
This is the accepted manuscript made available via CHORUS. The article has been
published as:

High-throughput determination of Hubbard math
xmlns="http://www.w3.org/1998/Math/MathML">mi>U/mi>

/math> and Hund math
xmlns="http://www.w3.org/1998/Math/MathML">mi>J/mi>/

math> values for transition metal oxides via the linear
response formalism

Guy C. Moore, Matthew K. Horton, Edward Linscott, Alexander M. Ganose, Martin Siron,
David D. O'Regan, and Kristin A. Persson

Phys. Rev. Materials 8, 014409 — Published 29 January 2024
DOI: 10.1103/PhysRevMaterials.8.014409

https://dx.doi.org/10.1103/PhysRevMaterials.8.014409


High-throughput determination of Hubbard U and Hund J values for transition metal
oxides via the linear response formalism

Guy C. Moore,1, 2 Matthew K. Horton,1, 2 Edward Linscott,3 Alexander M.

Ganose,4 Martin Siron,1, 2 David D. O’Regan,5 and Kristin A. Persson1, 6

1Department of Materials Science and Engineering,
University of California Berkeley, Berkeley, CA 94720, USA

2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Theory and Simulations of Materials (THEOS),

and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),
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DFT+U provides a convenient, cost-effective correction for the self-interaction error (SIE) that
arises when describing correlated electronic states using conventional approximate density functional
theory (DFT). The success of a DFT+U(+J) calculation hinges on the accurate determination of
its Hubbard U and Hund J parameters, and the linear response (LR) methodology has proven to
be computationally effective and accurate for calculating these parameters. This study provides
a high-throughput computational analysis of the U and J values for transition metal d-electron
states in a representative set of over 1000 magnetic transition metal oxides (TMOs), providing a
frame of reference for researchers who use DFT+U to study transition metal oxides. In order to
perform this high-throughput study, an atomate workflow is developed for calculating U and J values
automatically on massively parallel supercomputing architectures. To demonstrate an application
of this workflow, the spin-canting magnetic structure and unit cell parameters of the multiferroic
olivine LiNiPO4 are calculated using the computed Hubbard U and Hund J values for Ni-d and O-p
states, and are compared with experiment. Both the Ni-d U and J corrections have a strong effect
on the Ni-moment canting angle. Additionally, including a O-p U value results in a significantly
improved agreement between the computed lattice parameters and experiment.

I. INTRODUCTION

Density functional theory (DFT) is a workhorse of
computational materials science. However, the proper
treatment of electronic exchange and correlation within
the framework of DFT is a long-standing challenge
[1]. Local density approximation (LDA) and general-
ized gradient (GGA) [2] functionals were developed to
add exchange-correlation (XC) contributions to the en-
ergy functional within the Kohn–Sham (KS) formalism
[3]. However, numerous studies have shown that these
XC functionals have an associated self-interaction error
(SIE) [1, 4, 5]. This shortcoming ultimately derives from
the difficulty in quantifying exact exchange and correla-
tion effects, without solving the many-body Schrödinger
equation, using only density-based approximations.

Over the past couple of decades, DFT+U has found
favor as a method that strikes a reasonable balance be-
tween accuracy and computational cost, making it par-
ticularly suitable for high-throughput computation [6–
10]. DFT+U functionals add a correction to the con-
ventional XC functional to account for the Coulombic
interaction between localized electrons [4, 11]. In more
recent studies, various researchers have explored exten-
sions of DFT+U with the goal of further correcting for
static correlation effects and delocalization errors [12–14].

One drawback to DFT+U type functionals is that one
must first determine its associated parameters, the Hub-
bard U and Hund J , and possibly also inter-site elec-
tronic interactions denoted as “+V ” [15–17]. The re-
sults of a DFT+U calculation can quantitatively and
even qualitatively change depending on these parame-
ters, and so obtaining reliable values is of paramount im-
portance. This is as true for the Hund J as it is for the
Hubbard U , even in the simplified rotationally invariant
DFT+Ueff functional [18]. In this particular functional,
the Hubbard U and Hund J are grouped in single ef-
fective Hubbard parameter Ueff, defined as Ueff = U − J .
This formalism assumes spherically symmetric on-site in-
teractions, and results in a corrective term that only cou-
ples electrons of the same spin [10, 18, 19]. Nevertheless,
the reduction in the effective parameter by J can be sig-
nificant.

While the aforementioned approximation may seem
more justifiable for systems with no magnetic order, in
the case of magnetic systems it results in a lost opportu-
nity to use the Hund J to beneficially enhance the spin
moments in simulated broken-symmetry ground states.
Moreover, when we move to non-collinear magnetism,
the spin texture of materials is particularly sensitive to
screening interactions between spin channels [19–21]. In
fact, magnetic exchange constants can be derived from
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the extended Hubbard model, from which it is possible
to relate exchange constants to ratios between U and J
values [22]. The famous Hubbard model provides a sim-
plified framework on which to explain the rich physics
of correlated transition metal compounds [22]. Addition-
ally, it has been shown that the Hund J term is impor-
tant for describing important physical phenomena, such
as Jahn-Teller distortions [22, 23], emergent intra-atomic
exchange, and the Kondo effect [24, 25]. Therefore,
the introduction of explicit unlike-spin exchange correc-
tions beyond simplified rotationally invariant DFT+Ueff

is clearly of interest, and this requires the treatment of
the Hund J on the same footing as the Hubbard U .

A. Strategies for determining Hubbard parameters

A common approach for determining Hubbard U val-
ues is to tune them such that some desired result — for
example, the DFT+Ueff band gap, or a formation energy
—matches its experimental value, or a value obtained via
more accurate and computationally expensive beyond-
DFT methods [26, 27]. There are several problems with
this strategy. Firstly, it is not systematic: just because
one result (e.g., the band gap) now matches experiment,
this does not guarantee the same will be true for other ob-
servables (e.g., local magnetic moments). Indeed, there
are a multitude of reasons why DFT may not match ex-
periment, and it is wrong to rely on Hubbard corrections
to correct for errors that do not arise from self-interaction
[28]. Secondly, this strategy is not predictive: it relies on
the existence of experimental/beyond-DFT data. This
makes it particularly ill-suited to the prediction of novel
materials and high-throughput studies.

Yet another difficulty that arises is the lack of trans-
ferability of Hubbard and Hund parameters. It has been
repeatedly shown that these parameters are in fact very
sensitive to the local chemical environment [29]. Even
the specific pseudopotentials [5] or the specific site oc-
cupation projection scheme [30] have a significant effect
on the computed Hubbard U values. The end result is
that U values (and by extension Hund J values, which
are albeit normally less environment-sensitive) are not
transferable: they cannot be tabulated, and must always
be determined on a case-by-case basis.

These issues can be overcome by calculating the Hub-
bard and Hund parameters from first principles. The
two primary methods for doing so are the constrained
random phase approximation (cRPA) [31, 32] and the
linear response (LR) methods [4, 10]. In this study, we
focus on the LR method due to its lower computational
cost compared to existing cRPA methods, which are not
yet appropriate for high-throughput applications.

The linear response method, as introduced by Cococ-
cioni and coworkers [4], is founded on the idea that SIE
can be related to the behaviour of the total energy as a
function of the total occupation [33]. It is known that
the total energy ought to be piece-wise linear with re-

spect to total site occupation numbers in the dissociated
limit [34], but in fact for semi-local DFT XC function-
als, the energy is erroneously convex at fractional elec-
tron numbers. Cococcioni and co-workers illustrated that
the +U correction counteracts this erroneous curvature
within local subspaces (the hope being that correcting lo-
cal curvature will help address the erroneous global cur-
vature [35]). Crucially, the magnitude of this curvature
can be directly measured by a DFT linear response cal-
culation, allowing the value of U to be determined ac-
cordingly. Unlike empirical fitting, this approach is (a)
systematic, because the value of U is derived directly as
a measure of the underlying SIE present in the DFT cal-
culation, and (b) it is predictive, because it only requires
DFT calculations to extract the Hubbard parameters,
and not experimental or beyond-DFT results.

B. Paper outline

The Materials Project is a web-based database that
contains computed information on a vast range of mate-
rials, both experimentally established and computation-
ally predicted [36]. Among the various computational
results it presents are Hubbard parameters Ueff . How-
ever, these current default Ueff values were obtained by
fitting DFT+Ueff energies to experimental formation en-
ergies for a selected number of redox reactions [29, 37].
This paper aims to replace these values with ones com-
puted using linear response. In order to achieve this, we
present a unified framework for computing on-site Hub-
bard and Hund corrections in a fully parallelized and
automated computational workflow (which will be intro-
duced in Section II). Using this workflow, we performed
a high-throughput calculation of U and J values for a set
of over one thousand transition-metal-containing com-
pounds. This provides us with a novel, big-picture point-
of-reference for the sensitivity of U and J across a wide
range of systems of varying chemistries and local chemi-
cal environments (Sections IIIA and III B). A subset of
the values presented in Section IIIA are hosted publicly
at Ref. 38. We then explore the effects of these Hub-
bard corrections on magnetic materials that exhibit a rich
variety of non-collinear spin configurations, exemplified
through the spin canting structure of olivine LiNiPO4

(Section III C).

II. METHODS

A. The Hubbard functional

The Hubbard functional is a corrective functional, in
the sense that it involves adding a corrective term EHub−
Edc on top of some base functional EDFT (typically a
local or semi-local functional), resulting in a total energy
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functional

EDFT+U+J

[
ρ,
{
nσ

γ

}]
= EDFT [ρ]

+ EHub

[{
nσ

γ

}]
− Edc

[{
nσ
γ

}]
= EDFT [ρ] + EU/J

[{
nσ

γ

}]
(1)

The (nσ
γ )mm′ = ⟨φγm|ρ̂σ|φγm′⟩ are matrices that repre-

sent the projection of the (spin-dependent) density op-

erator onto Hubbard subspaces (indexed γ) defined by
some set of orbitals |φγm⟩. These orbitals are typically
atom-centred, fixed, spin-independent, localised, and or-
thonormal, often corresponding to the 3d or 4f subshell
of a transition metal or lanthanide. The nσ

γ occupation
numbers are the corresponding traces of nσ

γ matrices.
In the following paragraphs, we will provide a sum-

mary of some of the most well known formulations of
DFT+U(+J). We note that because we are interested
in the fully localized limit (FLL), we will not discuss
extensions of DFT+U+J to metallic systems, where an
“around mean field” (AFM) double-counting correction
may be more appropriate [10].

Starting from DFT+U+J implementations of the highest complexity, and moving forward through increasing levels
of simplification, we introduce the rotationally invariant implementation proposed by Liechtenstein et al. [39]. Within
this flavor of DFT+U+J , EHub and Edc take the following form

EHub =
1

2

∑
{m},γ,σ

⟨m,m′′|Vee|m′,m′′′⟩(nσ
γ )mm′(n−σ

γ )m′′m′′′

+
1

2

∑
{m},γ,σ

{
⟨m,m′′|Vee|m′,m′′′⟩ − ⟨m,m′′|Vee|m′′′,m′⟩

}
(nσ

γ )mm′(nσ
γ )m′′m′′′ (2)

Edc =
∑
γ

Uγ

2
nγ

(
nγ − 1

)
+
∑
γ,σ

Jγ
2
nσ
γ

(
nσ
γ − 1

)
, (3)

where ⟨·|Vee|·⟩ are the Coulomb integrals projected on the orbital basis, indicated by the associated {m} set of quantum
numbers [10, 12, 39]. This correction is parameterized by both Hubbard Uγ and Hund Jγ coupling constants through
the double-counting energy contribution, Edc.

As an aside, we note that it is possible to extend
this formalism to non-collinear magnetism, which is es-
sential for the inclusion of spin-orbit coupling (SOC).
In this case the on-site occupation matrix acquires off-
diagonal elements (nσ,σ′

γ )mm′ , in accordance with the
spinor extension of DFT, and DFT+U+J by extension
[19–21, 40]. Within this formalism, the notion of “up”
and “down” spin electron densities is tied to the eigen-
values of the nσ,σ′

, and become n↑ = 1
2

(
n+ |m|

)
and

n↓ = 1
2

(
n− |m|

)
, where m = [mx my mz]

T is the mag-
netization, on-site or otherwise [41]. Equations 2 and 3
still apply to the non-collinear case, provided (nσ

γ )mm′

are obtained from a spin-diagonalization of (nσ,σ′

γ )mm′ .

Simplified versions of Equations 2 & 3 were proposed
by Dudarev et al. [18], and later by Himmetoglu and
coworkers [42], which approximate ⟨·|Vee|·⟩ using Slater
integrals, which can be parameterized through U and
J values. There are many helpful explanations for this
approximation, such as those summarized in Refs. 10 and
12.

In the spirit of following increasing levels of simplifica-
tion, we will start with the Himmetoglu implementation
[42], inspired by the work of Solovyev et al. [43]. Using
the Slater integral parameterization of U and J , it is pos-
sible to approximate and simplify EU/J from Equations

2 & 3 into the following

EU/J = EHub − Edc =∑
γσ

Uγ − Jγ
2

Tr
[
nσ

γ (1− nσ
γ )
]
+
∑
γσ

Jγ
2
Tr
[
nσ

γn
−σ
γ

]
.

(4)

A well known further simplification of Equation 4,
notwithstanding that it substantially pre-dated the lat-
ter, is the formulation of DFT+Ueff put forth by Dudarev
et al. [18] and given by

EU = EHub − Edc =
∑
γσ

U eff
γ

2
Tr
[
nσ

γ (1− nσ
γ )
]
. (5)

As discussed in the Introduction, this approximation
arises by assuming spherical symmetry of the Coulomb
interactions, ⟨·|Vee|·⟩ [10, 12, 42]. Within the simplified
Dudarev DFT+Ueff of Equation 5, the effective Hubbard
U becomes U eff

γ = Uγ − Jγ [10, 12, 18].
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B. Hubbard U and Hund J spin polarized linear
response

The DFT+Ueff correction of Equation 5 adds a convex
energy penalty to fractional occupations of the orbitals
that diagonalize nσ

γ , which can (in principle) counterbal-
ance the SIE present in these Hubbard subspaces. In the
linear-response approach, one measures the curvature in
the total energy as a function of the subspace occupancy,
and then chooses a value U to match the observed cur-
vature. Näıvely computing this energy curvature as a
function of the subspace occupancy would require a con-
strained DFT calculation, but one can recast the problem
and instead measure the energy curvature with respect
to the magnitude vγ of an on-site perturbing potential
v̂γ =

∑
mm′ vγ |φγm⟩⟨φγm′ |. The energy functional is

then given by

E[{vγ}] = minρ(r)

E[ρ(r)] +
∑
γ

vγnγ

 (6)

from which one computes the response matrices

χγγ′ =
∂nγ

∂vγ′
. (7)

Thus far we have used a general index “γ” to represent
each site. Conventionally, this index refers purely to the
atom γ on which the Hubbard site is centered. In this
case, the Hubbard parameter for that subspace is given
by

Uγ =
(
χ−1
0 − χ−1

)
γγ

(8)

where χ and χ0 are the interacting, (or self-consistent)
and non-interacting (or non-self consistent) response ma-
trices [4, 10]. We note that the sign of the response
matrices in Equation 8 is consistent with the founda-
tional linear response body of literature, such as in Ref. 4,
however, they are defined as having opposite sign within
VASP (Vienna ab initio Simulation Package) [44].

The above strategy does not delineate between spin
channels: during the linear-response calculations the
spin-up and spin-down channels are perturbed simulta-
neously by the same amount, i.e., v↑γ = v↓γ and we only

observe the change in total occupancy nγ = n↑
γ + n↓

γ . If
we want to calculate J , one must instead consider the
spin-dependent perturbation

v̂σγ =

{
+
∑

mm′ vγ |φγm⟩⟨φγm′ | σ =↑
−
∑

mm′ vγ |φγm⟩⟨φγm′ | σ =↓
(9)

and then construct a second set of response matrices
which then relate to J in a completely parallel ap-
proach [45] to the calculation of U in Equation 8.

A separate but ultimately equivalent strategy is to

treat the spin channels separately [5]. In this case a gen-
eral index runs over both the atom index γ = {1, ..., N}
and also the two spin channels σ = {↑, ↓}. In this case
the response matrices of Equation 7 become rank-four
tensors, i.e.,

χσσ′

γγ′ =
∂nσ

γ

∂vσ
′

γ′
. (10)

and now the equivalent of Equation 8 is

fσσ′

γγ =
(
χ−1
0 − χ−1

)σσ′

γγ
(11)

where now we must now prescribe how to map the 2× 2
matrix fσσ′

γγ to the scalar parameters Uγ = GU (f
σσ′

γγ ) and

Jγ = GJ(f
σσ′

γγ ). Possible definitions for these mappings
GU andGJ are motivated and explored in detail in Ref. 5,
but the end result is the following: there are two possi-
ble approaches. In the first approach one can define this
mapping in order to recover the Uγ and Jγ that one would
obtain using the conventional spin-agnostic approach of
Equations 8 and 9. In this approach, the spin moment
is permitted to vary during a charge perturbation, and
vice versa. We will hereafter refer to this as the “con-
ventional” strategy (in the language of Ref. 5 this is the
“scaled” approach). Throughout this work, unless other-
wise stated, we will use the conventional strategy, which
as the name suggests is the one that has been in almost
universal use to date.
In the second approach, one defines the mapping to im-

pose the condition that the local magnetic moment (local
occupation) is held fixed during the perturbation while
calculating the Hubbard (Hund) parameter, specifically
by means of the the equations rather than in the explicit
sense of fixing these quantities using constrained DFT.
We will refer to this as the “constrained” approach (the
“simple” approach in Ref. 5). This approach has recently
been demonstrated to be the correct one for use with
a DFT+U type functional “BLOR” explicitly designed
to impose the flat-plane condition upon subspaces [34].
The spin-polarized linear response formalism permits us
to compute the “constrained” approach U and J values
simultaneously, at no additional cost.

C. Implementation of linear response within a
high-throughput workflow

The linear response method was implemented as a
workflow within the high-throughput atomate framework
[46]. The workflow allows the user to compute Hubbard
U and Hund J values using either a spin-polarized or
a non-spin-polarized response. In addition to screening
between spin channels, the implementation provides the
straightforward extension to multiple levels of screening,
including inter-site and inter-spin-channel responses [5].
A more detailed explanation of how these screening ma-
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trices are computed is provided in Appendix A.

All of the individual calculations within this work-
flow were performed with VASP (Vienna ab initio Sim-
ulation Package) [44], a plane-wave DFT code. The
PBE exchange-correlation functional was used through-
out as the base functional [47]. Unless otherwise stated
we use PAW PBE pseudopotentials, which are the de-
fault pseudopotentials for the pymatgen input sets for
VASP [48]. In this regard, our work supplements the
high-throughput work of Bennett et al. [49] where ul-
trasoft pseudopotentials were used to reduce computa-
tional cost in high-throughput computations [49], mir-
roring early foundational studies on the linear response
method [4, 15].

We have used an automatic k-point generation scheme
that uses 50 k-points per reciprocal angstrom, and a cut-
off energy of 520 eV. The full set of input parameters can
be found in the HubbardHundLinRespSet in the atomate
repository [50], and the derived VASP input sets in the
pymatgen repository [48]. For the linear response anal-
ysis, the on-site applied potential vIσ range was from
−0.2 eV to +0.2 eV (−0.05 eV to +0.05 eV for the pe-
riodic table data set) sampled at nine points at uniform
intervals. In Appendix C, we address the sensitivity of
the linear response analysis to the truncated precision in
VASP’s occupation number I/O, which we observed for
some TMO systems.

III. RESULTS

Hubbard U and Hund J values were calculated for over
one thousand transition metal oxides using the linear re-
sponse workflow implemented in atomate. The majority
of the calculations corresponded to materials containing
Mn-d, Fe-d, and/or Ni-d species. All the systems studied
were previously predicted by Ref. 51 to have a collinear
magnetic ground-state using a separate high-throughput
workflow. That work used the empirical Hubbard U val-
ues reported on the Materials Project.

In addition, a representative set of O-p responses were
calculated and analyzed. It is less common to include
Hubbard corrections to oxygen 2p states. However, an
appreciable number of studies have shown how O-p on-
site corrections have improved the agreement with ex-
perimentally measured bond lengths between oxygen and
transition metal species [5, 45, 52–55]. It is perhaps less
intuitive to apply spin-polarized Hund J parameters to
oxygen sites, because O-p states are conventionally not
included in effective models for magnetism. However,
while oxygen atoms do not develop magnetic moments,
early studies have demonstrated theoretically and com-
putationally that O-p states mediate the antiferromag-
netic superexchange interaction in transition metal ox-
ides, such as MnO [22, 56, 57].

TABLE I: Comparison of computed Ueff in the present
work with values used by the Materials Project [29, 37].

element mean Ueff (eV) UMP
eff (eV) diff. (eV)

Co 4.430 ± 1.474 3.32 1.110
Cr 2.425 ± 0.472 3.7 -1.275
Fe 4.108 ± 1.322 5.3 -1.192
Mn 4.135 ± 0.724 3.9 0.235
Mo 1.911 ± 0.318 4.38 -2.469
Ni 5.258 ± 0.773 6.2 -0.942
V 3.060 ± 0.673 3.25 -0.190
W 1.461 ± 0.218 6.2 -4.739

A. Periodic table sample set

Figure 1 displays two periodic tables containing the
distributions of computed Hubbard Ueff and Hund J val-
ues for each transition metal element (and oxygen) com-
puted for different structures within the database. In
Table I, values obtained in this study are listed along-
side the standard Ueff values employed by the Materials
Project [29, 37]. Those values were determined using the
procedure outlined by Wang et al. [59] which finds a Ueff

value that minimizes the error in formation energy for
several representative redox couples. Due to the limited
amount of experimental data available, these Ueff values
are determined with only experimental data from a single
redox couple (Co, Cr, Mo, Ni, and W) or two redox cou-
ples (Fe, Mn, and V). Therefore, it is possible or likely
that these Ueff values are not appropriate for a more gen-
eral system containing these elements. Nevertheless, the
MP Ueff values are found to be the same as the Ueff val-
ues in the present work within the standard deviation for
most elements (Co, Fe, Mn, and V) or slightly outside the
value in the present work (Ni). Exceptions are Cr, Mo,
and W, with the largest, notable discrepancy of 4.739 eV
for W.

To evaluate the impact of these discrepancies, com-
pounds containing W from a dataset of experimental for-
mation energies [60] used by the Materials Project were
taken and relaxed using the new Ueff value for W from
the present work but with all other calculation settings
kept consistent with standard Materials Project settings,
to obtain a new set of computed energies. These energies
substantially lowered the correction introduced in Ref. 60
for W from -4.437 eV/atom to 0.12 eV/atom, suggesting
that the newer Ueff is indeed more appropriate for the
calculation of formation energies.

We stress that these values are not transferable to stud-
ies that use DFT+U+J implementations in other codes.
Quantum ESPRESSO and Abinit use localized pro-
jections that are separately different from that in the
projector augmented wave (PAW) method implemented
in VASP [30], for different reasons.

The trends across these periodic tables — and in par-
ticular, the increasing U across the 3d transition met-
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(a) Periodic Table of Hubbard U values computed from first principles.

(b) Periodic Table of Hund J values computed from first principles.

FIG. 1: Periodic table of Hubbard U and Hund J values computed for representative set of transition metal oxides.
The color map indicates the mean value computed for each element over each material. The materials used in the

creation of these periodic tabled were selectively chosen: noting that many databases, including the ICSD, contain a
growing number of hypothetical materials which may or may not be realizable, we selected materials that are

well-studied and exhibit more than two ICSD IDs each. Furthermore, to remove cross-correlations between magnetic
elements, we also require that these compounds only contain a single d-block element (occupying a single

symmetrically-equivalent site) with no f -block species. Ultimately, these data correspond to the U and J values for
over 800 materials, and are distributed over the transition metal species. A more detailed table containing data on

the distribution of values is included in Table V in the Appendix. The plotted distributions of U/J values are
generated using a Gaussian kernel-density estimator implemented in scipy [58].
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als — are reminiscent of results from early studies that
related the Hubbard and Hund parameters to Slater in-
tegrals over the Coulomb operator [10, 18, 61, 62]. For
example, Ref. [61] proposes a linear relationship between
the atomic number Z and the Hubbard and Hund pa-
rameters, based on both Hartree-Fock calculations and
empirical observations. Note, however, that this is only
valid for unscreened Coulomb kernels [10], and the Slater
integrals are in fact highly dependent on the screening
of Coulomb exchange between electrons (and hence the
chemical environment) [10, 32]. We also do not want to
overstate this comparison, which mixes older definitions
of the Hubbard and Hund parameters (i.e. as derived
from Slater integrals) with those used in this work (i.e.
as measures of the deviation of the DFT functional from
piecewise linearity).

B. Focused study on Mn-d, Fe-d, Ni-d, and O-p,
including the reason for large O-p Hubbard U values

We now present a more detailed study on materials
containing Mn-d, Fe-d, Ni-d, and O-p Hubbard sites. For
these systems, the distributions of the computed Hub-
bard U and Hund J values are provided in Figure 2.
The variations in U and J values calculated for these
three species is immediately apparent, with a range on
the order of approximately 1 to 2 eV. These distributions
reflect the intrinsic screening environment dependence of
the calculated value for a given element. At this point, we
note only their apparently universal unimodality (single
peak) and the near-general decrease in U with chemi-
cal period within a given group, however we will return
presently to a more physically and chemically motivated
observation. In Table II we list for comparison the U
values currently used in Materials project (fitted empir-
ically) as well as a range of U values found for a set of
spinels and olivines by Zhou and co-workers (calculated
via self-consistent linear response) [29].

We find that O-p exhibits the largest associated Hub-
bard U value of approximately 10 eV, which agrees with
the linear response results from a previous study using
a different code and somewhat different linear-response
formalism [5]. While large oxygen Hubbard U values
may seem surprising within a strongly correlated materi-
als context, it has become more accepted in recent years
within first-principles solid-state chemistry that oxygen
2p orbitals can warrant, both by direct calculation and by
necessity (when resorting to fitting), a remarkably high
U value in DFT+U .

1. Interpretation of Hubbard U in terms of the subspace
chemical hardness

We will now attempt to motivate and explain the phe-
nomenon of comparatively larger O-p U values. We note
from the outset that the element projector orbital profile

plays a complicating role in the following analysis. Over
a sample of materials, we observe that the 2×2 averaged
diagonal elements of the χ−1

0 non-interacting response are
of approximately the same magnitude for both TM-d and
O-p site matrix elements, with a mean difference close to
zero. The non-self-consistent response can be interpreted
as the response due to non-interacting response effects at
a site due to its surroundings [10], and thus it can be un-
derstood as a property primarily of the environment of
the atom under scrutiny. Then, unless screening is very
short ranged (as it may be in a very wide-gap insulator),
this quantity may be said to be somewhat similar, on av-
erage, for metal and oxygen ions in an oxide. Thereby,
the chemical trends in the Hubbard U arise mostly in the
interacting response, instead.
Next, for this same sample of materials, we note that

the magnitude of the O-p interacting response χ tends to
be significantly less than the interacting TM-d response.
This indicates that −χ−1 = d2E/dn2

γ , the curvature of
the total energy versus occupation, nγ , is greater for O-p
states. This greater curvature versus occupation can be
explained in terms of known trends in the chemical hard-
ness, i.e., the second chemical potential, i.e., the deriva-
tive of the chemical potential with respect to total charge
at fixed external potential. (We note in passing that some
authors choose to include a factor of one half in the defi-
nition of the chemical hardness for historical reasons, but
we suppress that discussion here.) Specifically, we can fo-
cus on the finite difference (three-point) approximation
to the global chemical hardness [63], namely

ν ≡ d2E/dN2 ≈ E (N − 1)− 2E (N) + E (N + 1)

=
[
E (N + 1)− E (N)

]
−
[
E (N)− E (N − 1)

]
≡ Ei − Ea ≡ Eg, (12)

which is nothing but the fundamental band-gap. This is
a quantity that has been tabulated many times. Using
the results of Ref. 64, we find that for atomic oxygen
its value is 11.2 eV, compared to that of the transition
metal atoms, where it ranges from 5.8 eV (Ti & Zr) to
8.0 eV (Mn) if we exclude the often problematic zinc
group, where it reaches 11.6 eV. This mirrors and ex-
plains the observed relatively large first-principles Hub-
bard U value for oxygen 2p states predicted in this and
several previous studies.
Ultimately, we conclude that the Hubbard U may

be interpreted as the subspace-projected, environment-
screened chemical hardness. More precisely, U can be
intuited as contributions to the hardness due to inter-
actions such as Hartree, exchange, correlation, and per-
haps other terms like implicit solvent and PAW potential.
After all, it is from these interactions that most chem-
ical trends appear to arise in practice. For subspaces
that project heavily at both band-edges, as in normal
DFT+Ueff practice, the U inherits chemical trends from
the chemical hardness (fundamental gap) of the atom
that it resides upon. This is higher for a greater atomic
ionization energy Ei (that of oxygen is generally around
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TABLE II: Computed range of U , J , and Ueff values compared with reported Ueff on the Materials Project (MP)
[37], as well as the MP literature [29]. Each mean value has an associated standard deviation indicated after the “±.”

mean mean mean reported reported
computed computed computed MP [37] range [29]

Species U (eV) J (eV) Ueff = U − J (eV) Ueff (eV) Ueff (eV)
Mn-d 4.953 ± 0.635 0.520 ± 0.156 4.433 ± 0.654 3.9 3.60 – 5.09
Fe-d 4.936 ± 0.700 0.177 ± 0.367 4.759 ± 0.790 5.3 3.71 – 4.90
Ni-d 5.622 ± 1.221 0.399 ± 0.434 5.223 ± 1.296 6.2 5.10 – 6.93
O-p 10.241 ± 0.910 1.447 ± 0.171 8.794 ± 0.926 N/A N/A

twice that of transition metals) and higher also for a more
negative electron affinity Ea (that of oxygen is more neg-
ative than that of most but not all transition metals). By
and large, both quantities are well known to increase in
magnitude as we move ‘up and right’ in the periodic ta-
ble, and this same broad trend is reflected in our periodic
table of Hubbard U values.
When a DFT+Ueff subspace projects only onto one

band edge, as is the case for charge-tranfer insulators,
then only the trend in either the ionization energy or
electron affinity will be very relevant to the trends in
U . Due to the relatively large electronegativity of oxy-
gen, typically there will be little weight at the conduction
band edge for oxygen 2p orbitals projectors. Therefore,
the particularly clear trend in ionization energy drives
the relatively large U value for oxygen. Indeed, if this
argument holds, then one would guess that the oxygen
2p U value is roughly twice that of an average transition-
metal d-subspace, which turns out to be the case from
first principles linear response.

Within the present formalism, the Hund J may be in-
terpreted as an analog for the spin degree of freedom, and
specifically as minus (by a convention thought to origi-
nate with Ising) the interaction part of the subspace-
projected, environment screened spin-hardness, where
the spin-hardness is a quantity discussed for example in
Ref. 65.

2. Trends in U and J values

In order to explore trends in the distribution of U and
J values, we have plotted these on-site corrections in scat-
ter plots within Figure 2. These plots illustrate the re-
lationship between U and J values with respect to site
occupations. For transition metal species, we plot U and
J versus the “d” component of the projected moment
m, denoted as “ml=2.” These moment values are those
output by VASP as the difference between up and down
spin site occupancy numbers computed using PAW core-
region operators. Because the oxygen atoms do not have
an associated magnetic moment, we plot O-p Hubbard U
and Hund J versus nl=1 occupations on oxygen sites.
We should stress that the values of “ml” and “nl” are

only computed from the calculation without the +U/J

correction. One reason for using the bare PBE computed
ml and nl is that these occupations should be indepen-
dent from the applied Hubbard U or Hund J values. This
would offer the “bare” m, as well as n, as a possible pre-
dictors of U and J values. However, it is important to
note that these occupations could change significantly
with applied U and J values [5, 66, 67].

There is an apparent clustering of datapoints at dif-
ferent on-site ml magnetizations in Figures 2a, 2b, and
2c. This grouping at different on-site magnetization val-
ues is most likely due to different spin and charge states
dependent on the underlying chemistry. We also observe
a larger range of U and J values for higher values of
ml, which is due to the coupling between highly spin-
polarized states to on-site Coulomb screening for TM
species. As would be expected, we see similar trends
for J , a measure of the screened interaction between spin
channels.

The clusters that lie at the associated maximum com-
puted ml fall off and exhibit a negative slope trend with
the magnitude of the site moment. This is likely due to
the fact that ml is highly dependent on the local chem-
ical environment, which will govern the interacting and
non-interacting energy curvatures with respect to spin-
occupations, which are related to U and J within linear
response [4]. The clear trend for the manganese may be
due to the strong tri-modal distribution of Mn magnetic
moments seen in Figure 1 of Ref. 51. The “stable” mag-
netic configurations from this study were used in the LR
analysis, therefore a similar statistical distribution should
hold for the subset of structures used in this LR analysis.

The trends of the datapoints for Hubbard U and Hund
J values in Figure 2d appear to show a downward trend
for U versus p-occupation numbers, nl=1, and a slower,
upward trend for J values versus nl=1. We expect that
the nl=1 occupations will be strongly dependent on the
oxidation/reduction state of oxygen atoms. Due to the
nature of TM-O bonding in these oxides, and their gener-
ally greater electronegativity, the oxygen atoms will tend
to maximize their valence. Therefore, building on the
previous explanation of the magnitude of O-p U values
based on chemical hardness and specifically the more rel-
evant ionization potential component of that, the higher
electron count for oxygen corresponds to a lower ioniza-
tion potential, and therefore to a reduced Hubbard U , as
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FIG. 2: Distributions of Hubbard U and Hund J values computed using the linear response method; For the
sub-figures (a), (b), and (c) that correspond to d-electron TM site corrections, the U and J values are plotted

against the DFT (no +U+J correction) computed site magnetic ml, where ml=2 corresponds to the d-character of
the local moment, which has an l = 2 angular momentum quantum number. The O-p U and J values in sub-figure
(d) are plotted against nl (the p-occupation in the case of O-2p) total site occupations. The number of samples for

on-site correction values for Mn-d, Fe-d, Ni-d, and O-p are 285, 248, 149, and 206, respectively.
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observed.

3. Exploration using random forest regression

To more robustly tease apart these observed trends, we
performed a rudimentary random forest regression test
on the dataset, ultimately in an attempt to predict the
on-site corrections U and J from the input crystal struc-
tures and site properties. We used the random forest
regression algorithm as implemented in scikit-learn.
The input quantities supplied to the random forest re-
gression routine consisted of the corresponding PBE-
computed ml and nl (i.e. without on-site corrections),
as well as the oxidation state estimated using the bond-
valence method [68], and finally a selection of relevant
site featurizers provided by the matminer Python pack-
age [69]. Unsurprisingly the U and J values appeared
to be the most sensitive to the magnetic moment mag-
nitude, m = n↑ − n↓, and site occupation, n = n↑ + n↓.
This is in accordance with what would be expected from
the dependence on the Hubbard U values on spin and
charge state [66, 67]. However, these features proved to
be insufficient to accurately predict U and J .
Most of the matminer site featurizers were tested as

input to the random forest regression model. Addition-
ally, the oxidation states calculated using the bond va-
lence method (BVM) [68] were also included as input to
the model. For learning trends across different atomic
species, the atomic number of the associated element
was also supplied. Additionally, we tested the orbital
field matrix (OFM) features as formulated by [70, 71].
The OFM encodes the orbital character of the surround-
ing chemical environment. For more information on this
method please refer to Ref. 70. The OFM functionality
is not implemented in matminer or pymatgen. We were
motivated to test the vectorized OFM by the chemical
intuition that on-site Hubbard U and Hund J values are
very sensitive to the local chemical environment. Addi-
tionally, the OFM has demonstrated success in predicting
DFT-computed magnetic moments in the past [70]. Fur-
thermore, the OFM nearest-neighbor contributions are
weighted according to the geometry of the Voronoi cell,
which could possibly provide information beyond the rel-
ative importance of the Voronoi matminer featurizer. Of
the matminer featurizers, Ewald energy and Voronoi site
featurizers had the greatest associated importance metric
[69], second only to the on-site magnetization ml. The
on-site magnetization for Mn, Fe, and Ni, respectively,
had an importance of at least ten percent more than any
of the other local chemical environment descriptors.

From Hund’s rules, it is possible to derive magneto-
chemistry rules governing the coupling between the mag-
netic spin-moment and associated charge state, dictated
by the associated multiplet ground-state [61, 72, 73].
Therefore, the correlation between on-site corrections
and projected site moments is not surprising. After all,
previous studies have explored the connection between
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FIG. 3: Comparison between the conventional and
constrained approaches for calculating (a) Hubbard U

and (b) Hund J values for Fe-d Hubbard sites.

charge states of transition metal species and the inte-
grated net spin calculated from DFT [74–76]. In fact, re-
cent studies show that the magnetic moment is often the
most convenient and reliable indicator of charge states
[74].

4. Conventional vs. constrained linear response

In introducing the linear response theory in Section
II B, we mentioned that there are two possible schemes
for computing U and J : “conventional” and “con-
strained” linear response, where in the latter case the
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linear response is performed in such a way that the mag-
netic moment (occupation) is held fixed while measuring
the curvature with respect to the occupation (magnetic
moment). While arguments can be made as to theoreti-
cally which approach is the most valid for a given correc-
tive functional (a topic which is the subject of ongoing
research [34]), this dataset presents an opportunity to
evaluate how much this choice will practically affect the
resulting Hubbard and Hund parameters.

For the majority of the computed U and J values using
these two methods, the difference between the two strate-
gies fell within their computed uncertainty. However, we
observed a significant deviation from y = x behavior for
the computed U and J values for iron Hubbard U and
Hund J values shown in Figure 3. The width of this
deviation from equality is greater than 1 eV for U in
some regions, which is enough to affect computed physi-
cal properties [4, 66].

5. Dependence on structure and magnetic state

For some input magnetic structures, the magnetic con-
figuration changed while applying the on-site potentials
during the linear response analysis. Our hypothesis is
that the input magnetic structure corresponds to a local
minimum configuration, or possibly a metastable state.
Therefore, in our analysis, we screen out these structures
with the intent that these systems will be studied in the
future using a self-consistent approach to calculating on-
site corrections.

In order to test the sensitivity of U and J values to
the input structure specifically, we perform a geometry-
self-consistent linear response study of antiferromagnetic
NiO, which is provided in the Supplementary Informa-
tion [77]. Each iteration consists of a step which includes
geometry optimization of cell shape, followed by a linear
response calculation of the PBE-based U and J values
at the DFT+U+J geometry (so as to isolate the im-
pact of the geometry from the matter of parameter self-
consistency). These on-site correction values are then
used in the next subsequent geometry optimization step.
Self-consistency is achieved once the U and J values fall
within their corresponding uncertainty values. Starting
from the input structure — which was optimized using
the current default Materials Project U values [37] —
convergence was achieved after only two iterations.

It has been well established in previous studies that U
values should be computed self-consistently with geome-
try optimization [66, 78]. As demonstrated from the ex-
periments with antiferromagnetic NiO in the Supplemen-
tary Information [77], both the Hubbard U and Hund J
values should be calculated self-consistently. In this self-
consistency study, J had the largest relative convergence,
and therefore appeared to be most susceptible to geomet-
ric self-consistency. Due to the coupling between Hund J
and magnetic exchange [22], it is possible that both mag-
netic and structural features should be included in the

FIG. 4: Olivine crystal structure of LiNiPO4 with
magnetic atoms visible. Taken from [79] via the Bilbao
MAGNDATA database [79, 80]. The purple atoms
correspond to magnetic nickel atoms. The oxygen

octahedra surrounding lithium atoms are indicated in
orange, where the grey oxygen octahedra surround

nickel sites.

self-consistency cycle. Within the atomate framework,
it would be possible to incorporate an iterative workflow
that wraps the workflow developed in this study, in order
to alternate linear response calculations with geometry
relaxation until self-consistency is achieved.

C. Case study: LiNiPO4

We now present a detailed study on the olivine
LiNiPO4, designed to test the results produced by
the linear response workflow. Previous GGA+U and
GGA+U+J studies have attempted to reproduce the
experimentally-observed spin-canting structure and unit
cell shape as shown in Figure 4 [19, 29, 79].
We calculated U and J for this system via spin-

polarized linear response. The spin-polarized linear re-
sponse method introduced in Section II B can be general-
ized to non-collinear DFT using the relationship between
spin-density occupations and the magnitude of the mag-
netic moment: n↑ = 1

2

(
n+ |m⃗|

)
and n↑ = 1

2

(
n− |m⃗|

)
[21]. Within the context of linear response, this simpli-
fication is akin to assuming that EHub and Edc can be
stated as functionals of n and |m⃗| alone. As we dis-
cussed in Section IIA, this assumption is justified in
both collinear and non-collinear (with spin-orbit cou-
pling) DFT+U+J , as stated in Equations 2 and 3. Re-
assuringly, |m⃗| and m hold similar meanings in both non-
collinear and collinear DFT, respectively.
For comparison to the “non-collinear” results, we also

performed a collinear calculation, where the magnetic
configuration for LiNiPO4 was obtained by projecting the
canted non-collinear structure shown in Figure 4 along
the z-direction. In addition to one unit cell of the the
collinear antiferromangetic (AFM) configuration, a linear
response analysis was performed on a 1×2×2 supercell.
Table III summarizes the results of the computed Hub-
bard U and Hund J values. From this table, it is evident
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TABLE III: Hubbard and Hund results for Ni-d in
LiNiPO4 (Atom-wise screening).

cell magnetism U (eV) J (eV)
1× 1× 1 collinear 5.43 ± 0.16 0.38 ± 0.07
1× 2× 2 collinear 5.44 ± 0.24 0.54 ± 0.07
1× 1× 1 non-collinear 5.09 ± 0.15 0.42 ± 0.05

that the U value is significantly smaller in magnitude
with the inclusion of spin-orbit coupling. A possible jus-
tification for this behavior is the introduction of orbital
contributions to the total localized magnetic moments
with the inclusion of spin-orbit coupling [22, 81].

1. Canting angle exploration

In order to explore the effects of Hubbard and Hund
parameters on the energetics of non-collinear magnetic
structure, we calculated the energy as a function of con-
strained canting angle, which has been experimentally
measured for LiNiPO4 [79]. The non-collinear magnetic
constraints were performed in VASP in accordance with
the method developed by Ma and Dudarev [82]. We used
the experimentally derived spin canted structure as a ref-
erence provided by the Bilbao Crystallographic Server,
as shown in Figure 4 [79, 80]. The energy versus cant-
ing angle curve is shown in Figure 5a. We found that
the stable canting direction is in the opposite direction
to the experimentally measured canting angle. However,
this discrepancy with experiment was limited to the cant-
ing direction; the computed stable magnetic structure
still obeyed the symmetry of the Pnm'a magnetic space
group.

Similarly to the work by Bousquet and Spaldin [19], we
observe an increasing canting angle with Hund J value.
Interestingly, adding a U and J correction to O-p results
in a slightly decreased stable canting angle. However, we
find that in all cases, the computed stable canting an-
gle is significantly less than the experimentally measured
canting angle of 7.8 degrees [79].

The constraining effective site magnetic field, H⃗eff
i , can

be described as the following

H⃗eff
i = 2λ

[
M⃗i − M̂0

i

(
M̂0

i · M⃗i

)]
, (13)

where M⃗i are the integrated magnetic moments at site i,
and M̂0

i are the unit vectors pointing in the individual
site constraining directions [82]. The x component of the
constraining field (in the direction of canting), Heff

i,x, is
plotted versus the constraining angle in Figure 5b. We
see that where Heff

i,x changes sign corresponds to the min-
imum of Figure 5a.

2. Effect of U and J values on geometry optimization

While the addition of Hubbard and Hund parameters
go some way to addressing the canting angle of LiNiPO4,
introducing these terms can also alter the geometry of the
system. To explore this effect, we performed structural
relaxations of the system with various combinations of
Hubbard and Hund corrections. In each of the struc-
tural relaxation calculations, a maximum force tolerance
of 10 meV/Å was used. The Hubbard U and Hund J val-
ues used include those calculated using linear response,
which are approximations of the values that are reported
in Table III. Additionally, we tested the Ni-d U and J val-
ues used in Ref. 19. All calculations included spin-orbit
coupling, and were constrained to the experimentally ob-
served canting angle (7.8 degrees).
Table IV lists the optimized unit cell parameters and

volume, compared with the experimentally measured ge-
ometry [79]. For both the PBE+Ueff and PBE+U+J
schemes, adding corrections to the Ni-d space worsens
the geometry relative to the uncorrected PBE geome-
try (as earlier observed by Zhou and co-workers [29]).
However, the further addition of corrections to the O-p
subspace reduces the errors by three-fold, resulting in ge-
ometries that are closest to experiment. This is similar to
observations in other studies when applying corrections
to O-p subspaces [5, 45]. We note that applying a +J
correction to non-magnetic O-p states may seem uncon-
ventional. However, it should be stressed that this cor-
rection is for localized static correlation error effects that
do not vanish at zero magnetization. Nor, indeed, does
the introduction of +J necessarily induce magnetization,
and the projected magnetic moments on LiNiPO4 remain
just below 0.01 µB , with and without on-site corrections
to O-2p states. Meanwhile, we can see that adding a +J
parameter does not significantly alter the cell parameters.

3. Discussion on TM-O bond length versus U, J, and V
corrections

Table IV also presents the change in mean Ni-O bond
length between nearest-neighbor pairs for various on-site
corrections. For the Ni-O bond length it is the same
story as for the cell parameters: applying U and J to
the Ni-d sites worsens the results relative to the PBE re-
sult, but by applying corrections to the O-p channels we
obtain bond lengths that are in closer agreement with
experiment. In Ref. 5, some of us attempted to ratio-
nalize this trend in the computed bond length between
transition metal species and oxygen anions and how it
improves with the introduction of corrections to the O-p
subspace. We suggested that when +U is added to the
Ni-d subspace the resulting shift in the potential disrupts
hybridization between the Ni-d and O-p orbitals, weak-
ening the bonding between these two elements (and thus
leading to bond lengthening). Applying corrections to
the O-p re-aligns these two subspaces and allows them
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FIG. 5: (a) Computed relative energy and (b) x-component of effective constraining local magnetic field for various
Hubbard and Hund on-site corrections applied to the Ni-d and O-p manifolds.

TABLE IV: Lattice parameters, cell volume, and mean Ni-O bond length (d) of LiNiPO4 canted structure for
different Hubbard U and Hund J corrections

method Ni-d (eV) O-p (eV) a (Å) b (Å) c (Å) volume (Å3) d (Å)

experiment 10.03 5.85 4.68 274.93 2.086 ± 0.044

PBE 10.09 (+0.6%) 5.92 (+1.1%) 4.72 (+0.9%) 282.09 (+2.6%) 2.099 ± 0.037

PBE+Ueff Ueff = 4
Ueff = 0 10.14 (+1.1%) 5.92 (+1.1%) 4.73 (+1.0%) 283.71 (+3.2%)

Ueff = 7.5 10.07 (+0.4%) 5.87 (+0.3%) 4.69 (+0.3%) 277.56 (+1.0%)

PBE+U+J
U = 5 U , J = 0 10.15 (+1.2%) 5.92 (+1.1%) 4.73 (+1.0%) 284.19 (+3.4%) 2.108 ± 0.039

J = 1 U , J = 9, 1.5 10.07 (+0.4%) 5.88 (+0.4%) 4.69 (+0.3%) 277.86 (+1.1%) 2.095 ± 0.043

to “re-hybridize.” The DMFT community has sought to
address these issues with other approaches, including by
tweaking the double-counting term or by using results
from GW [83, 84].

In an attempt to more thoroughly explore this reason-
ing, Figure 6 provides a comparison for the projected den-
sity of states (DOS) of LiNiPO4 for PBE and PBE+U+J

(with and without corrections to O-p). It is difficult to
discern re-hybridization from these DOS plots alone.

Without an explicit quantification of hybridization ef-
fects, we have added a derivation in the Supplementary
Information [77] that presents a mathematical expres-
sion of the forces acting on ions due to +U+V correc-
tions. This result is an extension of the theory put forth
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FIG. 6: Projected electronic density of states for LiNiPO4 (calculated using experimental unit cell [79]) without
Hubbard or Hund corrections applied, as well as +U and +J applied to Ni-d channels, and both Ni-d and O-p

states, respectively.

by Matteo Cococcioni in Section 4.1 of Ref. 10. We ar-
gue that in quantifying the forces on TM-O bond lengths
due to on-site corrections, it is possible to show that the
force contributions due to both +Uγ and +V γγ′

can, and
should, be treated on the same footing, where γ and γ′

correspond to atomic sites. It isn’t possible to definitively
state the comparative magnitude, or sign, of these force
contributions without additional calculations or simplifi-
cations based on physical intuition. However, the result
suggests that the forces on TM-O bond-length due to O-p
U values will have a comparative magnitude to the forces
due to inter-site Coulomb corrections from +V .
In the Supplementary Information [77], we further hy-

pothesize the sign of these force contributions, starting
from a DFT geometry-optimized structure without on-
site corrections. Using these assumptions, which are
based on computational trends in bulk TMOs, we con-
clude that either applying a +U correction to the O-p
manifold or a +V between TM and O states mitigates
the overestimation of TM-O bond lengths that arise when
applying +U to localized states around the TM species.

IV. CONCLUSIONS

This study provides a high-throughput atomate frame-
work for calculating Hubbard U and Hund J values. Us-
ing the spin-polarized linear-response methodology [5],
we generated a database of U and J values for over one
thousand transition-metal-containing materials. This en-
abled the creation of a “periodic table” of U and J dis-
tributions, where for each element we observe a range
of Hubbard U and Hund J values. These distributions
exhibited clustering depending on the corresponding ml

and nl values, but these quantities alone do not prove
sufficient to predict the Hubbard and Hund parameters.

In order to investigate inter-site screening effects on
the resulting U/J values, we performed a small super-

cell scaling study for the full screening linear response
analysis for NiO, in addition to the conventional, atom-
wise, screening. This exploration can be found in the
Supplementary Information [77], and the details of the
full screening matrix inversion can be found in Appendix
A. We found that the full matrix inversion is much more
sensitive to the size of the unit cell compared to the con-
ventional, atom-wise screening. The theoretical reasons
for this phenomenon will be an interesting pursuit for
future studies.

In order to test the validity of the linear response im-
plementation, we explored the spin-canting non-collinear
magnetic structure and unit cell shape of LiNiPO4, and
compare the results with previous experimental [79] and
computational [19, 29] studies. Similarly to Bousquet
and Spaldin [19], we observed that the computed stable
canting angle was less than 50% of the experimentally
measured canting angle of nickel magnetic moments in
olivine LiNiPO4 for all Ni-d Hund J values tested. We
also observed that the canting angle was very sensitive
to the Hund’s J values. This confirms that Hund J
values are crucial for exploring the properties of tran-
sition metal oxides which exhibit a non-collinear mag-
netic structure. In addition to the canting structure of
LiNiPO4, we examined the optimal unit cell geometry for
various Hubbard U and Hund J corrections. While ap-
plying a +U+J correction to Ni-d resulted in increased
disagreement with experimentally measured unit cell pa-
rameters [29], applying an on-site Hubbard/Hund correc-
tion to O-p occupancies greatly improved the agreement
of unit cell shape with experiment [79]. This finding rein-
forces the importance of including a +U+J correction to
oxygen sites in order to resolve the accurate bonding be-
havior between transition metal species and neighboring
oxygen atoms.
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Appendix A: Screening matrix inversions

Below are the matrix representations of the response ma-
trices at each level of response matrix inversiooutlined by
Linscott and others for a system with two Hubbard sites
[5].

Point-wise 1× 1 inversion:

χ−1 =

(
1/χ11 0
0 1/χ22

)
(A1)

Atom-wise (conventional) 2× 2 inversion:

χ−1 =

(
χ11 χ12

χ21 χ22

)−1

(A2)

We can extend this formalism to the multiple site (multi-
site) responses by considering the response matrix for two
sites, χij , where i and j are the site indices.
Point-wise inversion:

χ−1 =


(
1/χ↑↑

11 0

0 1/χ↓↓
11

)
0

0
(
1/χ↑↑

22 0

0 1/χ↓↓
22

)
 (A3)

Atom-wise (conventional) inversion:

χ−1 =


(
χ↑↑
11 χ↑↓

11

χ↓↑
11 χ↓↓

11

)−1

0

0
(
χ↑↑
22 χ↑↓

22

χ↓↑
22 χ↓↓

22

)−1

 (A4)

Full inversion:

χ−1 =


χ↑↑
11 χ↑↓

11 χ↑↑
12 χ↑↓

12

χ↓↑
11 χ↓↓

11 χ↓↑
12 χ↓↓

12

χ↑↑
21 χ↑↓

21 χ↑↑
22 χ↑↓

22

χ↓↑
21 χ↓↓

21 χ↓↑
22 χ↓↓

22


−1

(A5)

We note that in the latter case, when performing a
spin-polarize linear response calculation, one constructs
a 2N × 2N response matrix where N is the number of
Hubbard sites (or N×N in the case of non-spin-polarized
linear response). For bulk systems often several Hub-
bard sites will be equivalent, and one can save compu-
tational time by performing linear response calculations
for the set of inequivalent sites, and then populating the
response matrix for all equivalent Hubbard-site pairs.

Appendix B: Post-processing & uncertainty
quantification

In order to extract the response matrices from the raw
DFT data, curve fitting was performed using a least-
squares polynomial fit implemented in numpy [85]. The
uncertainty associated with each computed slope was ob-
tained from the covariance matrix produced as a result
of the least-squares fit. These uncertainty values were
then utilized to determine the errors associated with the
Hubbard U and Hund J values. The error quantification
was performed by computing the propagation of uncer-
tainty based on the Jacobian of each scaling formula for
Hubbard U and Hund J . This method for error propa-
gation is general to multiple levels of screening between
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element
U J

mean σ N mean σ N
V 4.123 0.471 84 0.599 0.162 84
Mn 4.792 0.830 63 0.740 0.246 63
Cu 7.773 1.251 61 1.366 0.932 61
Fe 4.659 0.826 55 0.279 0.378 55
Ti 4.907 0.481 53 0.635 0.185 53
Cr 2.906 0.471 46 0.611 0.135 46
Nb 0.536 0.157 43 0.241 0.082 43
W 1.844 0.252 42 0.423 0.043 42
Zn 1.917 0.564 40 1.790 0.456 40
Co 5.159 0.608 31 0.560 0.292 31
Ni 5.849 0.797 31 0.682 0.186 31
Ta 3.733 0.164 30 0.668 0.041 30
Zr 4.199 0.244 28 0.907 0.091 28
Ag 2.254 0.852 25 1.236 0.256 25
Mo 2.561 0.321 23 0.483 0.062 23
Hg 0.521 0.142 20 0.429 0.032 20
Re 0.620 0.233 19 0.269 0.103 19
Cd 0.238 0.469 19 0.632 0.097 19
Sc 1.921 0.352 17 1.169 0.396 17
Y 4.302 0.343 17 1.694 0.361 17
Hf 3.515 0.229 13 1.085 0.167 13
Ru 3.000 0.371 11 0.506 0.146 11
Pt 1.554 0.315 10 0.447 0.041 10
Os 1.911 0.440 8 0.392 0.078 8
Pd 3.757 0.899 7 0.691 0.063 7
Au 1.120 0.248 6 0.495 0.034 6
Rh 1.528 0.196 5 0.457 0.056 5
Ir 1.902 0.095 4 0.315 0.324 4
Tc 2.946 0.012 3 0.580 0.004 3
Total 814 814

TABLE V: The mean and standard deviation (σ) in the
U and J parameters used in the periodic tables of
Figure 1, alongside the number of samples N .

spin, site, and orbital responses.
We begin by considering the following screening matrix

introduced in Equation 11, from which Hubbard U and
Hund J values are derived [5]

fij =
(
χ−1
0 − χ−1

)
ij

Derivatives of the χ−1 matrix with respect to individual
χkl can be obtained by the following relation:

∂

∂χkl

(
χ−1

)
= −χ−1

(
∂

∂χkl
χ

)
χ−1

where
∂

∂χkl
{χ}ij =

{
1 if kl = ij

0 otherwise

∂

∂χkl

{
χ−1

}
ij
= −

{
χ−1

}
ik

{
χ−1

}
lj

(B1)

Using this fact, it is possible to obtain the full Jacobian of

f with respect to response χ matrices which can be used
to obtain the covariance uncertainty matrix associated
with the elements of fij , to a first-order expansion of fij
[86]

Σf = Jχ0
Σχ0

JT
χ0

+ JχΣχJ
T
χ (B2)

where Σf is a N2 × N2 matrix (f is N × N). Each el-
ement of Σf ,

{
Σf

}
ij,kl

, corresponds to the covariance

between fij and fkl matrix elements. Σχ and Σχ0 are
the covariance matrices for each {χ}kl and {χ0}kl, and
the diagonal elements are populated using the squared
uncertainty values associated with the slopes fit to the
response data. In addition, Jχ and Jχ0 are the symbol-
ically derived Jacobians corresponding to each response
value, as proposed in Equation B1. Assuming that the
individual elements of χ and χ0 are independent, we can
assume that Σ covariance matrices are diagonal in order
to make the following simplification:

σ2(fij) =
∑
kl

(
∂

∂ {χ0}kl
fij

)2

σ2({χ0}kl)

+
∑
kl

(
∂

∂ {χ}kl
fij

)2

σ2({χ}kl), (B3)

where σ2(fij), σ
2({χ0}ij), and σ2({χ}ij) correspond to

the diagonal elements of Σf , Σχ0
, and Σχ, respectively.

With the established expression for the uncertainty
values of f in Equation B3, we can express the squared
uncertainty of U , for an atomic site γ, in the next level
of uncertainty propagation,

σ2(Uγ) =
∑
σ,σ′

(
∂

∂fσσ′
γγ

GU (fγγ)

)2

σ2(fσσ′

γγ ). (B4)

Equation B4 can be extended to an expression of the
squared uncertainty of Hund J , where GU and GJ are
functions of 2×2 sub-matrices along the diagonal of f , as
introduced in Equation 11, and depend on the different
scaling schemes introduced in Ref. 5. The results of this
error analysis are shown in Table V.

Appendix C: VASP precision issue

We found that for some closed-shell systems, such as
those containing Zn, the I/O precision of the occupation
numbers in VASP had a significant effect on the resulting
linear response analysis. This is because the change in
occupation number on Zn-d states induced by the on-
site potential was on the same order of magnitude as
the precision cutoff itself. For this reason, we created a
very basic patch to the VASP version 6.2.1 source code
to increase the precision of occupation numbers and site
magnetization written in the VASP OUTCAR file.
Using this higher precision, we found that the U and
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J calculated using linear response for Zn-d were 2.3±0.1
eV and 1.7±0.0 eV, respectively. This is in stark contrast

to the original VASP code I/O precision, which wrongly
produced U , J = 0.0 eV.
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M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Shep-
pard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, Array programming with NumPy,
Nature 585, 357 (2020).

[86] B. Ochoa and S. Belongie, Covariance propagation for
guided matching (2011).

[87] B. Silvi and A. Savin, Classification of chemical bonds
based on topological analysis of electron localization
functions, Nature 371, 683 (1994).

[88] F. Hao, R. Armiento, and A. E. Mattsson, Using the
electron localization function to correct for confinement
physics in semi-local density functional theory, The Jour-
nal of Chemical Physics 140, 18A536 (2014), publisher:
American Institute of PhysicsAIP.

https://doi.org/10.1021/ja00364a005
https://doi.org/10.1021/ja00364a005
https://doi.org/10.1073/pnas.2117416119
https://doi.org/10.1073/pnas.2117416119
https://doi.org/https://doi.org/10.1016/j.cplett.2005.11.039
https://doi.org/https://doi.org/10.1016/j.cplett.2005.11.039
https://doi.org/10.1103/PhysRevB.99.094102
https://doi.org/10.1103/PhysRevB.99.094102
https://doi.org/10.1063/1.4865831
https://doi.org/10.1063/1.4865831
https://arxiv.org/abs/https://doi.org/10.1063/1.4865831
https://doi.org/10.1021/cr900053k
https://doi.org/10.1021/cr900053k
https://arxiv.org/abs/https://doi.org/10.1021/cr900053k
https://doi.org/https://doi.org/10.1016/j.commatsci.2018.05.018
https://doi.org/https://doi.org/10.1016/j.commatsci.2018.05.018
https://doi.org/10.1080/14686996.2017.1378060
https://doi.org/10.1080/14686996.2017.1378060
https://doi.org/10.1103/PhysRevMaterials.4.093801
https://doi.org/10.1038/s41524-022-00818-3
https://doi.org/10.1038/s41524-022-00818-3
https://doi.org/10.1021/cr020733x
https://doi.org/10.1021/cr020733x
https://doi.org/10.1021/cm034455+
https://doi.org/10.1021/cm034455+
http://arxiv.org/abs/1704.08076
https://doi.org/10.1103/PhysRevB.79.092412
https://doi.org/10.1103/PhysRevB.79.092412
https://doi.org/10.1103/PhysRevB.99.104421
https://doi.org/10.1103/PhysRevB.99.104421
https://doi.org/10.1103/PhysRevB.91.054420
https://doi.org/10.1103/PhysRevB.91.054420
https://doi.org/10.1103/PhysRevB.93.235138
https://doi.org/10.1103/PhysRevB.89.245133
https://doi.org/10.1103/PhysRevB.89.245133
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/371683a0
https://doi.org/10.1063/1.4871738
https://doi.org/10.1063/1.4871738

	High-throughput determination of Hubbard U and Hund J values for transition metal oxides via the linear response formalism
	Abstract
	Introduction
	Strategies for determining Hubbard parameters
	Paper outline

	Methods
	The Hubbard functional
	Hubbard U and Hund J spin polarized linear response
	Implementation of linear response within a high-throughput workflow

	Results
	Periodic table sample set
	Focused study on Mn-d, Fe-d, Ni-d, and O-p, including the reason for large O-p Hubbard U values
	Interpretation of Hubbard U in terms of the subspace chemical hardness
	Trends in U and J values
	Exploration using random forest regression
	Conventional vs. constrained linear response
	Dependence on structure and magnetic state

	Case study: LiNiPO4
	Canting angle exploration
	Effect of U and J values on geometry optimization
	Discussion on TM-O bond length versus U, J, and V corrections


	Conclusions
	Acknowledgements
	CRediT Taxonomy
	Screening matrix inversions
	Post-processing & uncertainty quantification
	VASP precision issue
	References


