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This review presents recent progress in understanding constraints and consequences of close-
packing geometry of filamentous or columnar materials possessing non-trivial textures, focusing in
particular on the common motifs of twisted and toroidal structures. The mathematical framework
is presented that relates spacing between line-like, filamentous elements to their backbone orien-
tations, highlighting the explicit connection between the inter-filament metric properties and the
geometry of non-Euclidean surfaces. The consequences of the hidden connection between packing
in twisted filament bundles and packing on positively curved surfaces, like the Thomson problem,
are demonstrated for the defect-riddled ground states of physical models of twisted filament bun-
dles. The connection between the “ideal” geometry of fibrations of curved three-dimensional space,
including the Hopf fibration, and the non-Euclidean constraints of filament packing in twisted and
toroidal bundles is presented, with a focus on the broader dependence of metric geometry on the
simultaneous twisting and folded of multi-filament bundles.
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I. INTRODUCTION

Geometrical models of matter have been a corner-
stone of physical theories of materials for centuries. Like
Kepler’s hypothesis that the emergent symmetries of
crystals derive from optimal packings of hard-spherical
“atoms” (Hales, 2000), such models connect the collective
physical properties of microscopic particles and molecules
to principles of packing of elementary geometrical ob-
jects. From the statistical mechanics of n-body clusters
in hard-sphere gases and fluids (McQuarrie, 2000), to
properties of granular and amorphous behavior deriving
from the so-called random close-packed state (Bernal and
Mason, 1960; O’Hern et al., 2003), connections between
the geometry of sphere packing and many-body behavior
of compact, isotropic particles pervades condensed mat-
ter. By comparison, the generic principles and emergent
behavior of a parallel class of models, what we call fila-
mentous matter, remains largely unknown. Filamentous
matter refers to assemblies of multiple one-dimensional,

or line-like elements, a geometrical motif that appears in
diverse materials and formed at a range of dimensions
spanning nearly seven orders of magnitude in size (Pan,
2014). Ropes, cables and textiles are familiar examples
from macroscopic materials (Costello, 1997; Hearle et al.,
1969), and physical considerations of the role their struc-
ture plays in emergent mechanical properties like tensile
strength date back to at least as early as Galileo’s work
on the strength of materials (Galileo, 1914). With the
advent of modern microscopy came the discovery that
rope- and fabric-like assemblies of macromolecular fila-
ments constitute a crucial and broad class of structure
elements of biological matter, from the cytoskeleton to
extracellular tissue.

This article reviews recent theoretical advances in un-
derstanding the structure formation of cohesive filament
assemblies, with the particular focus on how the geo-
metrical interplay between orientation and inter-filament
spacing shape the non-trivial structural and thermody-
namic properties of assemblies. Of primary interest are
an important class of “self-twisting” assemblies of fila-
ments or columns, whose complex textures are driven by
molecular chirality. The interplay between chirality and
long-range ordering is a subject of long-standing inter-
est in condensed matter, and in liquid crystals in par-
ticular (de Gennes and Prost, 1993). Inter-molecular
forces between chiral molecules favor textures with non-
trivial, and twisted, gradients in orientation (Goodby,
1991; Harris et al., 1999), the simplest example of which
being cholesteric order. Crucially, the patterns of ori-
entation driven by chirality are not always compatible
with other types ordering exhibited by given system, as
in chiral smectics (de Gennes, 1972; Goodby, 2012; Renn
and Lubensky, 1988), or even with the geometrical con-
straints of space itself (Sadoc and Mosseri, 2008) as oc-
curs for the double-twist textures of the liquid crystal
blue phases (Sethna et al., 1983; Wright and Mermin,
1989).
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FIG. 1 A-E, Twisted bundles (schematic in A) of filaments or columns in biological and synthetic materials (EM images in
B-E): B, fibrin bundles (diameter ∼ 100 nm) (Weisel, 2004); C, twisted collagen fibrils derived from tendon (diameter ∼ 100
nm) (Ottani et al., 2002); D, twisted fibers of chiral organogel assemblies (diameter ∼ 100 nm) (Foster et al., 2010); and
E, mesoporous silica templated by twisted columnar assemblies of worm-like surfactant micelles, with schematic in the inset
(diameter ∼ 100 nm) (Yang et al., 2006). F-I, Toroidal bundles (schematic of twisted toroidal bundle in F) of filaments or
columns from biological and synthetic materials: G, EM images of twisted toroidal fibers of collagen (Cooper, 1969); H, EM
images of toroidal condensates of dsDNA (Hud and Downing, 2001); and I schematic and optical microscopy of faceted columnar
droplets of chromonic liquid crystals (Jeong et al., 2014).

The interplay between chiral patterns of orientation
and long-range, 2D ordering of columns or filaments,
combines these two aspects of frustration. For exam-
ple, theories of chiral columnar liquid crystals, show that
uniform twist of column backbones and lattice directions,
both of which are favored by chirality, are incompati-
ble with bulk columnar ordering (Kamien and Nelson,
1995, 1996). Because chiral textures are globally in-

compatible with long-range 2D positional order, in suf-
ficiently chiral bulk systems, twisted textures can only
be accommodated through the introduction of complex
networks of tilt-grain boundaries. The focus of this re-
view is a related, but distinct, frustration between ori-
entation and 2D positional order that occurs in finite
domains with non-trivial textures, in particular, within
the twisted structures shown in Fig. 1. Simply put,
as one among a broader class of such textures, twist
makes it geometrically impossible to evenly space fila-
ments or columns, even locally, throughout the domain
cross-section (Kléman, 1980; Starostin, 2006).

In filamentous matter, frustration follows from an in-
trinsic geometric coupling between the orientation and
spacing of line-like materials, a relationship which there-
fore has implications for the structure and thermodynam-
ics of a broad range of self-organized systems. These in-
clude columnar forming liquid crystals, such as lyotropic
chromonics (Fig 1I), which exhibit complex and twisted
textures upon confinement (Jeong et al., 2014; Tortora
and Lavrentovich, 2008). When columnar droplets form
in a dense chromonic suspensions, the chain-like na-
ture of columns promotes tangential anchoring within

droplets, which is known to stabilize toroidal or sponta-
neously twisted topologies in even achiral chain-like sys-
tems (Shin and Grason, 2011; Svenšek et al., 2010). Fur-
ther examples include twisted and hexagonally-packed
worm-like assemblies of chiral (or achiral) surfactant mi-
celles, which have become an important and widely-
studied route to chiral mesoporous silica structures (Fig
1E) and provide perhaps the most robust platforms for
multi-scale imaging of twisted columnar packing (Che
et al., 2004; Yang et al., 2006).

Beyond columnar systems per se, cohesive assemblies
of two-dimensionally packed filaments constitutes a ba-
sic materials architecture in both biological and synthetic
systems, relevant to a broader materials context. In liv-
ing organisms, assemblies of filamentous proteins rep-
resent a primary structural motif, from bundles of cy-
toskeletal filaments to fibers of extracellular proteins (Al-
berts et al., 2002). Biological filaments are universally
helical in structure, owing to the underlying chirality of
their constituent macromolecules, proteins and polysac-
charides (Bouligand, 2008; Hamley, 2010). Hence, rope-
like assembles of protein filaments often exhibit a ten-
dency to twist in a handed fashion (Grason, 2009; Gra-
son and Bruinsma, 2007; Heussinger and Grason, 2011;
Yang et al., 2010). The chiral textures of filamentous
protein bundles and fibers have been the subject of ex-
tensive study in numerous systems, from fibrin (Weisel,
2004; Weisel et al., 1987) and fibrillar collagen (Bouli-
gand et al., 1985; Cooper, 1969; Ottani et al., 2002; Wess,
2008), to extracellular chitan, cellulose fibers (Neville,
1993) and sickle hemoglobin macrofibers (Makowski and
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Magdoff-Fairchild, 1986). Beyond structural biofila-
ments, dsDNA is known to exhibit columnar order at
very high concentrations (Livolant et al., 1989), as well
as chirally-ordered mesophases (Livolant and Leforestier,
1996). Furthermore, upon condensation (Hud and Down-
ing, 2001; Hud et al., 1995) or under confinement (Kno-
bler and Gelbart, 2009; Leforestier and Livolant, 2009,
2010), dense states of DNA exhibit a range of com-
plex topologies, from twisted to folded tori. Outside of
the strictly biological contexts, synthetic materials, from
peptide-based biomaterial mimics (Kouwer et al., 2013)
to organogelators and supramolecular polymers (Dou-
glas, 2009; Lee et al., 2009), offer numerous further exam-
ples of the self-twisted and densely-packed filament and
fibers.

The preponderance of distinct materials exhibiting
twisted and densely-packed filaments or columns mo-
tivates a series of basic questions regarding the com-
mon, underlying geometric principles that constrain their
structure. How does the non-trivial geometry (e.g. twist,
bend, etc.) of a columnar assembly influence the struc-
ture and energetics of lateral order? What are the opti-
mal packings of filaments for a given non-trivial assem-
bly geometry, and what factors (geometric, mechanical,
molecular) determine these states? In this review, I dis-
cuss recent theoretical progress in understanding optimal
order in twisted columnar and filamentous materials as
well as the non-linear interplay between orientation and
spacing in columnar systems, more generally. In partic-
ular, this review focuses on understanding how certain
patterns of filament orientation are incompatible with
homogeneous inter-filament spacing, leading to a frus-
tration of long-range 2D order that is quite analogous
to frustration of positional order on intrinsically curved
surfaces, like spheres. The principal goal is to review
theoretical frameworks for analyzing constraints of inter-
filament spacing deriving from non-uniform textures of
two specific types: twisted, cylindrical bundles (Fig. 1A)
and twisted toroidal bundles (Fig. 1F). An important fo-
cus are models that quantify the thermodynamics costs of
non-uniform filament spacing in these incompatible tex-

tures, as well as the nature of the inhomogeneous filament
packings that constitute the ground states of these frus-
trated textures.

The review is organized as follows. Sec. II begins
with an introduction to a notion of inter-filament spac-
ing and metric properties of multi-filament structures in
the continuum limit of infinitesimal spacing. Sec. III
focuses on the unique metric geometry of twisted bun-
dles, relating the constraints of inter-filament packing
to those constraining packing on a curved 2D surface,
and reviews predictions for the number, type and distri-
bution of defects in the lateral packing of ground-state
bundles. Sec. IV reviews theoretical approaches to the
structure of twisted toroidal bundles based on ideal prop-
erties of filament packings in S3, the three-dimensional
hypersphere. We conclude with a brief discussion of out-
standing challenges for understanding optimal packing of

filaments and columns beyond the twisted textures con-
sidered in this review.

This review makes extensive use of concepts and meth-
ods of classical differential geometry of curved 2D sur-
faces, principally, the notion of surface metrics and their
relation to the intrinsic, or Gaussian curvature. Though
this review relies primarily on graphical descriptions
where possible, a reader unaccustomed to these elemen-
tary concepts of different geometry may find it useful to
refer to an introductory text (Millman and Parker, 1977)
or “primer” (Kamien, 2002) on the subject.

II. CHARTING THE METRIC PROPERTIES OF
INTER-FILAMENT PACKING, A CONTINUUM
PERSPECTIVE

In this section we illustrate constraints of inter-filament
packing deriving from arbitrary, non-uniform textures of
filament orientation, and in particular, the connection of
these constraints to the metric geometry of 2D curved
surfaces (Millman and Parker, 1977). Like membranes
or sheets, filaments and columns are extended objects.
Hence, not unlike multi-layered or smectic materials, no-
tions of inter-filament distance are intimately connected
to filament orientation. Even when inter-filament forces
are short-ranged, the nature of inter-filament contact is
fundamentally non-local. This is because the relevant
“distance” between a given point, say on one filament,
and another filament, say its neighbor, typically refers to
the distance of closest approach, a quantity that depends
non-linearly on shape and orientation.

In collections of filaments, as in condensed phases of
multi-filament systems or columnar assemblies, the tex-
ture of filament orientations is intrinsically linked to met-
ric (i.e. spacing) properties of inter-filament packing,
quite analogous to the way the geometry, or curvature,
of a 2D surface constrains the spacing between material
points upon it. To understand this connection, we con-
sider an ensemble of filaments that are, on average, ori-
ented normal to the xy plane (see Fig. 2). Here, we focus
on the continuum limit, where density is sufficiently high
so that filaments are locally parallel and subject to only
gradual variation of orientation throughout the packing.
Specifically, we assume that variations of shape and ori-
entation between neighboring filaments are negligible on
the scale of inter-filament spacing, set by the diameter d.
The spacing between two neighboring filaments, α and β,
whose center lines are described by curves Rα(sα) and
Rβ(sβ), and which intersect the plane at height z at s0α
and s0β , respectively (see Fig. 2). The distance of clos-
est approach from α to β is determined by optimizing the
separation between these curves over positions on the sec-
ond filament, resulting in an inter-filament vector that is,
by definition, perpendicular toRβ at the point of contact.
To determine the point of contact from R

0
α ≡ Rα(s

0
α)

to filament β, we expand the position of filament β off
of the z plane, Rβ(sβ) ≃ R

0
β + Tδs + κNδs2/2, where
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FIG. 2 Schematic of local distance of closest approach ∆∗

between filament α at s0α to filament β, where s∗β is to closest

point to R
0
α.

δs = sβ−s0β , andT, N and κ are the tangent, normal and
curvature that approximate the local shape of filament β
at z (Kamien, 2002). Defining the in-plane separation to
be ∆ ≡ R

0
β −R

0
α, the square distance between filament

α at z nearby points on β is simply

|Rβ(sβ)−R
0
α|2 ≃ |∆|2 + 2δs (T ·∆)

+ δs2(1 + κN ·∆) +O(δs3), (1)

which is easily minimized to find the point of nearest
contact on β at δs∗ ≃ −T · ∆/(1 + κN · ∆) and the
distance of closest approach

∆2
∗ = |∆|2 − (T ·∆)2 +O(∆3). (2)

Hence, the distance of closest approach between nearby
filaments is simply the separation measured perpendicu-

lar to the local filament orientation.
In the continuum limit we take tangents to be de-

scribed by a coarse-grained, continuous field t(x) such
that Tα(s) = t

(

Rα(s)
)

and consider the square distance
of closest approach between infinitesimally spaced fila-
ments, d∆ = dx x̂+ dy ŷ ,

d∆2
∗ = gij(x)dxidxj , (3)

where i and j sum over in-plane directions and we have
defined a metric tensor to correct for the discrepancy
between the distance measured in the plane at z and the
plane of inter-filament contact

gij(x) = δij − ti(x)tj(x). (4)

The tensor gij encodes the intuitive effect that inter-
filament spacing may be altered in two ways: 1) either by
changing in-plane distance dx2i ; or 2) by tilting filaments
along neighbor directions at constant in-plane spacing,
reducing true separation.
By drawing on a formal analogy to the metric geome-

try of 2D surfaces, we may extend our intuition further to

FIG. 3 Examples of filament textures with positive Keff > 0
and negative Keff < 0 effective curvatures, whose equivalent
surface geometry is shown schematically with spherical and
saddle-like surface patches.

understand that certain patterns, or textures, of filament
orientation geometrically frustrate multi-filament pack-
ing. Specifically, we may relate the constraints imposed
by the inter-filament metric, eq. (4), to a dual surface,
X(x, y) carrying the same metric gij = ∂iX · ∂jX (Mill-
man and Parker, 1977). Here, duality implies that
geodesic distances measured in this surface are equiva-
lent to distance of closest approach between correspond-
ing filaments in the packing, and hence, obstructions to
perfect packing of points on X(x, y) imply corresponding
obstructions for filament packing at z.

In particular, it is a classical result of differential geom-
etry, well known to cartographers, that the Gaussian cur-
vature of a surface severely constrains distances between
objects defined upon them. The Gaussian, or intrinsic,
curvature K of a surface is simply the product of the two
principal curvatures κ1 and κ2, which are measured along
the (orthogonal) directions of locally maximal and min-
imal curvature (Millman and Parker, 1977). In general,
K may be determined directly from the metric and its
derivatives, which has the simple approximate form when
the deviation from a flat metric (e.g. gij = δij) is small,
K ≃ − 1

2
ǫikǫjℓ∂k∂ℓgij where ǫij is the anti-symmetric ten-

sor (Millman and Parker, 1977). This form is sufficient
for analyzing the intrinsic geometry of filament packings
where tangents are weakly deflected from the z axis 1.
Defining the effective curvature Keff of filament packing

1 The small-tilt form for Keff in eq. (5) is correct to second order
in t⊥, and is the analog of the small-slope approximation of 2D
surface metric in the Monge gauge where surface geometry is
described by surface height h(x) above the x-y plane for which,
gij = δij + ∂ih∂jh.
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at z to be the curvature of the dual surface we find

Keff ≃ 1

2
∇⊥ ×

[

t⊥(∇⊥ × t⊥)− (t⊥ ×∇⊥)t⊥
]

=
1

2

[

∂2x(ty)
2 + ∂2y(tx)

2 − 2∂x∂y(txty)
]

, (5)

where t⊥ is the in-plane filament tilt at z and ∇⊥ =
x̂∂x + ŷ∂y.
When Keff 6= 0 it is impossible for multi-filament sys-

tems to maintain uniform spacing throughout the pack-
ing, just as it is generically impossible to evenly distribute
points on 2D surfaces for which K 6= 0 (Kléman, 1989;
Sadoc and Mosseri, 2008). Hence, the operatorKeff plays
a special role in the geometry of multi-filament systems,
distinguishing textures that are compatible from those
that are incompatible with uniform inter-filament spac-
ing. To illustrate the relationship between textures of
filament orientation and the dual surface geometry, we
consider two characteristic, radially symmetric patterns
of in-plane tilt shown in Fig. 3. A double-twist texture
t
twist
⊥ = Ω(yx̂−xŷ) corresponds to a positive effective cur-
vature Ktwist

eff = 3Ω2 > 0, consistent with a locally spher-

ical geometry of effective radius (
√
3Ω)−1. In contrast,

for a radial splay texture t
splay
⊥ = γ(xx̂ + yŷ) we find a

negative intrinsic curvature, Ksplay
eff = −γ2 < 0 consistent

with a locally hyperbolic, or saddle, geometry with prin-
ciple radii of curvature ±γ−1. Notice further from eq.
(5) that Keff exhibits a non-trivial dependence on the
uniaxial vs. biaxial nature of the in-plane texture. For
uniaxial (cholesteric) twist textures of equivalent pitch
the effective curvature is 1/3 of the value obtained by a
double twist texture, while Keff = 0 for uniaxial (planar)
splay.
The implications of “intrinsically curved” filament tex-

tures, which we deem as incompatible textures, follow
from an application of the famous Gauss-Bonnet theo-
rem (do Carmo, 1976) relating the Gaussian curvature of
a surface to geometry of an equilateral triangle connect-
ing three evenly-spaced points on X(x, y) corresponding
to centers of three equally-spaced neighbor filaments in
a packing (see Fig. 4). Assuming the geodesic length of
each edge is fixed to the preferred inter-filament spacing
d the sum of the interior angles θv becomes

∑

v

θv = π +

∫

tri

dA Keff , (6)

where the area integral is carried out over the dual surface
patch enclosed by the triangle. Eq. (6) shows the well
known result that the sum of interior angles is greater
than (less than) π on surfaces of positive (negative) cur-
vature. Assuming the simplest case for constant Keff

within a patch area of ∆Atri, this formula shows that for
close packing, the interior angle between nearest neigh-
bors becomes θv = π/3 + ∆AtriKeff/3. A given filament
has 2π of surrounding angle available, from which we
construct the kissing number Zk, corresponding to the

A

B

α
β γ

α

β

γ

FIG. 4 In A, a triplet of three twisted filaments, with red lines
indicating distances of closest approach between them. In B,
the mapping of inter-filament spacing onto the geodesic sep-
aration between three points that form vertices of a geodesic
triangle on a positively curved (spherical) surface patch. The
Gauss-Bonnet relates the sum of interior angles (label as θv)
to the integrated Gaussian curvature within the triangular
patch (Kamien, 2002), see eq. (6).

number of closely-packed filaments which can surround
a central filament (Rubinstein and Nelson, 1983) ,

Zk =
6

1 +∆AtriKeff/π
. (7)

Hence, incompatible textures corresponding to positive
or negative effective curvature imply Zk < 6 and Zk > 6,
respectively. In general, for Keff 6= 0 the close-packing
is incommensurate with integer values of Zk, implying
that inter-filament packing must deviate from constant

spacing d and for textures where Keff 6= 0 inter-filament
packing is geometrically frustrated (Sadoc and Mosseri,
2008).
The consequence of this geometric frustration is the

generation of inter-filament or inter-column stresses for
incompatible textures. A physical model for the ener-
getics incompatible textures is based on the continuum
elasticity theory of columnar order (Grason, 2010, 2012).
Here, a free energy functional Fcol =

∫

dV f(uij) de-
scribes the elastic cost of deformations from a stress-free
reference state where filaments/columns are uniformly
parallel and possess long-range 2D lattice order trans-
verse to their orientation, with

f(uij) =
1

2

[

λ(ukk)
2 + 2µuijuij

]

(8)

where uij is the 2D strain tensor describing elastic de-
formations of the columnar lattice (assumed here to be
hexagonal) and λ and µ are the Lamé elastic constants
parameterizing the cost of deformations of lattice or-
der (Selinger and Bruinsma, 1991). Because columns
maintain translational symmetry along their long axis,
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deformations are described by a two-component displace-
ment field u⊥(x), which has components in the 2D plane
perpendicular to the reference filament orientation, as-
sumed to by the z axis. Along with 2D positional or-
der, columnar systems possess nematic order associated
with the orientations of the columns, t(x), and trans-
verse displacements deform both types of order. Column
orientations are locked to displacement via

t(x) =
ẑ + ∂zu⊥

√

1 + |∂zu⊥|2
≃ ẑ + ∂zu⊥. (9)

In turn, orientations are coupled to inter-column strains
through the strain tensor,

uij ≃
1

2

(

∂iu⊥j + ∂ju⊥i − titj
)

, (10)

where the geometrically non-linear contribution from in-
plane tilt derives from ability of columnar systems to
reduce spacing through pure tilt (Grason, 2012) demon-
strated in eq. (4), and therefore, preserves the rotation-
ally invariant elastic energy (to fourth order in ti).
The inter-column stress defined by σij = df/duij =

λukkδij + 2µuij is subject to a compatibility condition

which ensures that stresses are compatible with the def-
inition of strain, the geometry of tilt patterns and the
topology of displacement field (Grason, 2010). The con-
dition derives formally from evaluating anti-symmetric
derivatives of strain ǫikǫjℓ∂k∂ℓuij (Nelson, 2002),

Y −1∇2
⊥σkk = s(x)−∇⊥ × b(x) −Keff , (11)

where Y = 4µ(λ + µ)/(λ + 2µ) is the 2D Young’s mod-
ulus and s(x) and b(x) are the respective densities of
disclinations and edge dislocations, respectively, in the
transverse lattice order 2 . This compatibility relation,
shows that there are two fundamentally distinct origins
of incompatibility in columnar systems: topological de-
fects described by multi-valued configurations of u⊥ and
lattice bond angle; and incompatible orientation textures
for which Keff 6= 0. On one hand, topological defects are
singular sources of stress, “quantized” according the dis-
crete symmetries of the underlying 2D lattice, the effec-
tive curvatureKeff varies continuously, in magnitude and
spatial distribution, according the geometry of column
orientation. Accordingly, much like 2D crystalline mem-
branes (Nelson and Peliti, 1987; Seung and Nelson, 1988),
the effective curvature of columnar/filamentous systems
may be viewed as a continuous distribution of disclina-
tions of local topological charge density −Keff (Kléman,
1989).

2 Considering only the elastic energy, the Euler-Lagrange equation
for the displacement is ∂jσij = ∂z

[

tjσij
]

, which strictly speaking

also contributes a term proportional to ∂z
[

σij∂itj
]

to the right-
hand side of (11).

FIG. 5 A schematic of a (double-)twisted bundle, where color
gradient (red to blue) highlights radial distance of filaments
from the central filament. A single, helical filament is shown
in the upper portion to highlight the local tilt angle, θ(ρ),
between the filament at radius ρ and the pitch axis.

In the absence of defects, it is straightforward to de-
termine the energetic costs of incompatible textures. For
example, a bundle of lateral size R, eq. (11) implies
inter-columnar stresses of order σ ≈ Y KeffR

2 whose en-
ergetic cost grows as Fcol/V ≈ Y (KeffR

2)2 implying the
elastic costs of geometric frustration are strongly depen-
dent on system size, becoming prohibitive and potentially
self-limiting for finite Keff in the thermodynamic limit of
R → ∞ (Grason, 2009; Grason and Bruinsma, 2007).
As we show in the next section for twisted bundles, one
further consequence of the geometrically-induced stresses
for large |KeffR

2| is the stability of topological defects in
the ground state lateral packing of incompatible textures.

III. TOPOLOGICAL DEFECTS IN TWISTED BUNDLES

We next consider the optimal structure and energet-
ics of the twisted filament bundle. This texture, which
for narrow bundles might be recognized as the “double
twist” tube that is the building block of liquid crystal
blue phases (Wright and Mermin, 1989), is the simplest
example of the non-trivial frustration of inter-filament
spacing by an incompatible texture. Here, filament or
column backbones are described by the rigid rotation of
in-plane positions about a central axis, say x = y = 0
along the pitch axis ẑ. Filament α in the bundle is de-
scribed by the helix,

Rα(z) = R
0
α+R

0
α⊥

[

cos(Ωz)−1
]

+(ẑ×R
0
α⊥) sin(Ωz)+zẑ,

(12)
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where R
0
α is the filament position at z = 0, R0

α⊥ is the
position in the xy plane at z = 0 (i.e. vector separation
from the central axis) and 2π/Ω is the helical pitch of
bundle, which is constant throughout the bundle. The
orientation profile of filaments has the simple form,

t(x) = cos θ(ρ)ẑ + sin θ(ρ)φ̂, (13)

where the local tilt-angle with respect to the pitch axis
follows,

tan θ(ρ) = Ωρ, (14)

which goes from θ = 0 at the center to θ = π/2 as ρ→ ∞
indicating an asymptotic approach to circular shape for
filaments far from the central axis. The application of
eqs. (3) and (4) yield the inter-filament metric for a
twisted bundle in polar coordinates (ρ, φ),

d∆2
∗ = dρ2 + ρ2 cos2 θ(ρ)dφ2. (15)

This metric has a simple and familiar interpretation in
terms of an axisymmetric dual surface (Fig. 6), where ρ
is the arc-distance from the “pole” of the surface and φ is
the azimuthal angle around that axis (Bruss and Grason,
2012). The length of a “latitude”, ℓ(ρ), that encircles the
pole a distance ρ simply

ℓ(ρ) = 2πρ cos θ(ρ) = P sin θ(ρ), (16)

where we used 2π/P = Ω.

In a twisted bundle ℓ(ρ) = 2πρ/
√

1 + (Ωρ)2 can be
understood by considering the space available for fila-
ments a radial distance ρ from the center. The max-
imum number of filaments that can be placed at ρ is
constrained by the length of a curve that passes per-
pendicular to filaments between two points of contact
along the same helical filament (see Fig. 6A). In recent
studies of closed-packed, n-ply geometries (Neukrich and
van der Heijden, 2002; Olsen and Bohr, 2010), in which
n filament are packed a fixed radius ρp from the cen-
tral twist axis of a ply, the non-linear ρ-dependence of
ℓ(ρ) has been implicated in a surprising “geometrical
jamming” behavior. The constraints on non-overlap im-
ply a distance between neighbor filaments d, a condition
which we may approximate at large n by d ≃ ℓ(ρp)/n,
and therefore, requires that ρp increase with twist as

ρp ≃ d/
√

(2π/n)2 − (Ωd)2. The filament length per

turn of the ply is Lt(Ω) = 2πΩ−1
√

1 + (Ωρp)2, which
when combined combined with divergence of ρp at a fi-
nite twist (Ω → 2π/(nd)) implies that the number of
turns for fixed-length filaments is a non-monotonic func-
tion of Ω (Olsen and Bohr, 2011). That is, n-plies achieve
a maximum number of turns at a finite twist for which
dL−1

t /dΩ = 0, a purely geometric phenomenon which we
may now relate to the packing of discs on an axisymmet-
ric curved surface.
Given the axisymmetry of the metric in eq. (15), it is

straightforward to reconstruct an axisymmetric surface in

ρ

θ(ρ)

P

(ρ)

Ω−1/
√

3

ρ

(ρ)

spherical radius

asymptotic

cylindrical radius

Ω−1
A B

FIG. 6 In A, a schematic of the packing of finite diameter
filaments at a radial distance ρ from the bundle center. The
amount of space available for packing filaments at ρ is deter-
mined by the length ℓ(ρ) of a curve (shown in red) between to
two points of “self-contact” along the same filament (shown
as orange). In B, the 2D axisymmetric surface that carries
the inter-filament metric properties of a twisted bundle. The
lines of “latitude” of length ℓ(ρ) as defined by the geometry
in A.

3D that encodes the metric properties of the twisted bun-
dle. Specifically, adopting cylindrical coordinates where
r̂⊥ = cosφx̂+ sinφŷ, the surface has the form,

X(ρ, φ) =
ℓ(ρ)

2π
r̂⊥ + z(ρ)ẑ, (17)

where the function z(ρ) satisfies the

∂z

∂ρ
= ±

√

1− cos6 θ(ρ), (18)

where we used (2π)−1∂ℓ/∂ρ = cos3 θ(ρ). This surface is
shown in Fig. 6B, has a tapered, silo-like geometry char-
acterized by the distribution of Gaussian curvature which
follows directly from derivatives of the metric (Millman
and Parker, 1977),

Keff = − 1

2ℓ(ρ)

∂2ℓ(ρ)

∂ρ2
= 3Ω2 cos4 θ(ρ). (19)

This exact form of the curvature distribution agrees
with the “small-tilt” calculation described in the pre-
vious section only at the center of the bundle where
Keff(ρ → 0) = 3Ω2 and where the geometry of the dual
surface is locally well-approximated by sphere of radius
Ω−1/

√
3. In the large-tilt regime corresponding to points

far from the bundle center where Ωρ ≫ 1, the intrinsic
curvature vanishes as Keff(ρ ≫ Ω−1) ≃ 3Ω−2ρ−4, indi-
cating an asymptotic approach to a cylindrical geometry
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for the dual surface. The concentration of Gaussian cur-
vature at the “pole” of the dual surface implies frustra-
tion of inter-filament packing is largely localized to within
a radial distance of order P from the center of the bun-
dle, while sufficiently far from the bundle center, metric
constraints permit a nearly regular inter-filament spac-
ing, asymptotically commensurate with hexagonal pack-
ing, i.e. Zk(ρ→ ∞) → 6 (Bruss and Grason, 2012).

It is important to recognize that the notion of metric
equivalence between twisted bundles and the dual surface
is not restricted to the limit of infinitesimally-spaced fil-
aments. That is, the closest distance between any two
helical curves in the bundle is identical to the geodesic

distance measured between equivalent points on the sur-
face, no matter the separation 3. This is important be-
cause it implies that the duality between the problems
of packing in twisted bundles and packing on the dual
surfaces holds for finite-sized elements. For example, we
may consider steric, hard tube interactions to prevent
inter-filament separations smaller than a diameter d. The
duality between packing in bundles and on the dual sur-
face implies that any non-overlapping configurations of
(geodesic) discs of diameter d on the surface correspond
one-to-one to three-dimensional configurations of non-
overlapping filaments of diameter d in the bundle (see
e.g. close-packed twisted bundles in (Bruss and Grason,
2012)).

The equivalence between discrete packings of finite di-
ameter elements provides a useful way to illustrate and
understand the metric equivalence between bundles and
their dual surfaces. Consider a horizontal section of a
twisted bundle as shown in Fig. 7A-B and note the appar-
ent “warping” of the circular cross-sections of the helical
tubes in the sections: horizontal slices of filaments near
the bundle center remain circular due to the normal in-
teraction with horizontal plane, while slices towards the
outer edge of the bundle stretch, or warp, azimuthally
due to the increased tilt. Consider also the equivalent
disc packing on the dual surface shown in Fig. 7C. Due
to the non-zero Gaussian curvature of the dual surface,
any projection of the disc packing to a planar surface will
distort the image of the disc packing with a local geome-

3 This follows from the fact that any curve, C12, between two
points (ρ1, φ1) and (ρ2, φ2) on the dual surface maps onto a
unique three dimensional curve, C′

12
, in the bundle that con-

nects filaments at (ρ1, φ1, z0) and (ρ2, φ2, z0) and that intersects
all intervening helical curves perpendicular their backbones. Fur-
ther, metric equivalence between the surface bundle imply these
curves share the identical length (i.e. LC12

= LC′

12

). Likewise,

any curve in the bundle maps onto a unique, equal-length curve
on surface. Consider the geodesic path G12 between two end
points on the surface, which maps to curve G′

12
in the bundle

with LG12
= LG′

12

. Because the length of any other curve C12

between the same endpoints must have LC12
≥ LG12

, it fol-
lows that G′

12
must also be the shortest possible path between

endpoint filaments in the bundle (i.e. a straight line connecting
points of contact).

horizontal cross section

orthographic

projection

azimuthal-equidistant 

projection

ho

projec

muthal-equidis

projectio

ss sectio

twisted bundle disc-packed “dome”

A

B

C

E

D

FIG. 7 Equivalence of finite-diameter filament packing in
twisted bundles, and finite-diameter disc packing on “dome-
like” surface carrying the metric of twisted bundle. The side-
view of a twisted bundle is shown in A and the top-view is
shown in B, highlighting non-circular shapes of the filament
intersections with the plane perpendicular to the pitch axis.
In C, a side view the equivalent disc-packing on the “dome”
shown in Fig. 6B, and two “polar” projections of the disc-
packing are shown in D and E. The orthographic projection
in D, a view from top-down, preserves distances along the az-
imuthal direction while compressing distances along the radial
direction. In the azimuthal equidistant projection in E, pre-
serves radial distances while stretching azithumal distances,
producing the identical image of the filament intersections
(azimuthally stretched discs) shown in B.

try that varies throughout the projected image, familiar
from continential distortions in cartographic projections
of from the globe to flat maps (Bugayevsky and Snyder,
1995). See, for example, the disc packing in orthographic
projection (i.e. “viewed from above” in Fig. 7D), where
discs appear compressed along the radial directions away
from the pole at the center of the image. Viewed from
another projection which maintains distances measured
from the ρ = 0 “pole” (see Fig. 7E) known as the az-

imuthal equidistant projection, we find that projected im-
age of dual surface disc packing is identical to images of
the planar section of bundle normal to the pitch. Other
planar sections of the bundle, those not necessarily nor-
mal to the pitch axis, correspond to azimuthal equidistant

projections of the same disc packing where the center of
the image is no longer a point of axial symmetry of the
dual surface (the pole at ρ = 0). The warping of filament
sections in the planar cut of a bundle has long been rec-
ognized in the context of the so-called “contact” problem
in textiles and yarns (Hearle et al., 1969; Pan and Brook-
stein, 2002), though only recently has the connection to
non-Euclidean geometry been understood.
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A. Disclinations in Twisted Bundles

The non-Euclidean metric geometry and the associated
global and local constraints on inter-filament packing im-
plied by the mapping have critical consequences for phys-
ical models of cohesive filament assembly in twisted bun-
dles. The Gauss-Bonnet theorem and its application to
triangulations of disc packings on the dual surface may be
exploited to derive the relationship between bundle twist,
the topology of the nearest-neighbor bond network in the
bundle and the deformation of ideal inter-filament geome-
try (Bruss and Grason, 2012). Figure 8 shows a filament
bundle and its dual representation as a curved-surface
disc packing. Because the geodesic distances measured
on the surface represent the true inter-filament spac-
ing, the triangulated network of nearest-neighbor bonds
on the surface properly encodes the topology of nearest
inter-filament contact. In particular, from the triangu-
lation of the dual packing we may count the neighbor
statistics of filaments in the packing, and its deviation
from the 6-fold packing of a parallel bundle. Denoting
the number of filaments (or discs) in the bulk of the bun-
dle (not a surface vertex) possessing n neighbor bonds by
Vn, we define the total topological charge of the bundle
to be

Q =
∑

n

(6 − n)Vn. (20)

This definition is consistent with the definition of topo-
logical disinclination charge where points of 5-fold (7-
fold) coordination in the bond network correspond to
+1 (-1) contributions to Q (Nelson, 2002). Applying eq.
(6) by summing over the triangulated faces of nearest-
neighbor mesh and using the facts that 1) each face is
spanned by three edges (or “bonds”) 2) each edge con-
nects two vertices and 3) each internal (non-surface) ver-
tex accounts for 2π total internal angle we arrive at a gen-
eralized version of the Euler-Poincaré formula (Kamien,
2002)

Q− 6χ = Nb〈δθb〉, (21)

where

χ =
1

2π

∫

mesh

dA KG, (22)

quantifies the total integrated Gaussian curvature within
the triangulated packing and the right-hand describes the
Nb internal angles of boundary vertices, θb, from equilat-
eral packing with

〈δθb〉 =
1

Nb

∑

b

(θb − π/3). (23)

where θb is shown schematically in Fig. 8B.
Typical applications of the Euler-Poincaré formula

consider triangulations without boundary (say, for crys-
talline packings on surfaces of spherical topology), such

θb

A B

C θ (degrees)

FIG. 8 A simulated ground state of an N = 70 twisted bun-
dle from ref. (Bruss and Grason, 2012) is shown in side-view
in A and along with the corresponding disc-packing on the
bundle-equivalent surface in B. Triangulation of the packing
on the curved surface yields the nearest-neighbor “bond net-
work”, identifying defects in the packing as deviations from
six-fold coordination of the bond network (i.e. disclinations).
While filaments with six neighbors are colored gray, five- and
seven-fold coordinated filaments are shown as red and blue,
respectively. In C, the total topological charge of the ground-
state packing Q, defined in eq. (20), plotted as a function
of the twist angle of the outermost filament in the bundle,
θ = arctan(ΩR), with the colored data points showing results
from simulated ground states and the solid line showing the
geometric prediction for the “ideal” topological charge given
by eq. (24).

that the right-hand side is zero (Nb = 0) and Q is a
topological invariant, fixed by the Euler characteristic
χ (Bowick and Giomi, 2009). In the case of a twisted
bundle, the total disclination charge is not a topological
invariant 4, and the deficit between Q and 6χ will be

4 Eqs. (20 - 23), restricts the analyses to “internal” or “non-
boundary” disclinations. Although it is possible to consider
disclinations defined on the open boundary of a 2D bond net-
work (Bowick and Giomi, 2009), such “defects” do not generate
the far-field elastic strains of inter-vertex position favored by
Gaussian curvature. Though the sum of “internal” and “bound-
ary” disclinations is always 6 for any effective curvature (twist),
due to distinct geometric influence of these two different popula-
tions, the distribution of these defects in the ground state shifts
from boundary-only defects in untwisted bundles to predomi-
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accommodated by packing deformation at the boundary
(i.e. 〈δθb〉 6= 0). Nevertheless, eq. (21) provides a useful
heuristic for understanding the structure of low-energy
packings by noting that the right-hand side a measure of
the inter-filament strain in the packing. Intuitively, one
expects that interactions that favor equidistant filaments
will favor equilateral packing at the boundary (specifi-
cally in the limit of d→ 0 where area per face vanishes),
hence, 〈δθb〉 6= 0 indicates a locally sub-optimal geome-
try. More specifically, the magnitude of inter-filament
strain, or the variation of inter filament spacing, im-
plied by 〈δθb〉 6= 0 can be understood in terms of the
mean geodesic curvature κg ≈ 3〈δθb〉/d of lattice row in
a nearly triangular packing of average spacing d. Due to
the row curvature, the change in spacing between succes-
sive rows is roughly κgd

2. For a bundle with a number
of radial rows Nr, the relative change of spacing between
filaments at the center and periphery of the bundle, re-
spectively d0 and db, becomes db/d0 − 1 ≈ Nr〈δθb〉. For
2D bundles where Nr ∝ Nb, it follows from eq. (21) that
Q − 6χ is indeed proportional to the excess separation
between filaments at the bundle surface relative to the
center.

As cohesive interactions favor uniform inter-filament
spacing throughout, a simple conjecture is that in energy-

minimizing bundles the packing prefers values of topolog-
ical charge where 〈δθb〉 = 0, such that the ideal topological
charge may be defined as Qid ≡ 6χ. Assuming that bun-
dle cross sections retain a roughly circular shape, we may
calculate the dependence of Qid on twist and radius of
bundles,

Qid =
3

π

∫

dρ ℓ(ρ)Keff(ρ) = 6
[

1− cos3 θ(R)
]

, (24)

where we use dA = dρ ℓ(ρ) and eq. (19). This simple re-
lationship makes three significant predictions about the
optimal (energy-minimizing) packing of twisted bundles.
First, the preferred disclination charge of bundles is in-

dependent of filament diameter, depending only on the
tilt angle θ at the surface of the bundle, which itself is
fully determined by the ratio R/P . Second, for θ 6= 0,
Qid ≥ 0, indicating a preference for excess 5-fold coordi-
nated (Q = +1) sites in the bundle cross section. Third,
the preferred topological charge of the packing increases
from Qid = 0 at θ = 0 to a maximum of Qid = 6 as
θ → π/2.

These predictions for the optimal distribution of de-
fects in the cross section of twisted filament bundles have
been tested in the context of numerical simulations of co-
hesive filament bundles (Bruss and Grason, 2012, 2013).
These simulations employ a simple stochastic algorithm
to optimize the cohesive energy of an N -filament bun-
dle with fixed twist Ω. Here, the finite-diameter d of

nantly or exclusively internal defects in highly twisted bundles.

filaments enters as the energy-minimum of pair-wise co-
hesive interactions, which was assumed to have a form
similar to a Leonard-Jones potential in which the sepa-
ration is the distance of closest approach between helical
centerlines of filaments. Fig. 8C compares the Qid to
the topological charge Q of numerically-minimized bun-
dle packings for N = 16−196, which is extracted directly
from triangulated neighbor packing that has been confor-
mally mapped to the plane. Notwithstanding its contin-
uous θ-dependence as well as the simple assumption of
cylindrical bundle shape, the form of Qid in eq. (24) does
a remarkable job of capturing the increase in the excess
of 5-fold defects of numerical ground-state packings.

As shown in Fig. 9B which maps the minimal-energy
value of Q in terms of θ and N , these simulations con-
firm that the net topological charge is solely determined
by twist angle (or equivalently by the integrated curva-
ture on the dual surface) and independent of filament
number. The evidently universal dependence of Q on θ
is all the more surprising when analyzing the dependence
of other structural measures of the packing on θ and N .
For example, in Fig. 9C we show total number of disclina-
tions per topological charge Q (where “disclination” here
refers to any non 6-fold coordinated filament in the bulk
packing), which unlike Q itself, exhibits a complex and
non-universal dependence on both filament number and
bundle twist, highlighting N -dependent transitions be-
tween multiple ground-state defect patterns. One critical
observation is the abundance of excess 5− 7 pairs in the
energy-minimizing states of large-N bundles (Fig. 9D), a
trend which is not-unlike the formation of “grain bound-
ary scars” on spherical (Bausch et al., 2003; Bowick et al.,
2000) and catenary (Irvine et al., 2011) surfaces at large-
N .

Despite these obvious complexities in detailed ground-
state structure (both in numbers, positions and charge of
individual defects), optimal bundles maintain a fixed and
universal value of net number of 5-fold defects as mea-
sured by Q for a given θ consistent with the purely ge-
ometric considerations implied by the dual-surface map-
ping. The universal evolution of Q with twist implies a
corresponding universality in the θ-dependence of the en-
ergy of the bundle. Fig. 10A shows the plots of Ebulk/V
“bulk” energy density (total - surface filament energy)
vs. θ for simulated ground states in the range of N .
Again, despite the differences in detailed packing struc-
ture, for large-N the bulk energy shows a characteristic
dependence on θ that is dominated in the underlying and
universal changes in Q. At low angle, the energy of a
defect-free (Q = 0) bundle exhibits a roughly power-law
increase with θ. The monotonic θ-dependence holds until
a critical value of θc ≃ 25◦, at which point the ground-
state becomes unstable to an excess 5-fold defect, Q = 1,
marked by a cusp and secondary minimum, indicating
the mitigating effects of defects in highly-twisted bun-
dles. Further cusps appear that the transitions to higher
integer Q, leading a characteristic “saw-tooth” depen-
dence of Ebulk/V on θ in the defect-mediated regime.
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FIG. 9 Simulated ground states of twisted filament bundles adapted from refs. (Bruss and Grason, 2012, 2013). In A, optimal
packings of a 34-filament bundle, with increasing twist angle showing an increase in the number of five-fold (disinclination)
defects, shown in red. The total topological charge of simulated ground states is shown in B for bundles of variable twist angle,
θ = arctan(ΩR), and filament number N . In C, the number of disclinations per charge, NDisclination/Q, is shown for simulated
ground states, with dark lines drawn to guide the eye to regions of roughly constant value. In D, a series of simulated ground
states at fixed θ ≈ 30◦ (corresponding to Q = 1) with increasing N , showing the transition from compact disclinations to
extended “charged scars” of alternating 5-7 defect pairs.

Notably, an energetic landscape of similar structure was
calculated in the context of continuum elasticity theory
calculations of twisted bundles (Grason, 2010, 2012) pos-
sessing energy-minimizing configurations of 5-fold discli-
nations (Fig. 10B) . At small twist, predictions of the con-
tinuum theory appear quantitatively consistent for small
twist (notably, continuum theory predicts a critical an-

gle of θc = arctan(
√

2/9) ≃ 25.2◦ in good agreement
with simulations). It should be noted that the small-tilt
approximation underlying this theory lead to qualitative
failures at large-twist, including an unbounded increase
in Q as θ → π/2.

B. Dislocations in Large-N Bundles

Five-fold disclinations are evidently favorable in suffi-
ciently twisted bundles, yet these topologically “charged”
defects are not the only means of relaxing geometrical
frustration in bundles. Indeed, for sufficiently large bun-
dles (N ≫ 1) excess disclinations which appear only
above a critical threshold of twist θc ≃ 25◦, are pre-
empted by a class of topologically neutral defects that
become stable at lower twist (Azadi and Grason, 2012).
These defects, edge dislocations in the cross-section, are
“bound” 5-7 pairs (Nelson, 2002), which correspond to a
partial row of filament positions that terminates within
the bulk of the packing. Because these defects are only

energetically stable at sufficiently large N , dislocation-
only ground states of twisted bundles have not been
characterized via the numerical methods applied for sta-
ble disinclination patterns for N <∼ 200. Nonetheless,
the regime of large bundle size R/d ≫ 1 and low-
twist θ ≪ 1 where multi-dislocation patterns emerge as
minimal-energy configurations is well suited to the con-
tinuum elastic theory of 2D ordered bundles outlined in
the previous section.

The stability of dislocations can be understood by con-
sidering the stress distribution in a defect-free twisted
bundle and the work done to remove a partial row of fil-
ament positions in the bundle, to create an edge disloca-
tion (Azadi and Grason, 2012). The dominant contribu-
tion to the stress derives from the tilt-induced azimuthal
compression of inter-filament spacing at the outer periph-
ery of the bundle, from which we can crudely estimate
the magnitude of this stress as σφφ ≈ −Y t2φ = −Y (Ωρ)2.
A more careful calculation shows that the stress profile
of the defect-free state σφφ = 3YΩ2/128(R2 − 3ρ2) is
only compressive sufficiently far from the bundle core
(ρ ≥ R/

√
3) (Grason, 2012). To maximize the energy re-

laxation upon introducing a dislocation, we may consider
a Volterra construction (Chaikin and Lubensky, 1995),
in which dislocations correspond to the removal a ma-
terial along a cut in the bundle cross section. Due to
the compressive stress at the bundle periphery, stable
dislocations have polarizations corresponding to Burgers
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FIG. 10 The “bulk” energy density (total energy minus ex-
cess energy of surface filaments) of simulated ground states
of twisted bundles vs. twist angle, for large bundle sizes
N = 166 − 193 as computed in ref. (Bruss and Grason,
2013) is shown in A. Energy curves are overlaying the re-
sults for Q, highlighting the coincidence of multiple minima
in the energy density with step-wise transitions in optimal
value of Q. The shape of the simulated bulk energy density
is compared to continuum elasticity theory calculations for
twisted bundles possessing only five-fold disclinations, calcu-
lated in refs. (Grason, 2010, 2012), is shown in B, with opti-
mal arrangement of defects shown for each distinct branches
(corresponding to distinct Q values) of energy minimal. The
dashed lines show the metastable branches of defect free and
Q = 1 elastic energy density, which meet at the transition
point (ΩR)c =

√

2/9 (corresponding to θc ≃ 25◦).

vectors locally aligned to the azimuthal direction and the
removal of a partial row of filament positions extending
radially from the dislocation (at ρ <∼ R) to the free edge
of the bundle. Following standard arguments (Peach and
Koehler, 1950), removing a row of filament positions of
width b ≃ d and of length ℓ ≈ R corresponds to a re-
laxation of the elastic energy by roughly σφφdR, from
which we estimate the energy of twist-dislocation cou-
pling Etwist to be

Etwist ≈ −Y bΩ2R3. (25)

A B

FIG. 11 In A, stability phase diagram for defects in twisted
bundles, calculated from continuum elasticity theory (Azadi
and Grason, 2012), showing regions where dislocations (neu-
tral 5-7 disclination pairs) and “charged” defect configura-
tions possessing at least one excess five-fold disinclination are
stable relative to the defect free bundle. Here, a is the inter-
filament lattice spacing. In B, schematic of the “scarred”,
multi-dislocation ground state at intermediate twist for suffi-
ciently large bundles (i.e. R/a≫ 1), with five- and seven-fold
coordinated filaments shown in red and blue, respectively.

Comparing this to the elastic “self-energy” of introduc-
ing a single dislocation in the cross section Edisc ≈
Y b2 ln(R/b) (Chaikin and Lubensky, 1995) we estimate
the critical degree of bundle twist at which dislocations
become stable,

(ΩR)2disl ≈
b

R
ln(R/b). (26)

Significantly, while the stability condition of isolated
disclinations is predicted to be independent of bundle
size (i.e. (ΩR)disc =

√

2/9) the threshold twist for appro-
priately polarized dislocations is 1) highly dependent on
R/d and 2) found to decrease with increasing bundle size,
vanishing in the R/b→ ∞ limit. Notably, an essentially
equivalent argument was first developed in the context of
“neutral” dislocation patterns formed in 2D crystalline
assemblies on curved surfaces with open boundaries by
Vitelli, Irvine and Chaikin, yielding a similar increase in
dislocation stability as the ratio of crystal size to lattice
spacing grows (Irvine et al., 2011).
A more careful analysis of the position dependence

of the elastic energy of dislocations in twisted bundles
yields the defect stability diagram shown Fig. 11A. For
sufficiently, narrow bundles R/b <∼ 3 the dislocations
and disclinations are predicted to become energetically
preferable at roughly the same degree of large twist, com-
parable to (ΩR)disc =

√

2/9. In contrast, for mesoscop-
ically large bundles where R/b ≫ 1 dislocations become
stable in twisted bundles at degrees of twist far below
the threshold for excess 5-fold disclinations, predicting a
broad range of multi-dislocation ground states at inter-
mediate twist for large bundles. To put this into context,
we may compare these thresholds with the observed size
and twist angles of self-twisting filament assemblies. For
example, fibrin bundles (Weisel et al., 1987) and twisted
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FIG. 12 In A, optimal number of dislocations vs. bundle twist
in a R = 100a bundle, from continuum theory of twisted bun-
dles (Azadi and Grason, 2012). The integer pair (m,n) refers
to structures with m “scars” each possessing n dislocations.
B shows, the collapse of total number of defects (from bun-
dles R/a = 20 − 700) with parameter R/a[(ΩR)2 − (ΩR)2∗]
where (ΩR)∗ is the critical twist for stable dislocations. The
inset of B, shows the proportionality between the total dislo-
cation number and optimal scar number, predicting roughly
6 dislocations per scar independent of R/a. Here, the color
scale indicates the gradient in bundle sizes, with red and blue,
corresponding to large and smaller R/a, respectively.

collagen fibrils (Wess, 2008) are observed to have twisted
angles in the ranges of 8◦ − 10◦ and 15◦ − 17◦ respec-
tively, which are both well below the threshold angle for
stabilization of a single 5-fold disinclination θdisc ≃ 25◦.
For bundles of mesoscopic dimensions typical for fibrin
and collagen R ≈ 100d, the elastic theory predicts that
dislocations become favorable above a threshold twist of
θdisc(R/b = 100) ≃ 9◦, below or comparable to the ob-
served twists of either structure. These observations sug-
gest that while excess disinclinations may not be stable in
of some of the most commonly observed twisted filament
architectures, stable dislocations and multi-dislocation
patterns are likely features of optimal packing of these
materials.

The structure and thermodynamics of multi-
dislocation ground states of twisted bundles was
studied using the Greens functions for dislocation
sources of stress in cylindrical bundles to calculate the
elastic energy of competing defect patterns (Azadi and
Grason, 2012) . For bundle twist in excess of the critical

dislocation twist (ΩR)disl, the energetically preferred
number of dislocations follows a characteristic scaling
with bundle twist and size (see Fig. 12A). This scaling
can be understood in largely geometric terms by bal-
ancing the length of azimuthal compression at the free
boundary on the dual surface |ℓ(R) − 2πR| ≈ R(ΩR)2

with the azimuthal length Ndb removed by Nd radial
lattice rows of width b removed from the periphery of
the bundle, yielding

Nd ∼ R

b
(ΩR)2. (27)

The optimal symmetries of multi-dislocation patterns
have also been explored in the context of ground states
of twisted bundles, and more recently, the context of
the dual problem of crystalline “caps” on spherical sur-
faces (Azadi and Grason, 2014; Grason and Davidovitch,
2013). For Nd ≫ 1, minimal energy patterns of dislo-
cations are shown to be radial chains of dislocations, or
“neutral scars”, extending from the free edge and termi-
nating the bulk of a bundle (see Fig. 11B). This motif
of a “neutral” 5-7 disinclination chain, originally dubbed
“pleats” when observed in colloidal assemblies on curved
2D surfaces (Irvine et al., 2011), has the structure along
its length of a tilt grain boundary separating two orienta-
tionally mismatched regions by an angle δφ ≃ b/D, where
D is the spacing between dislocations along the scar.
While ordinary grain boundary do not terminate in the
bulk of the crystal, the “tips” of scars do, and therefore,
act as singular, disclination-like points around which the
lattice orientation rotates rapidly by δφ. It was recently
shown (Azadi and Grason, 2014) that the an elastic com-
petition between these distinct portions of scars — on one
hand the “line tension” of the scars which prefers to local-
ize dislocations into a small number of high-angle grain
boundaries and on the other hand the disclination-like
tips of scars which favor alternatively a larger number of
small-angle grain boundaries — select an optimal number
of scars ns ∼ Nd which diverges in direct proportion to
the number of dislocations as R/b→ ∞. Fig. 12B shows
the linear relationship between Nd and ns for simulated
ground state patterns of dislocations of bundle sizes in
the range of R/b = 20 − 700. Remarkably, these results
predict that the ratio Nd/ns, the number of dislocations
per scar, approaches a universal value (≈ 6 from the slope
of Nd vs. ns in Fig. 12B), independent of lattice spacing,
bundle twist or other materials parameter in the asymp-
totic limit R/b→ ∞.

IV. TWISTED TORI IN CURVED (AND FLAT) SPACE

In this section we review geometrical approaches to the
problem of twisted filament packing based on studies of
fibrations of the three-sphere (S3). As was first under-
stood in the context of curved-space models of the liquid
crystal blue phases, the ambient positive curvature of
S3 admits uniform double-twist textures which are oth-
erwise frustrated in Euclidean space (R3) (Sethna et al.,
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1983). This fact provides a means to construct and study
“ideal” twisted structures in curved space whose struc-
ture only becomes heterogeneous, perhaps defect riddled,
upon projection to R3.
A second important feature of the twisted fibrations of

S3, particularly their projections to R3, is that they pro-
vide a natural means to construct twisted toroidal bun-
dles. Like the straight bundles of the previous section, in
twisted toroidal bundles filament positions rotate around
a central backbone along its contour, but unlike straight
bundles, twisted toroids have backbones that also bend
around into a closed curve. Toroidal assemblies of fil-
aments and columns are known to form in a variety of
systems (e.g. condensed DNA, collagen and columnar
droplets), and therefore, a generic model of structure and
thermodynamics of inter-filament packing in this geome-
try has broad value. Beyond its potential application to
any of these materials systems, the physical and geomet-
ric theory of packing in twisted toroidal bundles provides
a natural way to analyze the interplay between bundle ge-
ometry and inter-filament organization, beyond straight,
twisted bundles. Simply put, how are the metric prop-
erties and consequences thereof altered when a filament
bundle is twisted and simultaneously bent?
In the context of liquid crystalline materials, the

unique geometry of textures in S3 first drew interest
as a conceptual approach to “defrustrating” double-
twist textures which are characteristic of chiral, blue
phases (Wright and Mermin, 1989). Kléman was first
to consider how metric properties of ideal fibrations –
that is, properties beyond orientation – would be rel-
evant to physical models of twisted filament packing,
albeit, filaments embedded in an unphysically curved
space (Kléman, 1985). More recently, Sadoc and Char-
volin have expanded on this initial analysis by exploring
a more general class of fibrations and their projections
to twisted toroidal bundles in R3 (Charvolin and Sadoc,
2008; Sadoc and Charvolin, 2009). In this section, we
aim to provide primarily a descriptive summary of the
key properties of twisted filament packing geometry in
S3, metric features of their projections to R3 and the
connection to the twisted, straight bundle packing prob-
lem of the previous Sec. III. An interested reader will
find considerably more detailed analyses of three-sphere
fibrations in (Sadoc and Charvolin, 2009).

A. Double-twisted filament packings in S3

S3 can be constructed as a three-dimensional subman-
ifold of a four-dimensional (Euclidean) space satisfying

x21 + x22 + x23 + x24 = Ω−2, (28)

where Ω−1 is the radius of the 3-sphere, which we will
see can be related to twist of embedded filament pack-
ings. Critical to models of filament packing is the struc-
ture of fibrations of S3 (Sadoc and Mosseri, 2008), which

are decompositions of this space into a collection of non-
intersecting curves, or fibers, such that every point maps
to a unique curve. Like the case of the straight bundles in
R3 above, the fibrations of interest here are also equipped
with an important property that every fiber is associated
with a unique point on a lower dimensional manifold (a
2D surface), such that distance between fibers in S3 (i.e.
the distance of closest approach) is encoded in metric
properties of the surface, known as a base.
The topological and metric properties of the 3-sphere

are encoded in the following toroidal coordinates,

x1 = Ω−1 cosφ sinΘ

x2 = Ω−1 sinφ sinΘ

x3 = Ω−1 cosψ cosΘ

x4 = Ω−1 sinψ cosΘ,

a parametrization that satisfies eq. (28) by construction.
Surfaces of fixed Θ are periodic under φ → φ + 2π and
ψ → ψ + 2π and therefore have the topology of 2D tori.
In these coordinates the metric of S3 has a simple form,

dx2i = Ω−2
(

sin2 Θdφ2 + cos2 Θdψ2 + dΘ2
)

in S3, (29)

which shows that the metric of fixed Θ surfaces is Eu-
clidean, and spans a rectilinear periodic cell of dimen-
sions 2πΩ−1 sinΘ and 2πΩ−1 cosΘ, along the φ and ψ
directions respectively (see Fig. 13A). Fibers, or filament
backbones, are curves running along surfaces of constant
Θ parameterized by

φ(ψ) = φ0 + αψ. (30)

Here, ψ plays the role of an arc coordinate, describing
different positions along the filament backbone, and α
is the number turns of the fiber around the φ direction
per rotation around the ψ direction (see Fig. 13A). It is
straightforward to show that any two such curves shar-
ing the same α (at different φ0) remain equidistant along
their entire length.
Like the case of the straight bundles in R3 the inter-

filament metric may be deduced by considering the
length, ℓ(Θ), of a curve separating points of “self-
contact” along a given fiber in S3 which defines the
“perimeter”, or the amount of space available for pack-
ing fibers along the φ direction at fixed Θ 5. As shown in

5 This notion of “perimeter” neglects self-contact with any peri-
odic images of the fiber that may pass between φ0 and φ0 + 2π.
For example, for α = n/m (where n and m are relatively prime
integers) a fiber will wind n times around the φ direction for
every m turns round the ψ, leading to n copies of the fiber sec-
tion between φ0 and φ0 + 2π, which clearly limit the number of
filaments of a given diameter that can be packed on the 2-torus.
Because the implicit n-fold symmetry of the fibration around φ
has been neglected at this stage, some care must be taken when
applying this result to packings, specifically, every filament in
the packing must be associated with the n− 1 copies spaced at
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FIG. 13 In A, The toroidal coordinate system of fibrations
in S3, showing the dimensions of the T 2 unit cell at fixed Θ.
Fibers (filament backbones) wind along the dark solid lines

at an angle θ with respect to the ψ̂ axis. The perimeter is
defined as the distance of closest contact between the fiber
at φ and its periodic image at φ+ 2π. In B, surfaces (bases)
carrying the inter-filament metric of fibrations in S3.

Fig. 13, this is easily reduced to ℓ(Θ) = 2πΩ−1 cos θ sinΘ
where θ = arctan

(

α tanΘ
)

is the “tilt-angle” of the fiber
on the 2-torus at Θ. Hence,

ℓ(Θ) = 2πΩ−1 sinΘ cosΘ
√

cos2 Θ+ α2 sin2 Θ
(31)

Using this perimeter and noting the distance between
fibers at different Θ is simply Ω−1|dΘ|, we have the inter-
fiber metric,

d∆2
∗(α) = (2Ω)−2

[

d(2Θ)2 +
sin2(2Θ)dφ20

cos2 Θ+ α2 sin2 Θ

]

in S3.

(32)
This metric formula shows that geometry of the bas sur-
face for twisted fibrations of S3, like that of the case of
straight, twisted bundles in R3, is axisymmetric, with
Ω−1Θ the arc-distance from a “pole” at Θ = 0. Again,
the independence of the inter-filament metric on ψ de-
rives from the equidistance of any pair of curves sharing
the same α.
The particular case of α = 1 corresponds to the cele-

brated Hopf fibration (Sadoc and Mosseri, 2008), where
each fiber is a closed geodesic of R3 (great circle) which

intervals of 2π/n. In their analysis of metric properties of S3,
Charvolin and Sadoc retain the n-fold images of a fiber when
constructing the ℓ(Θ) leading to an somewhat modified formula
for the base metric.

triangular tetrahedral octahedral

cubic icosahedral dodecahedral

FIG. 14 The “ideal” packings of twisted and equally-spaced
filaments (diameter d) in S3 whose positions correspond to
vertices of Platonic solids projected on S2, where φ, Ωd, and z
denote packing fraction, reduced twist and coordination num-
ber of the packing (Kléman, 1985).

winds (twists) around its neighbor once every cycle from
ψ to ψ + 2π. The inter-fiber metric has the remark-

ably simple form, d∆2
∗(α = 1) = (2Ω)−2

[

d(2Θ)2 +

sin2(2Θ)dφ20

]

, identical to the geodesic distance mea-

sured between points on a 2-sphere of radius (2Ω)−1, with
polar and azimuthal angles 2Θ and φ0, respectively. In
this unique geometry (α = 1), packing double-twisted
filaments in S3, maps identically onto the generalized
Thomson problem of packing points on S2 (Altschuler
et al., 1997; Saff and Kuijaars, 1997). Exploiting the
homogeneous metric geometry of the Hopf fibration,
Kléman constructed a class of “ideal” twisted filament
packings in S3, such that all nearest neighbor filaments
are closely-packed, at a center-to-center spacing equal to
the diameter, d (Kléman, 1985). Evenly spaced distribu-
tions of discs on S2 are only possible for certain numbers
of discs, or equivalently, for certain ratios of diameter
to sphere radius, 2Ωd, packings which correspond to the
vertices of the Platonic solids which possess only a small
number of discs (≤ 20). By mapping the Hopf packings in
S3 to their associated “Platonic” packing on S2 (shown
in Fig. 14) Kléman showed that the densest such packing
of twisted filaments has icosahedral symmetry with each
filament surrounded by five neighbors (Kléman, 1985).

The cases of α 6= 1 provide generalizations of the Hopf
fibration, known as Siefert fibrations (Sadoc and Char-
volin, 2009). When α 6= 1, the fibers are not geodesics of
S3, though they remain closed curves for any rational α.
Examples of the 2D base (embedded in R3) are shown
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in Fig. 13B, where we take ρ = Ω−1Θ to be the arc dis-
tance from the pole at Θ = 0, and define the Euclidean
distance from the z axis of radial symmetry to be,

r⊥(ρ) =
sin(2Ωρ)

2Ω
√

1 + (α2 − 1) sin2(Ωρ)
. (33)

From this metric, it straightforward to show the Gaussian
curvature at the pole has the following form,

KG(ρ = 0) = Ω2(1 + 3α2) in S3. (34)

which is consistent with the apparent increase of curva-
ture with α seen in Fig. 13B 6. Note that for α 6= 1,
the 2D surface is not smoothly embeddable in R3. For
α < 1, the surface cannot be extended beyond a cusp at
ρm where |∂ρr⊥(ρm)| = 1, while for α > 1 a conical sin-
gularity develops at the Θ = π/2 (or ρ = Ω−1π/2) pole.
To date, optimal packings geometries on these base met-
rics of Seifert fibrations for α 6= 1 have not been studied.

B. Projecting “Ideal” Packings to Euclidean Space

In principle, the high symmetry of the inter-fiber dis-
tances of the fibrations of S3 (all fibers are equidistant
and metrics are axisymmetric) provides a natural setting
for investigating optimal packings of twisted filaments
with a more complex topology than the straight, twisted
bundle described in Sec. III. However, exploiting the
ideal properties of fibrations of S3 in models of filament
packing in Euclidean space requires overcoming at least
two critical challenges. First, for a given filament num-
ber, α, Ω and model of filament interactions, the optimal
filament packing must be identified, which is the analog of
the generalized Thomson problem defined for the broader
class of base surfaces. Provided these optimized packings
can be determined for S3, an additional step is needed to
“rescue” the filament configurations from curved space
(S3), via some projection to R3, which in turn alters the
inter-filament distances form their “ideal” geometry in
R3. As it is not possible to project from curved to a flat
space while globally preserving distance properties, one
might view the choice of projection from S3 to R3 as a
second, and currently unsolved, step of the optimization
procedure.
One approach that has been suggested by Sadoc and

Charvolin is based on the stereographic projection from
S3 to R3 (Charvolin and Sadoc, 2008). Because it is con-
formal, the stereographic projection has the advantage of

6 Eq. (34) also provides a direct illustration of O’Neill’s theo-

rem (Berger, 2003), which equates the Gaussian curvature of the
base surface of a fibration to the sum ambient curvature of the
embedding space (here Ω−2) and three times the squared twist
of the fibration (here (αΩ)2). Notice that the same formula holds
for the straight twisted bundle in Euclidean space (zero ambient
curvature).

FIG. 15 A schematic of toroidal coordinates under stereo-
graphic projection to R3. Surfaces of constant Φ are concen-
tric tori (pink), and fibers/filaments (gold) wind along these
surfaces around both the minor and major axes of the tori,
where θ is the (constant) angle between tangents and the
circular axis of the torus. The circular fiber shown here cor-
responds to α = 1, a projection of the Hopf fibration.

preserving angular properties, including the skew angle
of neighboring filaments in the double-twisted packing.
Furthermore, the metric distortion from the optimal ge-
ometry of S3 vanishes near the projected “pole” of the
stereographic image, such that appropriate choices of the
projection pole allow different (finite) regions of the S3

packing to be projected to R3 with a nominal distor-
tion of inter-filament spacing. For example, a projec-
tion that generates toroidal bundles and preserves the
curved-space metric along their center lines takes x1 as
the projection axis so that filament positions in Euclidean
coordinates become

x(s) =
x3(s)

1− Ωx1(s)
; y(s) =

x4(s)

1− Ωx1(s)
; z(s) =

x2(s)

1− Ωx1(s)
.

(35)
Under this projection, the filaments wind around a family
of nested tori. The central axis of the torus is the ẑ axis
and a toroidal coordinates — a is the “major radius”,
or the distance of torus center from the axis and ρ is
the “minor radius”, or the radial distance of the torus
surface from the torus center (as in Fig. 15) — related to
S3 coordinates by,

ρ(Θ) = Ω−1 tanΘ; a(Θ) = Ω−1 secΘ, (36)

Hence, the pole at Θ = 0 maps to the planar circle of
radius Ω−1, and the pole at Θ = π/2 maps to the cen-
tral (z) axis (infinite radius circle). As the stereographic
projection is conformal, the angle θ between the axial
direction and filament tangents winding around fixed-Θ
tori remains constant, tan θ = α tanΘ. The interfilament
metric of the stereographic projection has the form,

d∆2
∗(α) =

ω2

(2Ω)2

[

d(2Θ)2 +
sin2(2Θ)dφ20

cos2 Θ+ α2 sin2 Θ

]

in R3,

(37)
which is identical to the metric in S3, eq. (32), up to the
conformal factor describing a locally-isotropic scaling of
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dimensions:

ω =
1

1− cos(φ0 + αψ) sinΘ
. (38)

For filament packings, this conformal factor represents
the failure of the projected fibrations to maintain equidis-
tance (as ψ advances) along their length. Filament po-
sitions on the inner-(outer-)side of the torus correspond
to cos(φ0 + αψ) > 0 ( < 0), and hence ω > 1 (< 1) de-
scribes the measure of over- (under-)crowding in toroidal
packing, an effect which increases in magnitude for tori of
large minor radius, or larger Θ (see, for example, projec-
tions in Fig. 16A). Geometrically, the variation of inter-
filament spacing can be understood in terms of the dif-
ference between inner and outer spacing between con-
secutive, non-concentric toroidal layers, as well as non-
uniform angular rotation of filament positions around the
central axis of the tori required to maintain constant θ
around a torus.
As a consequence of the conformal distortion of inter-

filament spacing, the optimality of “ideal” packings in S3

when projected stereographically to R3 becomes compro-
mised, increasingly so as Θ increases. In particular, it is
unclear at which point distortions of inter-filament spac-
ing become sufficiently large that the “ideal” packings
identified in S3 fail to provide an accurate model, even
at a qualitative level, of the constraints and energetic
consequence of packing in twisted toroidal bundles.
Absent a projection from curved space that preserves

the equidistance of fibers in R3, one can nevertheless,
consider the energetic costs of inter-filament strains as a
measure of the excess frustration cost of bending a twisted
bundle into a torus. Setting aside the extent to which
this excess cost could be relaxed by local or global ad-
justments of filament position and orientation in packing,
we illustrate this cost for the class of toroidal bundles
projected from the Hopf fibration (α = 1).
The stereographic projection of the Hopf fibration has

the feature that filament trajectories, which are (great)
circles in S3, are mapped to circles in R3 (see e.g. fila-
ment in Fig. 15) . This fact and the formula for the clos-
est distance from point to a circle of known center, orien-
tation and radius 7 greatly simplify calculations of inter-
filament distances in a projected Hopf packing. In R3,
these circular filaments have radius p(Φ) = Ω−1 secΘ,
they lie in planes tilted (transverse to the radial direc-
tion extending from x = y = 0 axis) by Θ relative to ẑ
and their centers sit at xc(Φ) = ρ(Φ)(sinφ0x̂ − cosφ0ŷ)
such that they conform to the fixed-Θ tori. Using this
geometry to compute the distance ∆ij(si) between the
ith filament at si along its length and the jth filament
in terms of given coordinates (Θi, φi) and (Θj , φj) we

7 The nearest distance ∆∗ of a point x0 to a circle of radius p, in a
plane normal to N centered at xc is given simply by ∆2

∗ = ∆2

‖
+

(p−∆⊥)2, where ∆‖ = (x0−xc) ·N and ∆2

⊥ = |x0−xc|2−∆2

‖
.

consider a simple “elastic” model for the cost to inter-
filament cohesion due to inte- filament strain,

E =
1

2

∑

i

∑

j∈〈ij〉

∫

dsi|∆ij(si)− d|2, (39)

where the second sum runs over the nearest neighbors in
a given packing to i and d is the filament diameter. As
a proxy for the optimal packings of N cohesive discs on
S2, we take the positions of icosadeltahedral tesselations
of sphere (Šiber, 2007). These tesselations, familiar to
structural models of spherical viruses (Caspar and Klug,
1962) and fullerenes (Kroto, 1997), are constructed from
triangular tilings of icosohedra projected normally onto
S2 and are parameterized by the integer pair {m,n} that
describe the vector on separating centers of 5-fold coor-
dination (Šiber, 2007).
Figure 16B shows the packing energy per unit length

E/L of stereographically-projected Hopf bundles pos-
sessing icosadeltahedral order, where L =

∑

i

∫

dsi is
the total Euclidean length of filaments in the bundle.
The strain energy density is plotted versus twist an-
gle θ = Θ of outer filaments for icosodeltahedral tes-
selations, for a range of tesselations from small twist,
Ω{4,2} = 0.0895d−1, to large twist, Ω{1,1} = 0.325d−1.
Notably, the strain energy falls to zero as θ → 0, when
the width of the bundles is small compared with the of
radius torus backbone, owing to the small conformal dis-
tortion near the Φ = 0 “pole” of the projection. The
characteristic increase in strain energy with twist in this
case is not a symptom of the imperfect packing topology
of filaments, as all θ → π/2 packings possess the topo-
logically appropriate twelve five-coordinated sites needed
for tessellations of S2. Rather, the increase in strain
with θ in these projected Hopf packings is a reflection
of the fact that filament spacings in the projection be-
come locally over-(under-)dense on the inside (outside) of
toroidal packing, and that conformal strain grows with
toroidal thickness, roughly as 1 − ω ∼ sin θ for small
θ. It remains an open question how well ideal packings
in R3 provide quantitatively accurate picture of twisted
toroidal ground states. That is, at large θ, is it suffi-
cient to relax elastic strain via smooth deformations of
filament positions in projected packings, or instead, is
the topological framework of the projected packings of
S3 wholly inadequate for modeling optimal structure in
large-θ bundles in R3?

V. CONCLUDING REMARKS

In conclusion, we have presented an emerging theoret-
ical perspective on the unique metric geometry of com-
plex, multi-filament or multi-column assemblies. These
studies show a powerful connection between the geometry
of inter-filament spacing and the metric geometry of non-
Euclidean surfaces. The relationship between packing
problems in filamentous assemblies with “incompatible”
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FIG. 16 In A, stereographic projections of twisted filaments packings in S3 to R3, based on the Hopf vibration (α = 1).
Filament positions on the S2 base derive from the icosodeltahedral tesselations, where the value of Ωd is chosen based on
distance between the central filament (at the pole in S2) and its first shell of neighbors. In A, {2, 2} packings are shown,
both on S2 (top) and projections to R3 (bottom). From left to right shows examples with increasingly larger maximum Φ,
corresponding to larger polar distance on S2, larger toroidal thickness, larger twist angles of outer most filaments. In B, the
strain energy density defined by eq. (39) and calculated numerically and plotted versus twist angle of outer filaments for
icosodeltahedral tesselations, for a range of tesselations from small twist, Ω{4,2} = 0.0895d−1 , to large twist, Ω{1,1} = 0.325d−1.

textures and packing problems on intrinsically-curved
surfaces is particularly valuable because physical mod-
els of optimal structure in the latter class of problems
are well established, and the coupling between Gaussian
curvature and topological defects in 2D membranes has
received wide study in recent decades (Bowick and Giomi,
2009). Drawing on these familiar analogs sheds new light
on the surprising rich, and largely overlooked, questions
of optimal structure in filamentous and columnar mat-
ter. Furthermore, the purely geometrical origin of the
frustration between patterns of orientation and spacing
leads to a rich set of non-trivial and universal predictions
for long-range order in a broad class of materials. In
particular, the optimal topological charge of the twisted
packing was shown to be a universal function of a single
geometric parameter, θ the tilt angle at the bundle sur-
face, remarkably independent of elementary microscopic
properties like filament interactions or diameter. Con-
siderations of inter-filament metric geometry are broadly
applicable across material systems and material scales,
and we anticipate, therefore, that the robust and geo-
metrical origin of these predictions will aid in their direct
experimental test.
Numerous examples of twisted molecular filament as-

semblies exist in biological and synthetic materials. Yet,
to date, the specific structure of inter-filament packing,
particularly topological defects in the inter-filament or-
der, in these materials has received little experimental
study. This is due, in part, to extreme contrast of length
scales presented by these materials in combination with
the intrinsic variation of ordering introduced by twisted

structures. For example, collagen fibrils are formed from
triple-helical polypeptide chains, procollagen molecules
roughly 1 nm in diameter, assembled into mesoscopi-
cally large structures, ranging in the 100s of nm (Wess,
2008). Understanding small-angle scattering studies of
the form factor of collagen fibrils has been confounded
by the fact that locally “crystalline” domains of procol-
lagen are apparently non-uniformly oriented throughout
fiber, and further, the “best-fit” models to dates imply
the coexistence of some measure of crystalline and non-
crystalline packing (Charvolin and Sadoc, 2011; Hulmes
et al., 1995). High-resolution electron microscopy has
improved the “real space” collagen packing model some-
what (Orgel et al., 2006), resolving lateral motifs on the
few-filament scale (∼ 3 − 5), yet the global organization
of these local motifs within heterogeneous (and twisted)
fibrils as wide as 100s of individual filaments across re-
mains inadequately understood.
Notwithstanding these challenges, the expanding reso-

lution range offered by state of the art microscopy tech-
niques down to nanometer and sub-nanometer scale, pro-
vides an exciting opportunity to test universal predic-
tions for geometrically frustrated fibers and poses im-
portant, new challenges for their theoretical understand-
ing. For example, recent high-resolution cryoTEM stud-
ies of DNA confined within bacteriophage capsids by
Livolant and Leforestier reveal a surprisingly detailed
picture of inter-strand organization taking place within
what is clearly a highly frustrated and heterogeneous
packing (Leforestier and Livolant, 2009). DNA chains
exhibit the seemingly contradictory combination of lo-
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cally six-fold (hexagonal) packing, high degree of order
and high density throughout the roughly spherical vol-
ume. While current imaging achieves sub-strand res-
olution only within transverse 2D sections, full three-
dimensional reconstruction of the positions and orien-
tations through such a complex packing may soon be
achievable.
Understanding the interplay between the texture in-

duced by spherical confinement and the complex spec-
trum of topological defects in the transverse packing in a
maximally dense assemblies, what might be viewed as the
filamentous analog to the Thomson problem, introduces
several key challenges. Specifically, how are constraints
of inter-filament metric geometry formulated under con-
ditions where the texture itself varies throughout? No
doubt, a fully rotationally-invariant formulation of the
elasticity of columnar structures is needed in order tackle
optimal structure where assumptions about small tilt rel-
ative to a well-defined (and effectively Euclidean) refer-
ence state cannot be maintained. While no fundamental
obstacles stand in the way of formulating a rotationally-
invariant theory for columnar elasticity, it remains to be
seen how well such a theory may illuminate properties
of optimal packing where inter-filament metric geome-
try cannot be reduced to a single curved 2D manifold.
Instead new frameworks may be required for optimiz-
ing packing over a sequence of inequivalent surfaces rep-
resenting variation of inter-filament texture throughout
structures as complex as confined, contorted and folded
chain packings exhibited by DNA.
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