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Abstract
Recent advances in the generation of well characterized sub-femtosecond laser pulses
have opened up unpredicted opportunities for the real-time observation of ultrafast elec-
tronic dynamics in matter. Such attosecond chronoscopy allows a novel look at a wide
range of fundamental photophysical and photochemical processes in the time domain,
including Auger and autoionization processes, photoemission from atoms, molecules,
and surfaces, complementing conventional energy-domain spectroscopy. Attosecond
chronoscopy raises fundamental conceptual and theoretical questions as which novel
information becomes accessible and which dynamical processes can be controlled and
steered. These questions are currently a matter of lively debate which we address in
this review. We will focus on one prototypical case, the chronoscopy of the photoelec-
tric effect by attosecond streaking. Is photoionization instantaneous or is there a finite
response time of the electronic wavefunction to the photoabsorption event? Answers to
this question turn out to be far more complex and multi-faceted than initially thought.
They touch upon fundamental issues of time and time delay as observables in quantum
theory. We review recent progress of our understanding of time-resolved photoemission
from atoms, molecules, and solids. We will highlight the unresolved and open questions
and we point to future directions aiming at the observation and control of electronic
motion in more complex nanoscale structures and in condensed matter.
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I. INTRODUCTION

Following electronic dynamics in real time, watching
the formation or breaking of chemical bonds, the trans-
fer of electrons from one constituent to another, or the
ejection of electrons from an atom or molecule has been
a dream and challenge of time-resolved quantum physics
for a long time. The extent to which such ultrafast pro-
cesses are accessible to measurements at all has remained
a matter of debate. Observing the temporal electronic
evolution requires interrogation of the system on ultra-
fast time scales. Yet, such probes are subject to both
time-energy and position-momentum uncertainty. More-
over, they are prone to distortion of the very evolution
that is to be observed.

On an even more fundamental level, the question is
posed as to whether and how time-domain information,
refereed to in the following as chronoscopy, can add
to and complement the information accessible through
high-resolution spectroscopy, i.e., time-integral measure-
ments in the energy domain. Pioneered by the advances
in femtosecond chemistry (Rosker et al., 1988; Zewail,
1988, 2000a,b) application of ultrafast laser technology
to atoms, molecules, nanostructures, and solid surfaces
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have revolutionized the time-honored field of photoelec-
tron spectroscopy. Observation of the motion of atomic
constitutes on their natural time scale came into reach.
While for resolving the atomic motion in molecules in
time, for example, by creating and taking snapshots of a
vibronic wavepacket, laser pulses with duration of several
femtoseconds (10−15 s) are sufficient, accomplishing a
similar feat for the electronic motion in atoms, molecules,
or condensed matter requires sub-femtosecond, that is at-
tosecond (as), time resolution (1 as = 10−18s). Advances
during the last decade in the development of phase-
controlled few-cycle infrared (IR) laser pulses (cycle pe-
riod 𝑇IR ≃ 2.7 fs at 𝜆 = 800nm) and ∼ 100 attosecond
XUV pulses, temporally well correlated with each other
through the underlying high-harmonic generation (HHG)
process (Drescher et al., 2001; Hentschel et al., 2001; Paul
et al., 2001) have opened up the possibility to observe
and to control electronic dynamics in matter in real time
and has developed into a new field dubbed attosecond
physics (see e.g., Agostini and Dimauro, 2004; Reider,
2004; Scrinzi et al., 2006; Corkum and Krausz, 2007;
Bucksbaum, 2007; Kling and Vrakking, 2008; Krausz and
Ivanov, 2009; Chang, 2011; Gallmann et al., 2012; Plaja
et al., 2013; Schultz and Vrakking, 2013; Kim et al.,
2014; Lepine et al., 2014; Krausz and Stockman, 2014;
Peng et al., 2015, for reviews of the subject). Previ-
ously, time-resolved electronic dynamics was accessible
only for high-lying excited states. In such Rydberg states
with quantum numbers 𝑛 ≫ 1, the intrinsic time scale
given by the period of a Bohr orbit 𝜏𝑛 = 150 as × 𝑛3

reaches picoseconds (for 𝑛 ≈ 30) or even nanoseconds
(for 𝑛 ≈ 300) and can be conveniently interrogated by mi-
crowave pulses (Gallagher, 2005) or electric pulses from
arbitrary-form pulse generators (Dunning et al., 2009).
Only with the advent of attosecond pulses, time-resolved
dynamics near the ground state (𝑛 ≃ 1) and deep into
the quantum regime came into reach.

Currently available tools are mostly based on pump-
probe like settings combining a ∼ 100 attosecond XUV
pulse as pump with a phase controlled IR pulse as
probe. They include the attosecond streaking technique
(Drescher et al., 2001; Hentschel et al., 2001; Itatani
et al., 2002; Kienberger et al., 2004; Yakovlev et al., 2005;
Sansone et al., 2006), RABBIT (“reconstruction of at-
tosecond harmonic beating by interference of two-photon
transitions”; Paul et al., 2001; Véniard et al., 1996; Toma
and Muller, 2002; Muller, 2002; Haessler et al., 2009;
Caillat et al., 2011; Klünder et al., 2011). The roles of
pump and probe are reversed in attosecond transient ab-
sorption (ATA; Goulielmakis et al., 2010; Wang et al.,
2010; Gaarde et al., 2011; Holler et al., 2011; Santra et al.,
2011; Chen et al., 2012, 2013; Pabst et al., 2012; Gall-
mann et al., 2013; Ott et al., 2013, 2014; Beck et al.,
2015) where the IR pulse creates the wavepacket while
the modulation of the absorption of the attosecond XUV
pulse probes the time evolution of the electronically ex-

ited system. A promising variant of attosecond streaking
is the so-called attosecond clock (“attoclock”; Eckle et al.,
2008a,b; Pfeiffer et al., 2011b,a, 2013) or angular streak-
ing which employs a near-circularly rather than a lin-
early polarized IR field. Up to now, experiments in which
the excitation by an attosecond pump pulse is timed by
an attosecond clock have not yet become available, but
promise novel and complementary insights. These differ-
ent realizations of attosecond chronoscopy have in com-
mon that they are capable of delivering real time infor-
mation on electronic processes on ultrafast time scales.
Precisely which information is actually encoded and how
it can be retrieved is, however, still a widely open ques-
tion and understanding of the emergent chronoscopic in-
formation is still in its infancy. On the most funda-
mental level, it revolves around the lively debated issue
of time and time delays as observables in quantum dy-
namics and the linear as well as non-linear response of
quantum systems to ultrafast perturbations. It, further-
more, is closely linked to the quantum-to-classical corre-
spondence since timing, the notion of sequence of events,
and of clocks appear to be intrinsically classical concepts.
For large systems with many degrees of freedom (“open
quantum systems”) classical time information is expected
to emerge from time-dependent quantum dynamics via
decoherence and dephasing (Zurek, 2003; Gardiner and
Zoller, 2004; Weiss, 2012).

In view on an almost explosive growth of the literature
in the field of attosecond physics in recent years (∼1500
articles with the word “attosecond” in the title have been
hitherto published which have been cited by another 8000
articles), we focus the discussion in this review article on
the insights gained as well as on the many unresolved is-
sues that have emerged for a few prototypical examples,
most notably the first time-resolved realization of the
photoelectric effect (Cavalieri et al., 2007; Schultze et al.,
2010; Klünder et al., 2011). Experiments on the photo-
electric effect have provided first glimpse of timing and
time-delay in photoemission. Time delay as a quantum
dynamical observable was originally introduced by Eisen-
bud (1948) and Wigner (1955) for single-channel resonant
scattering. Later, Smith (1960) generalized this approach
to a multichannel context by introduction of a lifetime
matrix. This time delay is in the following referred to as
the Eisenbud-Wigner-Smith (EWS) delay. Photoemis-
sion representing a half-scattering process allows the ap-
plication and extension of this concept. The correspond-
ing delay, 𝑡EWS, can be viewed as a finite time shift in
the formation of the outgoing electronic wavepacket dur-
ing the photoemission event. Photoionization has been
found to be not instantaneous as conventionally being
thought, but the departure of the outgoing wavepacket
is temporally shifted relative to the arrival of the XUV
pulse, typically by a few attoseconds.

We review in the following the theoretical framework
which unambiguously identifies 𝑡EWS as an observable
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accessible by attosecond chronoscopy. The key is the
determination of phase shifts in the presence of the IR
field. We first discuss both one- and two-electron sys-
tems and address the influence of electronic correlation
on the time-resolved photoemission processes. Extension
to molecules reveals the influence of the internal geomet-
ric structure of the ionized complex on the formation
of the outgoing wavepacket. Photoemission from solid
surfaces serves as a prime example for decoherence due
to multiple scattering, connecting coherent quantum dy-
namics and classical transport. The very recent exten-
sion to two-photon ionization reveals another novel ob-
servable: the time elapsed between two photoabsorption
(photoemission) events. We also inquire into a possible
scenario for probing the notion of tunneling time by at-
tosecond streaking. We conclude by pointing to possible
future directions. Unless otherwise stated, atomic units
(a.u.) are used.

II. TIME AND TIME DELAY AS OBSERVABLES IN
PHOTOEMISSION

Attempts to observe electronic dynamics or, more gen-
erally, quantum dynamics in the time domain raises
many interesting conceptual questions. Among them are:
What can be learnt from the time-dependent wavefunc-
tion of the electrons, Ψ(𝑡), or from the expectation value
of an observable, ⟨𝑂⟩𝑡, at a time 𝑡 that can not be in-
ferred from the stationary (i.e., time-independent) final
state observed at 𝑡→ ∞ in a conventional spectroscopic
measurement? On an even more fundamental level, is
the time of a transition, or are time intervals Δ𝑡 be-
tween elementary processes (or “quantum jumps”) phys-
ically meaningful observables? As we will highlight in
the following, time-resolved photoemission touches upon
many of those aspects.

A. S-matrix and reduced density matrix for photoemission

Photoemission is described in first-order perturbation
theory by the transition amplitude

𝑎
(1)
𝑖→𝑓 (𝑡) = −𝑖

∫︁ 𝑡

−∞
𝑑𝑡′⟨Φ𝑓 |𝑒𝑖𝐻0𝑡

′
𝑉 (𝑡′)𝑒−𝑖𝐻0𝑡

′
|Φ𝑖⟩ (2.1)

where in dipole approximation the interaction operator
with the electromagnetic field of the ionizing XUV pulse
is given in the so-called velocity gauge in terms of the
vector potential �⃗� by (Scully and Zubairy, 1997)

𝑉 (𝑡) =

𝑁∑︁
𝑖=1

𝑝𝑖�⃗�(𝑡)/𝑐 (2.2)

or alternatively in length gauge (Göppert-Mayer, 1931)
in terms of the electric field 𝐹 by

𝑉 (𝑡) =

𝑁∑︁
𝑖=1

�⃗�𝑖𝐹 (𝑡) . (2.3)

Physical observables should be independent of the choice
of the gauge (Eqs. 2.2 and 2.3). This holds true if
Eq. 2.1 is evaluated for exact initial and final states
|Φ𝑖,𝑓 ⟩. More generally, numerically exact solutions of
the time-dependent Schrödinger equation yield gauge-
independent transition probabilities |𝑎𝑖→𝑓 (𝑡→ ∞)|2. By
contrast, in approximate treatments, notably within the
framework of the strong-field approximation (SFA) for
non-perturbative interactions of matter with strong IR
fields, a strong dependence on the choice of the gauge
has been observed (Bauer et al., 2005; Chirilă and Lein,
2006).

In Eq. (2.1) the initial bound state |Φ𝑖⟩ and the fi-
nal continuum state |Φ𝑓 ⟩ are solutions of the stationary
Schrödinger equation

𝐻0|Φ𝑖,𝑓 ⟩ = 𝐸𝑖,𝑓 |Φ𝑖,𝑓 ⟩ (2.4)

of the unperturbed system described by the Hamiltonian
𝐻0. In the following examples 𝐻0 may represent atoms,
molecules, or solid surfaces. The canonical position and
momentum coordinates of the electrons are denoted by
(�⃗�𝑖, 𝑝𝑖 : 𝑖 = 1, . . . , 𝑁).

An attosecond pulse with carrier frequency 𝜔XUV and
of duration 𝜏XUV corresponding to a Fourier-limited pulse
with spectral width Δ𝜔 ∼ 2𝜋/𝜏XUV will generate a co-
herent superposition of final states, |Φ𝑓 ⟩ = |Φ𝜖𝑗𝑠⟩, i.e., a
wavepacket,

|Ψ(𝑡)⟩ =
∑︁
𝑗,𝑠

∫︁
𝑑𝜖𝑒−𝑖𝐸𝜖𝑗𝑠𝑡𝑎𝜖𝑗𝑠(𝑡)|Φ𝜖𝑗𝑠⟩, (2.5)

where 𝜖 characterizes the energy and 𝑗 all other quantum
numbers of the emitted electron (e.g., angular momen-
tum ℓ, spin quantum numbers 𝑆,𝑀𝑆 , and emission direc-
tion [𝑘 = (𝜃, 𝜙)] while 𝑠 stands for all quantum numbers
of the (𝑁 − 1) electron state of the residual ionic com-
plex, 𝐼. For later reference we note that the asymptotic
limit 𝑡→ ∞ of Eq. (2.5) can be related to the scattering
operator 𝑆 (or 𝑆-matrix) for the transition driven by the
XUV field,

|Ψ𝑡→∞⟩ = 𝑆XUV|Φ𝑖⟩ . (2.6)

The photoelectron spectrum corresponds to the expec-
tation value of the projector, 𝑃𝜖𝑗 = |𝜖𝑗⟩⟨𝜖𝑗|, onto con-
tinuum energy eigenstates of the emitted electron. After
conclusion of the pulse at 𝜏XUV, the Hamiltonian of the
entire system eventually separates into channel Hamilto-
nians

𝐻0 = 𝐻𝑒 +𝐻
(𝑁−1)
𝐼 (2.7)
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with

𝐻𝑒|𝜖𝑗⟩ = 𝜖𝑗 |𝜖𝑗⟩ , (2.8)

the Schrödinger equation describing the emitted electron,
and

𝐻
(𝑁−1)
𝐼 |𝑠⟩ = 𝐸𝑠|𝑠⟩ , (2.9)

the Schrödinger equation for the residual complex. The
one-electron state |𝜖𝑗⟩ emerging from the interacting 𝑁
electron system can be viewed as a Dyson orbital (see
e.g., Nicholson et al., 1999; Ortiz, 2003, and references
therein). The energy of the entire system is accordingly
given by

𝐸𝜖𝑗𝑠 = 𝜖𝑗 + 𝐸𝑠 . (2.10)

The expectation value,

⟨Ψ(𝑡)|𝑃𝜖𝑗 |Ψ(𝑡)⟩ =
∑︁′

𝑠

|𝑎𝜖𝑗𝑠(𝑡)|2 , (2.11)

represents the time-dependent photoionization probabil-
ity, where the sum extends over the subset (denoted by
the prime) of ionic states that are energetically accessible

|𝜖+ 𝐸𝑠 − 𝐸𝑖 − 𝜔XUV| .
Δ𝜔XUV

2
(2.12)

within the spectral bandwidth (full-width half-maximum,
FWHM) Δ𝜔XUV of the pulse. Time-integral spec-
troscopy corresponds to a time average over time inter-
vals Δ𝑡 large compared to the pulse duration,

⟨𝑃𝜖𝑗⟩Δ𝑡 =
∑︁′

𝑠

⟨|𝑎𝜖𝑗𝑠(𝑡)|2⟩Δ𝑡 (2.13)

taken after the conclusion of the pulse. Equations (2.11)
and (2.13) can be rewritten in terms of the asymptotic
reduced one-electron density operator

𝜌 = Tr𝐼 (|Ψ(𝑡)⟩⟨Ψ(𝑡)|) , (2.14)

where the trace Tr𝐼 extends over the Hilbert space of the
ionic 𝑁 − 1 electron system. The time-integral photoe-
mission probability Eq. (2.13) reads

⟨𝑃𝜖𝑗⟩Δ𝑡 = Tr𝑒 (|𝜖𝑗⟩⟨𝜖𝑗|𝜌) (2.15)

where the trace Tr𝑒 extends now over the unresolved de-
grees of freedom of the emitted electron (e.g., spin) and
includes the time average over Δ𝑡. In angular-differential
photoemission spectroscopy, the index 𝑗 refers to the
emission direction 𝑘. Expansion of Eq. (2.15) in terms of
partial wave amplitudes ℓ yields

⟨𝑃𝜖�̂�⟩Δ𝑡=
∑︁
ℓ𝑚
ℓ′𝑚′

Y𝑚
ℓ (Ω)Y𝑚′*

ℓ′ (Ω)
∑︁′

𝑠

⟨𝑎𝜖ℓ𝑚𝑠(𝑡)𝑎
*
𝜖ℓ′𝑚′𝑠(𝑡)⟩Δ𝑡

=
∑︁
ℓ𝑚
ℓ′𝑚′

Y𝑚
ℓ (Ω)Y𝑚′*

ℓ′ (Ω)⟨𝜖ℓ𝑚|𝜌|𝜖ℓ′𝑚′⟩Δ𝑡 (2.16)

with the solid angle Ω = (𝜃,𝜙). Coherences between
different partial waves (ℓ, ℓ′) at the same energy 𝜖 are
expressed in terms of off-diagonal elements of the re-
duced density matrix, ⟨𝜖ℓ𝑚|𝜌|𝜖ℓ′𝑚′⟩. In turn, the angle-
integrated spectrum depends only on the incoherent sum
over partial waves,

⟨𝑃𝜖⟩ =
∫︁
𝑑Ω⟨𝑃𝜖�̂�⟩ =

∑︁
ℓ𝑚

∑︁′

𝑠

⟨|𝑎𝜖ℓ𝑚𝑠(𝑡)|2⟩Δ𝑡

=
∑︁
ℓ𝑚

⟨𝜖ℓ𝑚|𝜌|𝜖ℓ𝑚⟩Δ𝑡 . (2.17)

In general, energy-resolved photoemission spectra thus
provide only access to the time-averaged square modulus
of the transition amplitude [Eq. (2.17)]. In the special
case of coherent excitation of degenerate subspaces to
fixed energy, 𝜖, relative phases between different partial
wave amplitudes, ∼𝑒𝑖(𝛿ℓ−𝛿ℓ′ ), can be observed in angular
resolved measurements [Eq. (2.16)].

By contrast, time-resolved measurements promise di-
rect access to the time-dependent expectation value of
dynamical observables 𝑂 associated with the degrees of
freedom of the emitted electron observed,

⟨Ψ(𝑡)|𝑂|Ψ(𝑡)⟩ =
∫︁
𝑑𝜖

∫︁
𝑑𝜖′
∑︁
𝑗,𝑗′

⟨𝜖𝑗|𝑂|𝜖′𝑗′⟩⟨𝜖′𝑗′|𝜌(𝑡)|𝜖𝑗⟩

= Tr𝑒 [𝑂𝜌(𝑡)] , (2.18)

expressed in terms of the time-dependent reduced density
matrix (without averaging over Δ𝑡)

⟨𝜖𝑗|𝜌(𝑡)|𝜖′𝑗′⟩ =
∑︁′

𝑠

𝑎𝜖𝑗𝑠(𝑡)𝑎
*
𝜖′𝑗′𝑠(𝑡)𝑒

𝑖(𝜖′−𝜖)𝑡 . (2.19)

Coherences between continuum states of different ener-
gies 𝜖 present in the wavepacket are now in reach and
manifest themselves by “quantum beats” with frequencies
|𝜖′ − 𝜖| (see e.g., Yudin et al., 2005, 2006; Hu and Collins,
2006; Morishita et al., 2007; Kazansky et al., 2008; Mau-
ritsson et al., 2010; Argenti and Lindroth, 2010; Tzallas
et al., 2011; Pabst et al., 2011; Feist et al., 2011; Bian and
Bandrauk, 2012; Klünder et al., 2013; Wirth et al., 2013;
Argenti et al., 2013; Carpeggiani et al., 2014; Chini et al.,
2014; Ott et al., 2014). Comparison between Eqs. (2.16)
to (2.18) indicates that the interrogation of the photoe-
mission process at any time 𝑡 promises to uncover dy-
namical information not accessible in time-integral mea-
surements. A proposal for such a direct measurement
of time-resolved ionization probability near autoionizing
resonances in helium employing attosecond pulses has re-
cently been discussed (Argenti et al., 2013).

In current realizations of attosecond chronoscopy, the
operator facilitating the “in situ” interrogation during the
photoemission is another pulse described by the interac-
tion operator 𝑉 [Eqs. (2.2) and (2.3)] displaced in time
relative to the ionizing attosecond pulse by a variable de-
lay time 𝜏 . Ideally, the probing pulse would be another
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attosecond XUV pulse of comparable duration. While
considerable progress has been made towards developing
attosecond XUV sources of sufficient intensity and timing
control (Takahashi et al., 2010; Lan et al., 2011; Gilbert-
son et al., 2010b; Chang and Corkum, 2010; Tzallas et al.,
2011), such XUV-pump-XUV-probe settings have not yet
been implemented for attosecond chronoscopy. Instead,
IR laser pulses for which exquisite phase- and thus sub-
cycle timing control has been achieved (see e.g., Hentschel
et al., 2001; Baltuska et al., 2003; Chang, 2011, and ref-
erences therein) are used to interrogate the time evo-
lution. While the pulse duration of a typical few-cycle
pulse is 𝜏IR ≃ 5 fs (the period 𝑇IR of an optical cycle
for 800 nm radiation is 𝑇IR = 2.7 fs), its oscillating field,
controlled to within a small fraction of one radian, of-
fers a convenient route to attosecond time resolution.
The three different approaches utilized so far, linear mo-
mentum attosecond streaking with linearly polarized IR
fields (Hentschel et al., 2001; Drescher et al., 2001; Kien-
berger et al., 2004; Sansone et al., 2006; Cavalieri et al.,
2007; Schultze et al., 2010; Sabbar et al., 2015), angu-
lar streaking (“attoclock”; Eckle et al., 2008a,b; Pfeiffer
et al., 2011a,b, 2013) with circularly polarized IR fields,
and the interferometric RABBIT technique (Paul et al.,
2001; Toma and Muller, 2002; Mauritsson et al., 2005;
Swoboda et al., 2010; Klünder et al., 2011; Guénot et al.,
2012, 2014; Palatchi et al., 2014), have in common that
the IR field probes the evolution during the emission,
as implied by Eq. (2.18), without, however, necessarily
performing a projective measurement which would lead
to the “collapse of the wavepacket”, i.e., to the reduction
of the density operator. Instead, the probe pulse maps
the time-dependent excited state |Φ(𝑡)⟩ onto the asymp-
totic scattering state |Φ(𝑡→ ∞)⟩, such that chronoscopic
information can be eventually retrieved from spectral in-
formation [Eqs. (2.16) and (2.17)]. The key point is that
the timing information sought can be extracted from the
asymptotic 𝑆-matrix element [analogous to Eq. (2.6)],

|Ψ(𝑡→ ∞)⟩ = 𝑆XUV+IR|Φ𝑖⟩ , (2.20)

that includes the influence of both the exciting XUV
pump field and the probing IR field. Details of this map-
ping differ for the different approaches and are far from
fully understood. We will analyze this mapping in detail
for the example of attosecond streaking which operates,
in certain limiting cases, like a classical clock.

B. Time delay operator

Unambiguously recovering timing information from
the asymptotic time independent scattering state
Eq. (2.20) touches upon the lively debated question
whether and to which extent time or time delay are well-
defined quantum observables at all. It was realized in
the early days of quantum theory by Pauli (Pauli, 1926,

1933) that association of time 𝑡 with a Hilbert operator
following standard correspondence identities,

𝑡 = −𝑖 𝜕
𝜕𝐸

, (2.21)

faces fundamental conceptual difficulties. Since the spec-
trum of the canonically conjugate operator 𝐻 of a quan-
tum system is bounded from below, 𝑡 cannot be a self-
adjoint operator. This argument originally developed
for the non-relativistic Schrödinger equation can be ex-
tended into the relativistic domain. Even though the
Dirac equation allows for unbounded negative-energy so-
lutions, the finite excitation gap

[︀
−𝑚𝑐2,𝑚𝑐2

]︀
delimits

the continuous spectrum of 𝐻 and thus prevents the con-
struction of a self-adjoint operator 𝑡 (Maquet et al., 2014;
Maquet, 2014). This conceptual difficulty is directly
related to the well-recognized fact that the quantum-
theoretical foundation of the time-energy uncertainty re-
lation Δ𝑡Δ𝐸 & ~/2 is fundamentally different from the
uncertainty relation for canonically conjugate variables
of (generalized) positions and momenta, Δ𝑥𝑖Δ𝑝𝑖 ≥ ~/2.
While both relations express the Fourier reciprocity, a
self-adjoint operator 𝑡, unlike the position operator, does
not exist. Therefore, many standard quantum theory
textbooks state that 𝑡 is a parameter with which no op-
erator is associated (Cohen-Tannoudji et al., 1977; Got-
tfried, 1966). Recent work in mathematical physics have
clarified the formal properties of time as Hilbert space
operator. The “arrival time” operator [Eq. (2.21)] can be
shown to be symmetric rather than self-adjoint.

A different scenario emerges, however, when the do-
main of the operator is restricted to scattering states.
This allows to construct a self-adjoint operator describ-
ing the time delay (for a recent instructive introduction
into the formal aspects of the time operator in quantum
physics see Sassoli de Bianchi, 2012). Based on intuitive
physical reasoning, Eisenbud (1948), Wigner (1955), and
Smith (1960) argued already in the 1950’s that time de-
lays or lifetimes of resonances should be expectation val-
ues of a bona-fide observable in quantum scattering, the
time delay operator,

𝑡EWS = −𝑖𝑆†(𝐸)
𝜕

𝜕𝐸
𝑆(𝐸) , (2.22)

where 𝑆(𝐸) is the scattering operator (matrix). It
should be noted that the time delay operator Eq. (2.22)
bears no direct relationship to the “arrival” time operator
[Eq. (2.21)] and to the time-energy uncertainty relation.

A prototypical case is resonant scattering where 𝑡EWS
describes the “sticking time” of the incoming particle due
to transient trapping in a quasi-bound state before leav-
ing the interaction region as an outgoing wavepacket.
This sticking time amounts to the time delay of the
outgoing wavepacket relative to that of the incoming
wavepacket passing by the scattering region in the ab-
sence of the interaction potential. Formally, the subtrac-
tion of the travel time of the unperturbed wavepacket
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is built into Eq. (2.22) by restricting the application of
the differential operator to the energy dependence of the
𝑆-matrix only and not to the unperturbed continuum
state the 𝑆 operator acts on. In a multi-channel scatter-
ing problem with 𝑀 open channels (𝑖 = 1, . . . ,𝑀), the
time delay operator becomes an 𝑀×𝑀 - matrix (Smith,
1960), ⟨Φ𝑖|𝑡EWS|Φ′

𝑖⟩. The eigenstates of the self-adjoint
𝑡EWS matrix describe the scattering eigenchannels. Their
eigenvalues correspond to the proper time delays associ-
ated with the corresponding scattering channel (Libisch
et al., 2008; Rotter et al., 2011).

The EWS time delay operator Eq. (2.22) is well-defined
only for 𝑆-matrices describing scattering at short-ranged
potentials. In the special case of potential scattering with
spherical symmetry, the 𝑆-matrix is diagonal in the an-
gular momentum representation 𝑆ℓ,

𝑆ℓ(𝐸) = 𝑒2𝑖𝛿ℓ(𝐸) . (2.23)

The corresponding time delay for a given partial wave ℓ
follows from Eqs. 2.22 and 2.23 as the energy variation
of the partial wave scattering phase shift 𝛿ℓ(𝐸),

𝑡EWS(𝐸, ℓ) = 2
d

d𝐸
𝛿ℓ(𝐸) . (2.24)

The outgoing wavepacket is assumed to reach within a
finite propagation time the asymptotic interaction-free
region where the channel Hamiltonian 𝐻𝑒 [Eq. (2.8)] con-
sists of the kinetic energy operator only. Extension of the
time delay operator to Coulomb scattering requires mod-
ifications (Bollé et al., 1983; Martin, 1981).

The concept of time delays has found ubiquitous ap-
plication present in many branches of physics, classical
as well as quantum, that deal with wave propagation
and scattering, ranging from the Goos-Hänchen-effect in
electromagnetic scattering at dielectric interfaces (Goos
and Hänchen, 1947; Chiu and Quinn, 1972) and resonant
photon scattering at ultracold atoms (Bourgain et al.,
2013) to electron transport through mesoscopic devices
(“billiards”) featuring hybrid normal-conducting and su-
perconducting boundaries (Libisch et al., 2008). Closely
related to time delay is the concept of dwell time or
sojourn time, the time a wavepacket remains localized
within a finite domain in coordinate space. The relation-
ship between dwell time and time delay as well as appli-
cations are discussed in recent reviews (de Carvalho and
Nussenzveig, 2002; Kolomeitsev and Voskresensky, 2013).
The connections to the controversial subject of “tunnel-
ing time”, the time it takes a wavepacket to penetrate a
barrier has been the subject of a large number of publi-
cations, (e.g., Kolomeitsev and Voskresensky, 2013; Mac-
Coll, 1932; Hartman, 1962; Hauge and Støvneng, 1989;
Landauer and Martin, 1994; Steinberg, 1995; Olkhovsky
et al., 2004; Winful, 2006). Attempts to observe tunnel-
ing times on the attosecond scale for strong-field ioniza-
tion of atoms (Eckle et al., 2008b; Pfeiffer et al., 2013;

Shafir et al., 2012; Zhao and Lein, 2013; McDonald et al.,
2013; Klaiber et al., 2013; Orlando et al., 2014) have so
far been inconclusive. While outside the main scope of
the present article on the time-resolved photoelectric ef-
fect, we will briefly discuss the challenge in extracting
such timing information in Section IX.

Employing the delay operator [Eqs. (2.22) to (2.24)]
to attosecond chronoscopy of photoemission described by
first-order perturbation theory (or lowest-order perturba-
tion theory for the case of two-photon double ionization
discussed in Section VIII), requires several modifications.
First, photoemission is a half-scattering process in which
a matter wavepacket resides in the continuum only in
the exit channel while in the entrance channel the wave
function |Φ𝑖⟩ represents a bound rather than a continuum
state. Secondly, photoemission leaves a residual charged
ionic fragment behind. Consequently, the outgoing elec-
tron is subject to the long-range Coulomb interaction for
which the intrinsic EWS time delay is, strictly speak-
ing, not well defined (Wigner, 1955; Smith, 1960; Bollé
et al., 1983; Martin, 1981). We show in the following that,
with suitable modifications, 𝑡EWS can, indeed, be unam-
biguously determined for Coulombic exit-channel inter-
actions. Thirdly, the time information contained in the
scattering operator describing the ionization by the XUV
field alone, 𝑆XUV, has to be disentangled from that de-
scribing the simultaneous presence of the probing field,
𝑆XUV−IR.

For emission of an electron from a one-electron system
with energy 𝜖 and in the direction 𝑘, the 𝑆XUV matrix
element describing the transition driven by the XUV field
in the absence of the probing field follows from Eqs. 2.1
and 2.3 (with 𝑡→ ∞) as

⟨𝜖𝑘|𝑆XUV|Φ𝑖⟩ = −𝑖𝐹XUV(𝜔 = 𝜖− 𝐸𝑖)⟨𝜖𝑘|�⃗�𝑒|Φ𝑖⟩ , (2.25)

where 𝐹XUV(𝜔) is the Fourier transform of the electric
field of the attosecond pulse and 𝑒 is its polarization vec-
tor (in the following we set 𝑒 = 𝑧). Application of Eqs.
2.22 and 2.25 yields the expectation value of the EWS
time delay

𝑡EWS(𝜖, 𝑘) =
𝑑

𝑑𝜖
arg⟨𝜖𝑘|𝑧|Φ𝑖⟩ . (2.26)

We assume in the following that the temporal structure
of the XUV pulse is Fourier transform limited and chirp-
free, i.e., its frequency distribution remains constant dur-
ing the duration of the pulse. Otherwise, pulse-induced
contributions to the spectral variation of the photoion-
ization amplitude would give rise to apparent spectral
variations similar to Eq. (2.26) masking the EWS de-
lay (Cirelli et al., 2015). Controlling and minimizing the
chirp is therefore essential in extracting accurate time
delays (Schultze et al., 2010).

In the special case where only a single partial wave in
the continuum is accessed in a dipole transition, e.g., in
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an 𝑆 → 𝑃 transition, Eq. (2.26) reduces to

𝑡EWS(𝜖, ℓ) =
𝑑

𝑑𝜖
𝛿ℓ(𝜖) . (2.27)

The missing factor 2 [compared to Eq. (2.24)] indicates
that photoemission is a half-scattering process. Gener-
alization of Eq. (2.22) to a one-electron emission from a
many-electron system employing Eq. (2.13) reads

⟨𝑡EWS(𝜖, 𝑘)⟩ = Tr𝐼⟨Φ𝑖|𝑆†
XUV

(︂
−𝑖 𝜕
𝜕𝜖

)︂
𝑆XUV|Φ𝑖⟩

= −𝑖
∑︁′

𝑠

⟨Φ𝑖|𝑆†
XUV|𝜖𝑘𝑠⟩

𝜕

𝜕𝜖
⟨𝜖𝑘𝑠|𝑆XUV|Φ𝑖⟩

=

∑︁′

𝑠

𝜕
𝜕𝜖 arg⟨𝜖𝑘𝑠|𝑧|Φ𝑖⟩

⃒⃒⃒
⟨𝜖𝑘𝑠|𝑧|Φ𝑖⟩

⃒⃒⃒2
∑︁′

𝑠

⃒⃒⃒
⟨𝜖𝑘𝑠|𝑧|Φ𝑖⟩

⃒⃒⃒2 .

(2.28)

The time delay extracted from 𝑆XUV, calculated by
first-order perturbation theory, characterizes the linear-
response of the unperturbed system 𝐻0 and is, thus, in-
dependent of the properties of the XUV pulse. It is there-
fore tempting to inquire into alternative routes to access
such time delay information without performing attosec-
ond time-resolved measurements. Since the time delay
is determined by the spectral variation of the partial-
wave scattering phase, the energy variation of the scat-
tering probability or cross section for electron scattering
[𝜎(𝜖) ∼ ⟨𝑃𝜖⟩, see Eq. (2.17)],

𝑑

𝑑𝜖
𝜎(𝜖) =

𝑑

𝑑𝜖

(︃
2𝜋

𝜖

∑︁
ℓ

(2ℓ+ 1) sin2 𝛿ℓ(𝜖)

)︃

=
4𝜋

𝜖

∑︁
ℓ

(2ℓ+ 1) sin 𝛿ℓ(𝜖) cos 𝛿ℓ(𝜖)𝑡EWS(𝜖, ℓ)

− 𝜎(𝜖)

𝜖
(2.29)

depends only on the scattering phases 𝛿ℓ(𝜖) and on
𝑡EWS(𝜖, ℓ). Therefore, in principle, the determination of
the time delay through time integral cross section mea-
surements is possible provided that the energy depen-
dence of individual partial wave phase shifts can be ac-
curately determined, e.g., by angular differential scatter-
ing [along the lines of Eq. (2.16)]. In practice, however,
the determination of 𝑡EWS from Eq. (2.29) is a consid-
erable challenge, as the number of partial waves con-
tributing to electron-ion scattering is, in general, large
and therefore the extraction of 𝑡EWS from Eq. (2.29) is
hardly feasible. Moreover, averaging over unobserved de-
grees of freedom [see for example Eqs. (2.16) and (2.28)]
may invalidate such a direct approach. In special cases,
however, partial information on time delay can be in-
ferred and a connection to attosecond chronoscopy es-
tablished. Heinzmann et al. have pointed out (for a re-
cent review see Heinzmann and Dil, 2012; Heinzmann,

2013) that the dynamical spin polarization 𝑃⊥ perpen-
dicular to the scattering plane defined by an incoming
circularly polarized photon and an outgoing electron is a
function of the difference between partial waves accessi-
ble by photoionization. Emission of spin-polarized pho-
toelectrons originally predicted by Fano (Fano, 1969) for
circularly polarized light (the so-called Fano-effect) was
later generalized by Cherepkov (Cherepkov, 1979) to the
case of linearly polarized light in angular resolved pho-
toemission. Ionizing, e.g., the 5𝑝 shell of xenon, a net
spin polarization 𝑃⊥(𝜃 = 54∘, 𝜖) ∝ sin [𝛿2(𝜖)− 𝛿0(𝜖)] is
observed at the “magic” angle 𝜃 = 54.4∘ [the zero of the
Legendre polynomial 𝑃2(cos 𝜃)]. Carefully observing the
energy variation of the spin polarization

𝑑

𝑑𝜖
𝑃⊥(𝜃 = 54∘, 𝜖) ∝ cos [𝛿2(𝜖)− 𝛿0(𝜖)] ·

·
[︀
𝑡ℓ=2
EWS(𝜖)− 𝑡ℓ=0

EWS(𝜖)
]︀

(2.30)

allows to extract a relative time delay of ≃76 as between
the 𝑑 and the 𝑠 electron near 𝜖 = 7 eV (Heinzmann, 2013).
In the present case this experimental observation implies
that formation of the outgoing wavepacket in the 𝑑 par-
tial wave is considerably delayed relative to that in the
𝑠 wave. For later reference we note that this value is
strongly influenced by the long-range Coulomb interac-
tion.

While for scattering at a potential the reference
wavepacket corresponds to the incoming wavepacket that
travels through the scattering region unaffected by any
interaction potential, in the half-scattering case of pho-
toemission the reference is the arrival 𝑡𝑎 of the peak of
the XUV pulse at the target, for which we will frequently
use a Gaussian shape

𝐹XUV(𝑡) = 𝐹0 exp

(︂
− (𝑡− 𝑡𝑎)

2

𝑡2𝑔

)︂
cos(𝜔XUV𝑡+ 𝜙XUV)

(2.31)
with 𝑡𝑔 = 𝜏XUV/

√
ln 4. The time delay 𝑡EWS is measured

relative to 𝑡𝑎 and can be positive or negative. We will use
in the following the terms “time delay” and “time shift”
interchangeably to express the fact that 𝑡EWS can be both
positive or negative. Negative values are constrained by
causality (Wigner, 1955), i.e., photoemission cannot oc-
cur prior to the arrival of the leading edge of the ionizing
pulse.

One key feature of 𝑡EWS, which we will frequently make
use of in the following, is that it can be directly extracted
from the motion of the outgoing wavepacket without any
explicit reference to the 𝑆-matrix or the spectral varia-
tion of scattering phase shifts (de Carvalho and Nussen-
zveig, 2002). For the outgoing wavepacket formed by a
coherent superposition of energy eigenstates of the elec-
tron centered around a central energy 𝜖0, the radial posi-
tion of its crest, 𝑟𝑐(𝑡), or its first moment, ⟨𝑟⟩𝑡, eventually
follows asymptotically (𝑡→ ∞) the motion of a free par-
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ticle after the wavepacket has left the scattering region,

𝑟𝑐(𝑡) = 𝑣𝑔(𝑡− 𝑡EWS) , (2.32)

⟨𝑟⟩𝑡 = 𝑣𝑔(𝑡− 𝑡EWS) , (2.33)

however delayed by the time 𝑡EWS (MacColl, 1932; Brenig
and Haag, 1959). In Eqs. (2.32) and (2.33) the group
velocity 𝑣𝑔 is denoted by

𝑣𝑔 =

(︂
𝜕𝜖

𝜕𝑘

)︂
𝜖=𝜖0

. (2.34)

A prerequisite for Eqs. (2.32) and (2.33) to hold is that
the interaction potential is short-ranged such that the
wavepacket behaves, indeed, like that of a free-particle
at large distances. Extension to Coulomb interactions
will be discussed in Section III. The equivalence of the
time delay extracted from the displacement of ⟨𝑟⟩𝑡 to the
one extracted from the 𝑆-matrix plays a key role for pho-
toemission from complex systems where the dynamics is,
in general, no longer fully coherent due to averaging over
unresolved degrees of freedom [see Eq. (2.28)]. As de-
coherence eventually converts the quantum wavepacket
into a classical probability distribution of emitted elec-
trons, a delay of the first moment ⟨𝑟⟩𝑡 of this distribution
relative to the reference pulse can still provide timing in-
formation. The relation Eq. (2.33) is therefore well suited
to explore the quantum-to-classical correspondence and
for application to condensed matter where photoelectrons
may undergo multiple dephasing collisions prior to exit-
ing the solid surface (see Section VII).

C. Example: photodetachment from a model atom

We will illustrate the temporal evolution of detachment
and the time delay in photoemission relative to an at-
tosecond XUV pulse for a one-electron model atom that
is designed to resemble the ion He+(1𝑠) at small dis-
tances which has identical binding energy 𝐸𝑖 = 𝜖1𝑠 but
features only short-ranged interactions, thereby avoid-
ing the complications caused by the Coulomb field. This
model can, for example, mimic photodetachment from
negative ions. Fig. 1 illustrates the photodetachment by
an attosecond XUV pulse (pulse duration 𝜏XUV = 200 as,
energy 𝜔 = 80 eV, intensity 𝐼XUV = 1013 W/cm2) of an
electron initially bound in an 𝑠-like ground state of the
Hamiltonian

𝐻0 = 𝐻𝑒 =
𝑝2

2
+ 𝑉Y(𝑟) (2.35)

with a Yukawa-type interaction potential

𝑉Y(𝑟) = −𝑍
𝑟
exp

(︁
− 𝑟
𝑎

)︁
(2.36)
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FIG. 1 (Color online) Photodetachment of an initial 1𝑠 elec-
tron in a Yukawa potential [Eq. (2.36)] with 𝑍 = 3.8166 and
𝑎 = 0.5, which results in a binding energy of −2 a.u. : (a)
Extraction of 𝑡EWS from the linear extrapolation of the time
dependence of ⟨𝑟⟩𝑡 [Eq. (2.33)]. The intercept with the 𝑡 axis
(inset) gives 𝑡EWS in excellent agreement with the direct cal-
culation for the 𝑆 matrix [Eq. (2.27)]. (b) The temporal pro-
file of the XUV pulse. (c) The time dependence of the detach-
ment probability ⟨𝜓(𝑡)|𝑃I|𝜓(𝑡)⟩ [from Eqs. (2.18) and (2.37)].

and the screening length 𝑎. For later comparison with
photoionization of He+ we choose the charge parameter 𝑍
for given screening length 𝑎 such that the binding energy
of the detached electron always coincides with that of the
He+(1𝑠) ion (𝐸𝑖 = −2 a.u.). Here and in the following,
the peak of the XUV pulse envelope is chosen to arrive
at 𝑡𝑎 = 0, defining the reference time for the time delay.

The radial expectation value of the wavepacket ⟨𝑟⟩
[Fig. 1(a)] is at 𝑡 = 0 already considerably enhanced com-
pared to the ground-state expectation value ⟨𝑟⟩𝑡→−∞ =
0.25 reflecting the onset of detachment for 𝑡 < 0 initiated
by the leading edge of the pulse [Fig. 1(b)].

For positive 𝑡 the radial expectation value rapidly ap-
proaches the linear distance vs. time relation [Eq. (2.33)]
after the conclusion of the XUV pulse (FWHM) at 𝑡 ≈
4 a.u. (∼ 100 as). Tracing back the linear time depen-
dence of ⟨𝑟⟩𝑡 to small times allows to determine 𝑡EWS
from the intercept with the 𝑡 axis [Fig. 1(a), inset] as
𝑡EWS = 6.6 attoseconds. It should be noted that the
backward extrapolation to ⟨𝑟⟩ = 0 underlying the de-
termination of 𝑡EWS according to Eqs. (2.32) and (2.33)
serves to extract information on the asymptotic rather
than the local properties of the outgoing wavepacket. For
finite propagation times ⟨𝑟⟩ & ⟨𝑟⟩𝑡=−∞ and ⟨𝑟⟩ = 0 is not
realized. The idea underlying the backward extrapola-
tion can be most easily visualized by considering classical
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trajectories along one cartesian coordinate. An outgoing
electron along, e.g., the positive x-axis, starts, on aver-
age, from 𝑥 = 0 since an initial state of well-defined par-
ity has equal probability being at ±𝑥initial. For a radially
symmetric initial state this holds true for every direc-
tion. The value extracted by Eq. (2.33) agrees with the
one extracted from the 𝑝-wave (ℓ = 1) phase shift 𝛿ℓ=1 at
𝐸 = 𝜔+𝜖𝑖 [Eq. (2.27)] to within 0.1 attoseconds, illustrat-
ing the equivalence of Eqs. (2.27) and (2.33) for photode-
tachment with sub-attosecond level precision (Pazourek
et al., 2013; Su et al., 2013b; Nagele et al., 2014).

Alternatively, the timing of the photoionization pro-
cess can also be monitored by inspecting the time-
dependent norm of the ionized portion of the electronic
wavepacket in the continuum (Kheifets and Ivanov, 2010;
Sukiasyan et al., 2012) given by the expectation value
[Eq. (2.18)], ⟨𝑃𝐼⟩𝑡 = ⟨Φ(𝑡)|𝑃𝐼 |Φ(𝑡)⟩ with

𝑃𝐼 = 1−
(bound)∑︁

𝑖

|𝑖⟩⟨𝑖| . (2.37)

In the present case of a short-ranged binding potential,
Eq. (2.37) should be more precisely referred to as the de-
tachment probability 𝑃𝐷. For simplicity we use the term
ionization also for this process. Even though the expec-
tation value ⟨𝑃𝐼⟩𝑡 determined from the numerical TDSE
solution [Fig. 1(c)] appears to be shifted with respect
to the ionizing XUV pulse, its functional form strictly
follows the prediction by first-order perturbation theory
Eq. (2.1). In this sense the response of the electronic wave
function to the ionizing field is instantaneous. Conse-
quently, ⟨𝑃𝐼⟩𝑡 depends on the temporal shape of the XUV
field and the absolute value of the dipole matrix element
but not on its phase. While ⟨𝑃𝐼⟩𝑡 can be easily extracted
from simulations, it does not, however, correspond to an
experimental observable as it is not accessible through
the asymptotic final state. This is underscored by the
fact that the value of ⟨𝑃𝐼⟩𝑡 is not unique but depends on
the choice of the projection {|𝑖⟩⟨𝑖|} in Eq. (2.37). The
field-free bound states {|𝑖⟩} chosen in the present exam-
ple [Fig. 1(c)] are of no specific physical significance in
the presence of the XUV field 𝐹XUV(𝑡). An alternative
choice would be e.g., the projection onto the adiabatic
bound-state spectrum,

{︀
|𝑖⟩𝐹XUV(𝑡)

}︀
. Moreover, ⟨𝑃𝐼⟩𝑡 can

be shown to be strongly dependent on the choice of the
gauge (Eqs. 2.2 and 2.3) even within an exact solution of
the TDSE contradicting the notion of a physical observ-
able. Both the overall shape of the turn-on curve of ⟨𝑃𝐼⟩𝑡
as well as the amplitude and phase of the superimposed
small oscillations [Fig. 1(c)] vary with gauge. Only after
the conclusion of the pulse the bound-state projection be-
comes unique which is, however, well past the ionization
times to be extracted. It is, therefore, difficult to identify
a meaningful ionization time from calculated ⟨𝑃𝐼⟩𝑡 since
it carries no direct information on the scattering phases.

This example illustrates that the group delay 𝑡EWS,

i.e., the delayed formation of an outgoing wavepacket
propagating with group velocity 𝑣𝑔 towards the detector,
provides temporal information encoded in the asymptotic
wavepacket as it reaches the detector and is unrelated to
the time-dependent norm of the continuum portion of the
wavefunction.

III. COULOMB SCATTERING AND COULOMB TIME
DELAY

Since in photoionization the exit channel interaction
between the outgoing electron and the residual complex is
Coulombic, suitable generalizations of the time-delay op-
erator [Eq. (2.26)] are required to account for the infinite
range of the potential. The receding wavepacket remains
asymptotically Coulomb distorted and never converges
to a free wavepacket. Since, however, this Coulomb
distortion is universal, i.e., independent of any system-
specific short-ranged interactions a general formulation
of the modification can be given (Martin, 1981). A con-
venient starting point is the asymptotic expansion of the
Coulomb wave, Φ𝐶

�̂�
(𝑍, �⃗�), in the field of the ionic charge

𝑍 with wavevector 𝑘 and energy 𝜖 = 𝑘2/2,

Φ𝐶
�̂�
(𝑍,�⃗�)=

∑︁
ℓ

(2ℓ+1)𝑖ℓ𝑒𝑖𝜎
𝐶
ℓ (𝜖)𝐹ℓ(𝑍,𝑘,𝑟)𝑘𝑟𝑃ℓ(cos 𝜃) . (3.1)

The asymptotic limit 𝑟 → ∞ of the amplitude of the
partial wave ℓ is given by

𝐹ℓ(𝑍, 𝑘, 𝑟) →
𝑟→∞

sin

(︂
𝑘𝑟− ℓ𝜋

2
+
𝑍

𝑘
ln 2𝑘𝑟+𝜎𝐶

ℓ (𝜖)

)︂
(3.2)

with the 𝑟-independent Coulomb phase shift

𝜎𝐶
ℓ (𝜖) = arg Γ

(︂
1 + ℓ− 𝑖

𝑍

𝑘

)︂
= Im

[︂
ln Γ

(︂
1 + ℓ− 𝑖

𝑍

𝑘

)︂]︂
. (3.3)

𝜎𝐶
ℓ (𝜖) can be taken as the Coulomb analogue of the short-

ranged phase shift 𝛿ℓ(𝜖). Correspondingly, the on-shell
Coulomb partial-wave 𝑆-matrix is given by

𝑆ℓ(𝜖) =
Γ
(︀
1 + ℓ− 𝑖𝑍𝑘

)︀
Γ
(︀
1 + ℓ+ 𝑖𝑍𝑘

)︀ . (3.4)

In analogy to Eq. (2.27), we define a Coulomb time delay
for half-scattering (see Martin, 1981) through

𝑡CEWS(𝜖, ℓ) =
𝑑

𝑑𝜖
𝜎𝐶
ℓ (𝜖) . (3.5)

We refer to this 𝑟-independent delay in the follow-
ing as the Coulomb-EWS delay. However, the long-
range Coulomb distortion gives rise to the additional 𝑟-
dependent logarithmic phase (∼ ln 2𝑘𝑟) in Eq. (3.2) rel-
ative to which the Coulomb phase shift is now defined.
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Since both phase contributions depend on the same Som-
merfeld parameter 𝜂 = 𝑍/𝑘, a clear-cut separation and
interpretation is not straight-forward. As first pointed
out by Clark (1979) in a little known paper it is conve-
nient to include both phase contributions into the defini-
tion of the Coulomb time delay

𝑡Coul(𝜖, ℓ, 𝑟) =
𝜕

𝜕𝜖

(︂
𝑍

𝑘
ln(2𝑘𝑟) + 𝜎ℓ(𝜖)

)︂
(3.6)

= Δ𝑡Coul(𝜖, 𝑟) + 𝑡𝐶EWS(𝜖, ℓ) , (3.7)

containing, in addition to 𝑡CEWS, a contribution due to
the logarithmic distortion of the wavefront

Δ𝑡Coul(𝜖, 𝑟) =
𝑍

(2𝜖)3/2

[︁
1− ln

(︁
2
√
2𝜖𝑟
)︁]︁

. (3.8)

We refer to Δ𝑡Coul [Eq. (3.8)] as the Coulomb correction
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FIG. 2 (Color online) As in Fig. 1 but for He+(1s) with
Coulomb interaction. (a) ⟨𝑟⟩𝑡 vs time, the inset schemati-
cally indicates the change in the intercept depending on the
distance (or propagation time) at which the linear slope is de-
termined [Eq. (3.9)] due to the sub-linear growth of ⟨𝑟⟩𝑡. (b)
Temporal profile of the XUV pulse. (c) Comparison between
the intercept determined from (a) and the analytic prediction
of 𝑡Coul [Eq. (3.7)].

to the EWS time delay 𝑡CEWS [Eq. 3.5]. The Coulomb
time shift 𝑡Coul [Eq. (3.7)] has only recently been inves-
tigated (Zhang and Thumm, 2010, 2011c; Nagele et al.,
2011; Ivanov and Smirnova, 2011; Dahlström et al., 2013,

2012b; Pazourek et al., 2013; Su et al., 2013b,c; Serov
et al., 2013) in the context of attosecond time-resolved
photoemission. It gives the time delay relative to a free
wavepacket, however, with the drawback that its value
depends on the radial coordinate and diverges as 𝑟 → ∞.

The significance of 𝑡Coul can be illustrated with the
help of a simulation for the photoionization of He+(1𝑠)
repeating the calculation for detachment for identical
pulse parameters (see Section II.C), however, for diverg-
ing screening lengths 𝑎 → ∞ [Eq. (2.36)], i.e., 𝑉𝑌 → 𝑉𝐶
in Eq. (2.35). The time evolution of the first moment
of the outgoing wavepacket [Fig. 2(a)] appears to closely
resemble that in a short-ranged potential for short times
[Fig. 1(a)]. For large times, the growth of ⟨𝑟⟩𝑡 slows down
with 𝑡 and bends towards the 𝑡-axis [schematically shown
in Fig. 2(a), inset]. The intercept with the 𝑡-axis from the
linear extrapolation [Eq. (2.33)], 𝑡−⟨𝑟⟩𝑡/𝑘, does not con-
verge to a well defined limit but becomes dependent on
the time when the temporal extrapolation is performed.
This intercept follows, however, with remarkable accu-
racy [Fig. 2(c)], the implicit relation

𝑡Coul(𝜖, ℓ, ⟨𝑟⟩𝑡) = 𝑡− ⟨𝑟⟩𝑡
𝑘

(3.9)

which can be further simplified to the explicit relation,

𝑡− ⟨𝑟⟩𝑡
𝑘

= 𝑡CEWS(𝜖, ℓ) +
𝑍

(2𝜖)3/2
[︀
1− ln(2𝑘2𝑡)

]︀
, (3.10)

where the locally varying delay time Δ𝑡Coul (Eq. 3.8) is
evaluated at 𝑟 = 𝑘𝑡 for the radial motion of a free parti-
cle. The error introduced by the latter approximation is
within the graphical accuracy of Fig. 2(c). The Coulomb
delay time 𝑡Coul [Eq. (3.7)] is therefore the analogue to
the time shift associated with the first moment of the
wavepacket [Eq. (2.33)] while the Coulomb-EWS time
𝑡CEWS is the analogue to the time delay determined by
the spectral variation of the phase shift [Eq. (2.27)]. Un-
like for short-ranged potentials, these two quantities do
not coincide. The difference between the two is precisely
given by the additional time shift Δ𝑡Coul [Eq. (3.8)] in-
duced by the logarithmic distortion of the wavepacket.
Δ𝑡Coul is universal as it depends only on the energy
𝜖 = 𝑘2/2 of the electron and the strength of the Coulomb
field, 𝑍, but is independent of the partial wave ℓ or
the initial state to be photoionized. It accounts for the
“slowing down” of the outgoing electron by the attrac-
tive Coulomb field resulting in an apparent negative time
shift. It should be noted that the Coulomb-EWS delay
is subject to the Wigner causality constraint (Wigner,
1955), i.e., 𝑡CEWS ≥ −𝜏XUV, while 𝑡Coul is not. In princi-
ple, 𝑡Coul can take on arbitrarily large negative values due
to the logarithmic divergence of the Coulomb corrected
time shift Δ𝑡Coul.

The exit-channel Coulomb interaction is not only cause
of the complications in terms of the modification of the
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EWS time delay [Eq. (3.7)] but also provides unprece-
dented opportunities to explore in detail the quantum-
classical correspondence for the time delay as an ob-
servable. As is well known for Coulomb scattering (see
e.g., Landau and Lifshitz, 1958; McDowell and Coleman,
1970), the close quantum-classical correspondence follows
from the fact that the de-Broglie wavelength of the scat-
tered particle 𝜆dB = 2𝜋/

√
2𝜖 is negligibly small compared

to the infinite range (𝑎 → ∞) of the Coulomb potential
for all energies 𝜖. This allows to directly and unambigu-
ously relate the expectation value of the quantum observ-
able time delay to travel times on classical trajectories for
all energies of the photoionized electron.

Following Clark (1979), we calculate the classical
Coulomb time shift 𝑡cl.Coul of an electron in the Coulomb
field relative to that of a free electron (Pazourek et al.,
2013). Solving the equation of motion for a hyperbolic
Kepler trajectory of fixed classical angular momentum 𝐿
we find for 𝑟 → ∞

𝑡cl.Coul(𝜖, 𝐿, 𝑟=𝑘𝑡) = 𝑡(𝑟)− 𝑟

𝑘

≈ 𝑍

(2𝜖)3/2

[︃
1−ln

(︃
4𝜖𝑡√︀
𝜂2+𝐿2

)︃]︃
. (3.11)

Decomposing Eq. (3.11) into those contributions that are
𝑟 (or 𝑡) dependent and those that are 𝑟 independent leads
to

𝑡cl.Coul(𝜖, 𝐿, 𝑟=𝑘𝑡) =
𝑍

(2𝜖)3/2
ln(
√︀
𝜂2+𝐿2)

+ Δ𝑡Coul(𝜖, 𝑟=𝑘𝑡) , (3.12)

where the 𝑟-(or time)-dependent Δ𝑡Coul agrees precisely
with the Coulomb correction of the quantum wavepacket
[Eq. (3.10)]. Comparing Eq. (3.12) with Eq. (3.7) sug-
gests to relate the classical 𝑟-independent first term to
the quantum mechanical Coulomb-EWS time Eq. (3.5).
To this end, we investigate the semiclassical limit of the
quantum EWS delay [Eq. (3.5)] expressed in terms of the
digamma function Ψ(𝑥)

𝑡CEWS(𝜖, ℓ) =
𝑍

(2𝜖)3/2
Re [Ψ(1 + ℓ− 𝑖𝜂)] . (3.13)

For large arguments |𝑥| of Ψ(𝑥), reached for either large
ℓ or large Coulomb-Sommerfeld parameter 𝜂, we obtain

𝑡CEWS(𝜖, ℓ)
|𝑥|≫1
=

𝑍

(2𝜖)3/2
ln
(︁√︀

(1 + ℓ)2 + 𝜂2
)︁

≃ 𝑍

(2𝜖)3/2
ln
(︁√︀

𝐿2 + 𝜂2
)︁
= 𝑡C, cl.

EWS (𝜖, 𝐿) , (3.14)

in complete agreement with the first term in Eq. (3.12).
Consequently, we can identify

𝑡C, cl.
EWS (𝜖, 𝐿) =

𝑍

(2𝜖)3/2
ln(
√︀
𝜂2 + 𝐿2) (3.15)

as the classical Coulomb-EWS time. In Eq. (3.15) the
relation between the angular momentum 𝐿 and the ℓ
quantum number is established through the semiclassical
Langer connection (Langer, 1937; Burgdörfer et al., 1995)
𝐿 ≃ ℓ+1/2. The convergence of the quantum Coulomb-
EWS time [Eq. (3.13)] to its (semi)classical counterpart
[Eq. (3.15)] is remarkably fast. Even for modest values of
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FIG. 3 (Color online) Coulomb EWS times for photoioniza-
tion from H (𝑍 = 1) or He+ (𝑍 = 2) as function of the final
electron energy 𝜀. (a) Comparison of the quantum EWS time
delay Eq. (3.5) with the classical analogue Eq. (3.15) (us-
ing semiclassical mapping of the angular momentum quan-
tum number ℓ to the classical angular momentum 𝐿 = ℓ+ 1

2
).

(b) Relative EWS delay 𝑡Δℓ
EWS(𝜖, ℓ) between partial wave ℓ and

ℓ = 0 [Eq. (3.17)] as a function of 𝜖.

|(1 + ℓ)− 𝑖𝜂| & 1 the agreement is excellent [Fig. 3(a)].
The Coulomb-EWS time delay, both classically

[Eq. (3.15)] and quantum mechanically [Eq. (3.13)], fea-
tures a non-separable coupling between contributions due
to the Coulomb potential and the centrifugal potential

𝑉 (ℓ, 𝑟) =
ℓ(ℓ+ 1)

2𝑟2
. (3.16)

This differs from short-ranged potentials for which the
asymptotic 𝑟−2 tail gives rise to an energy-independent
scattering phase, −ℓ𝜋/2, and, hence, no contribution to
the time delay. At fixed energy, the relative delay be-
tween partial waves ℓ in the Coulomb field,

𝑡Δℓ
EWS(𝜖, ℓ) = 𝑡CEWS(𝜖, ℓ)− 𝑡CEWS(𝜖, 0)

=

ℓ∑︁
𝑗=1

1√
2𝜖

𝑍𝑗

2𝜖𝑍𝑗2 + 𝑍2
(3.17)

monotonically increases with ℓ and scales as ∼ 𝜖−3/2

[Fig. 3(b)]. Remarkably, this relative delay has been first
observed in time-integral but angle- and spin-resolved
photoemission (Heinzmann and Dil, 2012; Heinzmann,
2013).

The close correspondence between the quantum and
classical time shifts for Coulomb-interacting particles has
several important consequences. The quantum EWS
time delay expressed in terms of the energy derivative
of a (quantum) scattering phase [Eqs. (2.27) and (3.5)]



12

can be unambiguously identified with a bona-fide clas-
sical delay time on a trajectory measured by a classi-
cal clock. Moreover, for time-resolved photoionization,
contributions due to long-range Coulomb interactions in
the exit channel can be accounted for both classically
and quantum mechanically to a high degree of accuracy,
thereby allowing to clearly disentangle intrinsic short-
ranged delay times in complex systems from Coulomb-
induced time shifts. In this context, it is convenient to
exploit the close quantum-classical correspondence one
more time to spatially disentangle the two contributions
to the Coulomb time delay [Eq. (3.7)], the Coulomb-EWS
delay 𝑡CEWS and the time shift correction Δ𝑡Coul from each
other. To this end, we employ the properties of the 𝑆-
matrix for a Coulomb potential with a cut-off at a fi-
nite radius 𝑟 = 𝑅cut (Taylor, 1974) and decompose the
Coulomb potential as

𝑉𝑐(𝑟) = −𝑍
𝑟
[𝜃(𝑅cut − 𝑟) + 𝜃(𝑟 −𝑅cut)]

= 𝑉short(𝑟) + 𝑉asym(𝑟)
(3.18)

into a short-ranged potential

𝑉short(𝑟) = −𝑍
𝑟
𝜃(𝑅cut − 𝑟) (3.19)

and an asymptotic tail

𝑉asym(𝑟) = −𝑍
𝑟
𝜃(𝑟 −𝑅cut) . (3.20)

For the short-ranged part, standard scattering theory ap-
plies and yields for the 𝑆-matrix in the partial wave basis

𝑆short
ℓ (𝜖) = 𝑒2𝑖𝛿

short
ℓ (𝜖) (3.21)

with

𝛿shortℓ (𝜖) ≃ 𝜎𝐶
ℓ (𝜖) +

𝑍

𝑘
ln(2𝑘𝑅cut) (3.22)

up to corrections to order 𝑍(2𝑘𝑅cut)
−1 (Taylor, 1974).

For large 𝑅cut → ∞, the Coulomb phase shift is recov-
ered while for any finite 𝑅cut, the logarithmically diver-
gent phase is now unambiguously associated with the po-
tential 𝑉asym. The EWS delay for the short-ranged part
follows from Eq. (3.22) as

𝑡shortEWS(𝜖) = 𝑡CEWS +
𝑍

(2𝜖)3/2

[︁
1− ln

(︁
2
√
2𝜖𝑅cut

)︁]︁
. (3.23)

If one now chooses the cut-off radius 𝑅cut such that
ln(2

√
2𝜖𝑅cut) = 1, the second term in Eq. (3.23) vanishes

and the proper EWS delay of the short-ranged potential
𝑡shortEWS coincides with the Coulomb-EWS delay 𝑡CEWS. In
turn, the Coulomb correction Δ𝑡Coul is now the time shift
exclusively acquired by the motion in the asymptotic po-
tential Eq. (3.20). For applications to photoionization,

the cut-off parameter can be chosen for a given central
frequency 𝜔XUV to be energy dependent

𝑅cut =
𝑒

2
√︀

2(𝜔XUV + 𝜖𝑖)
. (3.24)

A numerical test (Fig. 4) shows that 𝑡shortEWS(𝜖) = 𝑡CEWS(𝜖)
is fulfilled to a very good degree of approximation. Tak-
ing into account the close quantum-classical correspon-
dence, one can, to a good degree of approximation, at-
tribute 𝑡CEWS to the delay acquired by the electron on
the inner part of the classical trajectory (𝑟 . 𝑅cut) while
Δ𝑡Coul is the time shift along the outer part of the Ke-
pler hyperbola. Alternative decompositions have been
explored in the recent literature (Nagele et al., 2011,
2014; Ivanov and Smirnova, 2011; Pazourek et al., 2012a,
2013; Dahlström et al., 2012b, 2013; Su et al., 2014a).
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FIG. 4 (Color online) Comparison between the Coulomb
EWS delay 𝑡CEWS(𝜀) [Eq. (3.5)] and the delay due to the short-
ranged cut-off potential [Eq. (3.19)], 𝑡shortEWS(𝜀, ℓ) [Eq. (3.23)],
for a cut-off 𝑅cut(𝜖) given by Eq. (3.24).

IV. ATTOSECOND STREAKING OF PHOTOEMISSION

A. Streaking principle

Attosecond streaking (Constant et al., 1997; Itatani
et al., 2002; Kitzler et al., 2002; Kienberger et al., 2004;
Yakovlev et al., 2005) has developed into one of the most
important and versatile tools of attosecond science. It is
a pump-probe technique in which the attosecond XUV
pulse (with, typically, 𝜏XUV = 100 to 500 as) serves
as pump creating the photoelectron wavepacket while
the carrier-envelope phase (CEP) controlled moderately
strong (with intensities of the order 𝐼IR ≃ 1011 W/cm2)
linearly polarized few-cycle IR pulse streaks, i.e., probes,
the wavepacket. In analogy to conventional streaking
(cf. e.g., Shepherd et al., 1995; Maksimchuk et al., 1996;
Murnane et al., 1990) that maps time onto distance, at-
tosecond streaking maps time information onto energy
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thereby allowing to extract time information from the
time-integral photoelectron spectrum with attosecond
precision (Hentschel et al., 2001; Drescher et al., 2001,
2002; Kienberger et al., 2004; Goulielmakis et al., 2004;
Mairesse and Quéré, 2005; Quéré et al., 2005; Cavalieri
et al., 2007; Gagnon et al., 2008; Schultze et al., 2010;
Yakovlev et al., 2010). We illustrate the opportunities
and challenges in extracting attosecond timing informa-
tion from spectral information for the example of attosec-
ond streaking by linearly polarized light. Many of the
results as well as difficulties apply to alternative proto-
cols as well. The latter include the interferometric RAB-
BIT technique (Paul et al., 2001; Véniard et al., 1996;
Toma and Muller, 2002; Klünder et al., 2011; Guénot
et al., 2012, 2014; Palatchi et al., 2014) for ionization by
attosecond pulse trains (APT) and angular attosecond
streaking by circularly polarized IR pulses (Eckle et al.,
2008a,b; Pfeiffer et al., 2011a,b, 2013).

Point of departure for attosecond streaking is that the
momentum of the emitted electron receives in the pres-
ence of a strong IR field a ponderomotive shift

𝑝𝑓 (𝜏) = 𝑝0 − �⃗�IR(𝜏) , (4.1)

given by the value of the (for simplicity rescaled) vector
potential 𝐴IR = 𝐴IR(𝜏)/𝑐 at the instant of the arrival
in the continuum, 𝜏 , from which time on the liberated
electron is accelerated by the electric field. In Eq. (4.1),
𝑝0 is the asymptotic momentum associated with the en-
ergy of the photoelectron, 𝐸0 = 𝑝20/2 (𝐸0 = 𝜔XUV + 𝜖𝑖),
in the absence of the streaking field. Following Eq. (4.1)
the momentum 𝑝𝑓 (𝜏) and the energy 𝐸𝑓 (𝜏) = 𝑝2𝑓 (𝜏)/2
in the presence of the IR field become functions of 𝜏 via
�⃗�IR. Since the temporal distribution of a CEP controlled
IR laser field 𝐹IR(𝜏) and the associated vector potential
�⃗�IR(𝜏),

�⃗�IR(𝜏) =

∫︁ ∞

𝜏

𝐹IR(𝑡)d𝑡 , (4.2)

can be well controlled with subcycle precision, Eq. (4.1)
amounts to a mapping of the time 𝜏 onto the modulation
of the linear momentum 𝑝𝑓 (𝜏) or the energy, 𝐸𝑓 (𝜏), of
the photoelectron. If ionization were truly instantaneous,
𝜏 would be the delay of the IR pulse relative to the peak
of the XUV pulse (at 𝑡𝑎 = 0).

One implicit assumption underlying Eq. (4.1) is that
the emitted electron attains instantaneously the asymp-
totic momentum 𝑝0 on a time scale resolvable by at-
tosecond streaking. Another assumption is that the
wavepacket propagation in the continuum is dominated
by the electromagnetic vector potential rather than by
the interaction with the remaining ionic fragment in the
exit channel. We also require that the kinetic energy
of the emitted electron is high enough so that it is not
driven back to the residual complex by the IR field (refer
to Xu et al., 2011; Hou et al., 2012, for a discussion of

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

-6

-4

-2

0

2

4

6
τ

F
(1
0
−3
a.
u
.)

A
(1
0
−2
a.
u
.)

τ ( fs)

FR(t)
AR(t)

FXUV(t)

(a)

-2 -1 0 1 2

τ (fs)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

E
le
ct
ro
n
m
om

en
tu
m

(a
.u
.)

0

1(b)

-AR(τ)

−20 0
τ [as]

FIG. 5 (Color online) Simulation of attosecond streaking: (a)
Typical temporal profile of streaking fields. IR laser field with
𝜆 = 800 nm, a sine-squared envelope and total duration of 6 fs
and an intensity of 𝐼IR = 4 ·1011 W/cm2. The XUV pulse has
a Gaussian envelope, a FWHM duration of 200 as and an in-
tensity 𝐼XUV = 1013 W/cm2. (b) Streaking spectrogram for
ionization of a model atom with Yukawa-like short-ranged exit
channel interaction [Eq. (2.36)]. For reference the vector po-
tential 𝐴IR(𝜏) is also shown (orange solid line). Comparison
with the shift of the spectrogram (gray dashed line) yields the
streaking time shift (see inset).

attosecond streaking in the low-energy region). This par-
ticular variant of a “strong-field” approximation requires,
in fact, a much weaker laser intensity than typically in-
voked in the “strong-field” approximation to ionization
(see Joachain et al., 2012, and references therein). The
validity of these assumptions will be explored in more
detail below.

A typical streaking spectrogram [Fig. 5(b)] generated
by an attosecond XUV pulse and a few-cycle IR pulse
time delayed relative to another [Fig. 5(a)] yields a mo-
mentum distribution 𝑝𝑓 along the polarization axis of the
�⃗�IR field or, equivalently, the differential energy distribu-
tion in forward (𝜃 = 0∘) or backward direction (𝜃 = 180∘)
modulated by the temporal distribution of the 𝐴IR field.
Identification of the time information encoded in such a
streaking trace is key to observe attosecond-time-resolved
processes.

The interrogation by the streaking field can be viewed
as a measurement by a clock. For long-lived excitations
of continuum states, e.g., resonances in the continuum
(Drescher et al., 2002; Wickenhauser et al., 2005, 2006;
Ott et al., 2013) or long XUV pulses 𝜏XUV & 𝑇IR (𝑇IR :
cycle period of the IR field), the streaking information ap-
pears in the spectral sidebands separated by multiples of
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the photon energy 𝜔IR [Fig. 6(a)]. The pioneering proof
of principle experiment (Drescher et al., 2002), measuring
the lifetime of 8 fs of an Auger resonance in krypton per-
tained to this regime. This limit of quantized probe-field
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FIG. 6 (Color online) Simulation of streaking spectrograms
for ionization from the Yukawa ground state for different XUV
pulse durations 𝜏XUV, ~𝜔 = 100 eV, and 𝐼XUV = 1013 W/cm2.
The IR field had a total duration of 6 fs with a sine-squared
envelope, 𝜆 = 800 nm, and 𝐼IR = 1012 W/cm2. The dura-
tion of one optical cycle is 2668 as. The spectra are taken in
forward direction (𝑝 = 𝑝𝑧) with an opening angle of 10∘.

interaction is referred to in the following as a quantum
clock. The notion of a quantum clock was originally in-
troduced by Salecker and Wigner (1958) signifying the
system to be interrogated and the measuring device, the
“clock”, are coupled systems following the rules of quan-
tum dynamics. By contrast, a classical clock refers to
(not necessarily macroscopic) decoherent environmental
degrees of freedom described by classical dynamics.

Translating this concept to the present scenario where
the system to be clocked is an XUV pulse excited (many)
electron system and the interaction with the IR probe
pulse represents the clock, we refer to measurement pro-
tocols that exploit the quantized interaction with the IR
field, in particular interferometric processes, as quantum
clocks while those invoking only classical electron-IR field
interactions as classical clocks. The recovery of timing
information from the quantized spectral side bands can

therefore be viewed as a realization of a quantum clock.
This limit also applies to the RABBIT interferometry
for attosecond pulse trains (APT; Paul et al., 2001) ex-
tending over many femtoseconds and optical cycles. In
the opposite limit of short-lived excitations (Drescher
and Krausz, 2005; Wickenhauser et al., 2005, 2006) or
single attosecond pulses with 𝜏XUV ≪ 𝑇 (Goulielmakis
et al., 2004; Sansone et al., 2006; Goulielmakis et al.,
2007, 2008; Gilbertson et al., 2010a; Zhao et al., 2012),
attosecond streaking [Eqs. (4.1) and (4.2)] approaches
the limit of a measurement by a classical clock. Fig-
ure 6 illustrates the transition between the two regimes.
The hallmark for the approach of the classical limit is
the gradual disappearance of the interference modula-
tions, visible in Fig. 6(a), until only the classical oscilla-
tions of the ponderomotive shift survive [Fig. 6(c)]. We
will primarily focus on the latter regime as it facilitates
the intuitive, classical interpretation of time and time
delay extracted from quantum dynamics and illustrates
quantum-classical correspondence. However, as the in-
terrogating field is moderately strong, the presence of
the IR field may distort the timing information to be ex-
tracted. Since for easily resolvable energy shifts IR fields
with intensities of the order 𝐼IR ≈ 1011 to 1012 W/cm2

are needed, such distortion effects generally cannot be
neglected. The task is, thus, to disentangle probe-field
induced modifications of the elements of the 𝑆-matrix,
𝑆XUV−IR [Eq. (2.20)], from properties of the original 𝑆-
matrix (𝑆XUV) for photoemission [Eq. (2.6)].

B. Attosecond streaking for short-ranged potentials

The analysis of the time extracted by attosecond
streaking becomes particularly simple when only short-
ranged potentials govern the motion of the electronic
wavepacket in the exit channel. We expose the model
atom with a Yukawa-type screened potential [Eq. (2.35)],
Eq. (2.36) to both an XUV pulse and an IR streaking
pulse shifted relative to each other by the delay 𝜏 . A fit
of the first moment ⟨𝑝𝑓,𝑧⟩ or, equivalently, the peak of the
momentum distribution to the temporal distribution of
the 𝐴IR field [Eq. (4.1)], also shown in Fig. 5(b), reveals a
miniscule but unambiguously determined streaking time
shift, 𝑡S,

𝑝𝑓 (𝜏) = 𝑝0 − �⃗�IR(𝜏 + 𝑡S) , (4.3)

relative to the XUV-pump IR-probe delay 𝜏 . Remark-
ably, this streaking time agrees with sub-attosecond pre-
cision [Fig. 7(a)] with the EWS time delay for this model
system (see Section II) over a wide range of energies and
different screening lengths provided the latter are small
compared to the de-Broglie wavelength 𝜆dB of the outgo-
ing electron, 1 a.u., 𝑎 . 𝜆dB (Nagele et al., 2011, 2014).
In the case of short-ranged potentials we can unambigu-
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FIG. 7 (Color online) Streaking time shifts 𝑡𝑆 (dots) ex-
tracted from quantum mechanical simulations and 𝑡EWS

(lines) determined from the spectral variation of the scattering
phase for the short-ranged Yukawa potential 𝑉Y [Eq. (2.36)].
(a) Small screening length (𝑎 . 𝜆dB): 𝑎 = 0.5, 1, 2; (b) Large
screening length (𝑎 ≫ 𝜆dB): 𝑎 = 20 (purple solid dots and
line), 𝑎 = 200 (green open dots an dashed line). The streak-
ing IR laser field has a wavelength of 800 nm, a duration of
3 fs, and an intensity of 1012 W/cm2.

ously identify from the numerical simulations

𝑡S = 𝑡EWS , (4.4)

and, hence

𝑝𝑓 (𝜏) = 𝑝0 − �⃗�IR(𝜏 + 𝑡S) = 𝑝0 − �⃗�IR(𝜏 + 𝑡EWS) . (4.5)

It is, thus the group delay of the outgoing wavepacket
that attosecond streaking measures. This result is ex-
pected to hold for other short-ranged potentials of com-
parable range as well (Zhang and Thumm, 2011c; Su
et al., 2013c). One important caveat is highlighted in
Fig. 7(b). For large screening lengths 𝑎≫ 𝜆dB, i.e., when
the potential increasingly resembles a Coulomb poten-
tial, the correspondence between 𝑡S and 𝑡EWS starts to
break down (Nagele et al., 2014). This difficulty points to
the modifications required for attosecond streaking with
long-range Coulomb interactions in the exit channel.

C. Streaking in the presence of a Coulomb field

In photoionization of an initially charge-neutral system
(atom, molecule, or solid surface), the exit channel inter-
actions of the outgoing electron with the residual ionic
system inevitably features a Coulombic long-range tail
in addition to channel-specific short-ranged interactions.

Understanding of the extraction of timing information by
attosecond streaking in a pure Coulomb field is therefore
of central importance.

The full numerical solution of the 3D-TDSE for the
streaking of the prototypical case, ionization of hydro-
gen, H(1𝑠), by an attosecond XUV pulse (Fig. 8) clearly
shows that the time shift 𝑡S extracted from the streaking
diagram strongly differs from the Coulomb EWS delay
(Nagele et al., 2011). The difference to the EWS delay,

𝑡CLC(𝑍 = 1, 𝐸, 𝜔IR) = 𝑡S [H(1𝑠)]− 𝑡CEWS(𝐸, ℓ = 1) (4.6)

is often referred to as Coulomb-laser coupling (CLC) time
shift (Zhang and Thumm, 2010; Smirnova et al., 2006,
2007). The origin of the CLC contribution lies in the ad-
ditional logarithmic phase distortion [Eqs. (3.6) to (3.8)]
present for Coulomb interactions in the exit channel. The
interaction of the outgoing electron with the IR field
maps a finite portion of the Coulomb correction, Δ𝑡Coul
(Eq. 3.8), directly onto the observed streaking time shift.
Remarkably, a simulation based on the classical trajec-
tory Monte-Carlo (CTMC) method (Abrines and Perci-
val, 1966; Dimitriou et al., 2004) yields 𝑡S in close agree-
ment with the TDSE result (Nagele et al., 2011; Su et al.,
2013a). Within a CTMC treatment an average over the
microcanonical ensemble of starting positions �⃗� repre-
senting the initial state is taken and, therefore, the results
are independent of a particular choice of initial condi-
tions. This differs from a semi-classical model by Ivanov
and Smirnova (2011) where 𝑟0 is introduced as an ad-
justable matching parameter. This approximate model
treats the Coulomb interaction as a perturbative correc-
tion to the IR field interaction and has been shown to
result in deviations from the exact classical (CTMC) or
quantum (TDSE) solution for moderate streaking fields
(Su et al., 2013a). This error can be partially compen-
sated by adjusting 𝑟0.

The close quantum-classical correspondence for the
Coulomb time delay [Eq. (3.14)] allows for a simple and
intuitive trajectory-based description of 𝑡CLC. The clas-
sical asymptotic momentum in the presence of the streak-
ing field, 𝑝𝑓 (𝜏), as a function of the delay 𝜏 between the
ionizing XUV field peak and the peak in the envelope
of the streaking field for a trajectory taking off near the
nucleus, �⃗�𝑖(𝜏) ≃ 0, is given by

𝑝𝑓 (𝜏) = 𝑝𝑖(𝜏) +

∫︁ ∞

𝜏

�⃗�𝐶+IR [�⃗�(𝑡)] 𝑑𝑡 (4.7)

where �⃗�𝐶+IR [�⃗�(𝑡)] denotes the acceleration along the tra-
jectory �⃗�(𝑡) in the combined Coulomb and IR fields. If
only the Coulomb field were present, Eq. (4.7) reduces to

𝑝𝑓 (𝜏) = 𝑝𝑖(𝜏) +

∫︁ ∞

𝜏

𝑎𝐶 [�⃗�(𝑡)] 𝑑𝑡 = 𝑝0 (4.8)

with 𝑝0 the asymptotic momentum of the photoionized
electron with 𝑝0 =

√︀
2(𝜔XUV + 𝜖𝑖). Conversely, if only
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FIG. 8 (Color online) Comparison between the streaking time
shift 𝑡S and the Coulomb EWS time delay 𝑡CEWS for photoion-
ization of hydrogen as a function of the final kinetic energy
𝜀 of the outgoing electron (𝜀 = 𝜔 + 𝜀𝑖). Also shown is the
classical streaking time shift 𝑡cl.S calculated with the CTMC
method (open squares). Classical and quantum 𝑡S agree with
each other to within the graphical resolution when the map-
ping between classical and quantum angular momentum is
𝐿 = ℓ+ 1

2
. The analytic approximation Δ𝑡Coul [Eq. (4.18)] co-

incides with the numerical quantum result for 𝑡CLC [Eq. (4.6)]
to within a fraction of an attosecond.

the IR field were present, we recover the standard streak-
ing expression [Eq. (4.1)],

𝑝𝑓 (𝜏) = 𝑝𝑖(𝜏) +

∫︁ ∞

𝜏

𝑎IR [�⃗�(𝑡)] 𝑑𝑡

= 𝑝𝑖(𝜏)−
∫︁ ∞

𝜏

𝐹IR(𝑡)𝑑𝑡 = 𝑝0(𝜏)− �⃗�IR(𝜏) , (4.9)

In Eq. (4.9) 𝑝𝑖(𝜏) is replaced by 𝑝0(𝜏) since in the ab-
sence of a long-ranged exit channel potential the local
momentum coincides with the asymptotic momentum.
Note that the trajectories along which Eqs. (4.7) to (4.9)
are integrated will be different for each of the three
cases for identical initial conditions. Inserting Eqs. (4.8)
and (4.9) into Eq. (4.7) yields the Coulomb-modified
streaking equation

𝑝𝑓 (𝜏) = 𝑝0 − �⃗�IR(𝑡)

+

∫︁ ∞

𝜏

(𝑎𝐶+IR [�⃗�(𝑡)]−𝑎𝐶 [�⃗�(𝑡)]−𝑎IR [�⃗�(𝑡)]) 𝑑𝑡 . (4.10)

The integral in Eq. (4.10) can now be easily estimated
exploiting the spatial decomposition of the Coulomb po-
tential into a short-ranged potential and an asymptotic
tail [Eq. (3.18)]. For the short-ranged part we find to
leading order in the IR-field induced variations of the

trajectory∫︁ 𝑡(𝑅cut)

𝜏

(𝑎𝐶+IR [�⃗�(𝑡)]− 𝑎𝐶 [�⃗�(𝑡)]− 𝑎IR [�⃗�(𝑡)]) 𝑑𝑡

= 𝑐short(𝜖, 𝑍, 𝐿)𝐹IR(𝜏) . (4.11)

Analogously,∫︁ ∞

𝑡(𝑅cut)
(𝑎𝐶+IR [�⃗�(𝑡)]− 𝑎𝐶 [�⃗�(𝑡)]− 𝑎IR [�⃗�(𝑡)]) 𝑑𝑡

= 𝑐asym(𝜖, 𝑍, 𝜔IR)𝐹IR(𝜏) . (4.12)

Explicit expressions for 𝑐short and 𝑐asym will be given be-
low. Combining Eqs. (4.11) and (4.12) with Eq. (4.10)
yields the Coulomb-streaking equation

𝑝𝑓 (𝜏) = 𝑝0 − �⃗�IR(𝜏 + 𝑡C, cl.
EWS + 𝑡CLC) , (4.13)

with

𝑡C, cl.
EWS =

1

𝜔IR
tan−1 [𝜔IR𝑐short(𝜖, 𝑍, 𝐿)] (4.14)

and

𝑡CLC =
1

𝜔IR
tan−1 [𝜔IR𝑐asym(𝜖, 𝑍, 𝜔IR)] . (4.15)

The relation Eq. (4.14) is an immediate consequence of
the streaking principle for short-ranged potentials, 𝑡S =
𝑡EWS [Eq. (4.5)]. The amplitude 𝑐short can be determined
by inserting Eq. (3.14) into Eq. (4.14),

𝑐short(𝜖, 𝑍, 𝐿) =
1

𝜔IR
tan

(︂
𝜔IR𝑍

(2𝜖)3/2
ln (
√︀
𝜂2 + 𝐿2)

)︂
.

(4.16)
An explicit determination of 𝑡CLC makes use of the
fact that the asymptotic tail of the Coulomb poten-
tial gives rise to the logarithmic phase shift and, thus,
to the Coulomb correction to the time shift [Eqs. (3.8)
and (3.10)], Δ𝑡Coul(𝜖, 𝑟 = 𝑘𝑡). An ensemble of classical
trajectories sample the temporal average over this cor-
rection to the time delay

Δ𝑡Coul =
1

Δ𝑇

∫︁ 𝑡(𝑅cut)+Δ𝑇

𝑡(𝑅cut)
𝑑𝑡Δ𝑡Coul(𝜖, 𝑟 = 𝑘𝑡) (4.17)

over a finite time interval Δ𝑇 . Since this phase shift is
sampled in the streaking field only over a finite time in-
terval, a well-defined finite contribution to the streaking
time shift emerges (Pazourek et al., 2013; Su et al., 2013a,
2014a). For interference modulations to disappear and
the classical limit of streaking to hold, the XUV pulse du-
ration should satisfy 𝜏XUV . 𝑇IR/4 [see Fig. 6(a)]. Even
slow photoelectrons will escape the Coulomb field dur-
ing a fraction of an optical cycle of the IR field. Setting
Δ𝑇 = 𝑇IR/4 Eq. (4.17) yields

𝑡CLC(𝑍, 𝜖, 𝜔IR) = Δ𝑡Coul(Δ𝑇 = 𝑇IR/4)

=
𝑍

(2𝜖)3/2
[2− ln(𝜖𝑇IR)] . (4.18)
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For a wide range of electron energies, nuclear charges,
and IR frequencies, this simple analytic formula agrees
remarkably well with the 𝑡CLC from the numerically exact
quantum as well as CTMC simulations with errors typi-
cally less than one attosecond (Fig. 8). 𝑡CLC [Eq. (4.18)]
depends on 𝑍, 𝜖, and on the streaking field period 𝑇IR (or
equivalently, its frequency 𝜔IR = 2𝜋/𝑇IR). It is however,
independent of the IR field strength. In practice, the IR
intensity should be weak enough in order to prevent field
ionization and depletion of the system to be ionized but
it should be strong enough to cause easily detectable en-
ergy modulations of the emitted electron (typical values
are 1010 W/cm2 ≤ 𝐼IR ≤ 1012 W/cm2). The remarkable
and, at first glance, counterintuitive independence of 𝐼IR
is an immediate consequence of the fact that Coulomb-
laser coupling results in a momentum shift proportional
to the field 𝐹IR [Eq. (4.12)] being 𝜋/2 phase shifted rela-
tive to the �⃗�IR field since 𝐹IR = − 𝜕

𝜕𝑡 �⃗�IR. Consequently,
the amplitude of a contribution ∼𝐹IR to the unperturbed
streaking shift ∼ �⃗�IR Eq. (4.9) yields a phase shift, or
time shift, that is independent of the modulus of 𝐴IR.
The 𝑡CLC time shift is also largely independent of the
duration and shape of the IR streaking pulse. Combin-
ing Eqs. 4.15 and 4.18 yields an approximate expression
for 𝑐asym,

𝑐asym(𝜖, 𝑍, 𝜔IR) =
1

𝜔IR
tan

(︂
𝜔IR𝑍

(2𝜖)3/2
ln (𝜖𝑇IR)

)︂
. (4.19)

Within the classical analysis, the strict additivity of the
contributions to the streaking time

𝑡S = 𝑡CEWS(𝜖, ℓ, 𝑍) + 𝑡CLC(𝜖, 𝑍, 𝜔IR) (4.20)

observed in both classical and quantum simulations is
an immediate consequence of the spatial separation of
the short-ranged and long-ranged potential contributions
along the trajectories [Eq. (3.18)]. One important conse-
quence of Eq. (4.20) is that the EWS delay for photoion-
ization in the presence of long-range Coulomb interac-
tions becomes accessible by attosecond streaking since
the time shift 𝑡CLC can be independently determined by
a streaking simulation for a Coulomb potential or ap-
proximately by Eq. (4.18).

It is of conceptual interest to compare the time in-
formation extracted by streaking for Coulomb-final state
interactions [Eq. (4.20)] with that extracted by the inter-
ferometric method of “reconstruction of attosecond har-
monic beating by interference of two-photon transitions”
(RABBIT; Paul et al., 2001; Toma and Muller, 2002;
Mauritsson et al., 2005; Klünder et al., 2011; Guénot
et al., 2012; Dahlström et al., 2012b). The time shift
observed by RABBIT, 𝑡R, can also be written as a sum
of an intrinsic atomic delay and an IR field induced
shift, referred to in this context as continuum-continuum
coupling (Klünder et al., 2011; Dahlström et al., 2013,

2012b),

𝑡R = 𝑡CEWS + 𝜏cc . (4.21)

A quantitative comparison (Fig. 9) between 𝑡S
[Eq. (4.20)] and 𝑡R [Eq. (4.21)] for photoemission of
He+(1𝑠) yields excellent agreement over a wide range of
energies. Small deviations appear at low kinetic energies.
Since RABBIT employs attosecond pulse trains (APT)
rather than single attosecond pulses, the frequency range
explored in Fig. 9 is covered by a broad range of harmon-
ics in the APT ranging from 𝑞 = 9 to 𝑞 = 81 of the fun-
damental 𝜔IR with 𝜆 = 800nm. This agreement is quite
remarkable for several reasons: RABBIT employs long
pulses for which the quantum path interferences control
the interaction of the interrogating pulse with the sys-
tem while attosecond streaking acts as a classical clock.
Moreover, RABBIT relies on lowest-order perturbation
theory for a combined 𝜔XUV+𝜔IR two-photon absorption
process while streaking involves moderately strong fields.
The energy modulations correspond to an exchange of
several 𝜔IR photons (e.g., ∼ 4 photons in the example
of Fig. 6 with 𝐼IR = 1012 W/cm2). Nevertheless, the time
shifts introduced by the probing field, 𝑡CLC and 𝜏cc, are
in excellent agreement with each other [Fig. 9(b)]. One
key to understand this remarkable agreement is the inten-
sity independence of 𝑡CLC [Eq. (4.18)] indicating that the
Coulomb-laser coupling contribution to the time shift is
present in both the single- and multi-photon regime. This
underlines that 𝑡EWS can be unambiguously extracted by
conceptually entirely different methods provided that the
additional contributions 𝑡CLC, or equivalently, 𝜏cc are ac-
counted for.

D. Dipole-laser coupling

As indicated by the interplay between the Coulomb po-
tential and the centrifugal potential [Eq. (3.16)] for the
Coulomb-EWS delay 𝑡CEWS [Eqs. (3.13) and (3.17)], inter-
actions decaying asymptotically as 𝑉 ∼ 𝑟−2 provide an
interesting intermediate case at the borderline between
short- and long-ranged interactions. Another important
example are permanent dipole interactions also decaying
as 𝑉𝑑 ∼ 𝑟−2. Their influence on streaking were first dis-
cussed by Baggesen and Madsen (2010b,a). Permanent
dipole interactions are present, e.g., for molecules, while
quasi-permanent dipoles (on the time scale of the laser
pulse duration) appear for systems with near degenerate
manifolds of states with opposite parity. A particularly
simple case is photoionization of degenerate hydrogenic
manifolds where dipolar interactions are present in the
entrance channel and Coulomb interactions in the exit
channel. We consider the substate dependence of the
time shift in photoionization of the 𝑛 = 2 manifold of
He+(𝑛 = 2). Unlike the states of well-defined parity
He+(𝑛ℓ𝑚), the two parabolic states He+(𝑛 = 2, 𝑘 = ±1)
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FIG. 9 (Color online) Comparison between simulations of
streaking and RABBIT: (a) Comparison between the streak-
ing times 𝑡S and RABBIT time shifts 𝑡R. For streaking single
attosecond pulses with 𝜏XUV = 200 as and variable 𝜔XUV are
used, for RABBIT APTs built of harmonics from 𝑞 = 9 to
𝑞 = 81 of the fundamental 𝜔IR (𝜆 = 800 nm) are employed.
(b) Comparison between the analytic approximation to 𝑡CLC

[Eq. (4.18)] and 𝜏cc (Eq. 100 from Dahlström et al., 2012b).

feature a permanent electric dipole moment of 𝑑𝑘=±1 =
±3𝑛/2𝑍 (or, more precisely, a quasi-permanent dipole
moment oscillating on a ∼ 100 ps time scale when rela-
tivistic and quantum-electrodynamical corrections are in-
cluded). The effect of the initial state polarization on the
photoionization transition matrix element is fully con-
tained in the Coulomb-EWS-time [Fig. 10(a)]. However,
in the presence of the IR streaking field, its interaction
with the initial-state dipole prior to photoionization leads
to a time-dependent initial-state energy shift

Δ𝐸(𝜏) = −𝑑𝐹IR(𝜏) (4.22)

and, in turn, to a phase shift

Φ(𝑡) = −𝑑
∫︁ 𝑡

−∞
𝐹IR(𝑡

′)d𝑡′ = 𝑑�⃗�IR(𝑡) . (4.23)

This additional phase and energy shift is inherited by
the continuum final state giving rise to an additional
streaking-measurement related time shift referred to as
dipole-laser coupling (dLC) time shift, 𝑡dLC. Indeed,
the streaking time 𝑡S for the He+(𝑛 = 2) initial states
significantly differ from those predicted by Eq. (4.20)
[Fig. 10(b), (Nagele et al., 2011)]. This dLC contribu-
tion can be easily accounted for by including the IR field
induced energy shift of the initial state. Eq. (4.22) results

in an additional modulation of the final-state energy

𝐸𝑓 (𝜏) =
𝑝2𝑓 (𝜏)

2
= 𝐸0 − 𝑝0�⃗�(𝜏)− 𝑑𝐹IR(𝜏) , (4.24)

where terms to second order in the streaking field have
been neglected. In direct analogy to Eq. (4.10) -
Eq. (4.15) the dipole contribution ∼𝐹IR(𝜏) being 𝜋/2 out
of phase with the streaking momentum ∼𝐴IR(𝜏), gives
rise to an additional phase shift (Baggesen and Madsen,
2010b) of the streaking momentum for emission along the
laser polarization axis,

𝛼dLC𝐴IR(𝜏 + 𝑡
(𝑖)
dLC) = 𝐴IR(𝜏) + 𝑑𝑘𝐹IR(𝜏)/𝑝0 , (4.25)

with the dLC time shift

𝑡
(𝑖)
dLC =

1

𝜔IR
tan−1

(︂
−𝑑𝑘𝜔IR

𝑝0

)︂
(4.26)

and a renormalization of the amplitude of the streaking
momentum

𝛼dLC =

(︃
1 +

(︂
𝑑𝑘𝜔IR

𝑝0

)︂2
)︃1/2

. (4.27)

Thus, for photoionization of atomic or molecular initial
states (𝑖) with a permanent electric dipole, the relation
Eq. (4.20) between the observable streaking time shift 𝑡S
and the intrinsic EWS time delay 𝑡EWS is modified to

𝑡S = 𝑡EWS + 𝑡CLC + 𝑡
(𝑖)
dLC . (4.28)

Eq. (4.28) can account for all time shifts observed for the
degenerate hydrogenic manifolds with (sub-)attosecond
precision [Fig. 10(c)]. Remarkably, the influence of the
dipole-laser coupling is not restricted to initial states
with a permanent dipole moment. The strong polariz-
ability of (near) degenerated manifolds also influences
substates with well-defined parity for which dipole ef-
fects were expected to be absent (Baggesen and Madsen,
2010b; Zhang and Thumm, 2010). Since the states 2𝑠
and 2𝑝0 are highly polarizable, they are subject to dLC as
well. Expanding |2𝑠⟩ and |2𝑝0⟩ in terms of two parabolic
states

|𝑛=2, ℓ=0 (ℓ=1)⟩ = 1√
2
(|𝑘=1⟩ +

(−) |𝑘=−1⟩) , (4.29)

the effective induced dipole moment follows as

⟨𝑑ℓeff⟩ =
1

2 |𝑐ℓ|2
∑︁
𝑘

𝑑𝑘 |𝑐𝑘|2 , (4.30)

where
⃒⃒
𝑐2𝑘
⃒⃒

and |𝑐ℓ|2 are the square moduli of the dipole
transition matrix elements [Eq. (2.25)] from the initial
state 𝑘 or ℓ to the continuum with final momentum along
the polarization axis. Using this effective dipole moment
in 𝑡

(𝑖)
dLC Eq. (4.26) leads to a drastic change of the pre-

dicted time shift [compare Fig. 10(b) and Fig. 10(c)] and
to near-perfect agreement with the quantum simulation
(Pazourek et al., 2012b).
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FIG. 10 (Color online) Photoionization from different initial
states of the He+(𝑛=2) shell as a function of the final kinetic
energy 𝜖 = 𝜔XUV + 𝜀1𝑠 emitted in forward direction (𝜃 =
0∘): (a) Coulomb EWS times. (b) Corresponding streaking
time shifts 𝑡S for the full quantum simulation (dots) compared
with the analytic prediction Eq. (4.20) without corrections for
initial-state polarization. (c) same as (b) but compared with
the prediction including the dipole-laser coupling [Eq. (4.28)].

V. TIME-RESOLVED PHOTOIONIZATION OF
MANY-ELECTRON ATOMS

Since for hydrogenic atoms and ions or, more gener-
ally, for single-active-electron (SAE) models the attosec-
ond streaking of photoionization can be numerically sim-
ulated with (sub)-attosecond precision by solving the
Schrödinger equation in its full dimensionality, the ex-
traction of timing information for photoionization ap-
pears now well understood. The situation is strikingly
different for many-electron atoms. First experiments
were performed for rare gas atoms (Schultze et al., 2010;
Klünder et al., 2011; Guénot et al., 2012), the results of
which have led to a flurry of theoretical investigations
(Schultze et al., 2010; Kheifets and Ivanov, 2010; Komni-

nos et al., 2011; Nagele et al., 2011, 2012, 2014; Baggesen
and Madsen, 2011; Zhang and Thumm, 2010; Ivanov and
Smirnova, 2011; Dahlström et al., 2012b, 2013, 2012a; Pa-
zourek et al., 2012a,b; Śpiewanowski and Madsen, 2012;
Pazourek et al., 2013; Moore et al., 2011; Carette et al.,
2013; Kheifets, 2013; Dixit et al., 2013; Feist et al., 2014;
Saha et al., 2014; Wätzel et al., 2015). Yet, satisfactory
agreement between theory and experiment is still out-
standing and many open questions remain.

In the pioneering attosecond streaking experiment
(Schultze et al., 2010), the relative delay between pho-
toionization of the 2𝑠 and 2𝑝 electrons, Δ𝑡S(2𝑝 − 2𝑠) =
𝑡S(2𝑝) − 𝑡S(2𝑠), was found to be Δ𝑡S(2𝑝 − 2𝑠) ≃ 21 as
(Fig. 11). The positive sign of the delay implies that
the formation of the emitted 2𝑠 electron wavepacket pre-
cedes that of the 2𝑝 electron. Obviously, this timing in-
formation is unrelated to the arrival time difference at
any macroscopic detector as the 2𝑝 photoelectron has a
considerably higher kinetic energy than the 2𝑠 electron
and will be arriving first. Accompanying first theoreti-
cal investigations (Schultze et al., 2010; Mercouris et al.,
2010; Yakovlev et al., 2010) confirmed the sign of this
delay but found values considerably lower by a factor 2
to 3. This discrepancy raised conceptual questions as
to the influence of many-electron and correlation effects
on the intrinsic time delay and on streaking measure-
ment related time shifts. Improvements have been sought
along two lines. Within time-independent approxima-
tions more accurate calculations of the EWS delay have
been performed (Kheifets and Ivanov, 2010; Dahlström
et al., 2012a; Kheifets, 2013) while the influence of the
IR field on the extracted time shift is either neglected or
treated only in lowest-order perturbation theory. Within
the time-dependent 𝑅-matrix theory (RMT; Moore et al.,
2011) on the other hand, the interaction of the IR field
with the fragments of the photoionization process are in-
cluded to all orders, however, the degree to which corre-
lation effects can be accounted for within a fairly lim-
ited basis size remains unclear. A recent calculation
(Feist et al., 2014) combines from separate calculations
accurate values for 𝑡EWS, obtained using the 𝐵-spline 𝑅-
matrix method (BSM; Zatsarinny, 2006; Zatsarinny and
Froese Fischer, 2009), with the non-perturbative evalua-
tion of 𝑡CLC [see Eqs. (4.6), (4.18) and (4.20)]. All up-to-
date available calculations that approximately account
for electron correlation effects and include the IR-field
induced time shift agree reasonably well with each other
(Fig. 11). For comparison, also a TDSE simulation in
the single active electron (SAE) approximation (Nagele
et al., 2012) for a Ne model potential where the electronic
interactions are taken into account only at a mean field
level is shown. Inclusion of correlation effects beyond the
mean field level, indeed, increase the relative EWS delay
by ∼4 as near 𝜔XUV ≃ 100 eV. However, all state-of-the-
art calculations for Δ𝑡S, so far, lie far off the experimen-
tal values by Schultze et al. (Schultze et al., 2010) and
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are outside one standard deviation of all measured data
points (Fig. 11). Adding to the puzzle is the observa-
tion that all contributions to photoionization time delays
are predicted to decrease with increasing energy while no
clear trend is recognizable in the experimental data.
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FIG. 11 (Color online) Relative streaking time shift Δ𝑡S =
𝑡S(2𝑝)−𝑡S(2𝑠) between neon 2𝑝 and 2𝑠 subshells as a function
of photon energy 𝜔XUV. Comparison between experimental
data by Schultze et al. (2010), blue diamonds (both mean
value and standard deviation as well as the individual data
points as small dots on or near the error bars are shown), and
several calculations: —— B-spline R-matrix method (Feist
et al., 2014), ∙ time-dependent R-matrix theory (Moore et al.,
2011), � RPAE (Kheifets, 2013), MMBPT (Dahlström et al.,
2012a). For comparison, also the single-active-electron (SAE)
mean-field results are shown (Nagele et al., 2012).

As one possible source of the discrepancy the influ-
ence of unresolved shake-up channels was recently iden-
tified (Feist et al., 2014). Because the spectral width of
the attosecond XUV pulse, Δ𝜔XUV ∼ 2𝜋/𝜏XUV, is larger
than the spectral separation between the shake-up lines
(“correlation satellites”) and the main line, the streaking
trace of the 2𝑠 main line could be contaminated by spec-
trally unresolved shake-up channels. Such a contribution
might significantly affect the experiment. Indeed, in the
experimental data (figure 2 of Schultze et al., 2010) a
shoulder, most likely due shake-up, is visible. All pre-
vious theoretical treatments have addressed only the 2𝑠
and 2𝑝 main lines. The potentially strong influence of
shake-up channels results from the prevalence of near-
degenerate states in excited-state manifolds of the resid-
ual ion. Consequently, the ionic shake-up final state can
be strongly polarized by the probing IR pulse (Baggesen
and Madsen, 2010b; Pazourek et al., 2012a). Unlike for
the ground state discussed above an additional time shift
due to dipole-laser coupling, 𝑡dLC [Eqs. (4.26) and (4.28)]
may contribute. Currently available estimates yield, in-
deed, a correction for the 2𝑠 time shift by ∼2 to 3 as, how-
ever, increasing rather than decreasing the discrepancy
to the experiment. Future experimental and theoretical
studies, in particular exploring the energy and angular
dependence, appear necessary to unravel this puzzle.
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FIG. 12 (Color online) Cooper minimum in the Ar(3𝑠) pho-
toionization: (a) Cross-section [taken from Möbus et al.
(1993), Kheifets (2013) and Dixit et al. (2013)]. (b) Com-
parison between experiment (Klünder et al., 2011; Guénot
et al., 2012) and calculations using RPAE (Kheifets, 2013),
TDLDA (Dixit et al., 2013), and RPAE (Dahlström and Lin-
droth, 2014) for the relative RABBIT time delay Δ𝑡R =
𝑡R(3𝑠) − 𝑡R(3𝑝). For the calculations by Kheifets et al. and
Dixit et al. we added the continuum-continuum coupling ac-
cording to Eq. (4.21).

Time-resolved photoionization of argon by attosecond
XUV pulses is of conceptual interest as it offers the op-
portunity to explore the influence of so-called Cooper
minima (Cooper, 1962) on the temporal evolution of the
outgoing wavepacket. Cooper minima result from zeros
in the photoionization dipole matrix element [Eq. (2.25)]
as a function of the kinetic energy of the outgoing elec-
tron. The change of sign of the dipole matrix element
near the zero at 𝜖 = 𝜖0 amounts to a phase jump by
±𝜋 over a narrow range of energies (Schoun et al., 2014)
and, consequently, to large EWS time shifts [Eq. (2.27)].
These can have either positive or negative sign, depend-
ing on whether the phase jump is positive (+𝜋) or neg-
ative (−𝜋). Photoionization of the Ar 3𝑝 electron with
one radial node features a Cooper minimum at a photon
energy 𝜔XUV ≈ 45 eV already at the Hartree-Fock-level
(Amusia, 1990; Starace, 2006) while strong 3𝑠 – 3𝑝 in-
tershell correlations are responsible for a deep Cooper
minimum in the Ar 3𝑠 photoionization cross section near
42 eV (Dahlström et al., 2012a; Kheifets, 2013; Carette
et al., 2013; Dixit et al., 2013; Dahlström and Lindroth,
2014; Saha et al., 2014). These photon energies are within
reach of attosecond XUV pulses and have been investi-
gated by combining an attosecond pulse train with an
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IR field. Time resolution was achieved by RABBIT in-
terferometry (Klünder et al., 2011; Guénot et al., 2012).
The harmonic orders 22 to 26 of the Ti:Sapphire laser lie
in the vicinity of the Cooper minimum of Ar(3𝑠). Re-
markably, both the discrepancies between different cal-
culations as well as between experimental and the theo-
retical data are large even when the large experimental
uncertainty of ±50 as is taken into account (note the ex-
panded time scale in Fig. 12 compared to Fig. 11). The
origin of these discrepancies is not yet well understood.
They possibly could be connected with the presence of
the deep Cooper minimum itself. Since the 3𝑠 cross
section almost vanishes, small admixtures from other-
wise subdominant channels may significantly contribute
and amplify discrepancies. For example, one assump-
tion underlying the RABBIT chronoscopy is that only
two-photon processes coupling adjacent odd harmonics
(2𝑛−1)𝜔IR and (2𝑛+1)𝜔IR contribute by adding or sub-
tracting one IR photon [see Eq. (4.17)]. Near a Cooper
minimum, however, non-perturbative corrections beyond
two-photon processes may become more important.

Very recently, several measurements of the relative
time delays between rare gas atoms became available.
Guénot et al. (2014) have reported on relative delays
between argon, neon, and helium for photon energies
between 31 eV and 37 eV employing RABBITT with an
active stabilization of the interferometer. Sabbar et al.
(2015) performed streaking measurements of the relative
delay between argon and neon in a photon energy region
between 28 eV and 38 eV by using a gas mixture. RAB-
BITT measurements for helium, neon, argon and kryp-
ton over a wider range of energies were also reported
by Palatchi et al. (2014). Measurements of the relative
delays have the potential of higher accuracy as several er-
ror sources related to the absolute phase determination
drop out. Still, large uncertainties and significant dis-
crepancies between different measurements and between
experiment and theory remain.

Photoionization of helium is, presently, the only multi-
electron system for which a full ab-initio quantum simu-
lation of time-resolved photoemission in a streaking set-
ting has become available (Pazourek et al., 2012a). Rig-
orous tests of the validity of single-active electron (SAE)
or mean-field approximations are possible for this sys-
tem. Single photoionization of He(1𝑠2) described by an
SAE approximation assumes the residual ion to be in the
state He+(1𝑠). Inclusion of electron-electron interactions
alters this picture: The “quasi-sudden” appearance of the
Coulomb hole leads either to a relaxation of the orbital
of the second electron to the true ground state of the
ion, He+(1𝑠), sometimes referred as “shake-down”, or to
“shake-up” to excited states He+(𝑛ℓ𝑚) or even “shake-
off” to the continuum. This electronic rearrangement
of the residual ionic complex constitutes the prototypi-
cal multi-electron response to photoionization of a many-
electron system and can be studied in detail in He (see
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FIG. 13 (Color online) Numerically simulated streaking spec-
trogram for helium and emission into a forward cone (opening
angle 10∘) around the polarization axis. XUV pulse with
⟨𝜔XUV⟩ = 100 eV, 𝜏XUV = 200 as, 𝐼XUV = 1012 W/cm2,
streaking field with 𝐼IR = 4 · 1011 W/cm2, 𝜆 = 800 nm.
Top: main line He+(1𝑠), bottom: shake-up satellite (predom-
inantly) to He+(𝑛=2).

e.g., Sukiasyan et al., 2012, for a recent example).
The streaking spectrogram for an XUV pulse with

𝜏XUV = 200 as allows to spectrally resolve the main line
[He+(1𝑠)] from the shake-up channels [He+(𝑛ℓ𝑚), 𝑛 ≥
2]. In general, high-lying shake-up channels separated
from each other by small energies within the spectral
line width Δ𝜔XUV ∼ 2𝜋/𝜏XUV cannot be resolved (see
Fig. 13). For the main line, the simulated streaking time
shift 𝑡S (evaluated in direction of the laser polarization
axis) is reproduced by Eq. (4.20) with attosecond ac-
curacy with 𝑡EWS given by the exact dipole transition
matrix element and 𝑡CLC by Eq. (4.18), see Fig. 14(a).
Note that the initial state polarizability of the helium
ground state can be safely neglected as confirmed by the
agreement for the main line and, thus, 𝑡(i)dLC = 0 [see
Eq. (4.28)]. Moreover, a SAE simulation employing a
Hartree-Fock (HF) model potential that reproduces the
first ionization potential gives nearly identical results for
𝑡EWS and, in turn, for 𝑡S. Therefore, correlation effects
do not play a significant role for the direct (main-line)
photoionization with He+(1𝑠) final state.

An entirely different picture emerges for ionization ac-
companied by shake up. These “correlation satellite”
lines represent the prototypical case of photoionization
strongly driven by electron-electron interactions of two
equivalent electrons (Åberg, 1967; Svensson et al., 1988;
Amusia, 1990; Dalgarno and Sadeghpour, 1992; Samson
and Stolte, 2002). We restrict in the following the analy-
sis to the dominant shake-up to 𝑛=2. The spectrogram
(Fig. 13) reflects the weakness of the shake-up channel
(< 5% of the main channel) and indicates the experi-
mental challenge to perform a chronoscopic measurement
with attosecond precision. Higher lying channels 𝑛 ≥ 3
are even weaker. Unlike for the ground state, He+(1𝑠),
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FIG. 14 (Color online) Ab-initio simulation of streaking of
photoionization of helium (laser parameters as in Fig. 13). (a)
Main line [final state He+(1𝑠)]. Also shown are the results for
the SAE simulation and the predictions Eqs. (4.20) and (4.28).
(b) Shake-up to 𝑛= 2 final state He+(𝑛= 2, ℓ,𝑚), symbols:
ab initio simulation, lines: prediction Eqs. (4.20) and (4.28).
(c) Same as (b) but with inclusion of 𝑡e−e

dLC [Eq. (5.1)].

for all substates He+(𝑛 = 2, ℓ𝑚) Eqs. (4.20) and (4.28)
completely fail to reproduce the streaking time shift de-
termined by the ab-initio simulations [Fig. 14(b)]. In
this case, it is the high polarizability of the degenerate
hydrogenic He+(𝑛=2) manifold of the residual ion that
causes the discrepancy between the extracted streaking
time and the prediction Eq. (4.28). Starting point for un-
ravelling these polarization effects is the observation that
the two parabolic final states He+(𝑛= 2, 𝑘 ± 1) possess
a large permanent dipole moment. The long-range inter-
action between the ionized electron and the residual ion
in the exit channel contains now both a Coulombic and a
dipolar interaction, 𝑉𝑑 = −𝑑�⃗�/𝑟3. Their direct contribu-
tions to 𝑡EWS in the absence of a streaking field is fully
included in the exact calculation of the dipole transition

matrix for single ionization of He employing exterior com-
plex scaling (McCurdy et al., 2004; Palacios et al., 2008,
2009; Liertzer et al., 2012). In the presence of a streak-
ing field, however, both long-range portions give addi-
tional contributions. While the Coulomb contribution is
contained in 𝑡CLC [Eq. (4.18)] the additional streaking-
field induced dipolar interaction between the bound and
ionized electron is not. This true field-induced electron-
electron interaction effect can be viewed as a dipole-laser
coupling, in analogy to Eq. (4.26), however, as a final-
state rather that initial-state interaction effect. The an-
alytic derivation for the associated time shift 𝑡(f)dLC = 𝑡e−e

dLC

can be directly taken over from that for 𝑡(i)dLC [Eq. (4.26)],
apart from the change-of-sign relative to the correspond-
ing expression for the initial state perturbation of the
one-electron problem. Accordingly, we have now

𝑡
(f)
dLC = 𝑡e−e

dLC =
1

𝜔IR
tan−1

(︂
𝑑𝑘𝜔IR

𝑝0

)︂
. (5.1)

and Eq. (4.28) becomes

𝑡S = 𝑡EWS + 𝑡CLC + 𝑡
(i)
dLC + 𝑡

(f)
dLC . (5.2)

This additional time shift 𝑡(f)dLC is a true electron-electron
interaction contribution absent on the SAE or mean-field
level. The physical picture underlying the IR field in-
duced dipole shift to streaking is illustrated in Fig. 15.
The energy modulation of the parabolic states 𝑘 = 1 and
𝑘 = −1 are out of phase by 𝜋 relative to each other.
Adding this additional contribution to the total time
shift [Eq. (5.2)] leads to near-perfect agreement for all
𝑛 = 2 shake-up substates [Fig. 14(c)] confirming, once
more, the additivity rule for laser-modified long-range
interactions. As in the one-electron case, not only ionic
final states with a permanent dipole moment |𝑛, 𝑘,𝑚⟩
but also highly polarizable states in degenerate manifolds
with zero static dipole moment |𝑛, ℓ,𝑚⟩ suffer a dipole-
laser induced time shift [see Eq. (4.30)]. Conceptually,
Eqs. (5.1) and (5.2) reflect the entanglement in the exit
channel. As a result, the streaking time shift of the ob-
served ionized electron depends on the dipole moment of
the substate of the residual ion. In turn, the final quan-
tum state |𝑛, ℓ,𝑚⟩ or |𝑘, 𝑛,𝑚⟩ becomes accessible in a
non-destructive measurement, i.e., without directly ob-
serving it.

VI. TIME-RESOLVED PHOTOIONIZATION OF
MOLECULES

Time-resolved photoionization of more complex sys-
tems with internal geometric structure promises novel
insights into the formation of an outgoing wavepacket
emerging from the complex. The time encoded in the
wavepacket of the receding electron carries information
on the initial localization within the molecule as well on
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FIG. 15 (Color online) Streaking of helium with the remain-
ing ion left in a Stark-state: (a) Two-electron dipole-laser
interaction in the exit channel, shown is the electron density
𝜌 of the two-electron state. (b) Resulting dipole-laser induced
time shift 𝑡(f)dLC as function of the final electron energy.

the near-field of neighboring atomic constituents. The
simplest prototypical case is the photoionization of a di-
atomic molecule (Fernández et al., 2007; Hu et al., 2009;
Guan et al., 2011; Ivanov et al., 2012; Bian and Ban-
drauk, 2012; Serov et al., 2013; Carpeggiani et al., 2014;
Ning et al., 2014; Chacon et al., 2014). Among the fun-
damental questions to be addressed are: Does it take a
longer time for the electron to escape from the multi-
center molecular core than from the one-center atomic
core? Does the emission time delay dependence on the
relative orientation of the emission direction and molecu-
lar axis carry information on the geometric arrangement
of the atomic constituents, and, most importantly, are
those effects observable in an attosecond streaking set-
ting?

For the simplest and most fundamental one-electron
molecule, H+

2 , the validity of the additivity of intrin-
sic EWS delay and streaking field induced time shifts
[Eq. (4.28)] for molecules can be rigorously tested by
an ab-initio solution of the time-dependent Schrödinger
equation in the presence of the attosecond XUV and the
IR fields. The evolution of the electronic wavepacket is
calculated for a fixed internuclear distance, 𝑅, and ori-
entation, �̂�, relative to the polarization of the laser field.
The approximation of frozen nuclei is well justified for
attosecond-scale ionization processes. After the conclu-
sion of the pulse, the emerging wavepacket is projected
onto the molecular scattering states Φ−

𝑓 with incoming
wave boundary conditions (for details see Hou et al.,
2012). The EWS time delay can be separately deter-
mined from the dipole matrix element [cf. Eq. (2.26)]

𝑡EWS(𝜖, 𝑅, 𝜃𝑒, 𝜃𝑥)=
𝜕

𝜕𝜖
arg
(︁
⟨𝜓−

𝑓 (𝜖, 𝑅, 𝜃𝑒)|𝑑 · 𝑒|𝜑0⟩
)︁

(6.1)

for a vertical Franck-Condon-like electronic transition be-
tween Born-Oppenheimer potential surfaces. The dipole
matrix element and the EWS time delay depend on the
angles of the XUV polarization (𝜃𝑥) and the electron
emission (𝜃𝑒) relative to the orientation of the internu-
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FIG. 16 (Color online) EWS (solid line) and calculated
streaking time shifts (symbols) from H+

2 at different fixed in-
ternuclear distance (Ning et al., 2014). (a) 𝑅=0.1, also shown
is 𝑡S for the atomic 𝑅=0 limit, He+. (b) 𝑅=2, also shown
are 𝑡CLC and 𝑡EWS + 𝑡CLC [Eq. (4.20)].

clear axis �̂�. For small internuclear distances 𝑅 = 0.1
the EWS delay and the resulting streaking delay are in-
distinguishable on the attosecond scale from those of the
united atom limit He+ [Fig. 16(a)]. At larger internuclear
separations [𝑅 = 2, Fig. 16(b)], signatures of the molecu-
lar structure become prominently visible. The Coulomb-
laser coupling time shift for the H+

2 molecule is equivalent
to the pure Coulombic He+ case and the additivity of the
EWS delay 𝑡EWS and CLC time shift 𝑡CLC [Eq. (4.20)]
is satisfied with attosecond precision also for molecules.
It should be noted that, in general, the influence of the
additional dipole-laser coupling term, 𝑡dLC [Eq. (4.28)],
is expected to be larger for molecules than for atoms for
two reasons: polar molecules possess permanent dipole
moments and non-polar molecules feature larger dipole
polarizabilities.

The molecular origin of the dramatic enhancement of
the time delay near 𝐸 = 260 eV in Fig. 16 can be traced
to the two-center or Cohen-Fano interference effect (Co-
hen and Fano, 1966). Destructive interference between
emission from the two centers occurs when the electron
momentum 𝑝 and the internuclear distance vector �⃗� sat-
isfy

𝑝 · �⃗� = 𝑝𝑅 cos 𝜃𝑒 = (2𝑛+ 1)𝜋 . (6.2)

Such two-center interference effects could be unambigu-
ously identified in the high-harmonic spectra (Lein et al.,
2002; Vozzi et al., 2005, 2006) and contribute to the con-
trast in holographic imaging of molecular wavefunctions
(Itatani et al., 2004). The estimate (Eq. 6.2) for the loca-
tion of the interference minimum is expected to be valid



24

0

100

200

300

10−8
10−7
10−6
10−5
10−4
10−3
10−2

(a)

(b)

0

100

200

300

E
le
ct
ro
n
en

er
g
y
(e
V
)

-20

0

20

40

60

80

100

(a)

(b)

0

100

200

300

0 0.2 0.4 0.6 0.8 1

(c)

n=0 n=1

cosθe

FIG. 17 (Color online) Simulations of differential photoemis-
sion cross section (a) and EWS time delay (b) in the electron
energy (𝜖) and electron emission angle (cos 𝜃𝑒) plane for H+

2

(𝑅 = 2) ionized by a 600 as XUV pulse polarized perpen-
dicular to the internuclear axis (𝜃𝑥 = 90∘). (c) Comparison
between the location of the cross section minima and the in-
terference minima predicted by Eq. (6.2), see inset.

at high electron energies when the outgoing waves can
be approximated by plane waves. Indeed, the lines in
the cos 𝜃𝑒 − 𝐸 plane for which the destructive interfer-
ence

√
2𝐸𝑅 cos 𝜃𝑒/2 = (𝑛 + 1/2)𝜋 condition is satisfied,

approximates the minima in the differential cross section
and, in turn, the extrema in 𝑡EWS quite well (Fig. 17).
It should be noted that the destructive interference can
give rise to either an enhanced time delay or a time ad-
vance. The pronounced peak in the EWS time delay,
more precisely in magnitude |𝑡EWS|, near the point of
destructive Cohen-Fano interferences can be viewed as a
molecular analogue of the enhancement of 𝑡EWS near a
Cooper minimum (see Section V). Indeed, the suppres-
sion of the dipole transition by the two-center interfer-
ence can be in some cases directly associated with a zero
(or Cooper minimum) in a single spheroidal partial wave
amplitude of the Coulomb two-center problem (Ivanov
et al., 2012; Serov et al., 2013). This structural similar-
ity implies, however, that the experimental observation
may face a similar challenge as peaks in the EWS time
shift are associated with (near) zero emission probabil-
ity. First realistic simulations of an attosecond streaking
setting (Ning et al., 2014) indicate that averaging over
the radial distribution, 𝑊 (𝑅), of the molecule to be pho-

toionized,

⟨𝑡S⟩𝑅 =

∫︀
𝑑𝑅𝑡S(𝑅)𝑊 (𝑅)𝜎(𝑅)∫︀
𝑑𝑅𝑊 (𝑅)𝜎(𝑅)

(6.3)

will strongly suppress the interference enhancement of
𝑡S and 𝑡EWS. For a vibrational ground state distribu-
tion of H+

2 , 𝑊0(𝑅), the contribution from 𝑅 far away
from the interference condition carries a much larger
cross section and will overshadow the interference min-
imum at the equilibrium distance 𝑅 = 𝑅0 = 2 a.u.
thereby rendering the enhancement of ⟨𝑡S⟩𝑅 barely visible
(Fig. 18). However, since photoionization of H+

2 initiates
the Coulomb explosion of the ionic fragments (Frasinski
et al., 1987; Vager et al., 1989; Chelkowski et al., 1995;
Stapelfeldt et al., 1995; Staudte et al., 2007), energy re-
solved detection of one outgoing proton coincident with
the electron allows to experimentally postselect a nar-
row 𝑅-distribution, 𝑊Δ(𝑅), within the ground state vi-
brational distribution. This additional “knob” allows to
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FIG. 18 (Color online) Effect of averaging over the distribu-
tion 𝑊 (𝑅) on the observed streaking shift ⟨𝑡S⟩𝑅. The EWS
delay at the interference minimum 𝑅0 = 2 a.u. (solid line) is
compared with the observable streaking delay when averaged
over the vibrational ground state distribution 𝑊0 (squares) or
a narrow distribution𝑊Δ (triangles) postselected by Coulomb
explosion of the molecular fragments (dashed lines to guide
the eye). The XUV pulse duration in the streaking simu-
lations is 𝜏XUV = 600 as (FWHM) and the intensity of the
probing 800 nm field is 𝐼IR = 108 W/cm2, from Ning et al.
(2014).

enhance the interference contrast in the time shifts by
reducing the vibrational averaging. Coincident detection
of a proton near the Coulomb explosion energy corre-
sponding to the equilibrium distance, 𝐸𝑘𝑖𝑛 = 1/2𝑅0,
with an energy resolution (FWHM) of 0.5 eV selects a
narrow radial distribution 𝑊Δ(𝑅) centered at 𝑅0 with a
width of Δ𝑅 = 0.15 a.u. The reduced vibrational average
[Eq. (6.3)] now yields clearly visible peaks in the EWS
and streaking time shifts of the order of 10 as (Fig. 18) as
signatures of the destructive interference. The EWS time
shift near Cohen-Fano interference minima is found not
only sensitively dependent on the internuclear distance
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𝑅 but also on the alignment angle of the molecular axis
relative to the ionizing XUV pulse and the IR streaking
field (Ning et al., 2014). For its observation, control over
the molecular alignment is important. Post-selecting the
subensemble of molecules with a given orientation of the
molecular axis by detecting the Coulomb-exploding frag-
ments provides some level of control. Impulsive or adia-
batic laser alignment of the molecules enhances the con-
trol and is expected to improve the contrast. The obser-
vation of two-center interferences in the molecular high-
harmonic generation employed impulsive alignment, i.e.,
the revivals of impulsively excited rotational wavepackets
(Vozzi et al., 2005, 2006).
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FIG. 19 (Color online) Photoionization of an endohedral com-
plex: (a) Endohedral complex A@C60, schematically. (b)
Radial exit channel potentials experienced by the outgo-
ing photoelectron: (dash-dotted) angular-averaged DFT po-
tential 𝑉 DFT

shell (𝑟), (dashed) model potential [Eq. (6.5)] with
𝑉0 = −0.302 a.u., Δ = 1.9 a.u., 𝑟0 = 5.89 a.u., (solid)
𝑉 DFT
shell (𝑟) + 𝑉A(𝑟) with the atomic potential for He+ for emis-

sion of the 1𝑠 electron.

A more complex and challenging case for the interplay
between the electronic dynamics and the local geometric
and chemical environment are endohedral C60 molecules
in which a guest atom with a well-defined core-level emis-
sion line resides at the center of the C60 cage, referred to
in the following as A@C60, Fig. 19(a), (Connerade et al.,
2000; Dolmatov et al., 2004). Timing of the photoelec-
tron emission from the central atom offers now to probe
a multitude of environment-specific contributions to the
time shift. For outer-shell electron emission, e.g., the
3𝑝 electron of argon, hybridization with the valence elec-
trons of the C60 shell strongly modifies the EWS time de-
lay relative to that of the free atom (Dixit et al., 2013).
This time shift reflects the initial-state modification of
the photoionization matrix element [see Eq. (2.26)]. By
contrast, for deeper core-levels the initial state distortion
is of minor importance. However, the continuum final
state is modified by confinement resonances. Detailed
spectroscopic information on confinement resonances for
Xe@C60 have recently become available (Kilcoyne et al.,
2010; Dolmatov and Manson, 2008). The wavelength of
the outgoing electron 𝜆dB may match the resonance con-
dition in terms of the radius of the fullerene shell 𝑅0,

𝜆𝐷 =
2𝑅0

𝑛
, (𝑛 = 1, 2, . . .) (6.4)

giving rise to a modulation of the photoionization cross
section (Rüdel et al., 2002) as well as of the EWS time de-
lay (Nagele et al., 2011; Pazourek et al., 2013; Dixit et al.,
2013; Nagele et al., 2014; Deshmukh et al., 2014). These
modulations bear close resemblance to the extended x-
ray absorption fine structure (EXAFS; Sayers et al., 1971;
Stern and Heald, 1983; Ito et al., 2004) by the local crys-
tallographic environment near an absorption site in con-
densed matter.

Point of departure for a simplified model for timing of
photoemission is an effective static potential for the core
electron bound to the center atom 𝑉A(𝑟) with a long-
range Coulomb tail. As the outgoing electron traverses
the cage, it experiences a short-ranged potential created
by the shell of C60 atoms. A simple model potential for
the shell is

𝑉shell(𝑟) =

{︃
−𝑉0 for 𝑅0 ≤ 𝑟 ≤ 𝑅0 +Δ

0 otherwise
(6.5)

with 𝑅0 the inner-radius of the C60 shell, Δ its width, and
𝑉0 the mean potential on an one-electron level. Typical
parameter used are (Dolmatov and Manson, 2008; Dol-
matov et al., 2012) 𝑉0 = −0.3 to −0.42, 𝑅0 = 5.9 to 6.0,
and 𝑑 = 1.25 to 1.9. An improved potential 𝑉 DFT

shell (𝑟)
can be determined from density functional theory (DFT)
applied to the C60 molecule. After angular averaging,
the radial potential 𝑉 DFT

shell (𝑟) differs from Eq. (6.5) by an
increased depth and smoothed “edges” of the shell (Wais,
2014; Nagele et al., 2015), Fig. 19(b). Consequently, the
amplitude of the oscillation in the photoionization cross
section as well as the EWS time shift 𝑡EWS(A@C60) is
drastically reduced (Fig. 20). Moreover, the EWS time
shift becomes increasingly negative reflecting a time ad-
vance caused by the acceleration of the outgoing elec-
tron while traversing the strongly attractive potential
𝑉 DFT
shell (𝑟) of the C60 shell.
Such a static potential description clearly cannot fully

account for the dynamical response of the many-body
system during the photoionization process. The cage will
act as a finite-size bath with which the photoelectron in-
teracts. The non-adiabatic response of the C60 electrons
to the quasi-sudden appearance of a Coulomb hole at the
center (cf. Breidbach and Cederbaum, 2005; Cederbaum
and Zobeley, 1999) can be viewed as the many-electron
generalization of the formation of shake-up or correla-
tion satellites accompanying the photoionization of he-
lium (see Section V). Alternatively, it can be viewed as
a prototypical case of inelastic scattering of the outgo-
ing photoelectron resulting in collective plasmon as well
as particle-hole excitation in the C60 shell. We will re-
turn to these alternative points of view when discussing
time-resolved photoemission from solid surfaces. Both
approaches equally predict that electron emission either
accompanied by a shake-up excitation of C60 or under-
going an inelastic scattering event in the exit channel
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FIG. 20 (Color online) Photoionization of the 1𝑠 electron of
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[Eq. (6.5)] (dashed line) and the DFT potential 𝑉 DFT
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(solid line): (a) Cross section 𝜎 and (b) EWS time 𝑡EWS.

is energetically well separated from the “direct” photo-
electron emission without concomitant excitation of the
residual complex. Therefore, time-resolved photoemis-
sion observed by attosecond streaking allows to disentan-
gle time shifts in photoionization with and without addi-
tional energy exchange with the environment (or bath).
Even in the absence of simultaneous excitations, the col-
lective response of the valence electrons of the fullerene
has a profound effect on attosecond streaking itself. The
240 quasi-free valence electrons in the C60 shell feature a
high dipole polarizability resulting in an effective screen-
ing of the streaking field inside the fullerene and an en-
hanced streaking near-field outside the “polar caps” of the
C60 (Fig. 21) (Nagele et al., 2014, 2015). The field distri-
bution calculated from a simple hollow-sphere model for
C60 with the same polarizability (𝛼 ≃ 560 a.u.) as exper-
imentally measured for C60 (Jensen and Van Duijnen,
2005) agrees quite well with a time-dependent density
functional theory (TDDFT) calculation on the adiabatic
local density approximation (ALDA) level (Yabana and
Bertsch, 1993; Wachter et al., 2014).

The modification of the streaking field due to the
dipole response alters the read-out of timing information
two-fold: the photoelectron departing from the central
atom is effectively subject to the streaking field only af-
ter passing through the C60 shell. Arrival in the streak-
ing field is thus delayed relative to the free atom by the
travel time to the surface of the shell. Moreover, while
the transport delay time 𝑡𝑇 = (𝑟0 + Δ)/𝑣 is accumu-
lated, the time added by Coulomb-laser coupling is sup-
pressed for distances from the Coulomb center 𝑟 ≤ 𝑟0.
After leaving the shell, the photoelectron experiences
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FIG. 21 (Color online) Field distribution of the streaking field
near C60 (Wachter, 2014; Wais, 2014): (a) Local distribution
in the 𝑥-𝑧 plane. The positions of the C atoms are indicated
by the grey circles. (b) Normalized field distribution along
the polar (𝑧) axis, 𝐹 (𝑧)/𝐹0, with 𝐹0 the amplitude of the
streaking field.

the residual Coulomb-laser coupling and, more impor-
tantly, the strong dipole-laser coupling in the locally en-
hanced dipole-enhanced streaking field. Accordingly, the
observed streaking time 𝑡S for core-level photoemission
from a central atom of an endohedral C60 is given by

𝑡S = 𝑡EWS(𝐴@C60)+ 𝑡𝑇 + 𝑡′CLC(C60)+ 𝑡dLC(C60) , (6.6)

where 𝑡′CLC(C60) is the reduced Coulomb-laser coupling
due to screening and 𝑡dLC(C60) is the dipole-laser cou-
pling due to the local dipole field of the polarized
fullerene. Remarkably, the large time advance due to
the (negative) 𝑡dLC (Fig. 22) is partially, but not com-
pletely, canceled by the (positive) transport delay 𝑡T.
The full TDSE simulations for 𝑡S agree remarkably well
with a classical simulation in which 𝑡T, 𝑡′CLC(C60), and
𝑡dLC(C60) can be separately calculated (Wais, 2014). De-
spite the presence of these large modifications, the mod-
ulation of the EWS time delay due to confinement reso-
nances is still visible in the resulting 𝑡S.

Experimental investigations of streaking of such
nanoplasmonic systems promise novel insights into the in-
terplay between chemical environment and the nanoplas-
monic response on time-resolved photoemission.
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FIG. 22 (Color online) Comparison between the streaking
time 𝑡S from the full TDSE solution for He+(1𝑠) photoioniza-
tion emitted along the laser polarization (𝜃 = 0∘) (dots) with
the quantum mechanical EWS delay and results from a clas-
sical simulation in which the transport time 𝑡𝑇 , the enhanced
dipole-laser coupling 𝑡dLC(C60), and the reduced Coulomb-
laser coupling 𝑡′CLC(C60) are determined separately.

VII. TIME-RESOLVED PHOTOEMISSION FROM
SURFACES

Time-resolved photoemission from solid surfaces
(Fohlisch et al., 2005; Cavalieri et al., 2007) promises
novel insights into electronic dynamics of condensed mat-
ter combining attosecond time resolution with Ångstrom
spatial resolution. Since typical inelastic mean free paths
𝜆𝑖 for ∼ 100 eV electrons are of the order 𝜆𝑖 ∼ 5Å typi-
cal flight times 𝜆𝑖/𝑣𝑔 (𝑣𝑔: group velocity of the emitted
electron) are of the order of ∼100 as. Time-resolved pho-
toemission thus probes not only the electronic structure
in the topmost layers but also allows to probe the elec-
tronic response and electron transport on its natural time
scale. Extracting and interpreting the time information
for such a complex many-body system remains, however,
a challenge.

The pioneering attosecond streaking experiment by
Cavalieri et al. (2007) employing XUV pulses with en-
ergies ⟨𝜔XUV⟩ = 91 eV and a linewidth of Δ𝜔XUV = 6 eV
revealed a time delay for the emission of 4𝑓 core lev-
els relative to conduction band (CB) electrons from the
W(110) surface of Δ𝑡S(4𝑓 − CB) ≃ 100 as ± 70 as. This
finding stimulated a large number of theoretical stud-
ies (Lemell et al., 2009; Kazansky and Echenique, 2009;
Zhang and Thumm, 2009, 2010, 2011c,a,b; Krasovskii,
2011; Krasovskii et al., 2010; Borisov et al., 2013). Addi-
tional measurements at somewhat higher XUV energies
⟨𝜔XUV⟩ = 106 eV and 120 eV yielded considerably smaller
time delays of Δ𝑡S(4𝑓 − CB) ≃ 30 as with smaller error
bars (Neppl, 2012). The origin of this delay as well as
its strong variation with energy has remained a widely
open question. An additional piece of the puzzle was pro-
vided by measurements of the delay between the 2𝑝 core
and the conduction band of a magnesium (0001) surface,

Δ𝑡S(2𝑝 − CB). For this nearly free electron metal, the
delay was found to be near zero to within the experimen-
tal uncertainty Δ𝑡S(2𝑝 − CB) ≃ 5 ± 20 as (Neppl et al.,
2012). This finding contradicts the notion (Kazansky
and Echenique, 2009; Zhang and Thumm, 2009, 2011c)
that the different degrees of localization of the electronic
states of the conduction band and/or core levels would
cause large delays but could be simply explained by the
equality of mean travel times to the surface of conduction
band and core electrons in Mg (Neppl et al., 2012),

𝜆CB

𝑣𝑔(CB)
=

𝜆2𝑝
𝑣𝑔(2𝑝)

, (7.1)

where 𝜆 and 𝑣𝑔 denote the inelastic mean free path
(MFP) and the group velocity for conduction band and
core electrons, respectively. This explanation relies on a
classical transport model (Cavalieri et al., 2007; Lemell
et al., 2009; Liao and Thumm, 2014) for electron emission
from the solid. Calculation and interpretation of the ob-
served time delays raises important conceptual questions
about photoionization from such extended many-electron
systems (Heinzmann, 2013) for time-integral photoemis-
sion.

CB	  

1	   2	  
3	  

FIG. 23 (Color online) Multi-step model of photoemission
by an XUV pulse from surfaces: 1: primary transition from
a core level to a high-lying continuum level assuming the
spectator electrons remain frozen, 2: transport of a Bloch
wavepacket towards the surface accompanied by electron-
electron collisions leaving a particle-hole excitation, and 3:
ejection of the photoelectron into vacuum with asymptotic
momentum �⃗�.

The starting point of a quantum description of photoe-
mission in lowest-order perturbation theory in the ion-
izing XUV field is the so-called “one-step” or multiple-
scattering model (Mahan, 1970; Feibelman and Eastman,
1974) which is equivalent to the 𝑆-matrix formulation
[discussed in Section II and Eq. (2.6)]. Accordingly, the
response of the solid to the photoabsorption is repre-
sented by a coherent superposition of a set of stationary
states of the channel Hamiltonian of the (𝑁 −1) electron
system and a wavepacket of Dyson orbitals |Φ𝑒𝑗⟩ of the
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emitted electron emerging from the entangled 𝑁 -electron
wavepacket with components [Eq. (2.6)]

|Φ𝜖𝑗𝑠⟩ −→
𝑡→∞

𝐴
(︁
|Φ(𝑁−1)

𝑠 ⟩ ⊗ |Φ𝜖𝑗⟩
)︁
, (7.2)

where 𝐴 denotes the antisymmetrization operator.
The one-electron wavefunction |Φ𝜖𝑗⟩ corresponds to so-
called “low-energy electron diffraction” (LEED) scat-
tering states subject to incoming boundary conditions
(Feibelman and Eastman, 1974). The formal simplic-
ity of this description within the framework of an 𝑆-
matrix (or equivalently, 𝑇 -matrix) theory belies the fact
that the set of accessible final states |Φ(𝑁−1)

𝑠 ⟩ is large
and includes a plethora of complex dynamical processes.
Moreover, in standard photoemission spectroscopy, the
degrees of freedom associated with the residual ionic com-
plex remain unobserved and are traced out [Eq. (2.13)].
The one-electron photoelectron spectrum 𝑃𝜖𝑗 , thus, in-
cludes a multitude of many-body effects (Zhang and
Thumm, 2011b; Echenique et al., 1981) such as core-
hole screening (Canright, 1988; Huber et al., 2001) and
relaxation, particle-hole and plasmon excitation. To
identify and disentangle those processes, an alternative
“three-step-model” (or “multi-step-model”) of photoemis-
sion (Feibelman and Eastman, 1974) is frequently em-
ployed in which the response of the full many-body state
|Ψ(𝑁−1)

𝑠 ⟩ is reduced to few active degrees of freedom
with which the outgoing photoelectron interacts. Ac-
cordingly, the photoemission process by an XUV photon
is broken down into a sequence of elementary processes
(Fig. 23): (1) the primary photoabsorption transferring
a localized core electron or valence band electron to a
high-lying state in the conduction band, (2) the trans-
port of this Bloch wavepacket towards the surface un-
dergoing electron-electron collisions which may lead to
additional particle-hole and collective plasmon excita-
tions, (3) diffraction at the surface potential and eventual
transmission in vacuum leaving the solid with asymptotic
momentum �⃗�. Underlying such semiclassical multi-step
models is the implicit assumption of partial loss of coher-
ence due to dephasing in the presence of a large number
of traced out environmental degrees of freedom. Such
multi-step models suggest time ordering of those elemen-
tary processes. It is therefore tempting to inquire into
the possibility to observe in real time the unfolding of
such a multi-step scenario by attosecond streaking.

One key feature of attosecond streaking for condensed
matter systems is that the streaking field clocks the time
the electron arrives in the IR field. Similar to the case
of C60 (see Section VI), the crucial input is penetra-
tion depth and dielectric screening of the IR field with
Ångstrom accuracy. In first theoretical models (Cavalieri
et al., 2007; Lemell et al., 2009; Kazansky and Echenique,
2009; Zhang and Thumm, 2009) a wide variety of pen-
etration models have been used. For an accurate deter-
mination of the spatio-temporal profile of the near-field
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FIG. 24 (Color online) TDDFT analysis of the atomic-scale
dipole screening of the streaking field with photoemission
near normal to the surface. (a) Snapshot of the streaked
field 𝐹IR(𝑧) and of the charge density near a W(110) surface
taken at the maximum of the streaking field with intensity
2 · 1011 W/cm2 and duration 4 fs (FWHM of intensity, cosine-
pulse shape). The jellium edge is half a lattice spacing 𝑧0
outside of the first layer, 𝑧im marks the (dynamical) image
plane (dashed vertical line; centroid of the induced density)
located even further out from the first layer. (b) Snapshot of
the local electric field calculated from time-dependent density
functional theory simulations for different surfaces, W(110)
(blue dashed) and Mg(0001) (red solid), plotted relative to
the jellium edge. The local field distribution is virtually un-
affected by the surface composition.

IR field at the metal-vacuum interface on the Ångstrom
scale, the commonly used Fresnel equations based on
macroscopic properties of target components with per-
fectly sharp interfaces cannot be applied. A microscopic
description for 𝐹IR(𝑧, 𝑡) is provided by time-dependent
density functional theory (TDDFT; Runge and Gross,
1984; Liebsch, 1997; Wachter et al., 2012). The streak-
ing field with the polarization oriented along the sur-
faces normal 𝑧 induces a polarization charge layer at
the metal surface which shields the interior of the solid
against the external electric field. Screening at metallic
surfaces becomes effective near the so-called image plane
𝑧im typically located outside the topmost atomic layer at
𝑧atom = 0 (Fig. 24). A further characteristic distance for
the electronic response is the so-called “jellium” edge at
𝑧0 = 𝑧atom + 𝑑/2 (𝑑: layer spacing for a given crystallo-
graphic direction). In general, the location and width of
the dynamic screening charge layer is expected to depend
on the strength, direction, and frequency of the applied
field as well as on the lattice structure of the target. Re-
markably, the local screening of the streaking field at
IR frequencies 𝜔 = 𝜔IR as predicted by TDDFT (Neppl
et al., 2015) is almost identical for pure W, pure Mg, and
W/Mg hetero-structures with varying numbers of Mg ad-
layers when plotted relative to the position of the jellium
edge. The key observation is that the laser field is al-
ready fully screened at the position of the atoms of the
topmost layer. Thus, the primary XUV photoabsorption
and the formation of the Bloch wavepacket takes place
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fully screened from the streaking field in the close analogy
to the core level emission of a endohedral C60 molecule
(Section VI). Only upon crossing the metal-vacuum inter-
face, the photoelectron is exposed to the streaking field.
Its turn-on is localized to within the width of the dynami-
cal screening charge distribution, typically. 1Å (Fig. 24)
and, thus, fairly abrupt (Neppl et al., 2015).

We illustrate the potential of time-resolved photoemis-
sion in providing novel conceptual insights with the help
of one example. For XUV energies, photoelectron spec-
tra 𝑃 (𝜖) map out the density of states (DOS) of the elec-
tronic band structure. For attosecond XUV pulses their
spectral width Δ𝜔XUV can be comparable to the width
of the conduction band. Time-resolved photoemission is,
thus, characterized by a significant spectral broadening
of the photoelectron spectrum 𝑃 (𝜖 = 𝜔XUV − 𝜖𝑖). If now
the spectral width is still smaller than the spacing to so-
called satellite peaks at lower energies, e.g., 𝑃 (𝜖− 𝜔𝑝,𝑠),
the plasmon-loss peaks displaced by 𝜔𝑝(𝜔𝑠), the energy of
the bulk (surface) plasmon excitation, relative timing in-
formation on the emission of the main line and the satel-
lite lines becomes accessible. One of the still widely open
issues is as to what extent theses satellite features are
intrinsic or extrinsic (Aryasetiawan et al., 1996; Guzzo
et al., 2014). The notion of plasmon excitation, intrinsi-
cally linked to the photoemission, can be viewed as the
direct condensed-matter analogue to the atomic shake-
up correlation satellites (Section V). Extrinsic plasmon
generation, on the other hand, is thought to proceed
by secondary inelastic electron scattering of the outgo-
ing photoelectron subsequent to the primary photoexci-
tation and is often treated as background contribution
to the spectrum. Clearly, within a one-step description
such a distinction is anything but clear-cut: these pro-
cesses simply represent different coherent superpositions
of the ionic final states of the 𝑁 − 1 electron system,
|Ψ(𝑁−1)⟩ =

∑︀
𝑎
(𝑁−1)
𝑠 |Φ(𝑁−1)

𝑠 ⟩. By contrast, within the
multi-step model intrinsic plasmon excitation is linked
to the vertical transition to the continuum (step 1 on the
multi-step model, Fig. 23) while extrinsic plasmon exci-
tation results from inelastic scattering (step 2, Fig. 23).
Such a semiclassical model suggests that extrinsic and
intrinsic plasmon satellites should feature a distinct time
ordering. A classical transport simulation (Lemell et al.,
2009, 2012) within which ingredients of the multi-step
model are naturally incorporated suggests that such de-
lays are, indeed, on the attosecond scale and, thus, ac-
cessible by attosecond streaking.

We consider the photoemission from the Mg conduc-
tion band following the absorption of an XUV photon
with ⟨𝜔XUV⟩ = 130 eV. The direct conduction band spec-
trum 𝑃 (𝜖) extends from 120 eV ≤ 𝜖 ≤ 126 eV broadened
by the Fourier width of the attosecond pulse 𝜏XUV =
450 as, Δ𝜔 = 4 eV. The plasmon satellite line associ-
ated with the excitation of a single bulk plasmon is dis-
placed by 10.5 eV and thus well separated from both the
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FIG. 25 (Color online) Simulation of a streaking spectrogram
for photoemission of Mg(001) following photoabsorption by
an XUV photon with ⟨𝜔XUV⟩ = 130 eV and Δ𝜔XUV = 3 eV,
streaked by an IR field (𝜆IR = 800 nm, 𝐼IR = 4 ·1011 W/cm2).
The plasmon correlation-satellite (pl) of the CB line is well
separated from the main CB line with a relative streaking
delay Δ𝑡S = 𝑡S(pl+CB)−𝑡S(CB), (for details see Lemell et al.,
2015).

direct conduction band spectrum as well as the Mg(2𝑝)
core level near 𝜖 = 80 eV. The extraction of time de-
lays from a classical transport simulation (Lemell et al.,
2009) employs the correspondence to temporal shifts of
the first moment of the “wave packet” [Eq. (2.33)] repre-
sented here by classical phase space distribution relative
to that of the IR field. Plasmon excitation along classi-
cal trajectories is treated in terms of a stochastic force
whose strength and temporal structure is determined by
the optical limit of the energy loss function, Im [−1/𝜖(𝜔)],
taken from (Palik, 1998). The observed streaking time
delay between the plasmon satellite line relative to the
direct conduction band line (Fig. 25), Δ𝑡S = 55 as, is
consistent with the additional travel time through the
excess escape depth Δ𝑥𝑖 = 𝜆𝑖/2 resulting from the con-
volution of two escape-probability distributions (Lemell
et al., 2015) with equal escape depth of 𝜆𝑖 ≈ 7Å near
𝜖 = 120 eV (Tanuma et al., 2011). This prediction for the
streaking time delay would apply to the limit of a purely
extrinsic plasmon excitation during transport. Predic-
tions of the time delay for the opposite limit of a purely
intrinsic, “shake-up”-like plasmon excitation for Mg are
not yet available. Extrapolating its order of magnitude
from the EWS time delay calculated for atomic many-
electron systems (see Section V) we expect such a delay
to be much smaller and of the order of ∼ 10 as. First
experimental streaking data indicate a significant time
delay of the plasmon satellite line compared to the main
line allowing the relative ratio of intrinsic to extrinsic
plasmon generation ≈ 0.1 to be extracted with unprece-
dented accuracy (Lemell et al., 2015). Thus, attosec-
ond streaking holds the promise to disentangle extrinsic
from intrinsic plasmon-satellites in photoemission spec-
tra and, on a more fundamental level, to scrutinize the
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validity of such a multi-step description of photoemis-
sion from condensed matter. Furthermore, attosecond
chronoscopy also promises to probe the many-electron
response in photoemission from strongly correlated sys-
tems (Lee, 2012, 2013) in unprecedented detail.

VIII. TIME-ORDERING IN TWO-PHOTON DOUBLE
IONIZATION

The idea of probing the time ordering within a se-
quence of elementary processes of a many-body system
by time-resolved photoemission suggested above for pho-
toemission from solid surfaces can be put to a rigorous
test in multi-photon ionization of atoms. Going beyond
the elementary photoelectric effect in this section, we
consider now ionization by the absorption of two XUV
photons rather than one. We are thus exploring time in-
formation characterizing the non-linear atomic response.
Still, such processes remain in the regime of lowest-order
perturbation theory and represent weak field-atom inter-
actions.

FIG. 26 (Color online) Two-photon double ionization of he-
lium, schematically. Two photons from a moderately strong
XUV pulse (𝐼XUV ∼ 1015 W/cm2) and duration 𝜏XUV (typ-
ically . 1 fs) are absorbed and eject two electrons with mo-
menta 𝑝𝑖 (𝑖 = 1, 2). Time-resolved photoemission allow to
interrogate the timing 𝑡1,2 of the two absorption (ejection)
events.

A prototypical case is the two-photon double ioniza-
tion (TPDI) of helium. A strongly simplified picture
(Fig. 26) suggests that the helium atom absorbs two pho-
tons each of which ejects one electron. In the energy
domain and for long XUV pulses, it has become cus-
tomary to distinguish the so-called sequential (S) regime
for ~𝜔XUV > 𝐼2 = 54.4 eV from the non-sequential (NS)
regime for (𝐼1 + 𝐼2)/2 = 39.5 eV ≤ ~𝜔XUV ≤ 54.4 eV,
where 𝐼1 and 𝐼2 are the first and second ionization po-
tential of helium, respectively. Sequential means in this
context that the two ionization events are independent of
each other, i.e., correlations between the two ionized elec-
trons in the exit channel can be neglected and no energy
sharing is required to reach the asymptotic final state.
Equivalently, the intermediate state in this two-step pro-
cess is a (quasi) stationary on-shell state of the singly

charged helium [He+(𝑛ℓ𝑚)]. The borderline between the
sequential and the non-sequential regime is given by the
binding energy 𝐼2 of the most deeply bound electron of
the system, He+(1𝑠). For photon energies above 𝐼2 each
electron can be ejected by one photon independent of the
proximity to and energy sharing with the other electron.
Signatures of the sequential and non-sequential character
in the energy dependence of double ionization rate and in
the energy sharing and angular correlations of the emit-
ted electrons have been the focus of a large number of
theoretical (see e.g., Laulan and Bachau, 2003; Ishikawa
and Midorikawa, 2005; Nikolopoulos and Lambropoulos,
2007; Palacios et al., 2009; Feist et al., 2008, 2009b; Pa-
zourek et al., 2011; Horner et al., 2007; Foumouo et al.,
2010; Nepstad et al., 2010, and references therein) and ex-
perimental (Nabekawa et al., 2005; Sorokin et al., 2007;
Antoine et al., 2008; Rudenko et al., 2008; Kurka et al.,
2010) studies. However, the direct observation of the
timing of the ionization steps implied by the notion of
(non) sequentiality has not yet been achieved.

For ultrashort pulses with 𝜏XUV in the few-hundred
attosecond regime and spectral width of Δ𝜔XUV ∼
2𝜋/𝜏XUV of several eV the distinction between sequen-
tial and non-sequential ionization becomes blurred. The
TPDI is now influenced by strong spatio-temporal cor-
relation of the two-electron wavepacket irrespective of
whether the mean frequency ⟨𝜔XUV⟩ of the pulse is below
or above the threshold. Real-time observation of TPDI
monitored by streaking allows to inquire into sequential-
ity of the emission process and into the time interval be-
tween the two emission events. Moreover, time-resolved
TPDI opens up the opportunity to explore the time or-
dering underlying time-dependent quantum dynamics as
an accessible physical observable.

To lowest non-vanishing order perturbation theory,
TPDI is given by the second-order transition matrix ele-
ment Eq. (2.1)

𝑎
(2)
𝑖→𝑓 = −

∞∫︁
−∞

d𝑡1

𝑡1∫︁
−∞

d𝑡2⟨𝜓𝑓 |𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)|𝜓𝑖⟩ (8.1)

between the initial state |𝜓𝑖⟩, taken in the following
to be the fully correlated He ground state, and the fi-
nal state |Ψ𝑓 ⟩ = |Ψ(𝑝1, 𝑝2)⟩ of two continuum electrons
with asymptotic momenta 𝑝1 and 𝑝2 and energy 𝐸tot =∑︀

𝑖 𝑝
2
𝑖 /2. The perturbation operator [see Eq. (2.3)] is

given in the interaction representation and in length
gauge by

𝑉𝐼(𝑡) = e𝑖𝐻0𝑡
2∑︁

𝑖=1

�⃗�𝑖𝐹XUV(𝑡)e
−𝑖𝐻0𝑡 , (8.2)

where 𝐹XUV(𝑡) = 𝐹0 exp (− ln 4𝑡2/𝜏2XUV) cos(𝜔XUV)𝑧 is
the linearly polarized attosecond XUV pulse. Second-
order perturbation theory [Eq. (8.1)] has explicitly built
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FIG. 27 (Color online) Simulation of two-photon double ion-
ization of helium: (a) Joint two-electron energy distribution
𝑃DI(𝐸1, 𝐸2) for TPDI with ⟨𝜔XUV⟩ = 100 eV and a pulse du-
ration 𝜏XUV of 500 as, emission back-to-back along the polar-
ization direction (𝜃1 = 0∘, 𝜃2 = 180∘). The panels above and
on the right show the singly-differential energy distribution
𝑃DI(𝜖) after tracing out the energy of the second electron. (b)
Streaking spectrogram from the integrated spectra 𝑃DI(𝜖2) in
(a) at different delay times 𝜏 between the ionizing XUV pulse
and the probing IR field (𝜆IR = 800 nm, 𝐼IR = 4 ·1011 W/cm2,
sine-squared envelope with a total duration of 6 fs).

in time ordering, 𝑡1 > 𝑡2. The formation of the interme-
diate wavepacket, ∼𝑉𝐼(𝑡2)|Ψ𝑖⟩, by the single action of the
perturbation on the initial state causing the ejection of
the first electron precedes that of the ejection of the sec-
ond electron, ∼ 𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)|𝜓𝑖⟩, forming a two-electron
wavepacket which contains a component that eventually
converges towards TPDI as 𝑡→ ∞. The question is then
posed: is such a temporal sequence of events as implied
by time-ordered perturbation theory physically observ-
able even though Eq. (8.1) represents a coherent super-
position of all event sequences without an intervening
projective measurement of the intermediate state.

A fully non-perturbative treatment of this process by
solving the two-electron Schrödinger equation in the pres-
ence of both the ionizing XUV and the streaking IR field
in its full dimensionality has become available (Pazourek
et al., 2015). Second-order perturbation theory is, how-
ever, a useful guide for analyzing and interpreting the
numerical results.

We consider TPDI by an ultrashort XUV pulse with
𝜏XUV = 500 as and mean photon energy ⟨𝜔XUV⟩ =
100 eV. For a long pulse, this energy would be clearly
in the spectroscopically independent “sequential” regime.
For an ultrashort pulse, such a designation is anything
but clear-cut. After ∼ 𝜏XUV/2 even a “fast” electron
has only reached a distance of ≃ 20 a.u. from the core
when the second electron is about to take off. Thus,
electron-electron interactions in the exit channel cannot
be neglected. The joint energy distribution for double
ionization (DI), 𝑃 (𝐸1, 𝐸2), features two distinct peaks
[Fig. 27(a)] near the energies 𝐸1,2 = ~⟨𝜔XUV⟩ − 𝐼1,2 for
uncorrelated ionization the widths of which are governed

by the Fourier width of the pulse but are also influ-
enced by correlation effects as first discussed by Ishikawa
and Midorikawa (2005). We note that at low energies
(𝐸1,2 ≤ 20 eV) the joint energy distribution displays the
contribution from one-photon double ionization (OPDI)
for photon energies above the double ionization thresh-
old ~⟨𝜔XUV⟩ & 80 eV. The OPDI and TPDI spectra are
energetically well separated from each other and can in-
dependently be analyzed without the risk of contamina-
tion. We concentrate in the following on the informa-
tion contained in the TPDI signal. We note, however,
that also time-resolved OPDI has been recently inves-
tigated. Emmanouilidou et al. (Emmanouilidou et al.,
2010; Price et al., 2011, 2012) proposed a classical two-
electron streaking model and first timing measurements
employing the RABBIT technique have been reported for
the OPDI of xenon (Mansson et al., 2014). The TPDI
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τXUV

ΔtDEWS

〈Δt〉c

t

(t)
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FIG. 28 (Color online) Illustration of time observables for
two-electron emission in TPDI, schematically. The emission
times of the first, 𝑡DI

EWS,1, and second electron, 𝑡DI
EWS,2, are

measured relative to the arrival time (peak) 𝑡𝑎 of the en-
velope of the attosecond XUV pulse (𝑡𝑎 = 0 in the follow-
ing) with temporal FWHM (in intensity) 𝜏XUV. The rel-
ative emission delay between the two electrons is given by
Δ𝑡DI

EWS = 𝑡DI
EWS,1 − 𝑡DI

EWS,2. Also shown is the estimate of the
relative emission delay predicted for stochastic uncorrelated
(uc) emission events Δ𝑡uc and the joint emission time of the
two-electron wavepacket 𝑇DI

EWS.

streaking spectrogram [Fig. 27(a)] provides a clear exam-
ple for the simultaneous observation for the “absolute”
time shift of each electron relative to the time zero, the
time of the peak of the ionizing field 𝐹XUV(𝑡), 𝑡𝑎 = 0
[Eq. (2.31)], as well as the relative emission time delay
Δ𝑡DI

S between the two electrons. The interelectronic de-
lay is in this case so large (of the order of ∼ 100as) that it
becomes directly visible in the spectrogram without the
need for a sophisticated retrieval algorithm. Extraction
of the relevant dynamical timing information of the two-
electron wavepacket is more challenging than for single
electron emission in view of the multi-dimensional nature
of the final state. Moreover, properties of the atomic re-
sponse and of the ionizing pulse become intertwined due
to the nonlinearity of the two-photon process. In analogy
to the photoelectric effect [Eq. (2.1)], EWS-type delays
can be determined for TPDI, however, their extraction
in terms of a spectral derivative of the argument of a
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transition matrix element Eq. (2.26) is not directly ap-
plicable. Moreover, their physical significance remains to
be explored. The EWS delay for the electron 1 with en-
ergy 𝜖1, a fixed energy of the second electron and fixed
emission angles 𝜃1 and 𝜃2 can be extracted numerically
from

𝑡DI
EWS,1(𝐸1|𝐸2, 𝜃1, 𝜃2) =

𝜕

𝜕𝐸′
1

arg
[︀
𝑎𝐷𝐼(𝐸′

1, 𝐸2, 𝜃1, 𝜃2, 𝑡𝑓 )
]︀
+ 𝐸′

1𝑡𝑓

⃒⃒⃒⃒
𝐸′

1=𝐸1

. (8.3)

where 𝑎𝐷𝐼 is the double ionization amplitude calculated
by solving the TDSE for TPDI by the XUV pulse in
the absence of the probing IR field. In Eq. (8.3) the
propagation phase of a free reference electron, −𝐸′

1𝑡𝑓 ,
at the same energy is subtracted. Eq. (8.2) describes
the one-electron group delay relative to the arrival time
of the XUV field (𝑡𝑎 = 0). From these “absolute” one-
electron delays 𝑡DI

EWS,𝑗 (𝑖 = 1, 2) collective two-electron
time delays can be deduced: the relative emission delay

Δ𝑡DI
EWS(Δ𝐸) = 𝑡DI

EWS,1(𝐸1|𝐸2, 𝜃1, 𝜃2)

− 𝑡DI
EWS,2(𝐸2|𝐸1, 𝜃1, 𝜃2) (8.4)

and the joint two-electron emission time delay

𝑇DI
EWS(𝐸tot) =

1

2

[︀
𝑡DI
EWS,1(𝐸1|𝐸2, 𝜃1, 𝜃2)

+𝑡DI
EWS,2(𝐸2|𝐸1, 𝜃1, 𝜃2)

]︀
(8.5)

which are functions of the energy sharing Δ𝐸 = 𝐸1−𝐸2

between the two liberated two electrons and their total
energy 𝐸tot = 2~𝜔XUV − 𝐼1 − 𝐼2. Delays [Eq. (8.3) to
Eq. (8.5)] for this two-photon process are implicitly also
functions of the temporal and spectral properties of the
ionizing XUV pulse (Pazourek et al., 2015). For example,
when the ionizing XUV pulse features a chirp (i.e., a non-
linear phase variation with time) not only the absolute
time delays can be modified as is the case in one-electron
ionization (see Section II.B) but also time-ordering of the
TPDI itself can be altered (Lee et al., 2009). The simu-
lations presented in the following refer to the non-linear
atomic response to a chirp-free XUV pulse.

The relative emission delay Δ𝑡DI
EWS(Δ𝐸) allows a direct

comparison (Fig. 28) with the intuitive “classical” relative
delay, ⟨Δ𝑡⟩uc, predicted for two uncorrelated (uc) and
statistically independent emission events each of which
with a probability density proportional to the intensity
of the XUV-pulse, 𝐼(𝑡), Eq. (2.31),

⟨Δ𝑡⟩uc = 𝜏XUV/
√
𝜋 ln 4 ≈ 0.479𝜏XUV . (8.6)

Such linear scaling with the pulse duration is expected for
any on-shell two-photon process [e.g., also for two-photon
single-ionization (Su et al., 2014b)]. The exact emission
delay 𝑡DI

EWS(Δ𝐸 = 𝐼2− 𝐼1), evaluated in coplanar geome-
try (𝜑1 = 𝜑2 = 0) at the energy difference Δ𝐸 = 𝐼2 − 𝐼1,

corresponding to “sequential” ionization with the ionic
ground state He+(1𝑠) as the on-shell intermediate state
and for back-to-back emission (𝜃1 = 0∘, 𝜃 = 180∘), be-
comes as large as 350 as exceeding the uncorrelated esti-
mate by more than 100 as (Fig. 29). This, at first glance,
surprising finding suggests an intuitive interpretation: in
order to suppress energy sharing between the electrons in
the exit channel and to approach the well-defined energy
of the sequential intermediate state as closely as possible
consistent with the Heisenberg uncertainty principle, the
two emission events have to be temporarily as well sepa-
rated as possible within the confines of the pulse duration
𝜏XUV. The relative emission delay is, thus, a strongly
varying function of the energy sharing. For example,
near Δ𝐸 = 0 where the electrons symmetrically share
the energy in the exit channel symmetrically, Δ𝑡DI

EWS is
reduced by two orders of magnitude to a few attoseconds.
In this limit, the two electrons must take off nearly si-
multaneously for the electron-electron interaction in the
exit channel to be efficient in redistributing the energy
delivered by the photons. In this regime, the emission
process is strongly non-sequential even though the pho-
ton energy ⟨𝜔XUV⟩ ≈ 100 eV lies in the spectroscopically
sequential regime (> 54.4 eV). It should be noted that
for the pulse duration of 𝜏XUV ≃ 500 as the probabil-
ity for emission 𝑝DI(𝐸1, 𝐸2) near equal energy sharing
is small [see Fig. 27(a)] since the Fourier width of the
pulse Δ𝜔XUV is smaller than the required energy sharing
|𝐼2 − 𝐼1|.

Attosecond streaking allows now to observe this rela-
tive emission delay in real-time. Extracting Δ𝑡DI

EWS from
the streaking spectrogram [Fig. 27(b)] requires a gener-
alization of the mapping [Eqs. (4.21) and (4.28)] between
streaking times 𝑡S extracted from the fit of the modula-
tion Δ𝑝(𝑡) = −𝐴(𝑡 − 𝑡S), and the intrinsic atomic time
delay 𝑡EWS valid for the photoelectric effect. For two-
photon absorption an additional streaking-field-induced
correction to the time shift, 𝛿𝑡(2𝛾,2𝑒)𝑗 arises (Pazourek
et al., 2015) which can be determined from the shape
function 𝒢 in second-order perturbation theory (Palacios
et al., 2009). Accordingly, the streaking time shift of the
𝑗𝑡ℎ electron, 𝑡DI

S,𝑗 (𝑗 = 1, 2) observed in TPDI of the fully
Coulomb-interacting system reads

𝑡DI
S,𝑗 = 𝑡DI

EWS,𝑗 + 𝑡CLC,𝑗 + 𝛿𝑡
(2𝛾,2𝑒)
𝑗 , (8.7)

where 𝑡CLC,𝑗 is the Coulomb-laser coupling correction of
the 𝑗th electron. The accuracy of this relation is demon-
strated for a wide range of XUV energies and pulse du-
rations (Fig. 29). Eq. (8.7) can be tested by determining
𝑡DI
S,𝑗 on the left hand side from the ab initio TDSE simu-

lation in the presence of the IR streaking field and 𝑡DI
EWS,𝑗

on the right hand side by an independent TDSE calcu-
lation in the absence of the IR field. 𝑡CLC [Eq. (4.18)]
and 𝛿𝑡(2𝛾,2𝑒) (Pazourek et al., 2015) are known analyti-
cally or numerically. The good agreement on the ∼10 as
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FIG. 29 (Color online) TPDI time shifts as a function of the
pulse duration 𝜏XUV for ⟨𝜔XUV⟩ = 80 eV and back-to-back
emission of the two-electrons (𝜃1 = 0∘, 𝜃2 = 180∘). Streaking
time shifts 𝑡DI

S are extracted from a streaking spectrum as
in Fig. 27 for 𝐼IR = 1010 W/cm2 and 𝜆IR = 800 nm. Also
shown is the comparison between the intrinsic EWS delays
𝑡DI
EWS,𝑗(𝑗 = 1, 2) and the corresponding streaking delay 𝑡DI

S,𝑗

corrected for the Coulomb-laser-coupling contribution 𝑡CLC,𝑗

and the two-photon correction for the non-interacting refer-
ence system [Eq. (8.7)]. The dashed line indicates the approx-
imately linear scaling of 𝑡DI

EWS,𝑗 with the pulse duration 𝜏XUV.
The purple shaded area indicates the uncorrelated mean es-
cape delay ⟨Δ𝑡⟩uc [Eq. (8.6)]. The joint two-electron emission
time 𝑇DI

EWS(𝐸tot) [Eq. (8.5)] is shown by the black squares.

level illustrates that also two-electron EWS delays are
accessible through attosecond streaking with remarkable
precision. This example nicely illustrates that the spatio-
temporal correlation of a two-electron wavepacket can be
observed in time-resolved two-photon emission. More-
over, the pulse duration 𝜏XUV can serve as knob to ac-
tively control correlations in the continuum (cf. Feist
et al., 2009a). With decreasing 𝜏XUV, the relative time
delay becomes shorter (Fig. 29) enhancing the temporal
correlation and “non-sequentiality” of the emission pro-
cess. Moreover, this example underlines that the notion
of time ordering underlying time-dependent perturbation
theory and the multi-step models for photoemission from
complex targets becomes accessible by streaking without
destroying the coherence of the underlying time evolu-
tion. With the rapid progress in the development of more
intense attosecond XUV pulses, experimental exploration
of time-resolved two-photon ionization should soon come
into reach.

IX. ATTOSECOND STREAKING OF TUNNELING TIME?

Ever since the discovery of quantum tunneling of par-
ticles through potential barriers the question of whether
tunneling is instantaneous or takes a finite time has been

a matter of debate (MacColl, 1932). Viewed as a tem-
poral evolution of a wave packet the speed with which
tunneling through the barrier precedes has been the sub-
ject of a large number of theoretical investigations. Even
the possibility of superluminal speeds for the traversal
through the barrier have been discussed, referred to as
the Hartman effect (Hartman, 1962). Accounts of this
debate can be found in a large number of reviews (see
de Carvalho and Nussenzveig, 2002; Hauge and Støvneng,
1989; Landauer and Martin, 1994; Olkhovsky et al., 2004;
Winful, 2006; Muga et al., 2007; Choi and Jordan, 2013).
As a well-defined operator whose eigenvalue would cor-
respond to the travel time through the classically forbid-
den region could not be identified, unconventional oper-
ational descriptions have been put forward, such as com-
plex travel time based on a Feynman path integral for-
mulation (Sokolovski et al., 1994) or contextual values re-
placing conventional eigenvalues of a self-adjoined opera-
tors for so-called weak measurements (Choi and Jordan,
2013). Closely related is the notion of a Larmor clock
(Baz’, 1967a,b; Büttiker, 1983) which yields, in general,
two different precession times which can be interpreted
in special cases as the real and imaginary parts of a com-
plex time (Sokolovski et al., 1994). The Larmor clock
exploiting the expectation value of the spin projection as
“hand” can be viewed as a realization of a quantum clock
(Landauer and Martin, 1994). For scattering at poten-
tial barriers a consensus appears to have emerged on two
complementary, yet consistent, characteristic times: the
dwell time 𝑡D of the wavepacket in the scattering region
and the EWS time, 𝑡EWS, [Eqs. (2.22) and (2.24)], in this
context often referred to as the asymptotic phase time or
group delay of the wavepacket. The dwell time is related
to the expectation value ⟨𝑃𝐷⟩𝑡 of the Hermitian projec-
tion operator

𝑃𝐷 =

∫︁
(scattering region)

d3𝑟|�⃗�⟩⟨�⃗�| , (9.1)

where the integration extends over a finite scattering re-
gion and is, at least in principle, an experimental ob-
servable. The dwell time provides intrinsically local in-
formation on where the wavepacket spends its time but
is not directly associated with an observable of a spe-
cific asymptotic scattering channel. By contrast, the
EWS time is unambiguously linked to a specific scat-
tering channel while providing no local timing informa-
tion on motion of the wavepacket in the scattering region.
These two complementary times are related to each other
and, in special cases, e.g., for resonances, they agree with
each other,

𝑡D = 𝑡EWS , (9.2)

(Smith, 1960; de Carvalho and Nussenzveig, 2002; Win-
ful, 2006) and correspond in this case to the lifetime of
the resonance, 𝑡res.
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The question of tunneling times naturally resurfaced
in attosecond chronoscopy for strong-field ionization by
ultrashort and intense IR pulses (Eckle et al., 2008a,b;
Uiberacker et al., 2007; Shafir et al., 2012; McDonald
et al., 2013; Orlando et al., 2014; Landsman et al., 2014;
Landsman and Keller, 2015). Following the semiclassi-
cal analysis by Keldysh (Keldysh, 1965), an atomic elec-
tron is emitted by tunneling through the potential barrier
formed by the atomic Coulomb potential and the (quasi)-
static electric field of the IR pulse (Keldysh, 1965; Am-
mosov et al., 1986). For small Keldysh parameters 𝛾 ≪ 1
with 𝛾 = 4𝜋𝑡K/𝑇IR where 𝑡K is the Keldysh tunneling
time,

𝑡K =
𝑅

𝑣𝑇
, (9.3)

tunneling is the dominant ionization mechanism. In
Eq. (9.3) 𝑅 is the radial distance of the barrier from the
nucleus (𝑅 ≈ 𝐹0/ |𝜖𝑖|) and 𝑣𝑇 is the (imaginary) speed
of the electron traveling inside the barrier. In practice,
for its magnitude 𝑣𝑇 , the characteristic speed of the elec-
tronic initial bound state in the Coulomb field according
to the virial theorem, |𝑣𝑇 | =

√︀
2 |𝜖𝑖|, is used. Tunneling

processes beyond the simple Keldysh picture have been
identified for molecules which originate from the multi-
center character of the binding potential (for a review see
Bandrauk and Légaré, 2012). For example, differences in
the timing of tunneling ionization originating from dif-
ferent force centers or different molecular orbitals have
been explored (Takemoto and Becker, 2010; Bian and
Bandrauk, 2012).
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FIG. 30 (Color online) Model for the excitation of a ℓ = 1
shape resonance induced by a barrier of width Δ and height
𝑉0 = 1 a.u. superimposed on a short-ranged Yukawa-type po-
tential 𝑉Y(𝑟) = −𝑍eff/𝑟𝑒

−𝑟/𝑎 [see Eq. (2.36)] with 𝑍eff = 2
and 𝑎 = 2 from the ground state at 𝜖1𝑠 = −1.16 a.u. by an
attosecond XUV pulse with 𝜏XUV = 500 as and Δ𝜔XUV =
3.7 eV. Upper right corner: photoionization cross section near
the resonance 𝐸R = 0.2686 a.u. with width Γ = 0.0133 a.u..

Applying the tunneling time concepts discussed for
scattering at potential barriers to tunneling ionization is

not straightforward since strong field ionization is, just as
photoionization, a half-scattering process with the initial
state being a bound state. Consequently, the initial state
does not satisfy incoming scattering boundary conditions
and the splitting of a wave packet into a transmitted and
a reflected part is not well-defined. More importantly, the
potential barrier to be penetrated by tunneling, unlike for
potential scattering, is strongly time-dependent, either
appearing or disappearing every half-period 𝑇IR/2 (for a
linearly polarized IR field) or rotating in space with fre-
quency 𝜔IR (for a circularly polarized field). Therefore,
an alternative view of the Keldysh time [Eq. (9.3)] is that
of a characteristic response time to the time-dependent
strong IR field within which the initial wavefunction of
the bound electron builds up an outgoing flux component
(Orlando et al., 2014) rather than that of the time it takes
a wavepacket to travel through a stationary tunneling
barrier. In this context, the Keldysh time can be identi-
fied as the strong-field version of the Mandelstam-Tamm
time (Mandelstam and Tamm, 1945). As was pointed
out by Dahlström et al (Dahlström et al., 2012b) a dif-
ficulty in measuring the tunneling time by attosecond
streaking, e.g., by the attoclock (Eckle et al., 2008a,b;
Landsman et al., 2014) originates from self-referencing:
the IR field that causes the (tunneling) ionization to be
clocked acts also as the clock. Consequently, variation of
parameters that control either the ionization process or
the clock independently of each other is difficult to real-
ize. Disentangling the information on the timing of the
ionization process from that on the ionization dynamics
itself is, thus, a challenge.

In order to inquire into the opportunities to deter-
mine characteristic times related to tunneling by attosec-
ond streaking, we briefly discuss an alternative scenario
more closely related to the theme of attosecond time-
resolved photoemission that circumvents many of the
conceptual difficulties mentioned above (Fig. 30). We
consider a transition from a deeply bound atomic-like
state in a Yukawa potential [see Eq. (2.36)] to a reso-
nant state in the continuum confined by a radial and
stationary potential barrier of height 𝑉0 and thickness Δ
(“shape resonance”). The attosecond XUV pulse which
drives the transition provides a well-defined start signal
at 𝑡𝑎 = 0. The shape resonance subsequently decays by
tunneling through the barrier and the emitted electron in
the continuum will be streaked, i.e., “clocked” by the IR
field. The IR field is taken to be sufficiently weak as to
avoid any unwanted IR field induced tunneling (or multi-
photon) ionization and to isolate tunneling through the
stationary barrier as the only relevant pathway towards
ionization. The stationarity of the barrier bypasses the
influence of the dynamical response associated with the
Mandelstam-Tamm time. The question is then posed:
what temporal information on the decay dynamics does
the observed streaking time shift 𝑡S relative to the arrival
time of the peak of the XUV pulse contain?
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For attosecond streaking to operate in the regime of
a classical clock (see Section IV.A) the lifetime of the
decaying resonance 𝑡res must be short compared to the
optical cycle time 𝑇IR. Accordingly, we focus on tun-
neling in the “thin barrier” regime (see Hartman, 1962).
Moreover, for optimal time resolution of the decay pro-
cess, the exciting XUV pulse should be short compared
to 𝑡res, i.e., we use

𝜏XUV ≪ 𝑡res ≪ 𝑇IR . (9.4)

Eq. (9.4) translates into the spectral domain as

𝜔IR ≪ Γ ≪ Δ𝜔XUV . (9.5)

In addition, the spectral width Δ𝜔XUV must be small
compared to the barrier height 𝑉0, Δ𝜔XUV ≪ 𝑉0, in or-
der to prevent direct over-barrier ionization by the XUV
pulse. Eqs. 9.4 and 9.5 can be fulfilled for streaking
fields in the mid-infrared (𝜆IR = 5𝜇m in the present sim-
ulation) and an XUV pulse with ⟨𝜔XUV⟩ = 39 eV and
𝜏XUV = 500 as (Fig. 31). Such a scenario with suitable
parameters for a spherical barrier enclosing a Yukawa-
like central potential of height 𝑉0 = 1 a.u. extending from
𝑅𝐵 = 3 a.u. to 𝑅𝐵 +Δ = 4 a.u. is shown in Fig. 30. This
potential landscape features a single resonance in the 𝑝
sector (ℓ = 1) with complex energy 𝐸res = 0.2686 a.u.
and Γ = 0.0133 a.u., determined by exterior complex
scaling (ECS). The corresponding lifetime of the shape
resonance is 𝑡res = 903 as. We note that this potential
landscape bears some similarity to the endohedral C60

(see Section VI). The most significant difference is that
the attractive well provided by the C60 shell is replaced
by a repulsive barrier. We emphasize, however, that we
are not aware of any molecular realization of such a land-
scape.

A full 3D TDSE simulation for the attosecond streak-
ing of the excitation and delay by tunneling (Fig. 31)
yields 𝑡S = 909 as and to a remarkably good degree of
approximation (. 1%),

𝑡S ≃ 𝑡res , (9.6)

where 𝑡S is numerically determined from the streaking
trace generated by the solution of the TDSE and 𝑡res
is independently determined from the ECS method ap-
plied to the stationary Schrödinger equation. Thus, the
streaking time shift provides direct and accurate infor-
mation on the lifetime of the resonance. Furthermore,
Eq. (9.6) agrees with the mean EWS delay ⟨𝑡EWS⟩ for
the photoexcitation of the resonance averaged over the
spectral width (Fig. 30) 𝑡S ≃ ⟨𝑡EWS⟩ ≃ 926 as to within
≈ 5%. This value furthermore agrees with the dwell time
𝑡D of the continuum wavepacket (with angular momen-
tum ℓ = 1) within the scattering region restricting the
projection Eq. (9.1) to 0 ≤ 𝑟 ≤ 𝑅𝐵 + Δ (see Fig. 30).
The equality of 𝑡EWS and 𝑡D [Eq. (9.2)], well-known for
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FIG. 31 (Color online) Time delays of a shape resonance:
(a) Energy-dependent EWS delay 𝑡EWS and a mean ⟨𝑡EWS⟩
averaged over the spectral profile of the XUV pulse (dashed)
for photoexcitation of the resonance at 𝐸R = 0.268 a.u. with
width Γ = 0.0133 a.u. by an XUV pulse with ⟨𝜔XUV⟩ = 39 eV
and 𝜏XUV = 500 as. (b) Streaking of resonance by an IR
field with 𝜆IR = 5𝜇m and 𝐼IR = 1010 W/cm2 resulting in a
streaking time shift of 𝑡S = 909± 11 as.

scattering (Smith, 1960; de Carvalho and Nussenzveig,
2002; Winful, 2006), therefore applies also to the half-
scattering scenario of photoemission. In the present con-
text, one important consequence is that the experimen-
tally observable streaking time shift does not provide any
specific and separate information on the tunneling pro-
cess itself, i.e., is unrelated to the transit time through
the barrier but is identical to the dwell time inside the
scattering region. Clearly, if a well-defined separate tun-
neling time were to exist it would be included in the
overall lifetime 𝑡res.

It is now tempting to perform a numerical “Gedanken-
experiment” in which we alter the streaking scenario
such that more specific information on the transit time
through the barrier rather than through the entire scat-
tering region is probed. To this end, we first assume,
inspired by the streaking simulations for C60, that the
outer surface of the spherical barrier at 𝑅𝐵 +Δ is metal-
lic and provides perfect screening inside neglecting, how-
ever, any near-field enhancement. For otherwise identical
parameters we find now an enhanced streaking delay

𝑡S(𝑅𝐵 +Δ) = 𝑡res + 𝑡T = 1039 as . (9.7)

The additional contribution of 𝑡T = 130 as agrees to
within ≤ 2% with the transport time 𝑡T = (𝑅𝐵 +
Δ)/

√︀
2𝜖𝑓 = 128 as for the electron traveling with the
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velocity
√︀

2𝜖𝑓 (corresponding to the energy 𝜖𝑓 ) from its
starting position ⟨𝑟⟩𝑖 = 0 after photoexcitation to the
outer rim of the potential well. The close analogy to
𝑡T for the endohedral complex [Eq. (6.5)] is remarkable
considering that we have replaced the attractive well by
a potential barrier. The point to be noted is that the
transport time 𝑡T includes both the time the wavepacket
spends inside the classically allowed and the forbidden re-
gion until it reaches the streaking field. Following up on
this observation we perform in the second step an analo-
gous simulation assuming now that the perfect screening
would occur at inner rather than outer rim. For this
scenario we find

𝑡S(𝑅𝐵) = 𝑡res + 𝑡′T = 1006 as (9.8)

Consequently, the difference between the two streaking
times

𝑡S(𝑅𝐵 +Δ)− 𝑡S(𝑅𝐵) = 𝑡T − 𝑡′T = 33 as (9.9)

can be interpreted as the transport time through the
classically forbidden region of the barrier. Alternatively,
Eq. (9.9) can be taken as an estimate for the dwell time
inside the barrier. We emphasize that these two quan-
tities are not equivalent as the dwell time records both
the transmitted and reflected portion of the wavepacket
while the transit time refers to the arrival in the streaking
field, i.e., transmission. Eq. (9.9) agrees to a remarkable
degree of approximation with a Keldysh-like “tunneling
time” for the transit through the barrier Eq. (9.3)

𝑡T − 𝑡′T =
Δ

𝑣𝑇
= 𝑡K (9.10)

evaluated, however, for the (real) final state velocity of
the electron in the continuum, 𝑣𝑇 =

√︀
2𝜖𝑓 . If such a sce-

nario would be realizable, Eq. (9.8) and Eq. (9.9) would
constitute a protocol for extracting tunneling times in
terms of a transit time of the wavepacket through the
barrier. It also would provide an estimate, most likely a
lower bound, for the dwell time inside the barrier deter-
mined by restricting the projection operator [Eq. (9.1)]
to the classically forbidden region.

It should be emphasized, however, that the perfect
screening without accompanying near-field enhancement
as assumed in this Gedankenexperiment has, to our
knowledge, no immediate correspondence to a realistic
physical system. It may only serve to illustrate the prin-
ciple of extracting local dwell time information by at-
tosecond streaking. It complements the well-defined time
information for asymptotic scattering states in terms of
the EWS (or group) delay 𝑡EWS. Whether such a proto-
col can be implemented for a physically realizable setting
remains a widely open question.

X. CONCLUDING REMARKS

Within the first decade of the availability of
well-controlled and well-characterized attosecond XUV
pulses, the field of attosecond chronoscopy has made dra-
matic progress in observing electronic dynamics in real
time. Using photoemission by absorption of an XUV
photon and attosecond streaking by an IR field as a pro-
totypical example, we have illustrated its potential to
provide novel information on electron correlations and
electronic transport complementary to information ac-
cessible by time-integral spectroscopic techniques. The
time delay (or, more precisely, time shift) of the outgo-
ing wavepacket relative to the incident XUV pulse has
emerged as the key observable accessible by attosecond
streaking. This Eisenbud-Wigner-Smith delay 𝑡EWS, of-
ten referred to as the group delay, is an observable as-
sociated with the asymptotic scattering state, yet it pro-
vides information on the temporal evolution of the elec-
tronic wavepacket on a length scale of Ångstroms. For
atoms and molecules, 𝑡EWS provides critical tests of elec-
tron correlations effects in structured continua. Time-
resolved photoemission from complex targets such as en-
dohedral C60 and solid surfaces offers new insights into
transport and screening effects on the attosecond scale.
Even the time ordering within a coherent sequence of
elementary processes becomes accessible by attosecond
streaking, as demonstrated for two-photon double ion-
ization of helium.

The search for additional observables related to the
timing information accessible by streaking or other atto-
clocks is still ongoing. Whether or not attosecond streak-
ing can address the controversially debated topic of tun-
neling time is a still widely open question. While lifetimes
of resonances, 𝑡res, delimited by tunneling through poten-
tial barriers are accessible by streaking, extraction of the
local dwell time in classically forbidden regions remains
to be demonstrated. Time-resolved electronic dynamics
holds the promise to eventually go beyond observing and
clocking the temporal evolution. The ultimate goal will
be to actively control and manipulate electrons on the at-
tosecond time and Ångstrom length scale (Leone et al.,
2014). Realization of such a vision, dubbed “light-field
electronics” (Goulielmakis et al., 2007; Schultze et al.,
2012; Schiffrin et al., 2012), remains a challenge. Future
improvements in our understanding of microscopic ob-
servables and control knobs in the time domain will be a
key prerequisite to meet this challenge.
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