact,
(Lilley and Nyqvist, 2014) recently demonstrated that holes and clumps may be generated with any (small) amount
of background dissipation, provided that a phase space plateau is formed by phase mixing and dissipative damping
of an unstable kinetic resonance. More precisely, in this case, holes and clumps are negative energy waves that grow
because of background dissipation.
Equations (4.141) to (4.143) were reconsidered by (Lilley et al., 2009) with a model collision term in the form

dif = (VPkg 205 + a*ky 10, — B) (f — Fo) (4.148)
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where Fj is the equilibrium distribution function and v, « and (8 control, respectively, velocity space diffusion,
dynamical friction and particle annihilation rate. Equations. (4.145) to (4.147) are then generalized to

d 1 /2 T—22 . N N
d_A =A- 3 / 22A(T — z)dz/ At —z —2)A* (1 — 22 — :zr)e_”gf(2z/3+m)_ﬂ@z"'w)""w‘%(’z""w)daj . (4.149)
T 0 0

with o =v/vy, & = a/~, B = B/~ and v =y, — 4. For v = B = 0; i.e., with dominant dynamical friction, Eq. (4.149)
always exhibits finite time singularity, in contrast to Eqs. (4.145) to (4.147), whose evolutions exhibit both “soft”
and “hard” nonlinear dynamic behaviors (cf. Sec. IV.D.2.b). This result is confirmed by numerical solutions of
Eqgs. (4.139) and (4.148), which show frequency sweeping holes and clumps when dynamical friction is the dominant
collisional process (Lilley et al., 2010).

The first analytical theory of hole-clump frequency sweeping was proposed by (Berk et al., 1999, 1997b). There, one
assumes the frequency separation of holes and clumps is larger than 7, and wp, so that they are treated independently
as isolated structures. Furthermore, both mode amplitude and frequency are postulated to evolve adiabatically, i.e.,
|| < wh, |lwp| < w%, ete.. Defining w = wy + dw(t), ¢ = & — fg dw(t')dt’ and using the generating function

Fy = (p+ ow(t)) (§ - fot 5w(t’)dt’), with p = Q — wp — dw(t) and Q = ¢, the Hamiltonian is (Berk et al., 1999)

H =p*/2 — 6w?/2 — wh cosq + qdir . (4.150)
Meanwhile, Eq. (4.139) becomes
d Z Y. —ig—i [t Sw(t ’
(EJ”d) Alt) = _ﬁiapbjag/dqdpe o 2t £ (g, p,t) (4.151)

Since wave amplitude and frequency change slowly, there exist an adiabatic action invariant and, at lowest order,
particle response is independent of the corresponding angle. Thus, f slightly deviates from the coarse-grain distribution
(cf. Sec. IV.D.1) and, inside the separatrix, f = Fy + ¢g and at the lowest order

g2 go = Fo(wo) — Fo(wo + dw) . (4.152)

Furthermore, the dynamics is adiabatic and maintains near marginal stability at every instant. Therefore, frequency
sweeping is obtained from the condition of balancing background dissipation with power released by hole/clump
motion in phase space (Berk et al., 1999). By means of Eqgs. (4.151) and (4.152), it is possible to show that

wp 16 g

16 [2
L 3m2

1/2
= 5 (at ; 4.153

having assumed §(z) = [Fo(wo + &) — Fo(wo)] / [F§(wo)x] =~ 1. This result consistently describes the adiabatic evolu-
tion of hole/clump structures for times |wpt| > 1. Note this limit is opposite to the |wpt| < 1 assumption underlying
Eqs. (4.145) to (4.147).

The theory of adiabatic frequency chirping of hole/clump structures in phase space for the bump-on-tail problem
near marginal stability was recently investigated by (Breizman, 2010). This work further extends the water bag model
of driven continuously phase-locked coherent structures in uniform unmagnetized plasmas and of the associated BGK
modes (Barth et al., 2008; Khain and Friedland, 2007). The theoretical analysis assumes the background plasma as a
linear dielectric medium (cf. Sec. IV.D.1) and solves Poisson’s equation for the BGK mode in terms of the self-similar
scalar potential

0k, = —(1/e)U[z — s(t);t] (4.154)

where Ulz — s(t);t] is a periodic function of z — s(t) and a slowly varying function of ¢. The wave phase velocity
x § = ds(t)/dt, with $9 = wo/ko at the initial time, is determined by the condition that the power released by
the phase-space structure motion balances collisional dissipation due to the friction force exerted by bulk plasma
electrons. The exact nonlinear solution of this problem shows that Ulz — s(t);t] depends on the narrow depletion
(hole) or protrusion (clump) inside the separatrix; i.e., on Fy($) — Fo($o). Meanwhile, assuming that the motion is
adiabatic and maintained near marginal stability, the predicted time evolution of the BGK mode recovers Eq. (4.153)
in the early stage, where § ~ §y. It, however, can significantly depart from that at later times due to significant
deviations of § from $g. In this respect, this model can describe long range frequency sweeping events (cf. also
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Sec. IV.D.3), provided that the thermal plasma response remains a linear dielectric medium. For a more detailed
description, we refer the reader to the original work (Breizman, 2010) [cf. also (Breizman, 2011; Breizman and
Sharapov, 2011)].

The first evidence of long range frequency sweeping was reported in numerical simulations of Eqgs. (4.138) and (4.148)
with @« = v = 0 (Vann et al., 2007). The simulations investigated the nonlinear behavior of strongly driven 1D
bump-on-tail systems with comparable values of the thermal plasma and beam densities and as well as velocity
spread. In these simulations, upwards frequency sweeping holes are preferentially formed, connected with strong
nonlinear distortions of both thermal and energetic particle distribution functions (cf. Sec. IV.D.1). Meanwhile,
only the time averaged particle distribution function is maintained near marginal stability. As expected for strongly
nonlinear bursting behavior, a structure more stable than the marginal distribution function exists; following which
the distribution function is slowly rebuilt by external sources.

For significantly less strong drive and near mode marginal stability, numerical simulation results of Eqgs. (4.139)
and (4.148) confirm the existence of the long range frequency sweeping events described by (Breizman, 2010, 2011;
Breizman and Sharapov, 2011), which correspond to convective particle transport in buckets via the adiabatic evolution
of the underlying BGK modes. The frequency sweeping phase space structures, described by (Lilley et al., 2010),
move upwards (holes) and downwards (clumps) until the nonlinear frequency shift exceeds the frequency width of
the linear unstable spectrum, which is much smaller than the frequency of the initial linear instability as assumed in
the adopted model?®. Thus, holes and clumps eventually “stuck-up” and, by resonance overlap, cause a relaxation of
the particle distribution function to a plateau extending throughout the linearly unstable region (Lilley et al., 2010);
leading to maximized energy extraction from fast particle phase space. This extended flattening has been recently
shown to be more important near marginal stability than quasi-linear diffusion in the presence of many modes (Lilley
and Breizman, 2012). Long range chirping also occurs in the collisionless limit, near marginal stability. In this case,
the continuous generation of hole/clump pairs is due to the steepening of the ambient distribution function in the
wake of such structures (Lilley et al., 2010). In fact, phase space holes and clumps can be generated close as well as
far from instability threshold (Lilley and Nyqvist, 2014). However, for increasing instability drive the bump-on-tail
paradigm will ultimately break down and one needs to adopt the fishbone paradigm when meso-scale EP physics
becomes important (cf. Sec. IV.D.5).

3. The bump-on-tail problem as paradigm for Alfvén Eigenmodes near marginal stability

A very detailed discussion of applications of the bump-on-tail paradigm to AE nonlinear dynamics is given in a
recent review paper by (Breizman and Sharapov, 2011). Here, we only present the main findings and discuss the
underlying physics basis for such applications.

The first application of the bump-on-tail paradigm to experimental observations is the interpretation of the pitchfork
splitting of TAE spectral lines in JET during Ion Cyclotron Resonance Heating (ICRH) (Fasoli et al., 1998; Heeter
et al., 2000) as manifestation of the “soft” nonlinear regime discussed in Sec. IV.D.2. More precisely, (Fasoli et al.,
1998) used the frequency spectrum of the limit cycle solution of Eq. (4.147) at the bifurcation point; i.e., with
U = D > 2.05 for |¢] < 1, and compared it with high resolution measurements of TAE frequency. This work motivated
further analyses, aimed at providing information on the values of vy, 74 and veg from MHD spectroscopy (Fasoli et al.,
2002; Pinches et al., 2004a,b), with the advantage of interpreting some features of AE experimental observations and
inferring local kinetic plasma parameters, which are otherwise difficult to obtain. In the work by (Pinches et al.,
2004a), it was also noted that the frequency chirping expression from Eq. (4.153) agrees with the experimentally
observed chirping in experimental devices near marginal stability. Meanwhile, (Vann et al., 2005) interpreted the
observation of frequency chirping AEs in MAST (Gryaznevich and Sharapov, 2004; Pinches et al., 2004a) as evidence
of the “hard” nonlinear regime of the bump-on-tail nonlinear dynamics (Breizman et al., 1997).

The different types of chirping modes observed in MAST (Gryaznevich and Sharapov, 2006; Gryaznevich et al.,
2008) have recently attracted significant interest due to the different dynamic behaviors that are predicted by the
1D bump-on-tail paradigm with different collision models and EP sources (Lilley et al., 2009, 2010). In particular,
special emphasis was given to numerical solutions of Eqgs. (4.143) and (4.148), showing that frequency sweeping holes
and clumps are the only type of nonlinear behavior when dynamical friction dominates (cf. Sec. IV.D.2.c). These
findings have been proposed by (Lilley et al., 2009, 2010) as possible explanation of why “soft” nonlinear behavior is

20 Note, however, that using Eq. (4.138) and including the kinetic response of the thermal plasma component allows the investigation of
nonlinear frequency shift of the order of the linear mode frequency (Vann et al., 2007).
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expected for ICRH heated plasmas, with prevailing velocity space diffusion, whereas Neutral Beam Injection (NBI),
mostly affected by dynamical friction, generally yields “hard” nonlinear regimes?'.

As application of the numerical method by (Lesur et al., 2009) with a model collision term in the form of Eq. (4.148),
(Lesur et al., 2010) analyzed experimental measurements of quasi-periodic chirping TAE in JT-60U (Oyama and
the JT-60 Team, 2009) and developed a fitting procedure for calculating 7y, 74 and collision frequencies from the
frequency spectrum provided by Mirnov coil measurements. Reconstructed drive and damping rates are in qualitative
and quantitative agreement with experimental findings, as are the reconstructed collision frequencies compared with
values from experimental equilibrium data. Furthermore, dynamical friction and velocity-space diffusion are found to
be essential to reproduce nonlinear features observed in experiments, with dynamical friction playing a crucial role
in the asymmetry between hole and clump chirping (Lesur and Idomura, 2012; Lesur et al., 2010), as also noted by
(Lilley et al., 2009, 2010). These analyses (Lesur et al., 2010) clarify that TAE in JT-60U typically exist in regimes
away from marginal stability and that frequency sweeping events are generally non-adiabatic.

As noted earlier, the applicability of the bump-on-tail paradigm to AE nonlinear dynamics requires, in particular,
the fluctuation-induced EP excursions be small compared with the radial wavelength (Berk and Breizman, 1990b,c).
This allows assuming constant mode amplitude in the radial direction as implicitly required by the formal equivalence
r < v. Quantitative discussions on its applicability regime are presented in Sec. IV.D.5. In general, it depends on
the type of resonant EPs as well as on the wave dispersive properties and mode structures. For circulating resonant
EPs, the validity limits are least stringent and the upper bound on the drive strength is in the range (7, /wg)S 1072
Meanwhile, for EPM (Chen, 1994) the bump-on-tail paradigm is not applicable, since mode structure and frequency
depend on EPs and frequency dependent background damping is due to the SAW continuous spectrum (cf. Secs. III
and IV.D.6). The applicability conditions also imply that small EP redistributions are expected in the case of an
isolated resonance. Meanwhile, by exchanging r <+ v, the long range frequency sweeping events (Breizman, 2010,
2011; Breizman and Sharapov, 2011; Lilley and Breizman, 2012; Lilley et al., 2010) would correspond to local radial
perturbations in the EP distribution function propagating across By for a distance comparable to the EP equilibrium
profile scale length. Thus, the absence of mode structures and plasma nonuniformities in this model, renders its
generalization to either AE or EPM nonlinear dynamics in toroidal plasmas dubious (cf. Sec. IV.D.5). The original
1D bump-on-tail paradigm has been significantly extended by (Ge Wang, 2013; Ge Wang and Berk, 2012), taking
into account the local TAE radial mode structure near one (radially) isolated gap in the SAW continuous frequency
spectrum, but preserving the Ansatz of proximity to marginal stability and perturbative EP dynamics (Ge Wang,
2013). Time evolution of the local TAE mode structure is demonstrated to be crucial for describing chirping events
with nonlinear frequency shifts comparable with the distance of linear mode frequency from the SAW continuum
accumulation point (Ge Wang, 2013), consistent with the results of prior theoretical analyses (Zonca et al., 2000,
2005) and of hybrid MHD-gyrokinetic simulations (Briguglio et al., 2002, 1998; Vlad et al., 2004; Wang et al., 2012;
Zonca et al., 2002). In this way, it has been shown that the predicted chirping may be non-adiabatic, || w%;
thereby, challenging the self-consistency of assumptions made for the derivation of model equations (Ge Wang, 2013;
Ge Wang and Berk, 2012). These works, nonetheless, suggest that non-adiabatic chirping is naturally developed in
nonlinear dynamics of phase space holes and clumps, as anticipated by (Gorelenkov et al., 2000; Zonca et al., 2005;
Zonca and Chen, 2000). Furthermore, (Ge Wang, 2013) extended model equations predict the possible penetration
of downward frequency sweeping TAE clumps into the lower SAW continuum, similar to long range chirping mode
behavior observed in MAST (Gryaznevich and Sharapov, 2006). As the mode structure evolves into that of an EPM,
we note that a non-perturbative treatment of EP nonlinear dynamics becomes, however, in general necessary (cf.
Sec. IV.D.6).

Frequency sweeping is a very important phenomenon, as recognized since early experimental observations of chirping
AEs and EPMs (Bernabei et al., 1999; Gorelenkov et al., 2000; Heidbrink, 1995; Kramer et al., 1999; McClements et al.,
1999; Takechi et al., 1999; Wong, 1999) and the first theoretical analyses of these phenomena (Berk and Breizman,
1996), emphasizing that wave-particle energy exchange can be enhanced by resonance sweeping. In particular, (Berk
and Breizman, 1996) show that this enhancement is higher for adiabatic than for non-adiabatic frequency chirping.
This result is consistent with the phenomenology of autoresonance (Meerson and Friedland, 1990), discussed in
Sec. IV.E, where adiabatic chirping of a phase-locked resonance structure is imposed externally for optimized energy
extraction from the particle phase space. When the system dynamically evolves sufficiently near marginal stability
(Sec. IV.D.2.c), the coarse-grain particle distribution function (cf. Sec. IV.D.1) in the hole/clump resonance region
preserves its value at the initial linear resonance and its adiabatic dynamics is set by the balance between the power

21 Tt is worthwhile mentioning that experimental observations of “hard” nonlinear behavior in ICRH heated plasmas also exist, as in the
case of high-frequency fishbones (Nabais et al., 2005; Zonca et al., 2009).
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extraction from the particle phase space and the energy dissipation rate (Breizman, 2010). However, for sufficiently
strong drive that radial mode structures as well as plasma nonuniformity and equilibrium geometry become important,
non-adiabatic frequency sweeping via phase locking becomes the condition for maximized wave-particle power exchange
(cf. Sec. IV.D.5) and is associated with rapid EP profile redistributions (Gorelenkov et al., 2000; Zonca and Chen,
2000). For EPM, furthermore, new distinctive features and non-adiabatic bursting behavior (c.f. Sec. IV.D.6) is
expected due to the interplay between nonlinear dynamics, mode structures, and EP transport.

Deviation from adiabatic frequency sweeping for sufficiently strong drive is also expected in the solutions of the 1D
bump-on-tail problem. This is observed, e.g., by numerical simulations of Egs. (4.138) and (4.148) with « = v = 0,
showing non-perturbative and fast chirping events with frequency sweeping o t rather than oc ¢t'/2 (Vann et al., 2007).
These are qualitatively similar to EPM in their general phenomenological features, as they involve bursting behavior
of a strongly driven nonlinear system.

Non-adiabatic processes also underly the formation of phase-space structures, such as clumps and holes. In fact,
phase-space structures can be formed only for wgt ~ 1 (Briguglio et al., 2014; Zonca et al., 2015b). This is the
mechanism underlying, e.g., the continuous generation of hole/clump pairs in the collisionless 1D bump-on-tail problem
near marginal stability (Lilley et al., 2010) (cf. Sec. IV.D.2.c); with similarities to what occurs in the case of EPM
nonlinear dynamies (Briguglio, 2012; Briguglio et al., 2014; Zonca et al., 2005) (cf. Sec. IV.D.5). However, the absence
of an intrinsic interplay between mode structures and particle transport in the 1D bump-on-tail problem remains a
crucial and fundamental difference.

We now briefly remark on the case of many modes, which is less explored than the single-mode case discussed above.
The role of radial mode structures is more subtle in the case of the dense spectrum of AEs characterizing burning
plasmas (Chen and Zonca, 2007a) (cf. Sec. IIL.B), where resonance overlap (Chirikov, 1979) of finite size phase space
islands can yield enhanced stochastic transport (Breizman et al., 1993; Hsu and Sigmar, 1992; Sigmar et al., 1992). The
qualitative scenario of onset of stochastic transport within the 1D bump-on-tail paradigm has been recently reviewed
by (Breizman, 2011; Breizman and Sharapov, 2011) and the implications of quasi-linear diffusion in the presence
of many modes have been discussed by (Lilley and Breizman, 2012). Sufficiently above stochasticity threshold and
for a sufficiently dense and broad AE spectrum, finite radial mode structures and, thus, plasma nonuniformities are
expected to not significantly affect diffusive transport. Nonetheless, equilibrium geometry will still play important
roles in setting the wave-particle decorrelation time via wave particle resonance conditions, as noted in the work by
(Zhang et al., 2010) on EP turbulent transport (cf. Sec. V.C) and as it more generally applies to turbulent transport
[cf., e.g., (Lin et al., 2007) and (Feng et al., 2013)]. The detailed mechanisms by which a 1D uniform plasma in the
presence of many modes reaches the onset condition for diffusive transport by stochastization of particle orbits in
the phase-space, due to resonance overlap (Chirikov, 1979), has been addressed by (Breizman et al., 1993). Onset
of stochasticity is rarely global in phase space (Lichtenberg and Lieberman, 1983, 2010) and, actually, the energy
release from the particle distribution function in the considered phase-space region affected by diffusive transport
may induce the growth of additional fluctuations, otherwise disallowed, in adjacent phase-space domains, where local
gradients are enhanced as predicted, e.g., by Eqs. (4.119) and (4.120). This “domino effect” (Berk et al., 1996a,
1995a) qualitatively resembles that of avalanches in sandpile systems involving self organized criticality (SOC) (Bak
et al., 1987); i.e., of “chain reactions” of transport events. For investigating this process applied to multiple toroidal
mode number AEs, (Berk et al., 1995a) introduced a “line-broadened quasi-linear burst model” for treating resonance
overlap of modes with bursting behavior and applied it to characterize the nonlinear response of driven systems in
weak turbulence theory (Berk et al., 1996a). It may be expected that, near the onset of stochasticity, equilibrium
geometry and nonuniformity of plasma profiles significantly affect nonlinear dynamics through radial mode structures
and their influence on nonlinear particle orbits, whose typical size is of the order of the radial width of the single
poloidal Fourier harmonics [cf. Eq. (3.9)] for typical values of the linear mode growth rate (cf. Sec. IV.D.5). This is
supported by recent findings of test particle simulations of EP transport in DIII-D (White et al., 2010a,b); showing
that the stochastic threshold depends on modeling details (cf. Sec. V.A). These issues are further discussed in
Sec. VL.A.

4. Numerical simulations of perturbative excitation of Alfvén Eigenmodes
For numerical investigation of AE nonlinear dynamics driven by EPs, simplification is possible by considering

perturbative EP dynamics?2. The mode structures, meanwhile, are computed from a linear stability analysis and

22 This method does not apply to EPMs, for which even the linear description requires a non-perturbative analysis of the EP response (Chen,
1994).
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taken to be fixed. More specifically, the EP distribution function, computed in the given AE fields taking into
account sources and collisions, yields the corresponding EP currents, which are used to obtain the time evolution of
wave amplitudes and phases (Chen and White, 1997). This approach is very efficient and can provide an accurate
description of AE nonlinear evolution even in the presence of many modes, provided that the predicted nonlinear
frequency shifts are consistent with the fixed radial structure of the single poloidal Fourier harmonics [cf. Eq. (3.9)]%.
For practical applications and comparisons with experimental observations, however, further simplifications are often
employed. In fact, test particle analyses are often adopted (cf. Sec. V.A), where not only AE mode structures are
assumed, but also mode amplitude and phases are given from experimental data.

Perturbative EP numerical analyses have been adopted by (Wu et al., 1994) for investigating the effect of a single
TAE mode in typical TFTR and ITER plasmas; and by (Wu et al., 1995), where the saturation level of the bump-
on-tail problem in the absence of collisions and background dissipation was found to be wp ~ 3.3, consistent with
(Levin et al., 1972a,b), while the saturation of a n = 3 TAE mode in ITER was estimated to scale as wp ~ 4vy.
With a similar approach, (Candy et al., 1997) have developed a Lagrangian representation for AEs time evolution
driven weakly by a perturbative EP population. Meanwhile, introducing collisions by Eq. (4.132), (Vernon Wong
and Berk, 1998) verified the scaling of steady-state TAE saturation amplitude predicted by Eq. (4.133) and, for
decreasing collisionality, the existence of amplitude fluctuations, whose down- and up-shifted frequency components
are compatible with the o t!/2 scaling of Eq. (4.153). A more systematic theoretical framework for handling collisions
as in Eq. (4.136) was presented by (Chen and White, 1997), by means of which (Chen et al., 1999) have verified
the theoretically predicted scaling of the saturation amplitude with linear growth rate and collision rate, as derived
from Eq. (4.137). This approach was used to predict the saturation levels of TAE excited by fusion alpha particles in
TFTR and to successfully compare theoretical predictions with experimental observations (Gorelenkov et al., 1999).
The same approach was also used by (Bergkvist and Hellsten, 2004) to show that ICRH can also have an effect similar
to the pitch angle scattering term in Eq. (4.136), pointing out that both processes have a diffusive nature in velocity
space, but Coulomb collisions are more effective at low energies while ICRH interactions are more effective at high
energies. In plasma scenarios typical for JET, and accounting for collisions and ICRH on the same footing, (Bergkvist
et al., 2005) have shown that time evolution of TAE amplitude, computed with the perturbative analysis of (Chen
and White, 1997; Chen et al., 1999), is consistent with experimental observations and typically dominated by the
effect of ICRH. For example, accounting for ICRH effects improves the comparison of the computed numerical TAE
spectrum with the observed splitting of TAE spectral lines (Fasoli et al., 1998; Heeter et al., 2000). Furthermore,
due to the fact that ICRH acts as an effective resonance broadening (Bergkvist et al., 2007), ICRH is expected to
be important in the onset of stochasticity in phase space and enhanced fluctuation induced transport in the case of
resonance overlap due to many modes (cf. Secs. V.A and VI.A). More recently, (Fu et al., 2010; Lang and Fu, 2011)
discussed plasma micro-turbulence as a possible mechanism to enhance EP phase space diffusion (cf. Sec V.C). In
particular, letting D, being the EP radial diffusion coefficient, it was argued that the pitch angle scattering part of
the collision operator in Eq. (4.136), near a resonance 2 = w — kv = 0, can be rewritten as

va(1—22) (0xQ)° 92 f | (4.155)
while the effect of turbulence driven radial diffusion becomes
D, (0:0)° 3f (4.156)

to be added on the right hand side. By comparisons of Egs. (4.155) and (4.156), (Fu et al., 2010; Lang and Fu, 2011)
conclude that turbulence-induced radial diffusion might be more important than collisional effects in determining the
saturation level of EP driven AEs near marginal stability in burning plasma experiments.

Hybrid MHD-gyrokinetic codes (Park et al., 1992) (cf. Sec. ILE) have also been adopted for the investigation
of EP driven TAE nonlinear dynamics near marginal stability. Simulation results have shown the expected scaling
|6B. /Bo| ~ (v1/wo)? at saturation (Fu and Park, 1995; Park et al., 1999; Todo et al., 1995). Deviations from this
scaling was shown to occur in hybrid MHD-gyrokinetic numerical simulations of TAEs with increasing EP drive, when
the nonlinear EP radial displacement was comparable with the characteristic radial wavelength of the mode (Briguglio
et al., 1998) (cf. Sec. IV.D.5). EP losses have also been observed in early hybrid MHD-gyrokinetic simulations in the
presence of multiple TAEs (Todo and Sato, 1998). Fokker-Planck collision models with source terms have also been
implemented in hybrid MHD-gyrokinetic simulations (Lang et al., 2010; Todo et al., 2001) and applied to verification

23 We recall, here, that the radial structure of poloidal Fourier harmonics changes with the mode frequency and tends to become singular
as the accumulation point of the SAW continuous spectrum is approached.
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of theoretical predictions (Berk et al., 1999) (cf. Sec IV.D.2) based on the bump-on-tail paradigm (Lang et al.,
2010), as well as to the investigation of recurrent TAE bursts observed in TFTR NBI heated plasmas (Todo et al.,
2003), for which the numerical repetition time of subsequent TAE bursts is close to experimental values. Neglecting
mode-mode nonlinear couplings, the stored beam energy is found to be ~ 40% of that expected in the absence of
fluctuations, although the predicted saturation level of |§B, /Bg| ~ 2 x 102 is significantly larger than that observed
experimentally, |[§B /Bo| ~ 1072, Meanwhile, particle phase-space mapping show that EP redistributions are due to
both resonance overlap of different eigenmodes as well as stochastization of particle orbits due to secondary and higher
order resonances of a single eigenmode. The same numerical simulation has been repeated recently (Todo et al., 2012a),
with the inclusion of MHD mode-mode couplings, finding lower TAE saturations levels and two possible scenarios;
i.e., TAE steady-state saturation at |§B /By| ~ 2 x 1072 for low MHD dissipation coefficients and TAE bursting
with peak fluctuation levels at |§B, /Bg| ~ 5 x 1073 for the higher dissipation case. The lower saturation level, in the
former case, is attributed to the enhanced effective dissipation due to the nonlinearly driven modes, with both n =0
and n # 0, possibly through the fine structures connected with resonant excitation of higher toroidal mode number
continuous spectra (Todo et al., 2010, 2012b). Thus, it is different from the enhanced nonlinear coupling with the
SAW continuum or the spontaneous generation of ZS, analyzed in Secs. IV.C.2 and IV.C.3, which are collisionless
processes and are expected to play important roles in high temperature burning plasmas.

Model Fokker-Planck collision terms in the form of Eq. (4.136) have also been implemented in gyrokinetic codes
for investigating nonlinear TAE dynamics as, e.g., by (Chen and Parker, 2011). There, it is shown that an n = 15
TAE in ITER, found to be the most unstable mode from previous linear stability analyses of the considered reference
scenario (Chen et al., 2010) [cf. also (Gorelenkov et al., 2003; Vlad et al., 2006)], nonlinearly evolves up to a peak
fluctuation amplitude, consistent with wp ~ 7z, and then decays to a steady state saturation level, which scales as

1/2/ 3, consistent with Eq. (4.137), and is typically dominated by pitch angle scattering (Chen and Parker, 2011).

Gyrokinetic and extended hybrid MHD-gyrokinetic codes are becoming of routine use for linear AE/EPM stability
studies and comparisons with experimental observations (cf. (Lauber, 2013) for an extended and recent review).
Linear spectra and mode structures are then used for perturbative EP transport analyses, as described above, in
present experiments (Schueller et al., 2013) as well as in ITER (Lauber, 2015; Schneller, 2015) (cf. Sec. VI).

5. Nonlinear dynamics of Alfvénic fluctuations in nonuniform toroidal plasmas

Nonlinear wave-particle interactions are significantly modified by geometry of the plasma equilibrium and spatial
nonuniformities. In this section, we first present a qualitative discussion of these modifications and the necessary
corresponding deviations from marginal stability. We then give a quantitative and formal description of the same
phenomena, based on numerical simulation results and the general theoretical framework introduced in Sec. IV.A.
This allows us to ultimately derive general equations for the nonlinear dynamics of PSZS and to demonstrate the
unification of “bump-on-tail” and “fishbone” paradigms.

A detailed analysis of resonant wave particle interactions in 2D toroidal plasmas is given by (Zonca et al., 2013,
2015b), using the general time scale ordering |woTnp|™! ~ |yL/wo| > €w ~ O(w/;) (Sec. ILD). Thus, the effect
of nonlinear dynamics is sufficiently small that wave-particle resonances yield cumulative effects of bounce/transit-
averaged processes on unperturbed particle motion. The resonant particle response to a fluctuating field f(r, 6, (),
represented as in Eq. (3.8), can then be written as

F(r,0,0) = Z ei(n@cri’lu)b)T+’L'@n,m,l73m_’n7eOfmyn(f—FA’l”) , (4.157)

m,n,l

where ©,, , ¢ and Ar are, respectively, the nonlinear wave-particle phase shift and radial displacement; and Py, , ¢ ©
fm.n stand for “push-forward” operators to magnetic-drift orbit-centers (Brizard and Hahm, 2007). This represents a
lifting of f(r, 6, ¢) to the particle phase space in action angle coordinates given by (ecm?u/e, «), with pp = v? /(2Bo)+. ..
the magnetic moment (see Sec. II) and « the gyrophase; (P,, ¢), with the canonical toroidal angular momentum P,
at the leading order

Py = Z (F(w)% - w) ; (4.158)
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and by (J,0.), with J the “second invariant” and 6, the respective conjugate canonical angle?*

(4
J:mj{vndl : HC:wb/ o'/’ . (4.159)
0

Here, dl is the arc-length along the particle orbit and we have introduced the unified notation of wy (g, J, Py),

wp(, J, Py) = 27 (7{ d@/é) - , (4.160)

for bounce and transit frequency of trapped and circulating particles, respectively. Note that guiding center equa-
tions of motion include first order corrections due to By nonuniformity, which are conceptually important for the
construction of proper adiabatic invariants and for the accuracy of numerical codes (Brizard and Tronko, 2012). As
a consequence, leading order expressions of phase space actions, given above, may be found to “oscillate” along the
particle orbits, especially for EPs in spherical tori (Belova et al., 2003).

For given (u, J, P,), the particle coordinates (r, 6, () are parameterized as (Zonca et al., 2015b)

r=r+p0) (4.161)
0 =0.00.) , (4.162)
( =wat + g0 + E(0.) | (4.163)

for magnetically trapped particles; while, for circulating particles, Eq. (4.162) is substituted by
0=0.+06.0.) . (4.164)

G= fqde/fde (4.165)

are also functions of (u, J, P, ), which can be computed from equations of motion in the equilibrium By. Furthermore,
~denotes a generic harmonic function in 6. with zero average, while the toroidal precessional frequency

Here, 7, p(6.), ©.(6.), Z(6,), and

Gy, J, Py) = (2w)*1wb]{ (4‘ - qé) o /i . (4.166)
In Eq. (4.157), ¢ € Z stands for the “bounce harmonic”, while the Py, 5,.¢ © fin,n functions are defined as
Pt © fonn = (27) A 74 exp {inZ(0.) + i [1a(7) = m] Ocl0e) } Frn( + 5(6.))e™ "% dB. (4.167)
with A, ,, =1 for trapped particles, while, for circulating particles, parameterizing 6. = wy,

Am.n = exp [t (nG(T) —m)wpT] . (4.168)

Furthermore, in Eq. (4.157), Ar = fOT ordr’" and (Zonca et al., 2013, 2015b)

Ot = nAC — mA9+n<a d/ SPydr! 4 O d/ wdT’)

oJ
(g;ji / SPydr’ +% §.Jdr ) / Seodr’
+ (ng(r) (Bwb/ SPydr’ +8wb 6Jd7'/) —l—nwb%/ ordr’ . (4.169)
0 0

Here, A¢ and Af are the cumulative nonlinear shifts in ¢ and 6, while 6P, 6J and dr = r — 7 are, respectively, the
nonlinear deviations from particle constants of motions and the radial nonlinear deviation; and integrations are along

24 A recent review of coordinates systems and their connection with the description of the guiding center particle motion (see Sec. IT) is
given by (Cary and Brizard, 2009).
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unperturbed orbits. Meanwhile, the nonlinear frequency shift dw = w(7) —wy is explicitly taken into account, leaving
implicit only the ~ e~*0°! dependence of the reference linear instability. Note that the last line of Eq. (4.169) applies
to circulating particles only and is the nonlinear extension of (—iln Ay, ).

Assuming ©,, ., ¢ = 0 and Ar =0, and f(r,0, () ~ exp(—iwot), the linear resonance condition may be derived from
Eq. (4.157) and yields

wo = w(p, J, Py) = nig + lwp (4.170)
for magnetically trapped particles; while, for circulating particles,
wo = w(p, J, Py) = nwg + bwy, + (nq(F) — m)wp . (4.171)

In the presence of fluctuations, Eq. (4.157) accounts for their cumulative effects on multiple bounce/transit periods,
discriminating between “resonance detuning”, ~ exp(i©, m ¢), and “radial decoupling”, ~ Ppns © fmn(F + Ar)
(Zonca et al., 2013; Zonca and Chen, 2014a; Zonca et al., 2015b). Wave-particle interactions are, thus, characterized
by finite interaction length, Ary, and finite interaction time, 7y ; i.e., the typical spatial and time scales required for
particles to effectively loose the resonance condition. Noting that Ar/r ~ AP;/Py ~ (wipp/wo)AE/E (cf. Sec. II)
(Chen et al., 1988), with w.gp the EP diamagnetic frequency; and that typically |w.gp/wo| > 1 for SAW/DAW in
fusion plasmas, it is possible to simplify Eq. (4.169) and show, for shifted circular magnetic flux surfaces,

On.m.e =~ (NOriwg + L0r0y) Ar — 0w ;  and (;)n)mj ~ n(drq)w: Ar — dw | (4.172)

for magnetically trapped and circulating EPs, respectively. Here, we have denoted EP transit frequency with w; for
clarity. In general, we may estimate wp ~ 9;171 , and, since SAW /DAW are resonantly excited by EPs, 7y, ~ (3yp)~ !
(Zonca et al., 2015b) (cf. Secs. IV.D.2 and IV.D.4).

Near marginal stability and for adiabatic frequency sweeping, 7y ~ wgl ~ (3v1)~! at saturation. However,
Eq. (4.172) suggests that there always exists a special class of “phase locked” resonant EPs, for which wpTyy < 1
if ('.‘)m)mg is minimized for a proper combination of Ar and dw, yielding non-adiabatic frequency sweeping (W ~ w%,
cf. Sec. IV.D.5.a). In the following, we show that important qualitative and quantitative changes take place in the
wave-particle nonlinear dynamics when the effect of “phase locked” particles in non-perturbative. When fluctuations
maintain wave-particle resonance condition via “phase locking” through the nonlinear evolution, the chirping rate is
proportional to mode amplitude, as observed experimentally, e.g., by (Heidbrink, 2008; Podesta et al., 2011), and in
numerical simulations of nonlinear EPM evolutions (Briguglio et al., 2002, 2014, 1998; Vlad et al., 2004, 1999; Zonca
et al., 2002) as well as nonlinear fishbone dynamics (Fu et al., 2006; Vlad et al., 2012, 2013). This behavior is also
demonstrated analytically for nonlinear EPM dynamics (Zonca et al., 2005). Meanwhile, resonant particle motion
is secular and corresponding transport is ballistic/convective: this particular nonlinear dynamic regime has been
dubbed “mode particle pumping” in the original work (White et al., 1983), where it was proposed for interpreting EP
transport caused by fishbones (cf. Sec. IV.D.7).

Phase locking can be accounted for by means of €¢;, < 1, defined such that (';)m)mg =€, (;)m,mg(éw = 0) (Zonca et al.,
2015b). Thus, €, = 1 for fixed frequency or adiabatic chirping modes, while €¢; < 1 for phase locked fluctuations.
The expression of Ary, is then concisely given as

(Arp/r) ~ 3e;1A;1(7L/w) , (4.173)

where \,, = |nr¢’| for circulating EPs and A,, = 1 for trapped EPs, respectively. This expression for (Ary, /r) implies
that circulating EP transport is expected to be mostly diffusive in the presence of many high-n modes, typical of
ITER conditions (cf. Secs. V.A and VI.A). On the contrary, magnetically trapped EP transport may be affected
by convective (ballistic) processes (cf. Sec. IV.D.6) with intrinsically non-local features (Briguglio et al., 2002, 1998;
Vlad et al., 2004, 1999); i.e., characterized by meso-scales larger than |ng’|~!, with analogies to electron behavior
in gyrokinetic numerical simulations of collisionless trapped electron mode turbulence (Xiao and Lin, 2011). For
moderate or low-n fluctuations, more typical of present day tokamaks, the situation is less well defined and requires
more articulation, as shown hereafter.?®

25 This point, together with similar remarks made earlier about wave-wave couplings (cf. Sec. IV.C) and the different nonlinear dynamic
regimes expected in burning plasmas with respect to those in present day devices, may suggest that understanding nonlinear SAW and EP
physics in existing experiments may be more difficult. This indeed partly applies to sufficiently short time-scale behavior (cf. Secs. I1.C
and I1.D). However, more generally, this point also shows the need of theory and numerical simulations for reliable extrapolations of
present understanding of nonlinear SAW dynamics to burning plasmas conditions, especially when tackling new physics issues, as those
of complex behavior and spatiotemporal cross-scale couplings, discussed in Sec. VI.B.
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a. From local to meso-scale energetic particle redistributions

In nonuniform plasmas, Eq. (4.173) should be compared with the characteristic scale of Py, n.p © finn(F + A7), Arg;
i.e., with radial decoupling due to nonlinear wave-particle dynamics. From Eq. (3.23), one can readily write

(Arg/r) ~ealnrg'| ™", (4.174)

where ea < 1 controls the perpendicular fluctuation scale (Zonca and Chen, 2014c; Zonca et al., 2015b). From
Eqgs. (4.173) and (4.174), it is clear that “radial decoupling” becomes just as or more significant than “radial detuning”
when

(Y2 /w)Z Anlnrd'|“tesen/3 (4.175)

This condition, which depends on mode dispersive properties via €;ea and on the type of resonance via A, can also
be considered as criterion for estimating the validity limits of the bump-on-tail paradigm. In addition, since significant
EP radial redistributions take place on the characteristic fluctuation length scale, both the mode dispersiveness and
structures may be affected for non-perturbative EPs, when this condition is satisfied. Equation (4.175) is most
restrictive for circulating EPs, for which A,, = |nrq’| and the condition for “radial decoupling” to become important
is

(Y /w)Z €pen/3 ~3x 1072 | (4.176)

as an upper bound, having assumed e,eaS 107'. Meanwhile, for magnetically trapped EPs, the corresponding
condition is (yz/w)Z 1072 for moderate mode numbers and (yz/w)Z, 1073 for the high-n modes expected in ITER.

Once the condition of Eq. (4.175) is exceeded, effects of mode structures become increasingly more important and
eventually give rise to novel behavior due to interplay between mode structures and EP transport (Zonca et al.,
2005). This transition can also be understood in terms of EP redistributions, which, for isolated resonances, change in
nature from the local character connected with the short radial scale of AEs, as upper bound, to meso-scale features
2 |nrq’|~*(Zonca and Chen, 2014c; Zonca et al., 2015b).

In general, the threshold condition given by Eq. (4.175) can be exceeded in situations of practical interest for both
trapped as well as circulating particles. In fact, the short time scale (T&i ~ ~r; cf. Secs. IL.C, II.D and IV.A) EP
power density is linearly proportional to time and injected power (cf. Sec. IV.D.7). Thus, the effective strength of EP
drive is directly controlled by additional power input, which may be tuned equally well to achieve plasma conditions
with either AEs excited near marginal stability (cf. Secs. IV.D.3 and IV.D.4) or with strongly driven AE and EPM,
as routinely observed in experiments with strong ICRH [e.g., (Bernabei et al., 1999, 2001; Nabais et al., 2005; Zonca
et al., 2009)] and neutral NBI [e.g., (Gryaznevich and Sharapov, 2004, 2006; Lesur et al., 2010; Podesta et al., 2011)].
It is also interesting to note that the threshold condition can be exceeded nonlinearly, due to the combined effect of
different fluctuations. An experimental evidence of this case may be given by “TAE avalanches” in NSTX (Fredrickson
et al., 2009; Podesta et al., 2009), where significant rapid EP losses occur in bursts of non-adiabatic frequency sweeping
modes (Podesta et al., 2012, 2011), which are consistent with the general features of EPMs and cause up to ~ 30% EP
losses, following the activity of quasi-periodic TAE fluctuations with limited frequency chirping (Fredrickson et al.,
2009; Podesta et al., 2009) (cf. Sec. V.B).

The transition from local to meso-scale nonlinear EP redistributions was investigated numerically for the first time
by (Briguglio et al., 1998) for the case of TAE and EPM. In this work, linear TAE and EPM regimes were identified
from the behavior of mode growth rate vs. EP energy density. In the same work, it was also shown that TAE to
EPM transition is properly described only with a fully non-perturbative treatment of the EPs.

The work by (Briguglio et al., 1998) confirms that nonlinear saturation of TAE modes occurs because of wave-
particle trapping, as noted earlier (Fu and Park, 1995; Todo et al., 1995). However, for increasing growth rate, EP
redistributions by finite amplitude TAE affect an increasingly broader radial region, which eventually becomes of the
same order of the characteristic fluctuations length scale (cf. Sec. IV.D.5.a). This is also visible in the scaling of TAE
saturation amplitude vs. 7, shown in Fig. 2(a). When the radial width of the wave-particle resonant region becomes
comparable with the finite mode width, the saturation amplitude deviates from the simple scaling |0 B /Bo| ~ (v /w)?
(cf. Secs. IV.D.1 and IV.D.4) and eventually becomes independent of the linear drive. For this case of TAE excited by
EPs via transit resonance, the |§B, /Bg| ~ (v1/w)? behavior holds for 71, /wS 1072, consistent with the criterion of
Eq. (4.176). The same type of behavior has been recently observed in BAE hybrid MHD-gyrokinetic simulations and
is reported in Fig. 2(b). The mechanism by which radial decoupling changes the scaling of the saturation amplitude
with (v /wp) is also explained by (Wang et al., 2012) in terms of a simplified analytical model, which incorporates
wave-particle resonance as well as finite interaction length due to mode localization. The observed deviation of the
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FIG. 2 (a) [from the original Fig. 9 in Ref. (Briguglio et al., 1998)]: TAE saturation amplitude vs. the normalized linear
growth rate, expressed in Alfvén time units, 74 = Ro/va, computed at the magnetic axis and with Ry denoting the geometric
center of the circular toroidal plasma (Briguglio et al., 1995). (b) [from the original Fig. 4 in Ref. (Wang et al., 2012)]: BAE
saturation amplitude, expressed by the peak scalar potential energy normalized with respect to the EP birth energy, whose
distribution function is an isotropic slowing down, is shown vs. the normalized mode linear growth rate.

mode saturation amplitude from the ~ (y7,/w)? scaling in simulations (Briguglio, 2012; Briguglio et al., 2012, 2014;
Wang et al., 2012; Zhang et al., 2012) is, thus, indicative of the increasing importance of radial decoupling with respect
to resonance detuning.

Another important aspect of the transition from local to meso-scale EP redistributions is that the system is not
near marginal stability, as discussed in Secs. IV.D.2 and IV.D.3, and its dynamics is non-adiabatic. This is due to the
non-perturbative power exchange between waves and EPs, undergoing an O(1) variation on the characteristic time
v (cf. Sec IV.D.5.a). These physics are clearly demonstrated in recent numerical simulations of BAE nonlinear
dynamics with both gyrokinetic (Zhang et al., 2012) and hybrid MHD-gyrokinetic (Wang et al., 2012) approaches.
In the work by (Zhang et al., 2012), BAE is excited predominantly by trapped EPs via precession resonance and
nonlinear mode evolution is characterized by continuous bursting without EP sources or sinks and with EPs assumed
to initially have an isotropic Maxwellian distribution function. In the growth phase of the BAE mode, the frequency
sweeps downward, consistently with the mode dispersion relation, while outward-moving EPs continue driving the
mode via maintaining the following phase locking condition, from Egs. (4.172),

Vice-versa, EPs that are moving inward and damp the mode are more easily detuned from resonance. Thus, power
transfer from EPs to the wave is maximized, as well as are EP nonlinear radial displacement and mode growth.
Similar behavior is observed by (Wang et al., 2012), where BAE is destabilized by EPs via transit resonance and
nonlinear mode dynamics is produced uniquely by wave-EP interaction, as thermal ion kinetic response is linearized.
In this case, the frequency sweeps upward in the growth phase of the BAE mode, consistent with the mode dispersion
relation (Wang et al., 2012). Thus, from Egs. (4.172), the phase locking condition

80 ~ n(drq)we AT (4.178)

is more easily maintained for outward-moving instability-driving EPs with positive parallel velocities. This, thus,
leads to symmetry breaking in v for the wave-particle power exchange as well as EP transport.

In both these recent works on nonlinear BAE dynamics, the role of EPs is non-perturbative and results in non-
adiabatic frequency chirping, w ~ w%, while dominant wave-EP resonant interactions satisfy phase locking as expressed

by Egs. (4.177) and (4.178). This can be understood from the the estimate A7 ~ § X (cf. Sec. IL.D), with

w%:)\n

(w/r)(DL(l‘ ~ A\, |[(w/r)(ng/r)(c/Bo)ded| . (4.179)

These results, furthermore, confirm that PSZS formation and evolution occur on a time scale wgt ~ 1, as anticipated
in Sec. IV.D.3. Recent and very detailed theoretical as well as numerical analyses of these issues are given in (Briguglio
et al., 2014; Zonca et al., 2015a,b).
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b. Nonlinear equations for energetic particle phase-space zonal structures

The self-consistent and generally non-adiabatic nonlinear evolution of Alfvénic fluctuations and resonant EP PSZS
is analyzed here, allowing the investigation of the transition from local to meso-scale EP redistributions (cf.
Sec. IV.D.5.a). The denomination of PSZS follows by analogy that of ZS in configuration space (cf. Secs. IV.A,
IV.B.3 and IV.C.2); and, as n = m = 0 low-frequency structures in the phase-space, they set the dominant nonlin-
ear time scale in resonant wave-particle interactions (Zonca et al., 2015b). As a particular case of theoretical and
practical interest, we discuss the fishbone paradigm, illustrating the behavior of a magnetized toroidal plasma as
non-autonomous 1D nonuniform system. Then, we show that this paradigm reduces to the bump-on-tail paradigm
in the proper limit. Thus, phase-space holes and clumps are particular cases of PSZS, where time scale separation
applies between their long characteristic dynamic nonlinear evolution and the much shorter wave-particle trapping
time (cf. Secs. IV.D.2 and IV.D.3); and nonlinear particle displacement is small compared with the fluctuation length
scale.

For low frequency fluctuations, the nonlinear description of EP PSZS is obtained from the nonlinear gyrokinetic
equations (Frieman and Chen, 1982); i.e., from Eq. (2.21)

. e 1 8F0 e 8F0 1 8F0
5. —;{Pmyo_yoo[‘]o()\)zig]m’o}— {Jo(/\) <mBO 5 (0T >>LO+— {E‘S‘b ool @180

where the projection operator P, 0,0 is a particular case, which stands here as “pull-back” operator from magnetic-
drift orbit-centers (Brizard and Hahm, 2007), of P, ,, ¢ defined in Eq. (4.167) and used in the nonlinear representation
of Eq. (4.157). Meanwhile, the evolution equation for the zonal component of dg is obtained from Eq. (2.23) (Zonca
et al., 2015b). Assuming that |k | < |kL| (cf. Sec. II.A), it can be cast as (Zonca et al., 2005)

06g. e 0 OF, . c 0
o = 730,0700(7” o (OLy). 8g>070+lgfpm,o,oo pyE 8T;n(59n 0Ly _,) (4.181)

where )~ stands for summation on toroidal mode numbers, specified as subscript of fluctuating fields where needed.
In turn, the evolution equation for dg,, is

0 inc 0 nBy 06g.
(E  di/dr (0Lg). 25, TuVitva VL) 8gn =i— (QFO Qdv/dr Qdodr P00 ° - ) (0Lg),, - (4.182)
Here, QFy is defined as
s 8F0 0 b x VF()

the contribution o (§Lgy)_ on the left hand side represents the Doppler-shifted mode frequency due to ZS, while the
term o< 0,09, on the right hand side accounts for the “radial corrugation” effect of PSZS (cf. Secs. IV.A, IV.D.6
and IV.D.7).

Equations (4.181) and (4.182), along with the field equations for Alfvénic fluctuations; i.e., Eq. (4.3) without the
multiple-n coupling term, and Egs. (2.26) and (2.30) for 0¢. and 04, respectively, fully characterize the short time
scale nonlinear evolution of DAWs and EPs. They are, hence, the relevant equations for the self-consistent evolution
of PSZS excited by EPs and related transport. These equations have so far been investigated only in simplified limits;
i.e., either dropping the contribution of wave-particle resonances (Chen et al., 2000, 2001; Chen and Zonca, 2007b,
2012, 2013; Guo et al., 2009) (cf. Sec. IV.C); or neglecting the effect of ZS, (0L,)_ (Zonca et al., 2006, 2000, 2005,
2007b). Thus, the simplified evolution equations for PSZS excited by EPs and related transport, used hereafter, are
the NLSE, Eq. (4.3), without the multiple-n coupling term; i.e., the Gross-Pitaevsky (Gross, 1961; Pitaevsky, 1961)
or Zakharov (Zakharov, 1968) equation. The NLSE, in turn, is closed by Eqs. (4.181) and (4.182), rewritten as

8F0 . C (9
5 = iPooos ;Pm,o,o © GoTa Zn:n (390 46Lo) ), - (4.184)

and

0 e
(315 + UHVH + vy - VJ_) 0gn = zEQFO <6L9>n . (4.185)
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Here, Fy = Fy + Po,0,0 © 0g.. Furthermore, we have noted that, for EPs with |w.z| > |wo|, Eq. (4.182) reduces
to Eq. (4.185) except for an higher order term. These equations may be used to investigate a number of nonlinear
dynamics problems involving a generic DAW spectrum with |yz /wo| ~ |woTnr|™! < 1, accounting the reaction of
waves on the particle distribution function.

In order to simplify the present analysis further, we restrict Egs. (4.184) and (4.185) to precessional resonance with
magnetically trapped EPs while neglecting finite orbit width effects. Assuming |0;| ~ niwg < wp, the second invariant
J, defined in Eq. (4.159), becomes a constant of motion as . Then, the “bounce averaged” dynamics of magnetized
toroidal plasma reduces to that of non-autonomous 1D nonuniform system; that is, to the model description adopted
in the fishbone paradigm (Zonca et al., 2015b) and used hereafter to demonstrate that, in the uniform plasma limit,
it reduces to the bump-on-tail paradigm. Using Eq. (4.157), we can write the gy, the bounce averaged expression of
Ogn, as

Ogn = MNP 00 0gmn - (4.186)
Meanwhile,
0 = €IV " P00 0mn = €55, (4.187)
w1th 71 f .)de/ 6 denoting bounce averaging. Furthermore, introducing the definition
59 = 0K +i(e/m)QFo0; * (6¢,) (4.188)

and adopting the notation of Eq. (4.124) for the Fourier-Laplace transform, Eq. (4.184) can be solved as

Folw) = Z8tFu) + L S0(w) + 51 Fo0) + il [ [B)aR sl 9) ~ 0-4n)oRi(e — ) (dy ’
4.189

Here, we have neglected the higher order contribution of reversible processes [cf. (Zonca et al., 2015b) for details]. We
also have included the effect of collisions, formally denoted by St£(w), and of an external source term, So(w), while
F5(0) denotes the initial value of Fyy at t = 0. Moreover, for the sake of notation clarity, we have explicitly indicated
dependences on w only (and y, as dummy integration frequency variable); and the summation on mode numbers has
been replaced by an implicit summation on the subscript k, which, from now on, will be a short notation for (m,n).
Meanwhile, for EP precessional resonance we readily obtain

5Kk ‘ / wdk Qk yFO( y) &Z)k (y)dy , (4.190)

nwdk —

where the subscripts in Qkﬁyﬁo denote wave number and frequency at which the operator defined by Eq. (4.183) must
be evaluated; and we have introduced the definition

e~ einad 5,56, = Darddr . (4.191)

It can be verified that Eq. (4.190) gives back the linear limit for Fy(w) = (2mw) 1iFy(0). Substituting Eq. (4.190)
into Eq. (4.189), one obtains

Fo(w)=£StFo( )+ L8 )+FFO() mwdw/dr 8r// lqﬁ “d,’“Q karFow —y = y) 55

w —NWg—k +Y —w

_5¢ ()wdeky’FO(w_y y)égzk(y')

dydy’ . 4.192
Y nwak +y —w v ( )

This equation is the analogue of Eq. (4.128); 4.e., the Dyson’s equation in quantum field theory, extended to the case of
nonuniform toroidal plasmas under investigation with the addition of sources and collisions. Following (Al’tshul’ and
Karpman, 1965, 1966), it is possible to show that, in the case of many waves with overlapping resonances, Eq. (4.192)
reduces to the quasilinear theory of a weakly turbulent plasma (Drummond and Pines, 1962; Vedenov et al., 1961), as
noted already for Eqs. (4.127) and (4.128). Similar to Eq. (4.128), Eq. (4.192) can also be considered as a generalized
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quasilinear equation (Galeev et al., 1965) (cf. Sec. IV.D.1); including effects of equilibrium geometries and plasma
nonuniformity. It, thus, addresses resonance detuning and radial decoupling in wave-particle interactions on the
same footing; and the present approach may be used to explore the transition of EP transport through stochasticity
threshold with all the necessary physics ingredients for a realistic comparison with experimental observations.

In Secs. IV.D.6 and IV.D.7, we focus on the case where the DAW spectrum is very narrow, e.g., the case of a
periodic fluctuation (cf. Sec. IV.D.1), whose frequency may be slowly evolving in time; |wy| < |yrgwr|. Therefore,
this case includes both adiabatic (Jwx| < w%) as well as non-adiabatic (|wy|S w%) frequency sweeping and may well
represent the nonlinear dynamic evolution of a single toroidal mode number AE or EPM?2%. Using the representation

5 - LM and 55—1@(&)) _ iéé—kO(Tv 7)

0k (OJ) T o w_ wk(r) =5 W , (4.193)

Eq. (4.192) may be reduced to the following form

: Sti ¥ N Qe
Fo(w):éstFo(w)JréS(W)JrLFo(o)Jr c_mnc 0 H wr (7)

27w mw(dip/dr) dr wi(T)
WFE E:;(_Tffgik * ijuzkr(;) wﬁ}z E:;(_Tf ?(rgik] Dar [5ro (7, 7)| 2} : (4.194)

Here, we have explicitly denoted the slow time dependence of wy(7); i.e., |wk| < |yLrwk|. Furthermore, we have kept
(r,7) dependences explicit only in d¢oy, as they emphasize the important role of radial mode structures, which may
change in time along with the particle distribution function. Meanwhile, 74 (7) = Im (wi (7)), (—n)Dg—k = —NW4k,
Wd—k = —Wdk, Q—k,—wy(r) = —Qz)wk(ﬂ, and Eq. (4.193) is the analogue of Eq. (4.129) for frequency sweeping modes.

Equations (4.192) and (4.194) are the general formulation for nonlinear DAW interactions with EPs adopting the
fishbone paradigm and, thus, may be used to demonstrate its unification with the “bump-on-tail” paradigm (Zonca
et al., 2015b). More specifically, the correspondence to the nonlinear beam-plasma system (cf. Sec. IV.D.1) can be

readily established ignoring the effect of plasma nonuniformities and geometry. That is, postulating constant 65k (w)
fluctuations, and letting

Wi m e D
 ou e dp/dror ’

(4.195)

and nwap — Wi ~ nWaro(r — 10)/Laro <+ kou, with Laxo the characteristic length of variation of war2”, one can draw

a one to one correspondence between Eqs. (4.126) and (4.190) as well as between Eqs. (4.128) and (4.192), which
become identically the same. This also holds for the reduced forms, e.g., Eq. (4.194), once Eqgs. (4.129) and (4.193) are
introduced, respectively. As pointed out earlier and in (Zonca et al., 2015b), this reduction of the general formulation
illuminates both the validity limits of the “bump-on-tail” paradigm and its applicability conditions, as well as to the
qualitative and quantitative differences introduced by equilibrium geometry and plasma nonuniformity.

To be more precise, let us consider the uniform plasma limit as in Eq. (4.195). Introducing a simple Krook collision

operator, Eq. (4.192) then becomes
e’k 0 Bl N —0uFy(w—y—y) .~ ,
e [&bko(y) Dl 055

(—iw + )0 fo(w) =i

BuFop(w —y —y)

= 00—k (v) y+ kou —w — iv

when expressed for the nonlinear deviation 6 fo(w) of the particle distribution function from the equilibrium (initial)
value Fy(0) = Q(v)/v(v) (cf. Sec. IV.D.2.b). The iterative solution of Eq. (4.144) corresponds to taking Fp(w—y—y') =
i(27) " F(0)(w —y — v') 7! in Eq. (4.196), i.e., to considering only the first loop in the Dyson series, schematically

26 Here, we remind the reader, again, that one single toroidal mode number involves the coupling of many poloidal harmonics, due to the
toroidal geometry of the plasma equilibrium.

27 Note that Eq. (4.195) implies that directions of incrementing u corresponds to decreasing r and vice-versa; however, @gy is generally
also a decreasing function of r.
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shown in Fig 1. Moving to the ¢-representation, the recursive solution of Eq. (4.196) is then obtained as

) N I N 0 Fp(0) -
(g ) om =gy [ e ) 2 59l

y' + kou + iv
A Oy Fo(0 A
+ 00—k, (Q)M%Mko (y’)] dydy’ (4.197)
which is readily cast as
9 W) O [T rikew) (-t 92 . 0F0(0)
— = vorthou .C. t dt . 4.1
((% +”> 0fo=—4 akou/O g +ee|wh(t) Do (4.198)

This equation coincides with Eq. (4.144), noting that, here, w} = 4(e/m)?kg|d¢x, |?, in order to preserve the same
normalizations of Fourier amplitudes used in Sec. IV.D.2.b. Thus, this is a proof that the fishbone paradigm reduces
to the bump-on-tail paradigm in the uniform plasma limit.

Finally, as elucidation of Eq. (4.194) in the uniform plasma case, we follow (Al'tshul’ and Karpman, 1965, 1966)
and assume that the periodic fluctuation of Eq. (4.193) is weakly growing (v < wp) such that Eq. (4.194), with
no sources and collisions and accounting for Eq. (4.195), yields the solution of Eq. (4.130). Here, we remind that
Eq. (4.130) describes the oscillations of particles that are trapped in the wave, which, however, do not decay in time
as expected as consequence of phase mixing. This limitation is not significative for the analyses of Secs. IV.D.6
and IV.D.7, since phase locking makes wave-particle trapping essentially ineffective; de facto suppressing harmonic
generation.

6. Nonlinear dynamics of Energetic Particle Modes and avalanches

The novel feature of EPM nonlinear dynamics in contrast to that of AEs is the interplay between EP transport and
mode structure evolution, which is crucially influenced by the structure of the SAW continuous spectrum (Briguglio
et al., 1998) [cf. also (Bierwage et al., 2012, 2011; Briguglio et al., 2007, 2002; Vlad et al., 2004, 2009, 2006, 1999)].

The first analysis of EPM nonlinear behavior was given by (Briguglio et al., 1998), reporting numerical results
from hybrid MHD-gyrokinetic simulations. In that work, it is shown that, unlike in the TAE case, EPM saturation
occurs because of “macroscopic outward displacement of the energetic-ion population”, which is characterized by a
convective secular process. There, it is also shown that MHD nonlinearities weakly affect the EPM evolution by direct
comparison of two different simulations, carried out without and with MHD mode-mode couplings. These results are
consistent with theoretical analyses showing the fundamental role played by EPs in determining EPM dispersive
properties and threshold condition (Chen, 1994; Chen and Zonca, 1995; Zonca and Chen, 1996) as well as radial mode
structure and spatial localization (Zonca and Chen, 1996, 2000).

Most of the distinctive features of low mode number EPM are the same as those typical of fishbone modes (cf.
Sec. IV.D.7). However, the nonperturbative interplay of EP transport with mode structures is peculiar to EPM and
is most evident, as well as relevant, for high mode numbers typical of ITER (Briguglio et al., 2002; Vlad et al.,
2004; Zonca et al., 2005), since the characteristic scale of EP profiles are longer than the typical mode width (Zonca
and Chen, 2000). In these conditions and for sufficiently strong wave-particle power exchange, EP transport occurs
in avalanches (Zonca et al., 2015a,b), i.e., as a secular loss process accompanied by a convectively amplified EPM
wave packet (Briguglio et al., 2002; Vlad et al., 2004; Zonca et al., 2005) and a local gradient steepening of the EP
pressure profile; followed by a relaxation phase (Zonca et al., 2006). This mechanism was demonstrated with hybrid
MHD-gyrokinetic numerical simulation results by (Vlad et al., 2004), investigating the EPM nonlinear dynamics in
ITER-FEAT reversed shear scenario (cf. Sec. V.B for more details). The simulation results are summarized in Fig. 3,
where g radial profiles are shown along with (m,n) Fourier components of the EPM scalar potential fluctuations
during the linear growth (left), the end of the EPM avalanche (middle), and saturation phase (right). Meanwhile,
Fig. 4 gives evidence of the peak EP pressure gradient value steepening at the location where the EPM wave packet
is localized (Zonca et al., 2005; Zonca and Chen, 2000). Thus, an EPM avalanche consists of an unstable wave packet
that is convectively amplified as it radially propagates outward, in phase with the strengthening EP free energy source
(pressure gradient). This process continues as long as the EPM wave packet can be amplified by resonant wave-particle
interactions. Eventually, mode saturates due to radial decoupling and relative strengthening of background damping
due to plasma nonuniformity. EP transport, meanwhile, becomes diffusive and the pressure gradient relaxes (Zonca
et al., 2006), as shown in Fig. 4. Similar results were obtained by (Briguglio et al., 2002), studying EP transport in
hollow current profile plasmas and showing that the minimum-g magnetic surface is the natural location, where the
radial propagation of EPM induced EP avalanches are expected to stop.
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FIG. 3 Radial profiles of g and (m,n = 2) Fourier components of the EPM scalar potential fluctuations during the linear
growth (left), the end of the EPM avalanche (middle), and saturation phase (right) [from the original Fig. 6 in Ref. (Vlad

et al., 2004)]. Time normalization is wat, with wa = va/Ro computed at the magnetic axis.
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FIG. 4 Radial position (r/a)maz (top) and value of the maximum gradient [d(rSE)/dr]maz vs. wat for the EPM simulation
in Fig. 3. The strong convection, characteristic of the avalanche phase, is accompanied by gradient steepening, followed by a

relaxation phase, characterized by diffusive EP transport. [from the original Fig. 7 in Ref. (Vlad et al., 2004)].

These characteristic EPM nonlinear dynamics have been studied analytically by (Zonca et al., 2005) in connection
with the transition from local to meso-scale EP redistributions (cf. Sec. IV.D.5). For the sake of simplicity, we analyze
EPM excitation by precessional resonance with EPs adopting the fishbone paradigm (cf. Sec. IV.D.5.b). We also, in
order to compare analytic theory with hybrid MHD-gyrokinetic simulations of EPM avalanches, assume the following
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initial (equilibrium) EP isotropic slowing down distribution function

P 3POE H(EF/’ITLE —5)
07 4xEp 26372 + (2E./mp)3/?

(4.199)

Here, H denotes the Heaviside step function and the normalization condition is chosen such that the EP energy
density is (3/2)Pyg for EF > E., and EP energy is predominantly transferred to thermal electrons by collisional
friction (Stix, 1972) as it occurs for a-particles in fusion plasmas. Furthermore, we ignore source and collision terms
terms in Eq. (4.194). The analysis, consequently, is then reduced to computing the nonlinear contribution to 6W,,z,
which, considering Eq. (3.29) together with Eq. (4.190), can be written as

_ 2 R 2 22 +oo ) R
W = / gdgan Y SIS (Tb" “d") / wt w(r) Qo Fo(w)dw (4.200)

c2k2(s| m w(T e NWgn —w(T) —w
v /v l==% 19| | ( ) 0o dn ( )

where 7, = 27/wp. Note that, here, w(7) = wo(7) + iy(7) is the slowly changing frequency of the periodic EPM
allowing non-adiabatic frequency chirping. With the notations of Sec. IV.A and the use of Eq. (4.194), the nonlinear
contribution to W, can be written as

B 20 R0 2 2-2
SWNL ~ / gdedn Y TS <Tb” “’d") k202 p2

2520 al
vy /vy l=% c2kjlslm \ - w(r)
H2 400 nwdn('y—iw)e*i“’tQk ( )Fo(w) en - 2
5 — dw | |78 (r.t 4201
<O Or? [(/_oo (nGan —w0)2 + (v —iw)® ) |Ts 0n(rt)| | (4.201)

where v2, = T /mp, Tg = Er/mp, p2 5 = v5/0%, and 9, 2 denotes action of —(w 4 2ivy) ™2

dw. Meanwhile, the fluctuation intensity in Eq. (4.201) can be rewritten as

2
E e—27rznq

0,0

under the integration in
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T
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9=2m((—0") 9=2m0

Here, we have used the mode structure decomposition and notations of Eqgs. (3.23) and (4.187). Equation (4.202)
demonstrates the existence of fine radial structures of the order of or less than |ng’|~!, due to nonlinear modulations
via wave-particle interactions of the EP radial profiles. While such fine structures are visible in mode structures
shown in Fig. 3, they are smoothed out in the pressure profiles due to velocity space integration. These features
are very general and have been recently observed in gyrokinetic numerical simulations addressing the effect of Ion
Temperature Gradient turbulence driven zonal flows on nonlinear SAW dynamics excited by EPs (Bass and Waltz,
2010) (cf. Sec. VI.B). These fine structures have been demonstrated to be modulationally stable below a critical
threshold amplitude of the driving modes (Zonca et al., 2000). For this reason, we consider for now only the ¢/ = 0
component in Eq. (4.202). We will discuss later the conditions under which radial corrugations in the EP profiles are
produced spontaneously. Thus, Eq. (4.202) can be rewritten as (cf. Sec. II1.C)

2
272
~ _

sl

where normalizations are consistent with those of (Zonca et al., 2005).
Equation (4.201) can be used to formally write the EPM nonlinear equation (Zonca et al., 2006, 2005)

i = |4, (r,t)]" (4.203)
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Dy, (x, =0y, wo(t) 4+ i0;) Apo(x,t) = SWNE Ao (x,t) (4.204)

where the fast time dependence has been isolated and A, (r,t) = A,o(x,t)exp(—i ft wo(t')dt"). Equations (4.201)
and (4.204) are closed by the leading order evolution equation for Fy(t); i.e.,

0 N, \ 0 oo (v —iw) it OF0(w) - 2
57 Fo(t) = 2k50E P (—)5 l(/ e dw | [Aw(r ]| . (4.205)

wo oo (M@ — w0)? + (v — iw)? r

Note that, here, we have ignored terms o StFj (w) and o S (w) in Eq. (4.194), which, however, can be readily included
(cf. Sec. IV.D.7). Furthermore, as in the case of Eq. (4.201), d; ' formally applied on the right hand side, when
explicitly integrating Eq. (4.205), denotes the action of (—iw + 27)~! under the integration in dw.
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The complex features of EPM nonlinear dynamics and, more generally, of DAW resonantly excited by EPs are
clearly visible from the structure of Eq. (4.205). For sufficiently strong (non-perturbative) EP drive, as in the case of
EPM, radial structures of Fy(w) and |A,| vary self-consistently and favor the most unstable growing mode; i.e., the
maximization of wave-particle power exchange. Therefore, the mode frequency continuously readjusts to the resonance
condition due to mode dispersive properties and radial envelope structures. In turn, particles are most effectively
transported outward as they amplify the mode. In Eq. (4.205), phase locking and frequency chirping ensure that the
o (n@an — wo)? at the denominator is essentially vanishing for resonant particles. Thus, the nature of Eq. (4.205)
could change from parabolic to hyperbolic for “phase locked” particles that play a crucial role in the EPM avalanche
of Fig. 3. The hyperbolic nature is intrinsically connected with ballistic resonant particle transport.

The solution of Eqgs. (4.201), (4.204) and (4.205) in the early phase of the EPM wave packet convective amplifica-
tion (Zonca et al., 2005) is summarized hereafter in order to illustrate the underlying physics (Zonca et al., 2015b).
We assume that the nonlinear distortion of the EP distribution function is sufficiently small that Fj (w) in Eq. (4.201)
takes on its equilibrium value, i.e., Fo(w) = (2mw)~1iFy(0), with F5(0) chosen as in Eq. (4.199) and

(r—mo)? 22 /s?
ap =apoexp | —~—— | ~agy [1 - 55— | , (4.206)
< Lok k5Loe
with ap = —87TR0q2P6E/BO, apo = ag(r =19) and x = |sky|(r — 7). Assuming that the resonant EPs are deeply
magnetically trapped, SW N’ can be reduced to

3r(r/Ro)"?ag . wo 5 0% o 2
o DUT0) OB 20 g2 2 972 | Al 4.207
8v/2|s| war ¥ BhLE 2’ 0’ ( )

where @wgr = nwgn,(F = Er) and we have assumed that the radial scale of ap is longer than that of |A,|.

Eq. (4.207), it is crucial to note that the whole right hand side is computed at the instantaneous frequency wg and at
the radial location of the EPM wave packet. With 6Wﬁcg replacing 6W7]L\,’€L , Eq. (4.204) recovers the nonlinear EPM
envelope equation of (Zonca et al., 2005), whose solution can be expressed as the convectively amplified propagating

(self-similar) wave packet
Ang(€,1) = U(g)edo 1" (4.208)

with £ given by

5—5()5@@—170)— s k: | ( |Sk19|/ ) , (4.209)

kno denoting the nonlinear wave vector and v, the nonlinear group velocity. Adopting the usual procedure, one first
balances the nonlinear term in Eq. (4.204), for SWNL — 6W7]L\,26 , with the linear dispersiveness in D,,; which, for
moderate values of (s, = —Rgq?f’), is given by

e |s|m 0?
- > s )52

37r(81"\//{3|0)|1/2 - (1 - ;;é;;) {1 + % {m (@;ﬂ - 1) +m}} . (4.210)

Here, D,, = iAr — (5Wan +0Wk) as in Eq. (3.30), Ar = (1/2)(T/T_)Y/2 (cf. Sec. IV.C.2), aer = s2/(1 + |s|)
and k(s) ~ (1/2) (1 +1/|s])e"/I*l (Chen and Zonca, 1995; Zonca and Chen, 1992, 1993). This optimal balance
gives (Zonca et al., 2015b)

2 $2Im0W L (wo)

il , (4.211)
Ag 92D,/ 002,

_ ~ 2
Vg = NgUpxB, and k;y=

where 9pxp = (—kgc/Bo) max[d¢,(r,t)] is the EP peak radial E x B velocity, 0k = —i0;, and ), is a control
parameter to be determlned (cf. below). Meanwhile, letting U (&) = e's¢U(€), with U(¢) = e ©OW(€) and ¢, =

)-
AZknovg (]Im5WnLk) OReSWE /0wy, U(€) satisfies the following nonlinear Zonca-Chen equation

RU = (Ao —e)U =2iU|U|* (4.212)
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1.2 . . ; : 2

FIG. 5 The functions W (z) and ¢(x) describing the self-similar shape U(z) = W (z)e!*®) of the EPM wave packet propagation
in the early phase of its nonlinear evolution (Zonca et al., 2005, 2015b).

which is a particular case of the complex Ginzburg-Landau equation (Conte and Musette, 1993; van Saarloos and
Hohenberg, 1992). The solution of Eq. (4.212), discussed, for simplicity, by (Zonca et al., 2015b) in the limit ¢, — 0,
is shown in Fig. 5 and is given by W (&) = sech [(v2/3)/2%¢], ¢(¢) = —v2Incosh [(v2/3)Y/%¢], for the value of
Ao — € = —/2/3 +i(4/3) ~ —0.47 + i1.33, which corresponds to the ground state of the corresponding complex
nonlinear oscillator. Noting Eqgs. (4.210) to (4.212), the mode frequency and growth rate are then defined by the
dispersion relation (computed at x = xg)

DE(w)|,_, - ;f oWk, (wo)|,_, =0 , (1.213)
where
Le ; Red W, (wo) \ . v
D} (w) =i (Ar(wo) — Im6 W, (wo)) — (6W,y + RedW,i (wo)) — wo——— M )i (4.214)
0 0

is the local linear EPM dispersion relation obtained from Eq. (4.210) neglecting the linear dispersiveness term o< 92.
Equation (4.213), through the o A;2 term, is the nonlinear extension of the linear EPM dispersion relation (Zonca
and Chen, 2000). It describes a one-parameter family, A,, of EPM wave packets that are convectively amplified as they
radially propagate with group velocity ~ g« p. The value of )\3 for the dominant mode is determined by maximizing
the wave-particle power transfer in the phase locking regime; i.e.,

dry oy 0y dwo
D2 = o2 + Do A2 =0 . (4.215)
This equation has a solution A2< 1 due to the optimal ordering in the nonlinear dispersion relation above and to
the fact that dvy/ d)\2 > 0 for /\2q — 0, while dv/ d/\2 < 0 for )\2 — oo. For typical tokamak parameters, one obtains
Ag ~ 0.5+ 0.6, Wlth a spread A/\q ~ AN ~ 1/2[ d27/(d/\2) ]71/2 ~ 0.1. This is readily verified to yield phase
locklng of the EPM wave packet with the dominant resonant particle fraction contributing to wave-particle power
exchange (Zonca et al., 2015b).

In the initial EPM avalanche phase, characterized by phase locking and wave packet convective amplification,
Eq. (4.213) yields a frequency shift Aw, relative to the “linear” (initial) mode frequency wor, (Zonca et al., 2005),

_ t
A9 L (s—1)—T0 Q/ vg(t)dt' (4.216)
0

wor |S]€197‘0| To

i.e., a frequency chirping rate that is proportional to the mode amplitude, as discussed at the beginning of Sec. IV.D.5.
Meanwhile, Eq. (4.213) also shows that the EPM wave packet can be convectively amplified, yielding the avalanching
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process of Fig. 3, as long as the strengthening of mode drive, due to pressure gradient steepening, compensates the
reduced drive, due to equilibrium nonuniformities. Equilibrium geometry and plasma nonuniformities influence the
wave packet propagation speed and characteristic width as well. Because of its form, the intensity of the convectively
amplified wave packet grows as the square of the distance; in analogy with the superradiance (Dicke, 1954) operation
regime of a free electron laser (FEL), where the peak power also increases as the square of the distance along the
undulator (Bonifacio et al., 1990, 1994; Giannessi et al., 2005; Watanabe et al., 2007). The mechanism by which
EPs eventually loose resonance by residual resonance detuning and are substituted by new resonant EPs reinforces
this analogy (Zonca et al., 2015b). The EPM wave packet propagation could generally be in either radial directions.
However, outward propagation is favored, as the moving wave packet can more easily maintain the phase locking
condition with the larger fraction of EPs that are transported outward while driving the mode, due to the conservation
of the Hamiltonian in the extended phase-space. Another important factor that may break the symmetry in the radial
propagation direction is equilibrium nonuniformity, associated with both EP profiles and continuum damping. Thus,
unless radial nonuniformity inhibits outward propagation, frequency chirping is predicted to be generally downward
for EPM avalanche events, since characteristic EP resonant frequencies are radially decreasing for typical equilibrium
radial profiles.

As a final point, we analyze the conditions under which radial corrugations in the EP profiles, briefly discussed
above in connection with Eq. (4.202), are excited spontaneously (Zonca et al., 2000). Following the same procedure
introduced in Sec. IV.C.2, the nonlinear dispersion relation for the EPM modulational instability can be written as
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Here, Dy stands for D,, of the EPM pump, =4 is the sideband damping and Ar the frequency mismatch, while
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Equation (4.217) shows common features with the dispersion relation of ZS induced by finite amplitude TAE, discussed
in Sec. IV.C.2. The novel element, here, is that resonant wave particle interactions typically produce modulational
instability of the EP pressure profile (Vlad et al., 2004; Zonca et al., 2006) characterized by both finite growth rate
as well as real frequency shift (Zonca et al., 2000). As pointed out in Sec. IV.C.2, all physical processes yielding
fluctuation amplitude modulation may result in nonlinear splitting of the corresponding spectral lines. From ordering
considerations, it is evident that the onset condition for the EPM induced modulational instability gives |w.| ~ eqwg ~
Y~y ~ v /| A7 Jwo 2, with Ar ~ eowo (Zonca et al., 2000; Zonca and Chen, 2014c). Thus, noting Eq. (4.203),
the threshold condition for |§B,./By| in this case is, respectively, ~ 63/4OAE1/2 and ~ eé/zqfla;/z higher than when
TAE induced ZS are dominated by the zonal current or zonal flows (cf. Sec. IV.C.2). These results suggest that,
for sufficiently strong EP drive, i.e., sufficiently high ag, ZS are expected to not significantly modify the nonlinear
EPM dynamics (Zonca et al., 2000). In particular, when analyzing the modulational instability of EPM driven by

EP transit resonance, the criterion for neglecting the effect of zonal flows becomes ag > eg/ 2 /q?, as the EPM drive
is not reduced by the trapped particle fraction. This is consistent with the empirical scaling ap > B.¢>, 8. being the
thermal electron plasma 3, obtained from numerical gyrokinetic simulation results (Bass and Waltz, 2010).

Finally, it is worthwhile to make some further general remarks and comments on this analysis. Note that Eq. (4.212)
is similar to that of a nonlinear oscillator in the so-called “Sagdeev potential” V = (—U? + U*)/2, which generates
the equation of motion

RU=U-2U° | (4.219)

and gives U = sech(€). This form appears in soliton-like solutions of NLSE; e.g., the Gross-Pitaevsky equation (Gross,
1961; Pitaevsky, 1961) describing the ground state of a quantum system of identical bosons using the pseudo-potential
interaction model, as well as the envelope of modulated water wave groups, as demonstrated by (Zakharov, 1968).
The same form has also been more recently shown to appear, e.g., in the propagation of the short optical pulse of
a FEL in the superradiant regime (Bonifacio et al., 1990, 1994; Giannessi et al., 2005) briefly discussed above, as
well as in the radial spreading of drift wave — zonal flow turbulence via soliton formation (Guo et al., 2009). The
complex nature of Eq. (4.212), however, is novel and connected with the unique role of wave-particle resonances,
which dominate the nonlinear dynamics of EPMs via resonant wave-particle power exchange. Maximization of such
power exchange yields two effects: (i) the mode radial localization, similar to the analogous mechanism discussed for
the linear EPM mode structure (Zonca and Chen, 2000, 2014c); and (ii) the strengthening of mode drive (ImXg > 0),
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connected with the steepening of pressure gradient, convectively propagating with the EPM wave packet. These two
effects are consistent with and clearly illustrated by the numerical simulation results of Fig. 3 (Zonca et al., 2005).

More generally, Eqgs. (4.201), (4.204) and (4.205) are of integro-differential nature and, thus, they describe processes
characterized by nonlocality in space and time connected with wave-particle resonant interactions. This case can be
appreciated from the structure of Eq. (4.201) and the operator 9; ?92. Assuming that Eq. (4.204) admits a self-similar
solution in the form A,o(¢), as in Eq. (4.208), and that the radial profile of Fy(w) can be described by a stretched
Gaussian distribution o exp [—|€ — &#], with some fractional p € (1,2), SWNEFA,o can be rewritten in terms of
fractional derivative operators (Zonca et al., 2006), 8527#|An0|27 with

s L0 [CWE)
85 v= T(p—1)0¢ /_OO (€—¢)2n g’ (4.220)

corresponding to the Weyl definition of fractional derivative [cf., e.g., (Metzler and Klafter, 2000)]. Its appearance in
the nonlinear evolution equation above, Eq. (4.204), reminds of fractional generalizations of the Ginzburg-Landau and
NLSE [(Milovanov and Rasmussen, 2005; Weitzner and Zaslavsky, 2003); reviewed in (Zelenyi and Milovanov, 2004)],
characterized by a competition between a weak nonlinearity and space-time nonlocal properties. Indeed, equations
built on fractional-derivative operators incorporate in a natural, unified way the key features of non-Gaussianity
and long-range dependence that often break down the restrictive assumptions of locality and lack of correlations
underlying the conventional statistical mechanical paradigm [cf. (Metzler and Klafter, 2004) for a review of this
subject]. It is worthwhile noting that, following Eq. (4.220) and (Zonca et al., 2006), when the free energy source
function in Eq. (4.201) is taken to be Gaussian; i.e., Fo(w) o< exp [—(€ = &)?], Eq. (4.204) can be reduced to the
canonical form of the Ginzburg-Landau equation (Lifshitz and Pitaevsky, 1980), which finds many applications other
than fusion plasma physics. Fractional time derivatives can also be introduced for the description of Eq. (4.205)
nonlocality in time (and correspondingly in space), which is intrinsically connected with ballistic resonant particle
transport but, more generally, may describe a wider class of behaviors as well. Doing so naturally yields fractional
Fokker-Planck equations and, thus, applications of general interest [cf., e.g., the recent work by (Gdérska et al., 2012)];
with their further extension to nonlinear problems [cf. Eq. (4.205)]. This shows the very special role of EPs in fusion
plasmas, which introduce a completely novel class of nonlinear behaviors due to the existence of the SAW continuous
spectrum, and the property of EPMs to lock onto the proper resonance for maximizing wave-particle power exchange
and particle transport (Chen, 2008; Chen and Zonca, 2007a; Zonca et al., 2006) due to phase locking.

7. The fishbone burst cycle

The observation of fishbone oscillations (McGuire et al., 1983), interpreted as bursts of internal kink modes reso-
nantly excited by EPs via precessional resonance (Chen et al., 1984; Coppi and Porcelli, 1986), is the first key experi-
mental evidence of the rich nonlinear dynamics involving the interaction of EPs with MHD and Alfvénic fluctuations.
Nonlinear fishbone dynamics is determined by both nonlinear wave-wave (MHD) and wave-particle interactions. How-
ever, the key role played by EPs was clear from the early experimental evidence that fluctuations are locked onto the
characteristic EP (precessional) frequency, while they are transported out preserving the resonance condition (White
et al., 1983). Thus, it is intuitive that, for sufficiently strong power input, fishbone dynamics should be dominated by
wave-particle nonlinear interactions.

Early analyses of the fishbone burst cycle relied on simplified predator-prey models (Chen et al., 1984; Coppi
et al., 1988b; Coppi and Porcelli, 1986); on which more detailed discussion is given below. Fishbone induced EP
transport studies and comparisons with experimental observations were, meanwhile, based on test-particle numerical
simulations (White et al., 1983) (cf. Secs. V and V.A). The first nonlinear numerical studies of fishbone excitation by
non-perturbative wave-EP interactions are reported by (Candy et al., 1999), assuming a linear MHD description and
mode structure given by a rigid (m,n) = (1,1) radial displacement. The nonlinear EP kinetic response is computed
numerically as contribution to the potential energy in a kinetic energy principle; i.e., Eq. (3.17) with a simplified
form of the inertia enhancement (Glasser et al., 1975). Their results reproduce the dynamics of a fishbone burst, with
downward frequency chirping and mode saturation at a level ~ 10 smaller than the dimensional estimate |§&,./rs| ~ 1;
with 0&, and rs being, respectively, the radial displacement and the ¢ = 1 radial position. They also estimate that, in
their case, the condition for neglecting MHD nonlinearity is marginally satisfied. The relative role of MHD and EP
nonlinearities can, however, be more precisely estimated on the basis of Eq. (3.17), by comparing AN? with 5W7€\{CL
due to EPs. In (Odblom et al., 2002), it is demonstrated that AN’ is predominantly determined by ZS (flows and
currents), generated self-consistently by the dominant (m,n) = (1,1) component of the fishbone fluctuation. The
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FIG. 6 (a) [from the original Fig. 9 in Ref. (Fu et al., 2006)]: Evolution of the fishbone frequency versus time. Frequency is
expressed in units of wao = va0/Ro and time in units of wy;. (b) [from the original Fig. 11 in Ref. (Fu et al., 2006)]: Evolution
of the resonant EP distribution function for v/vao = 0.8 and uBo/E = 1.

MHD model employed by (Odblom et al., 2002) ignores kinetic thermal ion and geometry effects and yields

e o 1El s
A O fwoE

(4.221)

where we have dropped the n = 1 subscript, 6&,¢ is the constant value of 6&,, A ~ rs(A/s)(yL/wo) is the inertial layer
width, s is the magnetic shear at the ¢ = 1 surface and A can be estimated at its typical linear value. Including inertia
enhancement, Eq. (4.221) still applies but a realistic estimate yields |A| ~ |s| (Zonca et al., 2007b). Meanwhile, the
estimate for §WNE can be obtained as (cf. Eq. (4.231) below and Sec. IV.D.5)

|0&,0[?

SWNE ~ W ——"—
g *r2(yn/wo)?

(4.222)
where TméW, ~ (Ro/7s)Ber, with Bg, being the Bg value of resonant EPs. Thus, noting Egs. (3.17), (4.221)
and (4.222), one can conclude that EP nonlinearities dominate the precessional fishbone for Sz, > |s|3(rs/Ro)|A| 7 .
However, for |A| ~ |s| and near marginal stability, both nonlinear effects must be kept on the same footing. Here, we
focus on strongly-driven fishbones, where wave-wave (MHD) nonlinearities can be neglected.

Comprehensive numerical fishbone simulations based on the hybrid MHD-gyrokinetic model (cf. Sec. IT) are more
recent (Fu et al., 2006; Vlad et al., 2012, 2013). Fishbone linear stability analyses based on the same approach are
reported by (Park et al., 1999). Meanwhile, the first nonlinear simulation of a fishbone burst cycle is given by (Fu
et al., 2006), where it is shown that mode saturation and frequency chirping are connected with the secular outward
motion of resonant EPs, as depicted in Fig. 6. More specifically, Fig. 6 shows both frequency variation in time and
the change in the resonant EP distribution function for v/v49 = 0.8 and uBy/E = 1 (cf. Sec. IL.D), with vao the
Alfvén speed on magnetic axis. The normalization of Py is such that P, = —0.42 corresponds to the plasma center
and Py = 0 to the plasma boundary. In these numerical simulations, MHD nonlinearities are found to reduce the
mode saturation level, but not drastically; showing that EP dominate nonlinear dynamics, consistent with Eq. (4.221)
and Eq. (4.222).

Further demonstration of the nonlinear physics underlying the fishbone burst cycle has been recently provided
for “electron fishbones” (e-fishbones) (Vlad et al., 2012, 2013), due to precessional resonance with supra-thermal
electrons (Ding et al., 2002; Wong et al., 2000; Zonca et al., 2007a). Their simulation results are consistent with
those by (Fu et al., 2006) and demonstrate that nonlinear mode saturation is accompanied by downward frequency
chirping. In addition, they illuminate and further clarify the nonlinear fishbone dynamics by means of the phase-space
numerical diagnostics introduced by (Briguglio, 2012; Briguglio and Wang, 2013). Readers can refer to (Vlad et al.,
2012, 2013) for further details. The convective resonant particle motion yielding mode saturation by radial decoupling
is demonstrated by a time sequence of kinetic Poincaré plots (White, 2012), which show EPs moving outward at
essentially constant wave-particle phase and the formation of a steeper gradient region that is also outward moving.
At the same time, a flatter region in the EP particle distribution is formed at smaller radii, which extends further
inward as more EPs are convectively pumped outward. Meanwhile, as resonant EPs are convected outward and their
wq decreases, the mode chirps downward as shown in Fig. 7(a), which illustrates the time evolution of wp and dwp.
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FIG. 7 [From the original Fig. 11 in Ref. (Vlad et al., 2013)]: (a) Time evolution of wp (red line) and wp + dwp (dashed red
lines), compared with the time evolving mode frequency from simulation results (black line). (b) Time evolution of © (black
line) and © + 6O (dashed black lines); ©|.—const, obtained neglecting frequency chirping is also shown (red line). (c) [from the
original Fig. 12 in Ref. (Vlad et al., 2013)]: Time evolution of 7 (black line) and of 7=+ 67 (red lines). The linear mode structure

is also shown by [(m/7)0dm,n| X [0&rm.n| in abscissa, vs. the normalized radial position on the vertical axis. The harmonic in
red refers to the dominant (m,n) = (1,1) component.

Here, wp is the average of wy of simulation particles weighted by the wave-particle power exchange in the linear

phase, and dwp is the corresponding spread from @p. One can, similarly, define © and 6O as well as 7 and r, shown,
respectively, in Fig. 7(b) and Fig. 7(c). In particular, Fig. 7(b) shows that frequency chirping is due to phase locking
(black line) and maximization of wave-particle power exchange; and that, with no frequency chirping accounted for,

®|w:wnst (red line) would yield rapid resonance detuning. Saturation of the fishbone burst, instead, is due to radial
decoupling, as illustrated in Fig. 7(c), showing the time evolution of 7 (black line) and 7 + §r (red lines), referred to
the linear mode structure (in arbitrary units) |(m/r)d@m n|  [0&r m.nl-

The above nonlinear fishbone simulation results may be understood within the theoretical framework introduced

in Sec. IV.D.5. Assuming deeply trapped EPs, as in Sec. IV.D.6, and considering a rigid plasma displacement?®, we
have
. 72 Ry (™13 T2 [ w+w(r) ‘ .
Wy, = 2—mQ2—= —dr | EJEAN d / Wt o Fo(w)dw | 4.223
=gy g | 2 o) i et QP (22)
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where, as in Eq. (4.200), w(7) = wo(7) + i7y(7) is the time evolving complex frequency. The evolution equation for
Fy(t), meanwhile, is also obtained from Eq. (4.194)

0 N Wd 0 T (7 — iw) — (@a — wo) (V/w0) _iun 8FO(W) 2 2
EFO(t) ~ StFy(t) + S(t) +2 (m) 3 K/w Gt — 20 1 (0 = iw)? e 5 lwo (T)[%|6&10] dwﬂ

(4.224)
Equation (4.224) is the analogue of Eq. (4.205), having maintained explicitly external source and collision terms as well
as the next order correction terms in the asymptotic expansion in «/wo. With 61}, given by Egs. (4.223) and (4.224),
the GFLDR Eq. (3.17) provides a description of the fishbone burst cycle dominated by EP nonlinearity (Zonca et al.,
2007b), reducing to the case investigated numerically by (Candy et al., 1999) if the core plasma response is described
by ideal MHD (Glasser et al., 1975). Due to the global nature of the fishbone mode structures, these equations
generally require a numerical solution, which is not given in the literature except that in the MHD limit considered
by (Candy et al., 1999). However, further analytic progress is possible if one introduces subsidiary approximations,
which help elucidating the nature of saturation process and EP transport due to fishbone bursts (Zonca et al., 2007b).
Let us, consistent with Fig. 7, assume that W, is predominantly provided by a localized radial region inside r;.
Using the formal decomposition §Wj, = 6WE+3W N as in Sec. IV.D.6, it can be readily verified that Red W), ~ RedW}r
at the leading order of the asymptotic expansion in 7 /wg. For radially localized EP response,

(@a —w(T) —w) P 2@yt (E - & —i(y —iw) /D), (4.225)

28 A fully self-consistent treatment must generally allow the mode structure to evolve due to non-perturbative redistributions of EPs.
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with @g(7) = g€ and wy = ©g€. Meanwhile, noting that 7, = 2rqRoE~/2(Ry/r)"/? for deeply trapped particles,
as well as ky oc —(ng/r), @2 x @3 o (ng/r)? and |w.p| > |w(7)|, we can write

- 1/2 1/2
Re6 W ~ ResW[ = _? 0 - (%) % (RLO) ﬁE(r;wo(T))] dr | (4.226)
where
~ o0 W — W it
Br(r;wo(r)) = B2m|Q| /Edé’d)\ Z wag/ @ _:}0;2 n (?Y)— iw)Qe iy (w)dw (4.227)

vy /loyl=+1

This definition assumes that modes have positive frequency when rotating in the EP diamagnetic direction; i.e., n = 1
for energetic ions and n = —1 for energetic electrons. The expression of BE depends only on the ratio wg/wqr, with
wqr being the characteristic EP precessional frequency. In the case considered in Sec. IV.D.6, it is the precessional
frequency at the injection energy of the EP beam. Thus, Eq. (3.17) yields

Wi +RedWF ~0 | (4.228)

and Eq. (4.226) shows that the fishbone frequency is set by the condition wy/@sr =~ const, to be computed at the
position of the radial shell where the most significant EP contribution is localized. Meanwhile, we can write?

1/2 1/2
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0
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where the resonant EP (g is defined as
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Substituting the formal solution of Eq. (4.224) into Eq. (4.229), it is possible to obtain

. 1/2
ﬁET‘ = 6;1 (ﬁErS - VewtﬁEr) + a (}i0> {zaa [ | 0| |5£7‘0|2 ((RLO) BET)] } . (4231)

Together with Eq. (4.229), this equation justifies the estimate for 6VV,£VL given in Eq. (4.222), which yields the optimal
ordering for the saturation amplitude as [0&0| ~ 7s|vL/wol, consistent with simulation results (Vlad et al., 2013).
Here, we have also introduced the effects of sources and collisions on the resonant EP population using the definitions

-
. _2 Q déd S — T 4.232
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B = 2 ToTped / gdgdr Y. m@l 7 StFo(t) (4.233)
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which explicitly separate these contributions as suggested by (White, 2010), in order to emphasize their different roles
in the dynamics of fishbone burst cycle on time scales longer than 7nz ~ 721 (cf. following discussion). Finally, the
system of Eqs. (4.226) to (4.233) is closed by the evolution equation for |6&,¢]; i.e.,

o  2(Ro/rs) e or (Ro\Y? 0 [/ r\'? ' re
a0 ot L ()5 () i ar— (Gpiaca)

(4.234)

29 Note that, here, we use a slightly different definition than in (Zonca et al., 2007b) in order to take into account the assumption of deeply
trapped EPs.
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Without sources and collisions, and assuming ¢ ~ const as well as wo/@qr ~ const, Eq. (4.231) describes the
propagation of (r/Rg)'/?Bg, as a function of (2 — 2r|wo||6&,0]); and, meanwhile, resonant EP compression propagates
with speed 7 ~ |wg|[0&,0], which is a function of r. This is the mechanism of mode particle pumping (White et al.,
1983) that yields mode saturation by ejection of resonant particles from the r = ry surface when the ejection rate
~ |wo||d&r0|/7s balances the growth rate ~ . Thus, as resonant EPs are convected outward and the mode growth
rate decreases, the downward frequency shift by phase locking can be computed by Eq. (4.216), with vy = |wo||d€r0l-
This picture is consistent with simulation results of Fig. 7 (c¢) and is, in essence, similar to that of nonlinear EPM
dynamics (cf. Sec. IV.D.6) with, however, different underlying mode structures. When EPs that most efficiently
provide mode drive are transported sufficiently outward that radial decoupling becomes important, they are gradually
replaced by lower energy particles, which resonate at smaller r value and continue driving the mode (White, 2000).
In this way, particles can be extracted from increasingly lower energies and inner regions of the plasma core and be
pumped outward, far beyond the 7, surface and up to the plasma boundary (White et al., 1983). Proceeding further
in the v/wy asymptotic expansion, the frequency sweeping rate can be determined with a better precision than based
on the simple expression wg/wqp ~ const.

Equations (4.231) with sources and collisions and (4.234) can be used to derive reduced nonlinear models for the
fishbone burst cycle. Without nonlinear term, Eq. (4.231) gives the asymptotic solution S8g, = Sgro0 = ﬁ ErS/Vext. For
strongly driven fishbones, we may consider Sg,¢ significantly larger than the threshold condition Bg, = (., around
which Sg; is linearly increasing in time due to BErs. Formally acting with 9; on Eq. (4.231), estimating 92 ~ —1/r2,
and considering the remaining 9; ' ~ 7y, ~ rs/(|wo||0&0), Eqs. (4.231) and (4.234) can be modeled as

dﬁ/dT:S_ABC )
dA/dr =0 (B/B. —1) A , (4.235)

where we have dropped the subscript in Sg, and used notations by (White, 1989), 7 is a normalized time, A = [6&,0|/7s
is the normalized fishbone amplitude and 7 is a measure of the linear growth rate. Equations (4.235) [cf. problem #
3 on p. 280 of (White, 1989)], is the same as that originally proposed by (Chen et al., 1984)3°. As noted by (Chen
et al., 1984; White, 1989), the solution of Eqs. (4.235) is cyclic; 4.e., it can be generally written as F'(A, 3) = const,
where F'(A, 5) has a maximum at the fixed point position 8 = ., A = S/B.. A crucial feature of Eqgs. (4.235) is the
linear dependence on A of the loss term in the § evolution equation. From Eq. (4.231), this is readily recognized to
be a consequence of the 9, 2 operator acting on the nonlinear response, which is the manifestation of secular resonant
EP losses by mode particle pumping (White et al., 1983). This term constitutes the fundamental difference of the
(Chen et al., 1984) approach with respect to the predator-prey model discussed by (Coppi et al., 1988b; Coppi and
Porcelli, 1986), which adopts a loss term oc A%

In the form of Eqs. (4.235), the temporal nonlocality built in Eq. (4.231) and, more generally, in Eq. (4.224) is lost.
However, it has been recently proposed, in the context of predator-prey modeling of TAE bursting behavior (Heidbrink
et al., 1993a), that nonlocal time behavior may be accounted for by introducing a time delay in the wave-particle
power exchange and in the phase-space island induced particle diffusion (Parker and White, 2010). Another worthwhile
remark concerns the role of the collision term o< —ve,+8p, in Eq. (4.231). By definition, v, reduces to the well-known
(linear) effective collision frequency only in the weakly nonlinear case. For sufficiently strong nonlinear distortions,
Vet May even change sign and, therefore, modify the nonlinear behavior of the dynamic system of Eqgs. (4.235) with a
formal substitution S — S+ v — vf, as hinted at in (Zonca et al., 2007b), while the loss term may become ~ —Af3
for large fluctuations. Both the time delay and the nonlinear v.,; models, however, have not yet been fully explored.

Much richer physics is expected to become increasingly more relevant as plasma conditions approach marginal
stability; e.g., MHD nonlinearities cannot be neglected (Odblom et al., 2002). Correspondingly, more theory and
simulation studies are needed to fully understand and explain the diverse experimental evidence recently reported
and summarized by (Guimaraes-Filho et al., 2012) for the specific case of electron fishbones. In general, the present
understanding of wave-particle and wave-wave nonlinear effects call for a comprehensive treatment addressing these
physics on the same footing, while accounting for kinetic core plasma response in realistic toroidal geometry.

E. Further remarks on general theoretical issues and broader implications

By construction, Eq. (4.3) is inapplicable to investigations of broad band plasma turbulence. However, it has
been used successfully to investigate nonlinear processes in DW'T, where time scale separation may be systematically

30 Note that (Chen et al., 1984) assume that the nonlinear term in the 3 evolution equation is multiplied by the Heaviside function
H(B — Bmin); t-e., it is considered effective only if 8 is above a minimum B, value, considered to be that reached as consequence of
the secular expulsion of EPs from within the r = rs magnetic surface.
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applied. Examples are the excitation of ZS by coherent wave-wave interactions (Chen et al., 2000, 2001; Guzdar
et al., 2001a), turbulence spreading (Hahm et al., 2004; Lin et al., 2002; Lin and Hahm, 2004) enhanced by DW-zonal
flow interaction (Chen et al., 2004; Guo et al., 2009; White et al., 2005; Zonca et al., 2004b); and saturation of
electron temperature gradient driven turbulence due to inverse cascade via scatterings off driven low mode-number
quasi-modes (Chen et al., 2005; Lin et al., 2005). Equation (4.3) can also be used for addressing spatiotemporal
cross-scale couplings between DAWs and EP dynamics; and DWT and turbulent transport (cf. Sec. VI.B). Thus,
the formal separation of nonlinear interaction with ZS on the right hand side of Eq. (4.3) captures two different
processes, i.e., the coherent nonlinear interaction with the ZS generated by the fluctuation itself (self-interaction)
and the incoherent interaction with ZS generated by other fluctuating fields, including DWT (Zonca et al., 2015a).
Assuming, for illustration, non-dispersive waves along with local nonlinear interactions in n-space, the form of Eq. (4.3)
becomes that of a discrete Anderson NLSE with randomness, e.g., (Iomin, 2010; Krivolapov et al., 2010; Pikovsky
and Shepelyansky, 2008; Shepelyansky, 1993)

o N

where H, is the Hamiltonian of the linear problem, accounting for the random transitions between nearest-neighbor
states (Anderson, 1958). An important feature, which arises in the analysis of Eq. (4.236) as well as Eq. (4.3), is
competition between nonlinearity and randomness. It has been argued that, when the nonlinearity parameter ( is
sufficiently small, the random properties play the dominant role through the dynamics, e.g., (Krivolapov et al., 2010;
Wang and Zhang, 2009), thus sustaining the phenomena of Anderson localization as in the linear case (Anderson,
1958). That means that the diffusion is suppressed and an initially localized wave packet will not spread to infinity.
Despite this evidence, direct numerical simulations show that the phenomena of Anderson localization are destroyed
above a certain critical strength of repulsive (¢ > 0) nonlinearity (Flach et al., 2009; Pikovsky and Shepelyansky,
2008), and an unlimited subdiffusive spreading of the wave field across the lattice occurs. This can be explained
noting that the loss of Anderson localization in the presence of nonlinearity is a critical phenomenon (Milovanov and
Tomin, 2012); and that the delocalization occurs spontaneously above a threshold value of ¢, similarly to the percolation
transition in random lattices. Meanwhile, soliton solutions of Eq. (4.236) are typically found for attractive nonlinearity
(¢ < 0) (Zelenyi and Milovanov, 2004). Similarities with DWT spreading due to coherent DW-ZS interaction, again,
become evident; considering that the zonal flow self-interaction term is attractive (Chen et al., 2004) and, therefore,
that turbulence spreading may occur via soliton structure formation (Guo et al., 2009).

The theoretical analysis of Sec. IV.D.2, meanwhile, suggests a clear connection between AE nonlinear dynamics near
marginal stability and autoresonance in driven 1D Vlasov-Poisson systems. Autoresonance (Meerson and Friedland,
1990) is the phenomenon of a nonlinear pendulum that can be driven to large amplitude, which evolves in time to
instantaneously match the nonlinear frequency to that of an external drive with sufficiently slow downward frequency
sweeping. This phenomenon is common in many fields of physics and “was first observed in particle accelerators,
and has since been noted in atomic physics, fluid dynamics, plasmas, nonlinear waves, and planetary dynamics”
(Fajans and Friedland, 2001). In fusion plasmas, the idea of autoresonance and resonant particle transport in buckets
was proposed by (Mynick and Pomphrey, 1994) for removing helium ash from the plasma core and other possible
applications, such as burn control, profile control and diagnostic tool. The same notion has clear analogies to the idea
of affecting the direct coupling of fusion alpha particle power, known as “alpha channeling” (Fisch and Rax, 1992) (cf.
Sec. VI). Autoresonance is a process with a critical threshold in the amplitude of the external drive, which scales as
~ &3/* and was observed in experiments with trapped electron clouds (Fajans et al., 1999). Electron phase space holes
were formed and controlled in a plasma by adiabatic nonlinear phase locking (autoresonance) with a chirped frequency
driving wave via Cherenkov-type resonance (Friedland et al., 2006), for which a kinetic theory interpretation was given
by (Khain and Friedland, 2007). As noted by (Friedland et al., 2006), one important difference emerges when BGK
structures (Bernstein et al., 1957) are formed by instabilities, as they are poorly controllable. As long as the effect of
EP transport on the plasma dielectric response can be considered small (cf. Sec. IV.D.1 and IV.D.2), the connection
between autoresonance and the hole-clump nonlinear dynamics in the 1D beam-plasma problem with sources and
sinks (Berk et al., 1999, 1997b) is preserved. In the former case, the frequency sweeping is imposed by the external
drive; in the latter one, chirping is set by balancing the rate of energy extraction of hole-clump dynamics in phase space
with dissipation. However, when EP response is non-perturbative, resonant particle radial motion is secular as long
as phase locking is maintained and frequency chirping is nonadiabatic, as discussed in Sec. IV.D.5 and, respectively,
in Sec. IV.D.6 for EPMs and Sec. IV.D.7 for fishbones. The secular EP loss, predicted theoretically (White et al.,
1983) and observed experimentally (Duong et al., 1993), may also be considered an autoresonant effect, spontaneously
driven by EP transport for sufficiently strong drive. In between these two limiting behaviors, there is a transition
where the role of equilibrium geometry and plasma nonuniformity becomes increasingly more important for increasing
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mode drive (Briguglio et al., 2014; Wang et al., 2012; Zhang et al., 2012). These physics, embedded in Eq. (4.3)
by the integro-differential nature of nonlinear terms and, more specifically, by the renormalized solution for the
EP distribution function, Eqgs. (4.192) and (4.194) (Dyson equation), suggest a number of possible model NLSEs,

possibly with fractional partial derivatives, to be used for the description of multi spatiotemporal scale dynamics (cf.
Secs. IV.D.6 and IV.D.7).

V. ENERGETIC PARTICLE TRANSPORT IN FUSION PLASMAS

One fundamental issue in studies of collective mode excitation by EPs in burning plasmas is to assess whether
significant degradation in the plasma performance could occur due to SAW fluctuations and what level of wall loading
and damaging of plasma facing materials can be caused by energy and momentum fluxes due to collective fast
particle losses. Losses up to 70% of the entire EP population have both been predicted theoretically and found
experimentally (Duong et al., 1993; Heidbrink and Sadler, 1994; Strait et al., 1993).

The simplest prediction of fusion alpha density profiles in ITER is based on marginal stability arguments. This was
proposed by (Angioni et al., 2009), based on the assumption that fusion alpha transport from short wavelength DWT
is “stiff”; i.e., the profiles are maintained close to marginal stability, to be computed by realistic linear gyrokinetic
simulations. This work was recently extended by (Waltz and Bass, 2014) to include marginal stability transport due
to long wavelength AEs. In the light of results discussed in the present review, these predictions can only capture
the averaged alpha density profiles on sufficiently long spatiotemporal scales; while more detailed investigations are
needed to predict fluctuations about averaged profiles of EP density, temperature, etc.; and to describe nonlinear
dynamics of corresponding transport events (Chen and Zonca, 2007a, 2013; Zonca et al., 2015a) [cf. also the recent
reviews by (Gorelenkov et al., 2014; Pinches et al., 2015)].

The standard approach to modeling EP losses due to a given spectrum of SAW fluctuations (AEs and EPMs)
is based on test-particle transport studies. These are expected to well represent the actual transport phenomena
provided that transport processes themselves do not significantly modify the fluctuation spectrum. It, thus, cannot
describe the transition to secular transport phenomena, where the interplay of nonlinear mode dynamics and transport
processes themselves is intrinsically nonperturbative, as in the case of EPM avalanches, discussed in Sec. IV.D.6 (cf.
also Sec. VILA). One important “exception” is the case of fishbones, where nonlinear transport processes do not
significantly modify the MHD mode structure®', but predominantly causes the mode frequency to rapidly chirp
downward (cf. Secs. IV.D.7 and V.B). In this case test particle transport studies give good agreement between
simulation results and experimental measurements of EP redistributions even assuming that the mode frequency is
fixed. This is because the particle excursion in the radial coordinate is comparable to the machine size, due to the weak
radial dependence of the precessional frequency (White et al., 1983). Thus, accounting for the observed frequency
sweeping is not crucial for EPs to be pumped out of the system. In many cases of practical interest, however, test-
particle transport improves accuracy in comparisons of simulation results against experimental observations when the
measured frequency sweeping is accounted for [cf. e.g.(Fredrickson et al., 2009) as well as (Perez von Thun et al.,
2011, 2012)]. This important point was noted in the early test-particle simulations of EPs by fast frequency chirping
modes (White, 2000).

A. Supra-thermal test particle transport

Test particle loss mechanism is essentially of two types (Hsu and Sigmar, 1992; Sigmar et al., 1992): (1) transient
losses, which scale linearly (=~ 6B, /B) with the mode amplitude, due to resonant drift motion across the orbit-loss
boundaries in the EP phase space; (2) diffusive losses, which scale as ~ (6B,./B)?, due to EP stochastic diffusion and
eventually transport across the orbit-loss boundaries. Both mechanisms have been observed experimentally [cf. e.g.,
(Garcia-Munoz et al., 2011)], as the result of accurate diagnostics for measurement of internal EP redistributions,
the fast-ion D-alpha (FIDA) spectroscopy (Heidbrink et al., 2004); and global losses by scintillator based fast-ion loss
detectors (FILDs) (Garcia-Munoz et al., 2009). Due to the large system size, mainly stochastic losses are expected to
play a significant role in ITER, while the dominant loss mechanism below stochastic threshold is expected to be that
of scattering of barely counter-passing particles into unconfined “fat” banana orbits (Hsu and Sigmar, 1992; Sigmar

31 The linear fishbone mode structure may instead be importantly modified in the case of high frequency fishbones (Nabais et al., 2005;
Zonca et al., 2007a, 2009) as discussed by (Kolesnichenko et al., 2010a).
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et al., 1992)32. After the first work on fishbone induced EP losses (White et al., 1983), numerical simulations of test
particle transport have been successfully adopted for investigating alpha particle redistributions by MHD activity in
TFTR (Zweben et al., 1999), beam ion transport during tearing modes in the DIII-D tokamak (Carolipio et al., 2002),
EP confinement in the presence of stochastic magnetic fields in the MST reversed field pinch (Fiksel et al., 2005) and,
more recently, to model neoclassical tearing mode induced EP losses in ASDEX Upgrade (Garcia-Murtioz et al., 2007).

Supra-thermal particle transport by AEs has been addressed in many works (Appel et al., 1995; Candy et al., 1999;
Carolipio et al., 2001; Pinches et al., 2006; Sigmar et al., 1992; Todo et al., 2003; Todo and Sato, 1998), all yielding
the similar conclusion that appreciable losses (above the stochastic threshold) require mode amplitudes in the order of
§B,/B ~ 1073, when single-n (toroidal mode number) modes are considered. An actual quantitative estimate of the
stochastic threshold in the multiple-n modes case depends on the specific features of the system being considered (see
following discussion), although it has been shown that the multiple-mode stochastic threshold may be greatly reduced
[(6B,/B)< 1074 with respect to the single-n mode case (Hsu and Sigmar, 1992; Sigmar et al., 1992). The critical
aspects connected with the stochastic threshold for EP transport have been discussed in a pair of recent works (White
et al., 2010a,b), which analyzed in detail the modification of deuterium beam distribution in DIII-D plasmas due to
the interaction with AEs (TAE and RSAE). The main finding of test particle transport analyses is that observed
fluctuation levels are slightly above the stochastic threshold of the system, making simulation very sensitive not only
to mode amplitudes but also to other small effects: e.g., omitting the scalar potential fluctuations component of the
magnetic perturbations while retaining all other relevant features in the modeling “leads to beam transport more than
an order of magnitude too small to explain the observed profile flattening”. Near the onset of local stochasticity in
the particle phase-space (Chirikov, 1979; Lichtenberg and Lieberman, 1983, 2010), transport events due to resonance
overlap of different-n AEs (Berk et al., 1996a, 1995a; Breizman et al., 1993) (avalanches) may exhibit characteristic
aspects of sandpile physics and have been observed in numerical simulations of ITER plasmas (Candy et al., 1997);
showing negligible a-particle transport due to weakly damped core-localized modes, and of TAE mode bursting in
a TFTR-like plasma during NBI (Candy et al., 1999). These issues are closely connected with the crucial roles
played by equilibrium geometry and plasma nonuniformity in the nonlinear EP phase space dynamics and the onset
of stochasticity.

Multi-mode hybrid MHD gyrokinetic simulations have also been used to analyze central flattening of the EP profile
in reversed-shear DIII-D discharges, assuming an initial EP profile computed from classical NBI deposition (Vlad
et al., 2009). Simulation results show a good agreement of the relaxed EP profile due to fast growingn =1 and n = 2
EPMs with experiments measured with the FIDA diagnostics. Furthermore, in the EPM saturated phase, EPMs are
transformed to weak RSAE modes, also in good agreement with experimental measurements both in frequency and
radial localization. After the initial nonlinear evolution, simulations results for EP redistributions are, remarkably,
consistent with those obtained by test particle transport (White et al., 2010a,b). This suggests that, with an adequate
modeling of the EP source, nonlinear gyrokinetic or equivalent numerical simulations (cf. Sec. IT) have the capability of
analyzing EP transport in the presence of multiple AEs, and the results may be comparable to test particle transport
calculations, if particle redistributions and nonlinear mode dynamics are not strongly interlinked.

B. Self-consistent non-perturbative energetic particle transport

When the interplay of nonlinear mode dynamics and EP transport processes is intrinsically nonperturbative (cf.
Secs. IV.D and VI.A), test particle transport simulations may not reflect the underlying physics of EP redistribu-
tions. The first evidence of secular EP transport by EPM is given by (Briguglio et al., 1998), showing that mode
saturation occurs when the finite radial mode structure characteristic scale is comparable to the fluctuation induced
EP displacement (cf. Sec. IV.D.5).

Hybrid MHD gyrokinetic simulations have confirmed the fact that rapid EP transport is expected when the system
is significantly above marginal stability and that fast radial particle redistributions lead to fishbone mode saturation
and downward frequency chirping (Fu et al., 2006; Vlad et al., 2012). Simulation results also indicate that fluid
nonlinearities do not qualitatively alter the dynamics of the fishbone burst cycle and EP transport (Fu et al., 2006).

Dramatic transport events, such as those observed in fishbones and EPMs, occur on time scales of a few inverse
linear growth rates (generally, 100 + 200 Alfvén times) and have a ballistic character (White et al., 1983) that
differentiates them from the diffusive multiple-n AE induced transport. Experimental observations in the JT-60U

32 This same mechanism has been experimentally shown to be the dominant EP loss mechanism due to RSAE (Pace et al., 2011) and
EGAM (Kramer et al., 2011) in some recent DIII-D experiments.
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tokamak have also confirmed macroscopic and rapid EP radial redistributions in connection with the so-called abrupt
large amplitude events (ALE) (Shinohara et al., 2001). Numerical simulations of an n = 1 EPM burst (Briguglio
et al., 2007) show that radial profiles of EPs, computed before and after the EPM induced particle redistributions,
agree qualitatively and quantitatively with experimental measurements (Shinohara et al., 2004). Good agreement is
also obtained on the burst duration. The EP transport, meanwhile, also explains the saturation of the ALE burst.
These simulation results have been recently confirmed by further numerical studies of ALE nonlinear dynamics, with
detailed investigations of the importance of equilibrium geometry (Bierwage et al., 2011) and plasma compressibility
effects (Bierwage et al., 2012). Hybrid MHD gyrokinetic simulations of single-n modes were also used to compare
linear and nonlinear dynamics of Alfvénic oscillations in ITER burning plasmas scenarios (Gorelenkov et al., 2003;
Vlad et al., 2006).

In experimental conditions of practical interest, AE and EPM may coexist and be interlinked by nonlinear transport
processes. This is, e.g., the case of slow upward sweeping ACs observed in JET together with repeated rapid down-
sweeping modes (Pinches et al., 2004a). This observation, as suggested by hybrid MHD gyrokinetic simulations of JET
experimental conditions (Zonca et al., 2002), may be explained in terms of early resonant excitation of a EPM within
the g-minimum surface and followed later, due to nonlinear dynamic evolution of the fluctuations, by the formation of a
cascade mode at the g-minimum surface. Similar coexistence of TAE and EPM are the plausible interpretation of “TAE
avalanches” in NSTX (Fredrickson et al., 2009, 2013; Podesta et al., 2011, 2009), where the activity of quasi-periodic
TAE fluctuations with limited frequency chirping is followed by the so called “TAE avalanche”. Such phenomenon
causes EP losses of up to ~ 30% over 1ms and manifests itself as a larger burst amplitude with nonadiabatic frequency
sweeping. Test particle transport simulations show reasonable agreement of predicted particle losses with experimental
observations, whose features are consistent with the onset of stochastic diffusion discussed by (Berk et al., 1996a,
1995a). On the other hand, the evidence of nonadiabatic frequency chirping suggests that resonance overlap may
enhance the free energy source in the first phase of quasi-periodic TAE fluctuations with limited frequency chirping.
Once the EPM excitation threshold is exceeded3, EPMs, characterized by nonadiabatic frequency sweeping and rapid
secular particle redistributions as discussed in Sec. IV.D.5, may then be triggered. Further indications of interesting
nonlinear interplay between mode structures and EP transport in the case of “TAE avalanches” (Fredrickson et al.,
2009) come from the experimental growth rates, ~ 1071 (wp/27) (Podesta et al., 2011), that are typically larger than
those computed from linear stability analyses, ~ 1072(wp/27), and from the mode structures that are not always the
same as those reconstructed from reflectometry measurements (Podesta et al., 2009). More recent analyses of these
phenomena are given by (Fredrickson et al., 2013).

The synergy between AE and MHD activity, notably sawteeth, is also connected with nonperturbative redistribu-
tions of EPs. In the case of DIII-D, e.g., the use of high harmonic ICRH generates an EP population that transiently
stabilizes the sawtooth instability but destabilizes TAEs (Heidbrink et al., 1999). In the further evolution of the
plasma discharge, saturation of the central heating correlates with the onset of the TAEs, while sawtooth crash is
eventually caused by the continued expansion of the ¢ = 1 surface radius. Similar observations are made in TFTR
plasmas (Bernabei et al., 2000, 2001), where the eventual crash of long-period sawteeth is explained in terms of the
loss of the stabilizing effect of EPs that are transported outward by EPM from within the ¢ = 1 surface. An effect
similar to that of EPM on sawteeth can also be induced by TAEs when, with high values of the safety factor at the
plasma boundary, their mode structures are shifted deeper into the plasma core, where they can cause sufficient EP
redistributions to affect sawtooth stabilization. Meanwhile, in some TFTR discharges, it has been demonstrated that
the loss of ICRH efficiency may be due to the combined effect of EPM and TAE, which eventually redistribute EPs
in a broader region of the plasma volume and may even cause global particle losses (Bernabei et al., 1999). More
recent analyses of the impact of strongly driven fishbones and AEs on EP losses in JET is given by (Nabais et al.,
2010), while comparisons of numerical simulations and fast ion loss detector measurements for fishbones are discussed
by (Perez von Thun et al., 2011, 2012).

C. Transport of energetic particles by microscopic turbulence

The problem of EP transport by microscopic turbulence was addressed in the early work by (Belikov et al., 1976),
discussing the energy spectrum of a-particles escaping from a plasma as a result of turbulent diffusion. A later and

33 Note that, for sufficiently strong mode drive, of the order of the real frequency shift from the continuous spectrum accumulation point,
there is no clear distinction between AE and EPM, as discussed in Sec. II1.C, and EPMs could easily exist inside the SAW frequency
gap. In addition, in typical NSTX experimental conditions, equilibrium mean flow shear is strong enough to significantly alter the SAW
continuous spectrum and generally cause strong coupling of TAEs with the SAW continuous spectrum and, thereby, with EPMs (Podesta,
2012).
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more systematic theoretical description of the fusion a-particles confinement in tokamaks was provided by (White and
Mynick, 1989), demonstrating that supra-thermal particle confinement is much less deteriorated by microturbulence
than that of thermal plasma, due to orbit averaging and wave-particle decorrelation effects. This picture was also
confirmed by numerical simulations of test-particle transport in strong electrostatic drift wave turbulence (Manfredi
and Dendy, 1996) and, more recently, by numerical simulation of turbulent transport of a slowing down distribution
of supra-thermal particles with high birth energy compared to the thermal plasma energy (Angioni and Peeters,
2008; Angioni et al., 2009; Zhang et al., 2008). Experimental observations confirmed these general expectations and
quantitatively estimated the turbulent diffusivity of EPs to be one order of magnitude less than that of thermal ions
for particle energies E/T.2 10 (Heidbrink and Sadler, 1994; Zweben et al., 2000), T, standing for the core plasma
thermal energy. Significant interest in this topic was revived more recently by experimental observations in plasmas
with NBI, showing evidence of anomalies in EP transport in AUG (Giinter et al., 2007), JT-60U (Suzuki et al.,
2008) and DIII-D (Heidbrink et al., 2009a,b), which might have raised concerns about the negative NBI efficiency
in ITER. These observations were connected with theoretical (Vlad and Spineanu, 2005) and numerical simulation
analyses (Albergante et al., 2009; Angioni et al., 2009; Estrada-Mila et al., 2005, 2006), supporting that a significant
level of EP transport could be driven by microturbulence. This discrepancy between experimental measurements and
neo-classical predictions of cross-field diffusion of EPs was clarified by (Heidbrink et al., 2009a,b), looking at DIII-D
plasmas, where EP diffusivity was dominated by Ton Temperature Gradient (ITG) driven turbulence, and showing that
anomalies were more pronounced at low E/T,., where the effect of microturbulence is strongest. Numerical simulation
results (Zhang et al., 2010) have demonstrated that EP diffusivities are consistent with quasi-linear predictions (Chen,
1999), confirming the conclusions of original theoretical and numerical works. Thus, EP transport by microturbulence
in reactor relevant conditions and above the critical energy (at which plasma ions and electrons are heated at equal
rates by EPs) is negligible and EP turbulent diffusivities have intrinsic interest mostly in present day experiments
with low characteristic values of E/T.. The potential problem of EP transport due to magnetic fluctuations in
ITER (Hauff et al., 2009), as also reported in the recent review by (Breizman and Sharapov, 2011), is, therefore,
resolved by these findings (Heidbrink et al., 2009a,b; Zhang et al., 2010), and is further confirmed in dedicated
numerical simulations (Albergante et al., 2012, 2011, 2010) as well as experimental studies in DIII-D, supported
by numerical and analytic modeling (Pace et al., 2013). The main possible concern remains the increased supra-
thermal particle diffusivities that may be expected in DEMO, due to the significantly larger operation temperature
and consequently lower value of E/T, (Albergante et al., 2012).

VI. CONCLUDING REMARKS AND OUTLOOKS

The present work has addressed a wide range of linear and nonlinear physics issues related with SAWs and EPs in
burning plasmas; without, however, the intention of being comprehensive.

Among the physics issues addressed in this work, the theoretical formulation of the GFLDR provides a unified
framework for linear as well as nonlinear physics studies and may serve as a useful interpretative tool for numerical
simulation results and experimental observations. Linear stability problems essentially require the use of already
available comprehensive gyrokinetic (or equivalent) codes along with careful modeling of realistic plasma equilibria
and physical boundary conditions. The many benchmarking activities in progress worldwide give confidence that
such predictions on linear physics will be available in the near future. As to nonlinear physics, we have shown
that the governing equation for the fluctuation radial envelope has the theoretical structure of a NLSE with integro-
differential nonlinear terms. In simplified examples, this equation is shown to yield convective amplification of radially
outward moving EPM wave packets, accompanied by secular displacement of resonant EPs; as well as fishbone
burst cycle. Comparisons between reduced nonlinear theoretical models, numerical simulations, and experimental
observations in present toroidal devices have already started providing new insights into the fundamental issues
underlying these processes. Current theoretical understandings of nonlinear physics have, in particular, indicated the
crucial importance of equilibrium geometry, plasma nonuniformities, radial mode structures, and kinetic processes.
Simplified descriptions, based on the analogy of the resonant excitation of SAWs by EPs with the 1D bump-on-tail
problem, are capable of capturing some of the important nonlinear dynamics near marginal stability; but, however, do
not address the important roles of radial mode structures and plasma nonuniformities. Nonlinear physics, therefore,
would require substantially more significant effort to reach the level of maturity for reliable predictions of Alfvénic
fluctuation and related transport in reactor relevant conditions. The rapid development of impressive diagnostics
systems and numerical simulation capabilities renders it feasible that one can expect rapid advance in this important
area.

The intended scope of the present review has left out several important topics. For example, high frequency
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fluctuations (|w|2 ;) have been neglected, although there are evidences of fusion alpha particle driven ion cyclotron
emission [see, e.g., (Cauffman et al., 1995)], interpreted as resonantly excited Compressional Alfvén Eigenmodes
(CAE) (Belikov et al., 1995; Fiilép et al., 1997; Gorelenkov and Cheng, 1995a,b). The CAE phenomenology has been
widely studied in NSTX (Fredrickson et al., 2002, 2004). Another important aspect, involving the interaction of EPs
with waves in the high Radio Frequency (RF) range, is the so-called “alpha channeling” (Fisch, 2006, 2010, 2012;
Fisch and Rax, 1992); i.e., “the diversion of energy from energetic alpha particles to waves” (Fisch, 2000), as “attempt
at detailed control over plasma behavior” to facilitate the development of an economical fusion reactor. The use of
bucket transport in fusion plasmas for removing helium ash from the plasma core as well as burn control, profile control
and diagnostic tool was proposed by (Mynick and Pomphrey, 1994) (cf. Sec. IV.E). Recently, (Kolesnichenko et al.,
2010b,c) have pointed out that DAW may channel the energy and momentum of EPs to different spatial regions, where
waves are absorbed. In this way, EP driven instabilities may not only affect the EP radial profiles, but alter thermal
plasma transport as well; notably, the electron heat transport across the equilibrium magnetic field and the plasma
rotation profile, consistent with observations in NSTX (Stutman et al., 2009) and W7-AS (Kolesnichenko et al., 2005).
Furthermore, it is worthwhile mentioning that (Wong et al., 2005) have shown the possibility of producing an internal
transport barrier, induced by radial redistribution of EPs due to Alfvénic instabilities. Finally, this review has not
addressed important issues related to the intrinsic 3D nature of all real systems, including “axisymmetric” toroidal
devices. For issues, such as toroidal field ripple induced transport (Goldston and Towner, 1981; Goldston et al., 1981),
which arise from the breaking of axisymmetry in 2D toroidal system, we refer readers to the comprehensive ITER
summaries (Fasoli et al., 2007; ITER Physics Expert Group on Energetic Particles, Heating and Current Drive, ITER
Physics Basis Editors, 1999) and the more recent reviews by (Gorelenkov et al., 2014; Pinches et al., 2015). Here, we
emphasize that AEs may cause global EP losses through induced ripple trapping, as discussed by (White et al., 1995).
For the similarities and differences between tokamaks and stellarators, the most recent and comprehensive reviews
are given by (Kolesnichenko et al., 2011; Toi et al., 2011).

Looking beyond, we note that there are two issues, which have received increasing attention within the fusion
community. One deals with EP transport in the presence of many modes; as expected in ITER. The other deals with
the investigation of burning fusion plasmas as complex systems, with many interacting degrees of freedom, where the
long time scale behavior will ultimately determine the reactor performance. These two interlinked issues are further
articulated in the following two subsections, which then conclude the present review.

A. Energetic particle transport in the presence of many modes

Collective oscillations excited by EPs in burning plasmas are characterized by a dense spectrum of modes with
characteristic frequencies and spatial locations (Chen, 2008; Chen and Zonca, 2007a). One crucial issue, as noted at
the beginning Sec. V, remains the realistic prediction of global transport of EPs/fusion products and their impact on
the system material walls. While quasilinear theory is suited for explaining EP transport by plasma turbulence (cf.
Sec. V), it was argued that the onset of phase-space stochasticity may be described by a “line-broadened” quasilinear
model (Berk et al., 1995a), accounting for a discrete spectrum of overlapping modes in the case of multiple AE (Berk
et al., 1996a) and which has been recently extended and applied to the analysis of beams interacting with AE in
DIII-D (Ghantous et al., 2012). A detailed discussion of model assumptions and validity limits is given by (Ghantous
et al., 2014). The actual transition to stochastic behavior in realistic systems, however, depends on the details of
plasma nonuniformities and equilibrium geometries via resonance conditions and finite mode structures (cf. Sec. V), as
recently shown by (White et al., 2010a,b). For this reason, the only presently viable modeling of EP losses by multiple
AE are test particle transport or more sophisticated nonlinear simulations with gyrokinetic or equivalent codes (cf.
Sec. IT). Simulations along these lines, using linear fluctuation spectra and mode structures, have been carried out
for ASDEX Upgrade (Schneller et al., 2013); and are being pursued for ITER (Lauber, 2015; Schneller, 2015) (cf.
Sec. IV.D.4). Other reduced nonlinear dynamic descriptions are possible, as discussed in Secs. IV.A and IV.D.5, which
may offer a useful tool for gaining deeper insights into the underlying physics.

The DAW spectrum in present day experiments is, in general, significantly different from that expected of burning
plasmas (much lower mode numbers, corresponding to much larger relative EP orbits compared with machine size).
The same holds for the associated kinetic processes and cross-scale couplings yielding to complex behavior, which will
be further discussed in Sec. VI.B. Nonetheless, some aspects of complex behavior may still be addressed in existing
machines, providing precious feedbacks for theory and modeling. One example is the analysis of EP transport during
“TAE avalanches” in NSTX, where multiple modes are excited and the resultant EP redistributions are so far not
completely understood (cf. Sec. V). Nonlinear simulation tools may be needed to yield more reliable interpretations
of these observations (Fredrickson et al., 2009, 2013).
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B. Complex behavior in burning plasmas

A burning plasma is a complex self-organized system, where among the crucial processes to understand there are
(turbulent) transport and fast ion/fusion product induced collective effects (Zonca et al., 2006). Complexity and
self-organization are intrinsic to the very nature of burning plasmas, where the self-sustainment of fusion reactions
for efficient power production requires that stationary conditions are achieved when, in D-T plasmas, (almost) the
whole power density balance to compensate losses is provided by heating from fusion alphas. Meanwhile, fast ions in
the same (MeV) energy range, produced mainly by ICRH and Negative NBI (NNBI), will be used to heat and fuel
the thermal plasma, provide rotation and drive current. Together with fusion produced alphas, these fast ions are a
potential free energy source for driving collective plasma oscillations, which may induce or enhance transport processes.
Complexity and self-organization are consequence of the interaction of EPs with plasma instabilities and turbulence;
of the strong nonlinear coupling mediated by the EP population that will take place between fusion reactivity profiles,
pressure driven currents, MHD stability, transport and plasma boundary interactions; and, finally, of the long time
scale nonlinear (complex) behavior that may affect the overall fusion performance and eventually pose issues for the
stability and control of the fusion burn. The role of EPs is also unique as mediators of cross-scale couplings, for they
can drive instabilities on the meso-scales; intermediate between the microscopic thermal ion Larmor radius and the
macroscopic plasma equilibrium scale length. EP driven Alfvénic instabilities could also provide a nonlinear feedback
onto the macro-scale system via the interplay of plasma equilibrium and fusion reactivity profiles, as well as excite
microscopic radial mode structures at SAW continuum resonances, which by mode conversion yield fluctuations that
may propagate and be absorbed elsewhere (Kolesnichenko et al., 2010b). Furthermore, noting that instabilities may
also be excited from micro- to meso- to macro-scales (cf. Sec. ITT) has made the theoretical approach based on an
extended inertial range dubious for burning fusion plasmas.

These physics are unique to burning plasmas and require a conceptual shift with respect to the way phenomena
are currently investigated in present day experiments. For example, EP power density profiles and characteristic
wavelengths of the collective modes in reactor relevant plasmas will be different, while MeV energy ion tails introduce
dominant electron heating and different weighting of the electron driven micro-turbulence. Furthermore, plasma
operation scenarios will reflect different plasma edge conditions and plasma wall interactions at high density and
low collisionality. For these reasons, among others, important roles will be played by predictive capabilities based
on numerical simulations (Batchelor et al., 2007; Lauber, 2013) as well as by fundamental theories for developing
simplified yet relevant models, to provide the necessary insights into the basic physics processes. Experiments, in this
respect, have a key role in providing experimental evidences for modeling verification and validation. In the perspective
of ITER (Aymar et al., 1997; Tamabechi et al., 1991), it is crucial to investigate these physics; exploiting positive
feedbacks between experiment, numerical simulation, and theory; and integrating the largest number of aspects that
are important for complexity in reactor relevant plasmas.

In addition to spontaneous generation by DWT, zonal flows including the finite-frequency geodesic acoustic mode
(GAM) (Winsor et al., 1968) or, more generally, ZS, can also be generated by nonlinear AE and EPM dynamics, de-
pending on proximity to marginal stability (cf. Sec. IV.C). Meanwhile, strongly driven EPM cause radial modulations
in EP profiles; affecting, thus, the EP distribution function (cf. Secs. IV.D.5 and IV.D.6), which may produce similar
structures in the electron temperature profile and eventually alter the free energy source driving DW turbulence and
transport. In general, the ZS evolution must be self-consistently determined with that of all other relevant nonlin-
early coupled degrees of freedom, and could determine the long time scale nonlinear dynamics of burning plasmas
and, thereby, the reactor fusion performance.

In this respect, one important issue is the determination of hierarchy of relevant non-linear time scales for the various
cross-scale couplings including realistic conditions; such as proper equilibrium geometry, spatial nonuniformity, and
kinetic effects (Zonca, 2008; Zonca et al., 2013; Zonca and Chen, 2008; Zonca et al., 2015a). Numerical simulations
as well as experimental studies are beginning to address these issues.
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