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Abstract 

In this work 𝛥-learning is used to map orbital-free density functional theory (OF-DFT) ionic forces 

to the corresponding Kohn-Sham (KS) DFT ionic forces. The development of the approximate 

force difference in terms of the ion positions is constructed and serves as a stand in for the ground 

truth force difference. Descriptor vectors for ion configurations are constructed using all distance 

between ions in conjunction with an indexing based on a nearest neighbor ranking. It is 

demonstrated that such a scheme of descriptors can uniquely describe an ionic configuration up to 

a rotation and reflection when no ambiguity in the nearest neighbor ranking exists. How to handle 

the case when an ambiguity exists in the nearest neighbor ranking is discussed. As a proof of 

principle, the model is trained and tested on warm dense hydrogen at temperatures between 1 and 

15 eV. Once tested, the model was used to perform molecular dynamic simulations of warm dense 

hydrogen. The resulting energies and pressures are within 1% and 2% of their respective target KS 

values.  

I. Introduction 

 In the warm-dense-matter (WDM) regime, ab initio molecular-dynamic (MD) 

simulations have become an important tool in the investigation of material properties. These 

simulations often rely upon density functional theory (DFT) [1–3] calculations of the electronic 



ground state. This is due to DFT's ability to balance accuracy with computational cost. However, 

the standard approach of finite-temperature Kohn–Sham (KS) DFT [2,4] has a computational 

cost that scales cubically with the number of thermally occupied orbitals [5,6]. This limits KS-

DFT based MD (KSMD) runs to only a few thousand steps or less for temperatures approaching 

(and above) the Fermi Temperature (TF) of the system. As an alternative approach, finite 

temperature orbital-free (OF) DFT [7, 8, 9] is orders of magnitude faster than KS-DFT at 

temperatures consistent with the WDM regime [5,6]. Unfortunately, OF-DFT requires an 

approximate functional for the non-interacting free energy in terms of electron density [5,6]. 

Even with the best approximate non-interacting free energy functionals today [10, 11], reliable 

accuracy of OF-DFT is only achieved for temperatures above ~5TF. For WDM simulations with 

temperatures between ~0.5TF and ~5TF, it would be advantageous to have a method that 

captures the best of both KS and OF DFT. 

Over the past decade, approaches in machine learning (ML) have provided such schemes 

capable of delivering KS-level accuracy at an OF cost, or faster, for the calculation of ionic 

forces needed to drive MD simulations [12–18]. These schemes fall into two categories, the first 

being the direct interpolation of the Born–Oppenheimer potential energy surface (PES) from 

which analytical derivatives of the model can be taken with respect to the ion positions to 

generate ionic forces [12,15,19]. The second is a direct construction of force fields [13,14]. The 

standard approach of both methods is to create a description of the neighboring ions within a 

predetermined cutoff radius about a given reference ion for which the prediction of the model is 

being made. The choice of how this description of the local configuration of the reference ion is 

constructed has important implications for the model’s success and has been an active area of 

research [12–15,20–22, 23,24]. Furthermore, these ML approaches have been applied to a 



variety of systems and problems including the simulation of bulk [25,26] and amorphous solids 

[27], calculations of melting points [28], investigation of solid–liquid interfaces [29], and the 

prediction of liquid–liquid transitions [30,31], to name a few. For a more-comprehensive list, see 

the references within the following review articles of Refs. [16–18]. 

While the direct prediction of energies and forces is prominent throughout the literature, a 

newly developed ML scheme referred to as 𝛥-learning [32-35] has emerged in recent years. 

Within 𝛥-learning, a cheaper, less-accurate method is corrected with a ML model in order to 

produce a more-accurate and expensive target quantity. Recent success of 𝛥-learning models can 

be seen in the context of references [34,35] that correct DFT energies and forces to produce 

corresponding coupled cluster quantities.   

The goal of this work is to utilize 𝛥-learning to develop a ML model that can correct OF-

DFT ionic forces to produce ionic forces that have a KS level accuracy with a near-OF cost. The 

model will be applied to WDM simulations at temperatures where KS-DFT limits a typical MD 

simulation to only a few thousand steps and where OF-DFT has not achieved the required 

accuracy. Moving forward, the paper is laid out as follows: Section II contains the development 

of the approximate force correction, details of the neural network used in this work and the 

development of the set of descriptor vectors. Section III contains the description of the reference 

data. Sections IV provides the results of the model’s accuracy. This includes the performance on 

the test set after training and the resulting performance of the model in the context of MD 

simulations. Finally, section V provides a summary and outlook on future work with the model. 

 

II. Model development 



The base assumption of 𝛥 learning is a correction to an estimator of a quantity of interest 

is easier to learn than the direct prediction of that quantity [32]. Here, the base estimator will be 

the OF-DFT ionic force with the quantity of interest being the corresponding KS-DFT ionic 

force. The force correction model will be tasked with predicting force differences such that 

during MD simulations an OF calculation of the ionic forces can be corrected to provide an 

equivalent KS-DFT ionic force as illustrated in Eq. (1): 

 
KS OF ML .F F F   (1) 

A two-step approach is taken to construct the force correction. First, the true analytical 

expression for the target ground truth force difference (see Eq. (2) in the next subsection) will be 

replaced by an approximate target force difference that is dependent only on the ion positions. 

Second, a ML framework will be introduced and used to learn a scalar quantity of the new 

approximate target force difference. This procedure is discussed below beginning with a 

discussion of the true reference force difference. 

A. Approximating the target force difference 

All calculations throughout this work are performed with a classical treatment of the ions 

within the Born-Oppenheimer approximation [36]. Within this context, the KS forces are 

calculated by first determining the ground state electron density 𝑛0
𝐾𝑆 and then applying the 

Hellman-Feynman theorem [37] to the total free energy functional [5]. In the OF-DFT branch,  

the ionic forces are determined by taking the gradients with respect to the ion positions of the 

total free energy evaluated at the ground state density 𝑛0
𝑂𝐹 [38] (see Eq. (7) in Ref. [38] and 

discussion within Ref. [5]). Together, the ion-ion contribution to the ionic forces cancel and the 

resulting analytical expression for reference force difference will have the form, 
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Here, iR  is the position of the ith ion with nuclear charge Zi: k and q are the electrostatic constant 

and electronic charge, respectively. Moving forward, the ion for which the forces are 

calculated/predicted will be referred to as the reference ion and will be strictly indexed by the 

letter i.  

 From the target ground truth force difference of Eq. (2) an approximate target force 

difference is constructed. The first step in this construction is to assume that the long range 

interactions between the reference ion and the electron density difference are negligibly small 

beyond a predetermined cutoff radius 𝑅𝑐. Mathematically this amounts to limiting the integration 

in Eq. (2) to a spherical volume defined by a cutoff radius. Such an approximation has become 

common place throughout the literature for both force [13,14] and energy [12,15] based models 

and is needed to help control the computational cost of the model. However, in this work, long 

range interactions still contribute to the final predicted KS force through the underlying OF 

force, see Eq. (1); a potential advantage of using a correction model as opposed to directly 

predicting the KS forces. 



 The second step towards constructing an approximate target force difference is to divide 

the volume within the cutoff radius into a set of sub-volumes. The set of sub-volumes is 

constructed such that it is in a 1-to-1 correspondence with the set of neighboring ions within the 

cutoff radius. An example is shown in Fig. 1 (a). The purpose of the1-to-1 correspondence is to 

allow the ion positions to act as grid points for resolving the electron charge difference around 

the reference ion. Next, the approximation is made to treat the total electronic charge difference 

within a given sub-volume as if it were located at the position of the corresponding grid point, 

i.e. neighboring ion position. The resulting approximate force difference for the reference ion has 

the form, 
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where 

 .ij j iR R R   (6) 

Moving forward, when an ionic position is used to reference a particular sub-volume the 

corresponding ion will be referred to as a first neighbor (FN). 

The final step in the development of an approximate force difference is to eliminate the 

need to work with the electron densities in Eq. (5). This is done by assuming that the total 

electronic charge difference within a given sub-volume can be determined by the local ions 

surrounding that sub-volume. This is illustrated in Fig. 1 (b) where the assumption amounts to 

replacing an integral over the electron density difference of the blue shaded region with 

information about the surrounding configuration of ions in green and FN in blue. Moving 

forward, ions used to describe the electron charge difference of a sub volume will be referred to 



as second neighbors (SN). During the prediction of a reference ion’s force difference all 

neighboring ions within the cutoff radius will play the role of both a FN and SN (the reference 

ion will also play the role of a SN for its nearest FNs, and ions just beyond the cutoff radius may 

play the role of a SN). 

The final form of the approximate force difference is 
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where 𝑤𝑖𝑗 is the magnitude of the contribution of the density difference in the sub-volume 

referenced by the 𝑗𝑡ℎ FN to the force difference of the reference ion. Note, that a |�⃗� 𝑖𝑗|
2
 term has 

also been lumped into the definition of the weights, comparison of Eq. (5) and (7). As such, to 

determine the weight of a particular FN both information about the surrounding SNs and 

information about how far the FN is from the reference ion must be provided. This was done to 

add additional flexibility to the model when the ML framework is introduced.  

B. Introducing ML into the correction model 

Within the context of the force difference of Eq. (7) ML will be introduced. This is done 

by using a neural network (NN) to predict the FN weights; 

   .ij ijw NN d  (8) 

Here, 𝑑 𝑖𝑗 is a vector containing relevant information needed to predict the weight associated with 

the 𝑗𝑡ℎ FN as discussed at the end of the previous subsection. The details of how 𝑑 𝑖𝑗 is 

construction can be found in the next subsection. In the case of a NN with a single hidden layer, 

the FN weights can be written as  



 𝑤𝑖𝑗 = 𝑁𝑁(𝑑 𝑖𝑗) = 𝑾(𝟐)𝑓(𝑾(𝟏)𝑑 𝑖𝑗 + 𝛽 ), (9) 

where matrices W(1) and W(2) and vector   consist of adjustable free parameters. The function f 

is the activation function that acts in an elementwise manner and is set to the rectified linear unit 

(ReLu) activation function [39] throughout this work. 

The resulting predicted ML force difference has the form, 
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It is important to note that an identical NN is used to predict all FN weights. The resulting force 

correction model will then be analogous to the energy model of Behler and Parinello [12]. 

Furthermore, the free parameters and correspondingly the force differences of Eq. (10) are 

optimized by minimizing the cost function 
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Here, NS is the number of reference ions in the training set. The reference force difference ref
iF

will be calculated according to Eq. (3). That is, both the KS and OF reference forces are 

calculated in their entirety and then the difference is taken. By using reference values for the 

exact force differences and not the approximate force differences the NN will be tasked with 

implicitly learning the boundaries for the sub-volumes associated with the FNs. 

When the standard squared loss was used for the reference data set described in the next 

section, instabilities in the training process would often result in a NN that would predict all 

force differences as zero. To prevent this, the exponential regularization, second term of Eq. 



(11), was added to the cost. The hyperparameters A and 𝛼 in the regularization term are set such 

that only force differences smaller than those observed in the training set are penalized. This will 

leave the global minimum of the square loss based cost unaffected. 

For the force correction model to be useful in MD simulations, an uncertainty for each 

predicted force difference is necessary to ensure that the reliability of the prediction holds 

[14,16,19,40,41]. To estimate the uncertainty an ensemble approach, similar to the work of Ref. 

[40], is used. In this work, 15 different NN’s will be trained to produce 15 different 

force-correction models. Each member of this ensemble will be trained according to Eq. (11) 

with its own training data. Once assembled, the average predicted force difference of the 

ensemble will replace 
MLF  of Eq. (1) for a given reference ion. The standard deviation 

associated with this average will then be used to gauge the level of uncertainty in the prediction. 

C. The input descriptor vector 

In the construction of the descriptor vectors it is important that the same force difference 

be predicted for configurations of FNs which differ by a translation or exchange of labels of ions 

of the same species [12–15,21,23,25]. In the case of rotations about the reference ion, the force 

difference and FN position vectors, Eq. (6), must transform in the same manner. Through 

inspection of Eq. (10) it is clear that these properties will be satisfied as long as the descriptor 

vector for each FN is invariant under translations, rotations and label exchanges. As such, these 

invariances will be directly incorporated into the following construction of the descriptor vectors. 

As discussed at the end of subsection A, the weight of each FN is determined by 

information about its surrounding configuration of SNs as well as information about how far the 

particular FN is from the reference ion. To incorporate both pieces of information the descriptor 



vector will be constructed in two parts. First, a vector 
 

SN ,
j

T

j
d containing only information about 

the FN’s SNs will be assembled. Second, the distance ijR  from the FN to the reference ion will 

be used as an element. The full input vector to the NN will then take the form 
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 To construct 
 

SN ,
j

T

j
d  the first 𝑛 nearest SNs around a given FN will be considered. Each 

of the SNs will be indexed by their nearest neighbor rank with respect to the corresponding FN. 

By using the nearest neighbor ranking for the SN’s index the indices of the SNs become 

independent from the label given to the FN and any change in the labels of the SNs must be 

accompanied by a change in the configuration of SNs. In effect, the nearest neighbor ranking in 

conjunction with the use of the FN distance in the construction of the full descriptor vector, Eq. 

(12), automatically builds in the invariance under label exchange. The downside however is the 

number of SNs 𝑛 must be set. This can be achieved by performing a series of convergence test 

similar to how 𝑅𝐶 would be set.  

The next step in the construction of the descriptor vector is to build in rotational and 

translational invariance. This will be done simultaneously by using all distances between the ions 

of the SN configuration. It is of note that using a distribution of these distances will not provide a 

unique description of the configuration of SNs [11,23]. In an attempt to avoid this issue, the 

distances themselves will be directly used as the elements of the SN descriptor vector. This 

requires that the distances be strictly ordered so that the same input vector is formed each time a 

given SN configuration is encountered. The ordering of the distances can be achieved with the 



use of the nearest SN ranking. More specifically, any distance which has reference to the FN will 

come first in the SN descriptor; then distances which reference the 1st SN come next and so on. 

In the case where two distances reference the same ion, it is the index of the second ion 

referenced by the distance that determines the ordering. For example, in the case of three SNs the 

SN descriptor vector takes the form   

 𝑑 
𝑆𝑁(𝑗),𝑗
𝑇 = (|�⃗� 𝐹𝑁,𝑆𝑁1| |�⃗� 𝐹𝑁,𝑆𝑁2| |�⃗� 𝐹𝑁,𝑆𝑁3| |�⃗� 𝑆𝑁1,𝑆𝑁2| |�⃗� 𝑆𝑁1,𝑆𝑁3| |�⃗� 𝑆𝑁2,𝑆𝑁3|). (13) 

In the case where only one or two SNs are needed, it is clear the SN descriptor uniquely 

describes the SN configuration. For three or more SNs, with no ambiguity in the nearest SN 

ranking, uniqueness can also be confirmed as follows.  

Due to the translational and rotational invariances of the distances, the SN configuration 

can be oriented such that the FN is at the origin and the 1st SN is along the z-axis. The 2nd SN can 

then be rotated into the xz-plane such that it has a positive x value. Note, here it is assumed the 

2nd SN does not lie along the z-axis after the initial rotation. In such a case where this assumption 

is not true,  the next SN in the nearest neighbor ranking that does not lie on the z-axis will take 

the role of the 2nd SN in the following discussion (discussion holds because all distances between 

ions are used). When the distance between the kth SN, with 3 ≤ k ≤ n, and FN is given, the kth SN 

must lie on the surface of a sphere that is centered on the FN and has a radius corresponding to 

the given distance. The same situation occurs when the distance is given between the kth and 1st 

SN. Now when both the kth SN-FN and kth SN-1st SN distances are used together, the kth SN 

must live at the intersection of the two spherical surfaces which is a circle about the z-axis. Both 

the z location and radius of this circle can be determined by the known distances, see [42].   



When the distance kth SN–2nd SN is added to the two previous distances, the circle of 

possible positions for the kth SN is reduced to two possible points. This is because a point in the 

xz-plane (not on the z-axis) is equidistant from at most two possible points on a circle about the 

z-axis [42]. Moreover, these two points will be reflections of one another about the xz-plane. 

More generally, the two points on the circle that are equidistant to an arbitrary point in space (not 

at the circle’s center) will be reflections of one another about the plane with a normal vector in 

the direction 𝑟 𝑥�⃗� 𝑐; where 𝑟  is the position of the arbitrary point and �⃗� 𝑐 is the normal vector of 

the plane containing the circle. Since two points cannot be reflections of one another about two 

different planes in three dimensions, when the distance kth SN-mth SN is added to the six 

distances that reduce the kth and mth SN to two possible locations each (mth SN is assumed to not 

be in the xz-plane), the four possible configurations of the kth and mth SN are reduced to two 

unique configurations and their corresponding reflections about the xz-plane. 

By the symmetry argument used above, if the distances between all SNs located outside 

of the xz-plane are used in conjunction with the distances to the FN, 1st SN and 2nd SN for each 

of these SNs, then the configuration of these SNs is defined uniquely up to a reflection about the 

xz-plane. For any SN that lives in the xz-plane the distances to the FN, 1st SN and 2nd SN are 

sufficient to determine that SN’s position. Therefore, when all distances between SNs and SNs-

FNs are used, the full configuration of SNs will be uniquely defined up to a rotation and 

reflection. It is however likely that using all distances between ions to form the input vector leads 

to redundant information being passed to the NN. This might be alleviated by using the distance 

to the FN and 1st SN in conjunction with the distances to two predetermined points, one in and 

one out of the xz-plane, for each remaining SN. This will be a focus of future work. 



As discussed in Refs. [23,24], descriptors based on distances between arbitrarily indexed 

ions as well as angles between pairs of ions will not be able to uniquely define the configuration 

of ions if multiple ions are equidistant to the target ion for which the prediction is being made. 

With the descriptors developed here, there is a similar inability to properly handle SN 

configurations if two or more SNs are equidistant to the FN as there is an ambiguity in the 

nearest SN ranking. In this case, the SN configuration lives on the boundary of the domain of all 

physically achievable SN descriptor vectors. During a MD simulation, as the configuration of 

SNs passes through an instance where there is an ambiguity in the nearest SN ranking, the SN 

descriptor vector will leave the domain of possible SN descriptor vectors and simultaneously re-

enter the domain at a new location. Over the course of this sudden change in the nearest SN 

ranking, both the ion positions, in Cartesian coordinates, and the underlying total electron density 

around the FN will change continuously. This means the two points on the boundary of the 

domain of possible SN descriptors connected by the sudden change in the nearest SN ranking 

have the same target FN weight. Therefore, any perturbation of the equidistant SNs can be 

performed allowing for the configuration of SN with an ambiguity in the nearest SN ranking to 

be approximate by a new configuration of SNs that is uniquely defined. A numerical check of 

this will be presented in the results section.   

     III. Reference data 

As proof of principle, the force-correction model will be trained and tested for warm 

dense hydrogen at various temperatures along the 1.0-g/cm3 isochore. The range of temperatures 

for which the force correction model is applicable is bounded at both ends. The upper bound on 

this temperature range will be determined by the convergence of the free energies of OF-DFT 

and KS-DFT. Reference [43] showed that for deuterium this convergence will have occurred by 



200 kK. Above this temperature, the upfront cost of the force correction model is not worth the 

minimal gain in accuracy over OF-DFT. In the case of the lower-temperature bound, it is 

expected that the base assumption of a correction being easier to learn will begin to break down. 

An estimate of this temperature will be determined by constructing models at various 

temperatures between 10 and 150 kK. 

For each of the temperatures considered, a single reference data set will be constructed 

such that the ionic configurations and corresponding forces are consistent to that particular 

temperature. No mixing of ionic configurations and forces generated at other temperatures will 

be allowed. To generate the reference ionic configurations for a given temperature, OF-DFT 

based MD (OFMD) is performed. This is done under the assumption that due to the lack of ionic 

structure at the given temperatures, OFMD will sample the domain of local configurations 

consistent with KS-DFT–based MD (KSMD). This assumption will begin to break down at 

temperatures below 3 kK when molecular hydrogen begins to form [44] (this is the motivation 

for limiting the lowest temperature considered to 10 kK). Furthermore, by using OFMD to 

generate the local configurations the upfront cost of collecting reference data for the model will 

be significantly reduced. 

All OFMD simulations are performed in a canonical ensemble using an Andersen 

thermostat with a time step of between 0.05 and 0.24 fs. To further reduce the upfront cost of the 

model, a system of 20 hydrogen atoms in a periodic cubic supercell is used.  In total, each 

OFMD trajectory will consist of 18k steps. From an OFMD trajectory, a snapshot will be 

extracted every 30 steps to form a reference data set consisting of 600 snapshots. Once extracted, 

a single point calculation will be performed to generate the reference force differences for each 

snapshot. Of the 600 snapshots sampled the first 500 snapshots are taken as the master training 



set. The remaining 100 are set aside as the testing set and will be used only once all training 

processes are completed. It should be noted that all 20 local configurations will be used from 

each snapshot, giving the master training and test sets 10k (90 and 150 kK have 5k) and 2k local 

configurations, respectively. 

All DFT calculations were performed with PROFESS@Q-ESPRESSO [5], a coupling of 

the OF-DFT based PROFESS package [45,46] with the KS-DFT based QUANTUM ESPRESSO 

package [47,48]. KS calculations use a 6  6  6 automatically generated Monkhorst–Pack k 

mesh with a plane wave energy cutoff between 600 to 800 Ry and 40 to 150 bands, depending on 

the system temperature. OF-DFT calculations are carried out with a 64  64  64 real space grid. 

The noninteracting free energy is treated with the LKTFγTF functional [49]. This is a convex 

combination of the finite temperature LKTF [11] and finite temperature Thomas–Fermi (TF) 

[50] noninteracting free-energy functionals. The convex parameter γ was arbitrarily chosen to be 

0.5. Moreover, both OF and KS calculations employ the ground state SCAN-L [51,52] exchange 

correlation functional and utilize an equivalent local pseudopotential [53]. 

The force correction model has been written in Python using NumPy [54] and parallelized 

with mpi4py [55–58]. The Python code was then interfaced with Quantum Espresso [47,48]. At 

present, the interfacing of the force correction model requires the reference data collection, 

training process and use in MD to be done in three separate steps. Work is ongoing to 

implemental the model in a way that enables on-the-fly learning and predictions.   

IV. Results 

A. Training the model 



Each force correction model is constructed using a single layer fully connected feed-

forward NN with a the hidden layer consisting of 40 to 100 nodes. The training run for an 

individual model begins with a random initialization of the free parameters on the range [-0.1, 

0.1]. The cost of Eq. (11) is then minimized using a gradient descent with a learning rate on the 

order of 10-3. Details concerning the backpropagation used to minimize Eq. (11) can be found in 

the supplemental material [42]. Typical training runs require 50 k to 100 k epochs to optimize 

the NN. The hyperparameters A and 𝛼 of the regularization term are set to 300 and 108, 

respectively for all training sets.  

In order to produce a reliable model both the cutoff radius and the number of SNs in the 

construction of the descriptor vector must be optimized. The cutoff radius was chosen by 

examining how the predicted FN weights behave as a function of the FN distance to the 

reference ion. As can be seen in Fig. 2 (a) for the 90 kK data set with the use of 3 SNs, when the 

cutoff radius is set to 3.78 bohr the FNs near the cutoff radius will have a weight that is three 

orders of magnitude smaller than the weights of the FNs closest to the reference ion. In effect, 

new ions passing into the volume defined by the cutoff radius will cause a negligible jump in the 

predicted force difference. Moreover, the decay of the FNs weight shown in Fig. 2 (a) confirms 

the assumption that the force difference, in the case of hydrogen, only depends on the local 

configuration of neighboring ions. 

To determine the number of SNs needed in the construction of the descriptor vectors, a 

series of convergence test of the model’s accuracy were performed. When 1 or 2 SNs are used 

for the 90 kK data set, the average relative error in the predicted KS force magnitude is around 

10%, Table I. When 3 SNs are used the average relative error in the predicted KS force 

magnitude drops to around 7%. Increasing the number of SNs to 6 SNs can reduce the average 



relative error in the predicted KS force magnitude to around 6%. This additional gain in accuracy 

going from 3 to 6 SNs primarily comes from improvement in the smallest predicted KS forces 

which experience the largest relative errors. The results of this convergence test were consistent 

for other temperatures considered. Moving forward, 3 SNs will be used to construct the force 

correction model at 60, 90 and 150 kK. In the case of 10 and 30 kK 5 SNs are used in an attempt 

to improve the predictions of the smallest KS forces.  

Table I: Result from the convergence tests used to determine the number of SNs needed in the 

construction of the descriptor vectors. Column 1 indicates the number of SNs used. Column 2 is 

the average relative error in the predicted KS force magnitude. Columns 3 through 5 provide the 

values of three different percentiles of the relative error distribution. Column 6 is the average 

angular deviation of the predicted KS force with respect to the target KS force. Columns 7 

through 9 provides three different percentiles of the distribution of angular errors. 

# SNs Rel. 

Err. 

(%) 

25th 

(%) 

50th 

(%) 

75th 

(%) 

Ang. 

Err. 

(degrees) 

25th 

(degrees) 

50th 

(degrees) 

75th 

(degrees) 

1 9.25 5.21 8.26 12.10 2.81 1.05 2.02 3.45 

2 10.75 5.64 9.03 13.38 3.72 1.33 2.51 4.60 

3 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38 

4 7.35 4.11 5.84 8.48 2.56 0.98 1.80 3.16 

5 6.27 3.08 4.71 7.26 2.62 1.00 1.82 3.11 

6 6.00 2.93 4.41 7.27 2.43 0.95 1.70 2.95 

7 6.90 3.76 5.45 8.09 2.51 1.00 1.77 3.19 

 

With the cutoff radius and number of SNs set, the next step is to produce the ensemble of 

models needed to obtain an uncertainty measure for MD simulations. To train each individual 

force-correction model in the ensemble, a random sampling of the master training set is 

performed such that 58% of all of the data forms the training set, 25% forms the validation set, 

and the remaining 17% forms the pseudo-test set. The training set is used to determine the 

optimal free parameters. The validation set is used to monitor and terminate the training process 

in an attempt to avoid overfitting. The pseudo-test set is used at the end of the training process to 



obtain an estimate of the generalization error of the individual model in the ensemble. Once all 

15 force-correction models of the ensemble have been trained, the test set described in Sec. III is 

used to determine the generalization error of the ensemble. 

At 90 kK, the predictions with the ensemble of models are in good agreement with the 

target KS values and are a significant improvement over the predictions of OF-DFT, Fig. 3 row 

two column 1. In terms of the relative errors, 60% of the predicted KS force magnitudes are 

within 5.2% of the target KS value (a level of error that is consistent with previous works 

[26,59,60]). Comparatively, only 5% of the pre-corrected OF forces in the test set have 

magnitudes within 14% of their respective target KS values. When the relative errors are 

examined further, the smallest relative errors of the model occur for the largest target force 

magnitudes. As the target force magnitude decreases, the accuracy of the model worsens, leading 

to the smallest target forces being predicted with a relative error of 20% or more. In terms of the 

angular error, 60% of the pre-corrected OF forces in the test set deviate from their corresponding 

reference KS force by less than 4.4. While the OF force provides a good starting direction for 

the predicted KS force, the force correction model is able to further reduce the angular error to 2  

error or less for 60% for the predicted KS forces. For further discussion of other temperatures see 

the supplemental material [42]. 

The last step before using the model in the context of MD is to confirm that an ambiguity 

in the SN rankings can be handled perturbatively so that a unique SN ranking can be produced. 

To test this, SN configurations from the test set at 90 kK were taken and the ion positions were 

modified so that the configuration of SNs just before and just after an ambiguity in the nearest 

SN ranking could be obtained. For all configurations considered the nearly equidistant SNs are 



offset by 0.002 bohr. The resulting predicted FN weights before and after the change in the SN 

ranking are shown in Fig. 2 (b). 

 As can be seen in Fig. 2 (b), the largest FN weights are nearly consistent with one another 

before and after the change in the SN ranking. More specifically, the difference in the largest FN 

weights before and after the ambiguity in the nearest SN ranking is around 1% of the FN weight 

just before the ambiguity. For the smaller FN weights the consistency between the FN weight 

before and after is significantly worse and in many cases the difference can exceed 100% of the 

before weight. This is likely the result of the FN weights being learned implicitly through the 

force differences causing the largest FN weights to dominate the cost. While the consistency of 

the FN weights before and after does not hold for all predicted weights, the impact of the 

inconsistency of the smallest FN weights during a perturbation to define a unique nearest SN 

ranking will be inconsequential for the total predicted force difference as the largest FN weights 

correlate well with FNs closest to the reference ion and the reference force differences are well 

correlated to the nearest FN, Fig. 2 (c).  

B. Model comparisons 

Before moving on to MD simulations, the newly developed force correction model is 

benchmarked against the Behler and Parrinello (BP) model [12]. For this benchmarking the BP 

model will be used to predict both force differences and KS forces directly. The BP model was 

directly implemented into our current code with all descriptor derivatives being taken 

analytically. For each of the following comparisons the same training and testing set at 90 kK 

describe above in section IV subsection A is used. Further details about the parameters of the BP 

models can be found in [42]. 



Comparison 1: The SN descriptors based on inter-ionic distances forming 
 

SN ,
j

T

j
d   are 

swapped out for the BP descriptors (Eqs. (4) and (5) of [12]) within the force correction model 

developed here. After varying the number of descriptors and cutoff radius for the SN description, 

the optimal version of the model used 6 radial and 4 angular descriptors and had a 3.78 bohr SN 

cutoff radius. The resulting median relative error in the predicted KS force magnitudes is 6.82% 

and the median angular error of the predicted KS force is 2.34 degrees, table II row 2. With 

respect to the force correction model developed within this work (row one of table II), the use of 

the BP descriptors results in comparable error distributions. 

Comparison 2: The full BP model of [12] is used to predict force differences. To maintain 

as fair of a comparison as possible, only force data is used to train the model (inclusion of energy 

data in the cost function diminished the accuracy of the final predicted KS forces [42]). After 

testing multiple sets of descriptors and cutoff radii [42] the optimal predicted KS forces were 

found to be given by a model with a 3.78 bohr cutoff radius that used 2 radial and 4 angular 

descriptors. The resulting predicted KS forces, table II row 3, has a median relative error in the 

magnitude of 9.5% and a median angular error of 2.9 degree. Both errors are slightly higher then 

the force correction model based on the developed framework.    

Comparison 3: The full BP model of [12] is used to directly predict the KS forces. 

Similar to comparison 2, only force data is used in the training process. During the optimization 

of the hyperparameters it was found that the accuracy of the predicted KS forces did not change 

significantly for cutoff radii between 5.6 and 17 bohr and for 55 to 65 descriptors [42]. For the 

comparison a BP model with a cutoff radius of 9.45 bohr with 30 radial and 24 angular 

descriptors was used. Compared to the previous 3 models based on force differences, the 



accuracy in the directly predicted KS forces is significantly worse with errors in the KS force 

magnitude of 70% or more and angular errors in excess of 70 degrees, table II row 4.        

Overall, comparisons 1 and 2 demonstrate that within the framework of force differences 

the model developed in this work is capable of delivering the same level of accuracy as existing 

schemes. In comparison 3, the large errors are likely a result of insufficient data as the number of 

local configurations in the training set is significantly smaller than the typical hundreds of 

thousands or even millions of local configurations needed to train a model for the direct 

prediction of KS forces. This result highlights the benefit of the delta-learning approach as less 

data is needed to achieve reasonable errors.  

Comparing the BP model to the model developed in this work further, there are other 

clear tradeoffs. First, the BP scheme requires a significant number of hyperparameters in the 

construction of the descriptors. The number of which increases as the number of descriptors 

increases. In the model developed here, the number of hyperparameters is always 2. This has the 

potential of speeding up the training process by reducing the size of the domain of 

hyperparameters that needs to be searched for the optimal model. Second, the BP model has the 

advantage that the forces are defined as the gradient of a scalar quantity meaning the resulting 

force field is conservative. Examination of the curl of the KS forces predicted by the mode 

developed here indicates that the resulting force field is in fact not conservative [42]. However, 

examining the change in energy during a MD simulation [42] indicates the non-conservative 

nature of the resulting force-field will be inconsequential when a thermostat is used. 

Nevertheless, the impact of the non-conservative nature of the forces needs to be investigated to 

ensure the a reasonable distribution of energies is predicted during MD simulations resulting in 



both an accurate mean energy and an accurate standard deviation needed for the calculation of 

specific heat.           

Table II: Resulting errors in the predicted KS forces at 90 kK for the comparison with various 

Behler and Parinello [12] models. Column 1 indicates the direct output of each model. Column 2 

is the average relative error in the predicted KS force magnitude. Columns 3 through 5 provide 

the values of three different percentiles of the relative error distribution. Column 6 is the average 

angular deviation of the predicted KS force with respect to the target KS force. Columns 7 

through 9 provide three different percentiles of the distribution of angular deviations. 

Model Rel. 

Err. 

(%) 

25th 

(%) 

50th 

(%) 

75th 

(%) 

Ang. 

Err. 

(degrees) 

25th 

(degrees) 

50th 

(degrees) 

75th 

(degrees) 

∆𝐹  (this work) 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38 

∆𝐹  (BP des.) 8.19 4.80 6.82 9.92 3.08 1.26 2.34 3.83 

∆𝐹  (full BP) 12.23 5.75 9.52 15.88 4.07 1.48 2.90 5.04 

𝐹 𝐾𝑆(full BP) 154.52 82.52 120.73 187.98 75.46 42.78 70.85 110.08 

 

C. Molecular dynamics 

For the force-correction model to be a useful tool in the context of MD simulations, both 

the energy and pressure must be obtainable. In the case of pressure, the standard approach is to 

use the virial expression which utilizes the forces and positions of the ions [61]. However, Ref. 

[61] showed in the case of periodic systems an additional correction associated with the change 

in energy with respect to the change in simulation cell side length must be added to the standard 

virial expression. This additional correction term was later shown to involve partial forces 

associated with interactions between an ion and image ions [62]. Since the force-correction 

model provides only the total force on an ion, an alternative approach to obtaining the pressures 

is needed. [Note: initial attempts to use the individual terms of Eq. (9) within the context of [61] 

were unsuccessful; this is still an ongoing area of work where the model can be improved.] 



To determine equivalent KS pressures from the model the corresponding OF pressures 

will be used. This can be done as shown in Fig. 4. Here, the reference KS pressures are plotted 

against the corresponding OF pressure for each snapshot that comprises the full reference data 

set of the 90-kK system. As can be seen there is a strong linear correlation between the KS and 

OF pressures. This is also true of the corresponding energies [Fig. 4 (b)]. Note, neither the 

energy nor pressure contains the ideal gas contribution from the ions. These correlations between 

OF and KS quantities weaken as the temperature of the system is decreased but exist even at 10 

kK [Figs. 4 (c) and (d)]. As such, these linear correlations will be used to generate the 

corresponding distribution of KS energies and pressures when the force-correction model is used 

to drive MD simulations. Moreover, the spread in the reference data in the plots of Fig. 4 will be 

used to define an uncertainty in energy and pressure. This is done by shifting the best fit line 

symmetrically up and down until the region containing 95% of the reference data is found. 

Shown in Fig. 3 are the resulting distributions of energies and pressure at each 

temperature considered for MD simulations driven by the force-correction model, KS-DFT and 

OF-DFT. Between 60 and 150 kK, the energy and pressure distributions from the force-

correction model are in excellent agreement with the corresponding distributions from KS-DFT. 

As the temperature of the system decreases further to 30 and 10 kK, the distributions from the 

force-correction model begin to shift away from the target KS distribution and develop longer 

tails. However, overall the distributions of the model’s predicted pressure and energies are still in 

good agreement to those of KS-DFT below 60 kK and are significant improvements over the 

distribution obtained with OF-DFT. 

To further quantify the resulting energies and pressures from the MD simulations, the 

average of each distribution is compared to the corresponding average value obtained from the 



KS distribution (Fig. 5). In the case of the energies [Fig. 5 (a)], the average from the force-

correction model is consistently within 1% of the target KS energy for all temperatures. Even 

when the uncertainty associated with the fitting procedure of Fig. 4 is accounted for, the relative 

error in the energies from the model do not exceed 1.2%. This is an improvement over OF-DFT, 

which has relative errors above 3% for temperatures below 90 kK. For the pressures [Fig. 5 (b)], 

the relative errors from the force-correction model are higher than for the energies, but the 

relative error in pressure is typically within 2% of the target KS values. Again this is an 

improvement over OF-DFT, which has relative errors up to 7% at 10 kK. 

Table III: Computational time needed to perform one MD step with KS and OF DFT. Note the 

cost of OF-DFT at 30 and 90 kK are the same. Also provided is the cost per training cycle 

for the NN. 

Calculation Time (s) 

KS-DFT (at 90 kK) 632.32 

KS-DFT (at 30 kK) 263.10 

OF-DFT 7.89 

Training NN (per epoch of training) 1.34 

 

Finally, the total computational cost of MD simulations performed with the force-

correction model is determined and compared to the cost of standard KS and OF DFT based MD. 

To provide a fair comparison, the computational cost of each method is estimated using 64 cpus. 

The resulting cost per MD step for OF and KS DFT is shown in Table III. For the calculation of 

the total cost of the force correction model the upfront cost associated with training the ensemble 

of models needs to be estimated. This upfront cost will be strongly dependent on the size of the 



training set needed to maintain a similar level of accuracy on each member of the ensemble. To 

optimize the training set size a series of convergence tests were performed using a single force 

correction model. The resulting errors, Table IV, at 90 kK indicate that the training set size can 

be reduced from current size of 4500 reference ions down to 1800 reference ions without 

significant loss in model accuracy. A similar test for 30 kK also indicated the current training set 

could be reduced by a factor of 2. 

Table IV: Errors in the predict KS force at 90 kK as a function of the training set size. Column 1 

indicates the number of local configurations in the training set. Column 2 is the average relative 

error in the predicted KS force magnitude. Columns 3 through 5 provide the values of three 

difference percentiles of the relative error distribution. Column 6 is the average angular deviation 

the predicted KS force has with respect to the target KS force. Columns 7 through 9 provide 

three different percentiles of the angular error distribution.  

Training 

set size 

Rel. 

Err. 

(%) 

25th 

(%) 

50th 

(%) 

75th 

(%) 

Ang. 

Err. 

(degrees) 

25th 

(degrees) 

50th 

(degrees) 

75th 

(degrees) 

125 19.41 7.22 13.17 23.01 8.01 2.71 5.50 10.01 

375 10.43 4.72 8.55 13.04 4.23 1.66 2.88 5.22 

625 10.23 5.33 9.37 13.23 3.48 1.35 2.44 4.21 

1875 8.35 4.53 6.81 10.03 2.83 1.04 1.99 3.51 

4500 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38 

 

When the total cost of performing KS single point calculations, generating the reference 

ion configuration with OFMD and the training of all 15 members of the ensemble are accounted 

for, the total up front cost for the force correction models at 30 and 90 kK are 1.16 and 1.18 

million seconds respectively. The breakeven points associated with the upfront cost are 

equivalent to 4600 KSMD steps at 30 kK and 1900 KSMD steps at 90 kK. If the number of 

members in the ensemble is cut from 15 to 7 the breakeven points shift to 2200 steps and 1100 

KS MD steps for 30 and 90 kK respectively. While the total upfront cost of the force correction 

model is still a significant portion of the cost of feasible KSMDs, once this upfront cost is paid 



the remaining cost will be equal to that of OFMD, making the force correction model a useful 

tool for simulations of WDM systems.    

V. Summary 

A ML based model has been constructed to correct OF-DFT calculated ionic forces to 

produce corresponding KS ionic forces. This was done by first constructing an approximate force 

difference in terms of the ionic positions. Here the ionic positions were used in two ways, First, as 

a set of grid points used to resolve the underlying electron density difference. Second, the distances 

between all ions of the SN configuration were used to form the input vector to a NN. It was 

discussed that by using all distances in the SN configuration in conjunction with an indexing 

scheme based on the nearest SN ranking, the SN configuration could be uniquely determined up 

to a rotation and reflection when no ambiguity in the ranking exist. In the case of an ambiguity in 

the nearest SN ranking, tests indicated that a perturbative approach can be taken to provide an 

approximate SN configuration that can be uniquely defined.       

The resulting model was trained and applied to warm dense hydrogen between 10 and 

150 kK at 1.0 g/cm3. An analysis of the errors demonstrated the KS force magnitudes can be 

learned within 5% and the direction can be learned within 5. Once trained and tested, MD 

simulations were performed at various temperatures for warm dense hydrogen with the force 

correction model. The resulting energies and pressure are consistently within 1% and 2%, 

respectively, of their target KS values down to 10 kK. Finally, once the number of training samples 

were optimized the computational cost of the model was estimated, suggesting the current 

breakeven point with KSMD is around 1100 steps at 90 kK and 2200 steps at 30 kK.  

As the main results of this work are a proof of principle, the goal of future works will be 

to explore avenues for further improvements. This will include using the uncertainties as an on-



off switch for the model allowing for a controlled extrapolation to bring a system back within the 

domain of the descriptor vector space associated with the training set as well as extending the 

descriptor to multicomponent systems. Furthermore, while it was not shown here, the off diagonal 

components of the stress tensor show similar correlations between the KS and OF calculations. As 

such, it is expect that the force correction model will be a useful tool for the calculation of 

viscosities which are at present time not possible to obtain with standard ab-initio MD simulations 

at the temperatures considered.       

All reference data used to train the models in this work along with the final parameters of 

the trained neural networks have been made publicly available at, 

https://github.com/jhinz2/ML_force_correction_model_development.git. All of the code 

developed in this work is available upon request with the corresponding author.     
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Fig. 1. (a), left: the neighboring ions shown as blue circles are used to divide the volume around 

the red reference ion into sub-volumes. Each sub-volume is constructed such that it contains 

exactly one neighboring ion. When a ion is used to indicate a sub-volume it will be referred to as 

a first neighbor (FN). The choice of the sub-volume boundaries, thin block line, was chosen 

arbitrarily for this example. (b), right: during the construction of the force correction model is 

assumed that the electronic density difference within a given sub-volume can be determined by 

the neighboring ions. Therefore, the contribution to the force difference of the ion in red from the 

shaded blue sub-volume, black arrow, will be determined by describing the configuration of 

green ions (referred to as second neighbors) in conjunction with the corresponding FN, blue 

circle. All other ions within the cutoff radius, gray circles, do not contribute to the weight of the 

sub-volume being considered.   

 

  



 

 

 
 

Fig. 2. (a), predicted FN weights as a function of the distance between the FN and reference ion 

for the 90 kK training. These predictions were performed with a force correction model that used 

3 SNs and a cutoff radius of 3.78 bohr. (b), the predicted FN weights after a sudden change in the 

nearest SN ranking as a function of the predicted weights just before a sudden change in the SN 

ranking. The colors of the points indicate the distance of the FN to the reference ion. The black 



dotted line represents the target line if the FN weights are continuous at an ambiguity in the 

nearest SN ranking. All predictions are also with a model using 3 SNs and a cutoff radius of 3.78 

bohr. (c), reference force difference as a function of the nearest FN.    
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𝑇 = 150 𝑘𝐾 

𝑇 = 90 𝑘𝐾 
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Fig. 3. Column 1 is the magnitude of an approximate force versus the magnitude of the target KS 

forces on the test set at each temperature. The points indicate the values of the underlying OF 

forces and the blue points are the predicted KS forces. The black line is again the target that the 

force-correction model aims to achieve. Column 2 is the distribution of energies (without ideal gas 

contribution from ions) for molecular dynamics performed with KS (red) and OF (green) DFT and 

the force-correction model (blue). Column 3 is the corresponding distributions for the pressures 

from MD simulations with the three methods (again with no contribution from ions). Each row 

corresponds to a different temperature. The first row begins at 150 kK and each subsequent row 

descends in temperature starting from 90 to 60 to 30 and to 10 kK, respectively. Note, all 

distributions in a given plot are binned on the same range with the same number of bins. 

 

  



  

  

Fig. 4. (a) KS pressure and (b) KS energy plotted as functions of the corresponding OF quantity 

for each snapshot in the reference data set at 90 kK. (c) KS pressure and (d) KS energy plotted as 

functions of the corresponding OF quantity for each snapshot in the reference data set at 10 kK. 

The red dashed line in each plot is the best fit line of the reference data marked by the blue circles. 

The light red region indicates the area where 95% of the reference data falls around the best fit 

line. 
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Fig. 5. (a) Relative error in the average pressure obtained from MD simulations. The blue circles 

are those from MD driven with the force-correction model and the green circles are from MD 

driven with OF-DFT. The dotted line connecting the points is a guide to the eye. (b) Corresponding 

relative errors in the average pressures. Note, all relative errors are calculated with respect to the 

KS average quantities. Furthermore, the blue region in each plot shows the effect the uncertainty 

from the fitting procedure shown in Fig. 4 has on the average energies and pressure in the case of 

the force-correction model. 
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