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A first principles method is presented to calculate the bulk modulus and its pressure derivative of a
monocrystal in an arbitrary stressed state. The bulk modulus is obtained from the compliance Birch
tensor, whereas its pressure derivative is calculated numerically within a nonlinear elasticity theory
framework by using second- and third-order elastic constants obtained from density functional theory
calculations. To demonstrate validity, generality, and accuracy, this approach is used to calculate
bulk modulus and its pressure derivative of silicon and α-quartz over finite intervals of the hydrostatic
pressure, and of sodium chloride at zero hydrostatic pressure and incremental differential stress. To
demonstrate impact, the method is also used to elucidate the unusual elastic softening exhibited by
monoclinic hafnia under hydrostatic compression.
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I. INTRODUCTION
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are important materials coefficients quantifying the elas-
tic resistance to compression, and how this elastic re-
sponse changes with pressure1–6. To determine these ma-
terials coefficients, the conventional procedure adopted
in both experimental7–14 and computational15–20 stud-
ies consists in fitting data points of volume versus pres-
sure with an equation of state2–5 depending on a few
free parameters, typically BT , B′

T , and the volume of
the material at zero pressure. Although straightforward
and widely used, this procedure can lead to variable, and
sometimes, misleading results. An example is the case
of monoclinic HfO2, a material of great technological
importance21,22. For nearly two decades, experimental
and computational studies of m-HfO2 have used the con-
ventional fitting procedure relying on the use of an equa-
tion of state and reported values ofBT scattered from 145
to 284 GPa18,23,24 and from 152 to 251 GPa15–18, respec-
tively. In these studies, B′

T was assigned a fixed value
of either 4 or 516–18,23,24, a common practice adopted
to reduce uncertainty of the fitting procedure. It is only
very recently that high-precision X-ray diffraction experi-
ments and a data analysis employing a Rose-Vinet equa-
tion of state4,5 have shown that BT has a value close
to 195 GPa, and most notably that B′

T has a negative
value of -5.4, indicating that m-HfO2 exhibits the un-
common property of becoming softer upon hydrostatic
compression14. In this work, we introduce a method,
alternative to the existing one relying on a fitting proce-
dure, to calculate reliable and accurate values of BT , and
most importantly, B′

T .

The well-established experimental approach to study
materials subjected to a static pressure relies on the use
of a diamond anvil cell, combined with in situ characteri-
zation techniques such as X-ray diffraction, Infrared, and
Raman spectroscopy to monitor changes in the materials
properties as a function of the pressure7,9,12–14. Used for
a variety of purposes (including the study of solid-solid
phase transitions12, exotic electride phases in alkali met-
als at ultra-high pressures25, and the phase behavior of
metallic alloys26,27), high-pressure experiments are used
principally to probe how the volume of a material changes
upon hydrostatic compression, and therefore to deter-
mine values of BT and B′

T from fitting a set of data points
of volume versus pressure8,10,11. Unfortunately, errors
due to the challenging experimental set-up, extreme pres-
sures, purity and crystallinity of the sample, and some-
times difficult-to-control non-hydrostatic conditions of-
ten hinder the analysis of the data18,23,24. To reduce un-
certainty of the fitting procedure, a common practice con-
sists in assigning to B′

T a fixed value, typically around 4,
and then fitting the data points with an equation of state
that depends only on two free parameters: BT and the
equilibrium volume at zero pressure9,18,23,24. Although
convenient, this solution has proven to lead to misleading
results, as in case of m-HfO2

14,18,23,24. Needless to say,
high-pressure experiments would greatly benefit from the
availability of computational tools yielding accurate val-
ues of both BT and B′

T .

Density functional theory (DFT) calculations are used
routinely to determine values of BT and B′

T by using the
conventional approach relying on fitting values of volume
versus pressure15–20. In these computational studies, the
volume can be calculated over wide intervals of pressure,
and numerical errors can be reduced to negligible values.
Therefore, in principle, a fitting procedure should yield
accurate values of BT and B′

T . Unfortunately, the oper-
ation is typically carried out by fitting the data points
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with equations of state that, as shown in this work, can
be inadequate to describe the nonlinear elastic proper-
ties of the material under compression, and thereby it
can lead to unreliable results, as for example to posi-
tive instead of negative values of B′

T
15. In this work, we

devise an alternative method to calculate BT and B′

T .
In this method, DFT calculations are employed to cal-
culate second- and third-order elastic constants of the
monocrystal is the selected stressed state. Then, the bulk
modulus is calculated from the compliance Birch tensor,
whereas its pressure derivative is obtained by using a nu-
merical framework implementing equations of nonlinear
elasticity theory, using the computed values of second-
and third-order elastic constants as input parameters28.
With respect to the conventional approach based on a
fitting procedure, our method offers the following advan-
tages. It is reliable, accurate, and it can be applied to
any crystalline material in a given, although arbitrary,
stressed state. Also, since our method requires the calcu-
lation of both second- and third-order elastic constants,
it allows to gain insight into the deformation mechanisms
and nonlinear elastic terms governing the elastic response
of a material under pressure.

Here, we present conceptual background and technical
aspects of our method (Sec. 11), as well as its applica-
tions to silicon, α-quartz, sodium chloride, and mono-
clinic hafnia. In detail, in Sec. II A we introduce the rela-
tionships used to calculate the bulk modulus of a stressed
monocrystal with an arbitrary symmetry from the Birch
coefficients. In Sec. II B, we present our novel method
to calculate the pressure derivative of the bulk modulus
from second- and third-order elastic constants. In Sec.
III, we outline the technical details of all the DFT calcu-
lations and numerical analysis carried out in this study.
In Sec. IV, we present and discuss the results of our ap-
plications, and in Sec. V, we summarize scope and main
results of this work.

II. METHODOLOGY

A. Bulk modulus of a stressed monocrystal

The most common experimental approach to probe the
elastic response of a material under compression is based
on the use of a diamond anvil cell7–14. In these exper-
iments, the material sample is free to deform under the
influence of a hydrostatic pressure, and subjected to a
differential stress that typically remains small and negli-
gible up to the ultra-high pressure regime11,29. To calcu-
late the elastic coefficient, BT , that closely matches these
experimental conditions, we use the following formula
demonstrated by Wallace in Ref. 6 (the Einstein sum-
mation convention is used throughout the manuscript):

BT =
[

B̂
(2)
iijj

]

−1

, (2)

where italic indices refer to cartesian axes, and B̂
(2)
ijkl are

the components of the tensor B̂(2), the tensor inverse
to the Birch tensor, B(2), whose components depend on
the second-order elastic constants and Cauchy stress ten-
sor of the material in the stressed reference state6,30,31.
We underline that, as discussed in Refs. 6,30, Eq. 2 de-
fines an elastic coefficient, BT , quantifying how the vol-
ume of a material changes under hydrostatic compres-
sion, at constant deviatoric stress, and in absence of rigid
rotations6,30. Thus, among the possible different formal
definitions of BT

30, Eq. 2 is the best candidate to cal-
culate values of BT comparable to those obtained from
measurements carried out using a diamond anvil cell.
The components of the Birch tensor B(2) are defined

as follows:

∂σij

∂εkl
= B

(2)
ijkl = C

(2)
ijkl +

1

2
(σ

(0)
ik δjl + σ

(0)
il δjk+

σ
(0)
jk δil+σ

(0)
jl δik − 2σ

(0)
ij δkl),

(3)

where σij and εij are components of the Cauchy stress

and infinitesimal strain tensors, respectively, and C
(2)
ijkl

are the second-order elastic constants of the material in
a stressed state with with Cauchy tensor σ

(0)
ij

6,30,31. It is

to be noted that, although B
(2)
ijkl 6= B

(2)
klij in general, the

Birch coefficients B
(2)
ijkl display the expected symmetries

in i, j and k, l. Therefore, B(2) can be written in the
Voigt notation (xx → 1, yy → 2, zz → 3, yz → 4, xz → 5,

and xy → 6) as a 6×6 matrix b
(2)
αβ , with α, β = 1 . . . 6, and

where in general b
(2)
αβ 6= b

(2)
βα; henceforth, Greek subscript

indices are be used to refer to tensor components in the
Voigt notation, whereas italic indices are used to refer to
Cartesian axes in the normal matrix convention. Thus,

by defining b̂
(2)
αβ as the inverse matrix of b

(2)
αβ , Eq. 2 can

be rewritten as follows:

1

BT
= KT =

3
∑

α=1

3
∑

β=1

b̂
(2)
αβ , (4)

where KT is the isothermal compressibility. This is the
formula used in this work to calculate the bulk modu-
lus of a monocrystalline material in an arbitrary stressed
state.
It is worth noticing that in case of a stressed material

subjected to a hydrostatic pressure, i.e. σ
(0)
ij = −pδij ,

Eq. 3 can be rewritten as follows6,31:

B
(2)
ijkl = C

(2)
ijkl − p(δjlδik + δilδjk − δijδkl), (5)

with Birch coefficients now having complete Voigt sym-
metry. Thus, under perfect hydrostatic conditions, Eq. 4
reduces to

KT = b̂
(2)
11 + b̂

(2)
22 + b̂

(2)
33 + 2(b̂

(2)
12 + b̂

(2)
23 + b̂

(2)
31 ), (6)

which, interestingly, is identical to the Reuss’s definition
of BT

32,33, commonly used to estimate, from the second-
order elastic constants of the monocrystal, the isothermal
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compressibility and thus bulk modulus of an hypothetical
polycrystalline aggregate of the same material34. The
Reuss’s definition of BT relies on the assumption that
the polycrystalline aggregate is subjected to a spatially
homogeneous stress32,33.

B. Pressure derivative of the bulk modulus

Our approach to calculate B′

T of a monocrystalline ma-
terial in an arbitrary stressed state involves the following
operations. First, we use the technique described in Ref.
35 to calculate both second- and third-order elastic con-
stants of the material in the selected stressed state, that
is subjected to a hydrostatic pressure p, and potentially
sustaining a differential and/or shear stress. Second, we
use the approach described in Ref. 28 to numerically ex-
trapolate the second-order elastic constants of the mate-
rial at hydrostatic pressures p+ δp and p− δp, calculate
the corresponding bulk moduli via Eq. 4, and then obtain
the desired result via numerical differentiation as follows:

B′

T (p) =
∂BT

∂p
≈

BT (p+ δp)−BT (p− δp)

2δp
. (7)

For completeness, here below we describe in detail the nu-
merical operations involved in the calculation of BT (p±
δp).

Let’s denote with C
(2)
αβ (p) and C

(3)
αβγ(p) the second- and

third-order elastic constants of the stressed monocrystal
subjected to an hydrostatic pressure p, and with Cauchy
stress tensor σ0

ij . In this stressed state, the geometry of
the unit cell of the crystalline material is specified by the
following 3×3 matrix,

V (p) =





a1,x a2,x a3,x
a1,y a2,y a3,y
a1,z a2,z a3,z



 , (8)

where ~a1,~a2, and ~a3 are unit cell vectors. Within a non-
linear elasticity theory treatment of the material, second-
and third-order elastic constants of the material at p and
with geometry V (p) can be used to estimate the Cauchy
stress tensor of the same material in a deformed state.
This can be accomplished by combining the following
elementary relationships. First, the series expansion of
the second Piola-Kirchhoff (PK2) stress tensor, Pα, trun-
cated to the second order in the Lagrangian strain, µα:

Pα(µ) = σ0
α + C

(2)
αβ (p)µβ +

1

2
C

(3)
αβγ(p)µβµγ . (9)

Second, the formulas relating PK2 stress tensor (P ), La-
grangian strain tensor (µ), and Cauchy stress tensor (σ):

µ =
1

2
(F TF − I)

σ =
1

detF
FPF T ,

(10)

where Fα is the deformation gradient28,35. Thus, Eqs.
9 and 10 allow to establish the relationship between
Cauchy stress, σ, and strain, µ, and therefore they can
be used to calculate the bulk modulus of the material in
a deformed state resulting from incrementing or decre-
menting the hydrostatic pressure by δp. This operation
involves two steps.

• We first use Eqs. 9 and 10 to determine the geome-
try of the unit cell, V (p±δp), of the deformed mate-
rial subjected to a hydrostatic pressure p± δp. To
this end, we use standard numerical techniques28

to solve Eq. 9 and find the Lagrangian strain, µ,
to be applied to the reference state with geometry
V (p) to increase/decrease the hydrostatic pressure
by δp. We highlight that this operation is carried
out by imposing that only the hydrostatic pressure
p varies by ±δp, and that deviatoric or shear stress,
if present, remain constant.

• After having determined the deformed geometries,
we use Eqs. 9-10 and the conventional finite de-
formation approach35 to calculate the second-order
elastic constants of the material at p±δp. This last
operation requires the calculation of the PK2 stress
tensor for a list of strained configurations of the
material with geometries V (p± δp), and the use of
first-order central finite difference formulas to cal-
culate the elastic constants, and the corresponding
BT (p ± δp) via Eq. 428,35. In particular, for each
strained configuration of, for example, V (p + δp),
the PK2 stress tensor is derived by combining Eqs.
9-10 as outlined in the following diagram:

V (p+ δp)
µ̃
−→ F̃ , Ṽ

V (p)
−−−→ µ,F

µ
−→ . . .

. . .
µ
−→ P (µ)

F
−→ σ(µ) = σ̃(µ̃)

F̃
−→ P̃ (µ̃),

(11)

where µ̃ and F̃ are the Lagrangian strain and corre-
sponding deformation gradient mapping V (p+ δp)

to its deformed state, Ṽ , whereas µ and F are
the strain and deformation gradient mapping V (p)

to Ṽ . Thanks to this last correspondence, Eq. 9
can be used to extrapolate the value of the PK2
stress tensor in Ṽ resulting from the deformation
of V (p), whereas Eq. 10 can be used to, first, cal-
culate the Cauchy stress, σ(µ) = σ̃(µ̃), and then
the PK2 stress tensor resulting from the deforma-
tion of V (p + δp), which is needed to calculate a
second-order elastic constants35.

We remark that in this study, we use values of δp
ranging from 0.001 to 0.01 GPa. These small pressure
changes lead to deformed states of a material whose unit
cells V (p± δp) lie within ≤0.1% in strain from the refer-
ence configuration, V (p). Also, to calculate the second-
order elastic constants by using the finite deformation
approach35 and Eqs. 9-10, we use strain parameters as
small as 10−4. Since both deformed states at pressures
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p± δp and strained configurations of V (p± δp) lie within
∼0.1% in strain from the reference state at p, the trun-
cated series in Eq. 9, and hence overall our method, are
expected to yield accurate predictions of Pα(µ) and hence
B′

T
28.

III. CALCULATIONS AND DATA ANALISIS

A. DFT calculations

To carry out DFT calculations, we use the pw.x code
of the Quantum ESPRESSO software package36,37. In
particular, we consider the following materials: silicon,
α-quartz, the rock-salt phase of NaCl, and the mono-
clinic phase of hafnia. All DFT calculations are car-
ried out by employing primitive unit cells, ultrasoft
pseudopotentials38, and the following strict convergence
criteria: 10−13 Ry for selfconsistency, 10−6 a.u. for
forces, and 10−5 kbar for the pressure.

To describe the fcc structure of silicon, we use a local
density approximation functional39, the pseudopotential
Si.pz-nl-rrkjus psl.1.0.0.UPF38 , a uniform mesh of
10×10×10 k-points to sample the Brillouin zone, and
plane-wave energy cutoffs of 80 and 400 Ry to represent
wave functions and electron charge density, respectively.
As for α-SiO2, NaCl, and m-HfO2, we use a generalized
gradient approximation functional40, and the following
remaining technical specifications regarding types of
pseudopotentials, size of the uniform mesh sampling the
Brillouin zone, and plane-wave energy cutoffs to repre-
sent wave functions and electron charge density. α-SiO2

(space group P3221): Si.pbesol-nl-rrkjus psl.1.0.0.UPF

and O.pbesol-nl-rrkjus psl.1.0.0.UPF38 , 6×6×6 k-
points, and 100 and 400 Ry. Rock-salt phase of NaCl:
Na.pbesol-spnl-rrkjus psl.1.0.0.UPF and Cl.pbesol-

nl-rrkjus psl.1.0.0.UPF, 6×6×6, and 100 and 400
Ry. Monoclinic baddeleyite structure of HfO2 (space
group P21/c): Hf.pbesol-spn-rrkjus psl.1.0.0.UPF and
O.pbesol-nl-rrkjus psl.1.0.0.UPF38 , 8×8×8, and 80 and
400 Ry.

With the above technical specifications, we obtain the
following lattice parameters at zero temperature and zero
pressure: Si, a =5.400 Å; α-SiO2, a =4.972 Å and
c =5.462 Å; m-HfO2, a =5.045 Å, b =5.114 Å, c =5.217
Å, and β =99.81o; and NaCl a =5.603 Å. These param-
eters are in good agreement with experimental data at
room temperature and ambient pressure: Si, a =5.431
Å41; α-SiO2 a =4.913 Å and c =5.40482 Å42; m-HfO2,
a =5.1156 Å, b =5.1722 Å, c =5.2948 Å, β =99.11o14;
and NaCl, a=5.64 Å7.

To calculate second- and third-order elastic constants
via DFT, we use the approach based on finite defor-
mations and the numerical differentiation of the second
Piola-Kirchhoff (PK2) stress tensor described in Refs.
35,43. For each material, the strained configurations are
generated by using a strain parameter equal to 0.0135.

B. Conventional method to calculate BT and B′

T

In the following sections, we present results obtained
by using both the conventional approach and our novel
method. For sake of completeness, here below we pro-
vide details about the conventional approach we used to
calculate values of BT and B′

T . First, we use variable-
cell DFT calculations36,37,44 to generate a set data points
of volume and pressure, V (p). Second, we use an equa-
tion of state to fit the data points and determine the
values of BT and B′

T across the whole interval of pres-
sures spanned by the calculations. In particular, we use
two popular equations of state to carry out this last op-
eration: the third-order Birch-Murnaghan’s2,3 and the
Rose-Vinet’s4,5. These two equations of state have the
following expressions:

p(x) =p0 +
3

2
BT (x

7/3 − x5/3)

[

1 +
3

4
(B′

T − 4)(x2/3 − 1)

]

p(µ) =p0 + 3BT

(

1− µ

µ2

)

exp

[

3

2
(B′

T − 1)(1− µ)

]

,

(12)

where x = V0/V and µ = (V/V0)
1/3, and where V0 is

the volume at a fixed reference pressure p0. Typically
this latter parameter is set to zero. In this work, p0 is
varied across the interval of pressures spanned by the
DFT calculations, and for each value we carry out the
fitting operation to determine the values of V0, BT (p0),
and B′

T (p0).
To show the limitations of the conventional approach

based on the use of an equation of state, we also use
higher degree polynomial functions, of degree 7 or larger,
to fit the calculated V (p) data points, and thus derive
numerically the functions BT (p) and B′

T (p). With re-
spect to the equations of state above, which have a fixed
form and depend on only three free parameters, a higher
degree polynomial function depends on a larger number
of free parameters, and therefore it is expected to yield
unbiased and more accurate results. The results obtained
by using polynomial functions are used to demonstrate
both validity and accuracy of our new method to calcu-
late BT and B′

T .

IV. RESULTS AND DISCUSSION

A. Silicon

To demonstrate validity, we first apply our method
to silicon, a material exhibiting a regular and well-
understood elastic response to pressure41,45,46. First,
we employ the conventional approach. In particular,
we carry out variable-cell DFT calculations36,37,44 to
optimize the volume of silicon at pressures between -2
and 8 GPa. Then, we use both the third-order Birch-
Murnaghan2,3 and Rose-Vinet4,5 equations of state to
fit the calculated volumes and derive values of BT and
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B′

T across the entire interval of pressures. Second, for
selected pressures, we calculate second- and third-order
elastic constants28,35, and we employ our method to cal-
culate values of BT and B′

T . The results of these cal-
culations are shown in Fig. 1, together with recent ex-
perimental data41. For completeness, the values of both
second- and third-order elastic constants of silicon are
reported in Table I.
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0.94

0.96

0.98

1.0

1.02

V
/V

0

 

(b)

90

100

110

120

130

B
T

(G
P

a)

 

(c)

-2 -1 0 1 2 3 4 5 6 7 8

3.8

4.0

4.2

4.4

Pressure (GPa)

B
T’

 

FIG. 1: (a) Relative volume, (b) bulk modulus and (c) its
pressure derivative of Si versus pressure. Red discs in (a)
show results obtained from variable-cell DFT calculations.
Red circles in (b) and (c) show values of BT (p) and B′

T (p)
obtained by using our method. Black dashed and thick gray
curves show results deduced by using the third-order Birch-
Murnaghan2,3 and Rose-Vinet4,5 equations of state, respec-
tively. The green solid line in (a) shows the Rose-Vinet equa-
tion of state fitting the experimental data reported in Ref.41,
with BT = 97.89 GPa and B′

T = 4.24 (green discs in (b) and
(c), respectively). The solid blue line in (c) show the B′

T (p)
function derived by using a 10th-order polynomial function.

The comparisons in Fig. 1 show that our method con-
stitutes a valid alternative to the conventional approach
to predict values of BT and B′

T of a material under pres-
sure. It is also interesting to note that the two equations
of state yield different B′

T (p) functions (Fig. 1(c)). Al-
though small in case of Si, these differences become sig-
nificant for materials such as α-quartz or m-HfO2 (see
below), and not only in case of B′

T (p) but also for BT (p).
To highlight this important point, we use a higher or-
der polynomial to interpolate the volume versus pressure
data points in Fig. 1(a) and obtain the B′

T (p) function
from numerical differentiation. We underline again that,

TABLE I: Independent second- and third-order elastic con-
stants Si obtained from DFT calculations35 . Pressure and
elastic constants are in GPa. For convenience, the first row
shows only the Voigt indices, αβ and αβγ, of the independent

C
(2)
αβ and C

(3)
αβγ , respectively.

p 11 12 44 111 112 123 144 155 456
-2.0 150 58 73 -735 -434 -76 19 -294 -55
-1.0 156 61 74 -752 -446 -82 25 -295 -52
0.0 161 64 76 -768 -459 -87 31 -295 -51
1.0 166 68 78 -785 -471 -93 37 -296 -51
2.0 172 71 79 -800 -483 -98 42 -297 -50
3.0 177 74 81 -816 -494 -103 48 -297 -50
4.0 181 77 82 -830 -506 -108 55 -297 -48
5.0 186 80 84 -846 -517 -114 60 -297 -47
6.0 191 83 85 -860 -528 -119 67 -296 -47
7.0 196 86 86 -874 -539 -124 73 -297 -45
8.0 200 89 87 -888 -549 -129 78 -297 -44

with respect to a typical equation of state, a higher order
polynomial depends on a larger number of free parame-
ters, and therefore it is expected to yield more accurate
results. As shown in Fig. 1(c), and overall throughout
this work, our method yields results that are in excellent
agreement with those obtained by using a higher order
polynomial, thus demonstrating that our method is ac-
curate.
Our method gives a value of B′

T for silicon at zero
pressure equal to 4.24, in excellent agreement with the
experiment41. It is important to rationalize, at a semi-
quantitative level, the meaning of both sign and values
of B′

T , and their relationships with the third-order elas-
tic constants. To this end, we first note that under hy-
drostatic pressure silicon retains the fcc structure and
its normal deformations can be described by a single
strain parameter µ (i.e. the Lagrangian strain tensor is
µij = µ δij). Upon compression, changes in the second-
order elastic constants, and hence bulk modulus, are con-
trolled by the nonlinear elastic constants6. For example,

to the first order in µ, C
(2)
11 varies as follows6,47:

C
(2)
11 (µ) ≅ C̄

(2)
11 + µ

(

C̄
(2)
11 + C̄

(3)
111 + 2C̄

(3)
112

)

, (13)

where on the right side there are the elastic constants of

silicon in a reference state. As shown in Fig. 2, both C
(3)
111

and C
(3)
112 have large negative values, and since upon com-

pression the strain parameter µ is negative, Eq. 13 clari-

fies and provides clues as to why C
(2)
11 increases monotoni-

cally across the whole interval of pressures (Fig. 2). Also,

since similar arguments apply to C
(2)
12 (Fig. 2), BT can

only increase with pressure, thus explaining the positive
sign of B′

T . It is also to be noticed that the third-elastic
constants of silicon remain nearly constant across the en-
tire interval of pressures (Fig. 2). This is consistent and
explains the nearly constant value of B′

T across the in-
terval of pressures, decreasing from 4.4 at -2 GPa to only
about 3.8 at 8 GPa (Fig. 1).
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FIG. 2: Independent (a) second- and (b) third-order elas-
tic constants of silicon versus pressure obtained from DFT
calculations35 . The values of the second-order elastic con-
stants are referred to those at zero pressure. The red solid
lines in (b) show the independent third-order elastic constants

controlling the changes of C
(2)
11 and C

(2)
12 (blue lines in (a))

upon hydrostatic compression.

B. α-quartz

To further demonstrate validity and accuracy of our
method, we consider the case of α-SiO2, a crystalline ma-
terial belonging to the trigonal crystal system. In par-
ticular, we calculate values of volume versus pressure,
second- and third-order elastic constants (Table II, and
hence values of BT and B′

T at pressures between -2 and 8
GPa. The results of these calculations are shown in Fig.
3.

Figure 3(b) shows that the bulk moduli of α-SiO2 cal-
culated using Eq. 4 are in excellent agreement with the
values deduced from both the equations of state and the
higher degree polynomial function (for clarity, the latter
function is not shown in Fig. 3(b)). This demonstrates
that Eq. 4 is sound and can be used, in alternative to the
conventional approach based on fitting V (p) data points,
to calculate the bulk modulus of a generic crystalline ma-
terial in an arbitrary stressed state.

Figure 3(c) shows also that our results for B′

T are in ex-
cellent agreement with values derived from a high-degree
polynomial function, and that a much less satisfactory
agreement is reached with the results deduced from the
equations of state. The third-order Birch-Murnaghan2,3

and Rose-Vinet4,5 equations of state have a fixed func-
tional form with three free parameters, and it is well
known that these equations can describe a restricted class
of nonlinear behaviors of a V (p) function7. In contrast,
a high-degree polynomial depends on a larger number
of free parameters, and it is therefore better suited to
interpolate V (p) functions of materials such as α-SiO2,
whose third-order elastic constants show significant vari-
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FIG. 3: (a) Relative volume (b) bulk modulus, and (c) its
pressure derivative of α-SiO2 versus pressure. Red discs
show values of V (p) obtained from variable-cell DFT calcu-
lations, whereas red circles show values of BT and B′

T ob-
tained by using our method. Black dashed and thick gray
lines show results obtained by fitting the calculated V (p) data
points shown in (a) with a third-order Birch-Murnaghan2,3

and Rose-Vinet4,5 equation of state, respectively. The solid
blue line in (c) shows values of B′

T obtained by interpolating
the calculated V (p) data points with a 10-degree polynomial
function. Colored squares show experimental values of BT

and B′

T
42,48.

ations with pressure (Fig. 4). Overall, the results in
Fig. 3 further demonstrate that our method to calculate
BT and B′

T of stressed crystals is sound and accurate.
We also remark that the results in Fig. 3 are in over-
all agreement with both experimental42,48 and previous
computational49,50 studies of α-SiO2.

Figure 4 shows the strain deformations occurring in α-
SiO2 upon hydrostatic compression. These results show
that hydrostatic compression is accommodated by only
normal strain deformations. These normal strain defor-
mations cause all but C

(2)
14 to increase with pressure,

thereby leading to positive values of B′

T . It is also in-
teresting to note that the second-order elastic constant

undegoing the largest increments with pressure is C
(2)
33 .

To explain this trend, we observe that, to the first or-
der in strain, the increments with pressure of this elastic
constant can be accounted for by a relationship similar to
Eq. 13, which are dominated by the following two terms:

C
(3)
333µ3 and C

(3)
233µ2 = C

(3)
133µ1. Both these two terms are

the product of negative third-order elastic constants and
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TABLE II: Independent second- and third-order elastic constants of α-SiO2 obtained from DFT calculations35 . Pressure and

elastic constants are in GPa. The first row shows the Voigt indices, αβ and αβγ, of independent C
(2)
αβ and C

(3)
αβγ , respectively.

p 11 12 13 14 33 44 111 112 113 114 123 124 133 134 144 155 222 333 344 444
0.0 75 1 6 19 88 52 3 -339 86 123 -277 24 -224 -26 -186 -164 -98 -623 -124 220
1.0 78 9 10 17 100 55 -175 -301 29 175 -254 -1 -278 9 -113 -92 -293 -812 -86 183
2.0 82 15 15 14 112 57 -290 -291 -13 248 -250 -16 -333 34 -123 -64 -425 -1005 -69 159
3.0 87 20 19 12 125 58 -374 -280 -31 264 -250 -32 -376 36 -109 -45 -521 -1191 -56 145
4.0 92 24 23 10 137 60 -439 -280 -45 286 -252 -35 -408 42 -107 -45 -584 -1368 -59 134
5.0 96 28 27 8 150 61 -489 -287 -55 292 -258 -47 -444 44 -111 -44 -648 -1553 -65 127
6.0 101 32 31 6 162 62 -541 -292 -59 314 -256 -49 -463 50 -111 -48 -707 -1709 -69 121
7.0 106 35 34 4 174 63 -580 -297 -57 325 -259 -50 -482 49 -112 -48 -764 -1860 -74 118

negative strains, thereby leading to positive increments

of C
(2)
33 with pressure (Fig. 4).
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FIG. 4: (a) Lagrangian strain resulting from applying a hy-
drostatic pressure to α-SiO2. (b) Independent second-order
elastic constants of α-SiO2 versus pressure referred to their
values at zero pressure. The blue solid line shows values of

∆C
(2)
33 . (c) Independent third-order elastic constants of α-

SiO2 versus pressure. Red (gray) solid lines indicate third-
order elastic constants contributing (not contributing) to the

pressure-induced changes of C
(2)
33 .

C. Sodium Chloride

To demonstrate potential applications of our method,
we consider the rock-salt phase of NaCl and we calcu-
late BT and B′

T of this material under different non-
hydrostatic conditions, often present and difficult to con-

trol in ultra-high pressure experiments carried out with
a diamond anvil cell8,10,11. In particular, here we assume
that NaCl is subjected to a zero hydrostatic pressure and
shear, and with normal components of the Cauchy stress
tensor such that:

σxx = σyy = −
σzz

2
= −

t

3
, (14)

where t = σzz−σxx is the uniaxial stress8,10,11. Thus, we
employ our method to calculate BT and B′

T of a NaCl
crystal subjected to increasing values of the differential
stress t.
As expected, the results of these calculations show that

the occurrence of a differential stress may influence con-
siderably the values of BT and B′

T measured in high-
pressure experiments (Fig. 5). In particular, our results
agree well with experiments based on the use of a di-
amond anvil cell11, suggesting that at zero hydrostatic
pressure the value of the differential stress t is smaller
than 0.2 GPa, and that therefore BT and B′

T remain
close to 25.6 GPa and 5.16, respectively11.
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0 1 2 3 4 5 6 7
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25
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T
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FIG. 5: Bulk modulus (red) and its pressure derivative (blue)
of NaCl at zero pressure and increasing values of the differ-
ential stress, σzz − σxx = t, obtained by using the method
presented in this work.

D. Monoclinic hafnia

To demonstrate the relevance of our method, we con-
sider the odd case ofm-HfO2, a material whose bulk mod-
ulus softens upon compression, a behavior that remains
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FIG. 6: (a) Relative volume (b) bulk modulus, and (c) its
pressure derivative of m-HfO2 versus pressure. Red discs and
circles show results obtained from DFT calculations. Black
dashed and thick gray lines show the results of fitting the data
in (a) with the third-order Birch-Murnaghan2,3 and Rose-
Vinet4,5 equations of state, respectively. The solid cyan-blue
lines show results derived by using polynomial functions of
degree 7 to 15.

TABLE III: Independent second-order elastic constants of m-
HfO2 obtained from DFT calculations using the method de-
scribed in Ref.35. Pressure and elastic constants are in GPa.
The first row shows the Voigt indices of the independent C

(2)
αβ .

p 11 12 13 15 22 23 25 33 35 44 46 55 66
-1.0 352 178 105 47 425 169 -11 304 5 97 -10 101 143
-0.0 352 182 102 49 436 171 -12 298 9 100 -10 102 147
1.0 351 184 98 52 448 170 -11 291 13 104 -10 104 151
2.0 349 186 94 54 460 168 -10 285 19 107 -10 105 155
3.0 348 186 91 57 471 163 -8 279 24 111 -10 106 158
4.0 347 187 90 59 481 159 -6 275 29 114 -10 108 162
5.0 346 187 89 61 490 154 -4 273 33 118 -10 109 166
6.0 347 188 91 63 498 149 -1 274 37 122 -10 110 169
7.0 348 189 93 64 506 145 1 276 41 126 -9 111 172
8.0 349 191 96 65 512 142 4 280 45 129 -9 112 175
9.0 352 193 100 66 519 140 6 285 48 133 -8 113 178
10.0 354 195 104 66 526 139 8 289 51 137 -8 114 181

still to be fully understood14. Also in this case, we first
carry out DFT calculations36,37,44 to determine the vol-
ume of m-HfO2 for increasing values of the hydrostatic
pressure (Fig. 3). Then, we use the third-order Birch-
Murnaghan2,3 and Rose-Vinet4,5 equations of state, and
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FIG. 7: (a) Strain deformations of m-HfO2 versus hydrostatic
pressure. (b) Length of the inequivalent first nearest neighbor
Hf-O bonds versus pressure. Blue and gray solid lines show
bonds whose lengths increase and decrease for increasing val-
ues of p, respectively. Inset in (a) shows the prism making up
the lattice of m-HfO2.

higher order polynomials to fit the data points and obtain
the BT (p) and B′

T (p) functions in the interval of pres-
sures ranging from 1 to 10 GPa (Fig. 3). For selected
pressures, we calculate second- and third-order elastic
constants28,35 (Tables III-IV), and we use our method to
calculate values of BT and B′

T (Fig. 6). These calcula-
tions show that the equations of state not only fail to re-
produce the correct behavior of B′

T (p), but interestingly
also of BT (p). In contrast, Fig. 6 shows that our method
yields accurate predictions across the entire interval of
pressures, in close agreement with results obtained by
using higher order polynomial functions. Overall, these
results show that our method is accurate and general.

Materials with a negative B′

T are rare51–54, and the
mechanisms responsible for this odd behavior remains
unclear55. In particular, to the best of our knowledge, so
far this property has been observed in silica51,52, metallic
glasses53, and the isostructural monoclinic phases of zir-
conia and hafnia14,54,55. To elucidate the puzzling elastic
behavior of m-HfO2, we inspect our results, and we find
that in this material, hydrostatic compression triggers
deformations that are anisotropic and involve significant
shearing (Fig. 7). Both lattice parameters a and c un-
dergo contraction, b remains practically constant up to
10 GPa, and the angle between the a and c axes, β, de-
creases, leading to a positive shear strain µ5 (Fig. 7).
These pressure-induced deformations are accommodated
in a rather peculiar way by the structure of m-HfO2,
which consists of a regular arrangement of edge-sharing
distorted capped trigonal prisms, with O atoms at ver-
tices and Hf atoms occupying central positions of the
prisms (Fig. 7). In particular, upon compression each
prism twists and deforms in such a way that 3 out of
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TABLE IV: Independent third-order elastic constants of m-HfO2 obtained from DFT calculations using the method described

in Ref.35. Pressure and elastic constants are in GPa. The first column shows the Voigt indices of the independent C
(3)
αβγ .

p -1.0 -0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
111 -836 -711 -606 -550 -534 -549 -580 -616 -647 -674 -695 -714
112 -1197 -1083 -949 -829 -741 -699 -695 -718 -753 -795 -836 -880
113 277 329 327 245 104 -69 -246 -410 -545 -652 -737 -810
115 -427 -467 -494 -504 -493 -461 -425 -386 -345 -309 -274 -243
122 -1603 -1622 -1583 -1481 -1370 -1231 -1143 -1085 -1063 -1064 -1075 -1098
123 -223 -49 133 280 359 357 292 191 77 -33 -130 -218
125 101 42 -29 -94 -145 -171 -180 -175 -164 -146 -123 -111
133 584 602 538 374 125 -163 -444 -678 -850 -969 -1048 -1104
135 -646 -684 -700 -685 -640 -580 -511 -446 -392 -349 -315 -286
144 -404 -401 -397 -401 -400 -402 -406 -412 -419 -428 -438 -450
146 -8 -14 -21 -28 -36 -44 -50 -55 -58 -60 -60 -60
155 -575 -559 -544 -538 -538 -545 -554 -567 -578 -587 -598 -610
166 -1043 -1017 -1024 -1025 -1024 -1019 -1011 -1002 -991 -981 -976 -969
222 -2967 -3174 -3435 -3657 -3773 -3800 -3770 -3712 -3651 -3593 -3537 -3487
223 -2121 -2083 -1931 -1666 -1377 -1042 -795 -611 -488 -411 -357 -323
225 585 574 528 439 336 223 129 46 -20 -70 -110 -155
233 -269 63 405 700 887 947 892 770 618 471 337 227
235 24 -85 -208 -309 -389 -432 -442 -434 -414 -386 -353 -341
244 -922 -923 -923 -924 -922 -921 -920 -920 -920 -921 -923 -926
246 115 110 103 96 87 75 63 51 39 29 18 10
255 -48 -25 5 31 56 72 86 93 98 101 97 102
266 -907 -945 -966 -987 -1004 -1013 -1017 -1016 -1013 -1007 -999 -993
333 411 532 515 330 3 -412 -869 -1260 -1590 -1840 -2039 -2163
335 -1188 -1258 -1296 -1293 -1244 -1172 -1087 -1011 -949 -903 -870 -855
344 -892 -882 -868 -859 -846 -837 -829 -823 -821 -820 -821 -825
346 10 2 -9 -20 -31 -42 -50 -56 -59 -59 -59 -57
355 -458 -421 -384 -355 -333 -319 -308 -306 -299 -290 -287 -285
366 -616 -541 -530 -511 -484 -454 -422 -387 -355 -326 -304 -284
445 98 93 88 84 78 73 67 61 57 53 49 45
456 -176 -172 -167 -163 -158 -153 -147 -143 -139 -135 -132 -129
555 -253 -268 -285 -304 -321 -337 -352 -366 -379 -394 -405 -417
566 -132 -144 -148 -155 -162 -171 -182 -191 -198 -204 -209 -212

7 Hf-O bonds increase rather than decrease their length
(Fig. 7). The lengthening of these Hf-O bonds suggests
and is consistent with the softening of BT upon compres-
sion exhibited by m-HfO2.

To gain a deeper understanding, we inspect the values
of the second- and third-order elastic constants used to
calculate the function B′

T (p) (Tables III-IV and Fig. 8).
These results show that upon compression, the second-

order elastic constants C
(2)
33 , C

(2)
23 , and C

(2)
11 decrease,

rather than increase, and that up to about 6 GPa, these
constants are responsible for the negative sign of B′

T (p)
(Fig. 6). As discussed above for the case of both silicon
and α-SiO2, upon hydrostatic compression the variation

of a second-order elastic constant, ∆C
(2)
αβ , is the result of

a linear combination of terms as C
(3)
αβγµγ (Eq. 13). For

example, Fig. 8 shows that, due to the peculiar nature
of the deformations occurring in m-HfO2 upon hydro-

static compression, the value of C
(2)
33 is mostly affected

by the terms C
(3)
335µ5, C

(3)
133µ1, and C

(3)
333µ3. C

(3)
335 has a

nearly constant and large negative value, and because
of the positive shearing deformation, the corresponding

term contributes to reduce C
(2)
33 across the entire interval

of pressures. The remaining two terms contribute to fur-

ther decrement C
(2)
33 up to around 3 GPa, i.e. until C

(3)
133

and C
(3)
333 have a positive sign. After this point, these two

last terms begin to contribute to increasing the value of

C
(2)
33 . These trends explain the behavior of B′

T with pres-
sure shown in Fig. 6, decreasing to a value of about -6 at
around 2-3 GPa, and then increasing and reaching a zero
value at about 6 GPa. Overall, the arguments above sug-
gest that the unusual elastic softening of m-HfO2 arises
from the occurrence of both positive shear deformations
upon hydrostatic compression and strong elastic nonlin-
earities, as indicated by the variation with pressure in

both sign and value of both C
(3)
133 and C

(3)
333 (Fig. 8).

V. CONCLUSION

We have introduced a general and reliable formalism
to calculate accurate values of the bulk modulus and
its pressure derivative of a monocrystal in an arbitrary
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FIG. 8: (a) Second-order elastic constants, relative to their
values at zero pressure, and (b) third-order elastic constants
of m-HfO2 versus pressure calculated from DFT35. Colored
lines in (b) show the third-order elastic constants leading to

increasing (green) and decreasing (red) the value of C
(2)
33 (blue

line in (a)) for increasing the hydrostatic pressure.

stress state. This method involves the calculation of
second- and third-order elastic constants by using a DFT
approach35, and the numerical solution of elementary
equations of nonlinear elasticity theory28. Although gen-
eral, this method is suited to be applied to low-symmetry
materials exhibiting strong elastic nonlinear properties,
i.e materials whose third-order elastic constants are sub-
jected to large variations upon compression, and thus
materials for which the conventional approach based on
the use of equations of state is likely to yield unreliable
results. In the particular case of m-HfO2, we have shown
that the unusual negative value of B′

T originates from the
occurrence of both shear deformations upon compression
and strong elastic nonlinearities.

VI. AKNOWLEDGEMENTS

This work is supported by the National Science Foun-
dation (NSF), Awards No. DMR-2036176 and OAC-
2215760. We also acknowledge the support of the CUNY
High Performance Computing Center.



11

1 O. L. Anderson, Equation of State of Solids for Geophysics

and Ceramic Science (Oxford University Press, New York,
1995).

2 F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244
(1944).

3 F. Birch, Phys. Rev. 71, 809 (1947).
4 P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, J. Phys.:
Solid State Phys. 19, L467 (1986).

5 P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, Phys.
Rev. B 35, 1945 (1987).

6 D. C. Wallace, Phys. Rev. 162, 776 (1967).
7 A. M. Hofmeister, Phys. Rev. B 56, 5835 (1997).
8 A. K. Singh, C. Balasingh, H.-k. Mao, R. J. Hemley, and
J. Shu, J. Appl. Phys. 83, 7567 (1998).

9 O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Fu-
nakoshi, W. Utsumi, T. Irifune, K. Kuroda, and
T. Kikegawa, Phys. Rev. B 63, 174108 (2001).

10 H. Dong, D. He, T. S. Duffy, and Y. Zhao, Phys. Rev. B
79, 014105 (2009).

11 L. Xiong, L. Bai, and J. Liu, J. Appl. Phys. 115, 033509
(2014).

12 E. Bykova1, L. Dubrovinsky, N. Dubrovinskaia, M. Bykov,
C. McCammon, S. Ovsyannikov, H.-P. Liermann, I. Ku-
penko, A. Chumakov, R. Rüffer, et al., Nat. Commun. 7,
10661 (2016).

13 K. F. Dziubek, M. Ende, D. Scelta, R. Bini, M. Mezouar,
G. Garbarino, and R. Miletich, Nat. Commun. 9, 3148
(2018).

14 Y. Akahama, S. Kawaguchi, N. Hirao, and Y. Ohishi, Appl.
Phys. Lett. 117, 182903 (2020).

15 J. E. Lowther, J. K. Dewhurst, J. M. Leger, and J. Haines,
Phys. Rev. B 60, 14485 (1999).

16 J. Kang, E.-C. Lee, and K. J. Chang, Phys. Rev. B 68,
054106 (2003).

17 J. E. Jaffe, R. A. Bachorz, and M. Gutowski, Phys. Rev.
B 72, 144107 (2005).

18 Y. Al-Khatatbeh, K. K. M. Lee, and B. Kiefer, Phys. Rev.
B 82, 144106 (2010).

19 K. Lion, P. Pavone, and C. Draxl, Phys. Rev. Mater. 6,
013601 (2022).

20 Z. Zhang and R. M. Wentzcovitch, Phys. Rev. B 106,
054103 (2022).

21 X. Xu, F.-T. Huang, Y. Qi, S. Singh, K. M. Rabe, D. Obey-
sekera, J. Yang, M.-W. Chu, and S.-W. Cheong, Nat.
Mater. 20, 826 (2021).

22 Y. Yun, P. Buragohain, M. Li, Z. Ahmadi, Y. Zhang, X. Li,
H. Wang, J. Li, P. Lu, L. Tao, et al., Nat. Mater. 21, 903
(2022).

23 J. M. Leger, A. Atouf, P. E. Tomaszewski, and A. S.
Pereira, Phys. Rev. B 48, 93 (1993).

24 S. Desgreniers and K. Lagarec, Phys. Rev. B 59, 8467
(1999).

25 D. N. Polsin, A. Lazicki, X. Gong, S. J. Burns, F. Coppari,
L. E. Hansen, B. J. Henderson, M. F. Huff, M. I. McMahon,
M. Millot, et al., Nat. Commun. 13, 2534 (2022).

26 C. L. Tracy, S. Park, D. R. Rittman, S. J. Zinkle, H. Bei,
M. Lang, R. C. Ewing, and W. L. Mao, Nat. Commun. 8,
15634 (2017).

27 M. Frost, E. E. McBride, J. S. Smith, and S. H. Glenzer,
Sci. Rep. 12, 12341 (2022).

28 A. Bakare and A. Bongiorno, Phys. Rev. Mater. 6, 043803
(2022).

29 Y. Akahama, H. Kawamura, and A. K. Singh, J. Appl.
Phys. 95, 4767 (2004).

30 V. I. Levitas, Phys. Rev. B 104, 214105 (2021).
31 T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85, 523

(1965).
32 A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).
33 R. Hill, Proc. Phys. Soc. A 65, 349 (1952).
34 M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine,

A. Gamst, M. Sluiter, C. K. Ande, S. van der Zwaag, J. J.
Plata, et al., Sci. Data 2, 150009 (2015).

35 T. Cao, D. Cuffari, and A. Bongiorno, Phys. Rev. Lett.
121, 216001 (2018).

36 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, et al., J. Phys.: Cond. Matter 21, 395502 (2009).

37 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
M. Cococcioni, et al., J. Phys.: Cond. Matter 29, 465901
(2017).

38 A. D. Corso, (https://github.com/dalcorso/pslibrary).
39 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
40 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,

G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke,
Phys. Rev. Lett. 100, 136406 (2008).

41 S. Anzellini, M. T. Wharmby, F. Miozzi, A. Kleppe,
D. Daisenberger, and H. Wilhelm, Sci. Rep. 9, 15537
(2019).

42 R. J. Angel, D. R. Allan, R. Miletich, and L. W. Finger,
J. Appl. Cryst. 30, 461 (1997).

43 A. Pandit and A. Bongiorno, Comput. Phys. Commun.
288, 108751 (2023).

44 R. M. Wentzcovitch, J. L. Martins, and G. D. Price, Phys.
Rev. Lett. 70, 3947 (1993).

45 H. J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 2161
(1964).

46 J. Philip and M. A. Breazeale, J. Appl. Phys. 54, 752
(1983).

47 H. Wang and M. Li, Phys. Rev. B 85, 104103 (2012).
48 J. Wang, Z. Mao, F. Jiang, and T. S. Duffy, Phys. Chem.

Minerals 42, 203 (2015).
49 H. Kimizuka, S. Ogata, J. Li, and Y. Shibutani, Phys. Rev.

B 75, 054109 (2007).
50 M. Murri and M. Prencipe, Entropy 23, 1366 (2021).
51 E. H. Bogardus, J. Appl. Phys. 36, 2504 (1965).
52 K. Kondo, S. Iio, and A. Sawaoka, J. Appl. Phys. 52, 2826

(1981).
53 Q. Zeng, Z. Zeng, H. Lou, Y. Kono, B. Zhang, C. Kenney-

Benson, C. Park, and W. L. Mao, Appl. Phys. Lett. 110,
221902 (2017).

54 M. Fujimoto, Y. Akahama, H. Fukui, N. Hirao, and
Y. Ohishi, AIP Adv. 8, 015310 (2018).

55 H. Fukui, M. Fujimoto, Y. Akahama, A. Sano-Furukawa,
and T. Hattori, Acta Cryst. B 75, 742 (2019).


