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ABSTRACT 

Current phonon transport theory based on ground-state calculations has been successful in 

predicting thermal conductivity at room and medium temperatures but may misrepresent behavior 

at high temperatures. In this work, we predict the thermal conductivity (κ) of ZrC including 

electronic and phonon contributions from 300 K to 3500 K, by including high-order phonon 

scattering, lattice expansion, temperature-dependent (TD) 2nd, 3rd, 4th-order force constants (2FC, 

3FC, 4FC), and inter-band phonon conduction by using first principles. For the phonon transport, 

we find that four-phonon scattering (4ph) significantly reduces the phonon thermal conductivity 

(κph), as much as by ~75% at 3500 K. After including 4ph scattering and all other factors, κph 

shows a ~T-1.5 rather than ~T-1 dependence. TD 2FC decreases three-phonon scattering (3ph) rates 

but increases 4ph rates by decreasing and increasing the scattering phase spaces, respectively. For 

4ph phase space, the TD 2FC flattens phonon bands, and allows more redistribution 4ph processes 

(1+23+4) to happen. The combination effect of TD 2FC and TD 4FC reduces 4ph rates of 

acoustic modes but increases those of optical modes. The TD  3FC and 4FC decrease the phonon 

scattering cross-section and increase the κph significantly (by 52% at 3500 K). The contribution 

from inter-band (Wigner) phonon conduction is small, even at ultra-high temperatures. For 

electronic thermal transport, we find that it is sensitive to and can be changed by 20% by the TD 

lattice constants. The Lorenz number varies from 1.6 to 3.3×10-8 W Ω K-2 at different temperatures. 

The theoretical prediction in the literature overpredicts κph (e.g., ~28%) and underpredicts the κel 

(e.g., ~38%), resulting in an overall underprediction of κ (~26% at 1500 K). The impacts of grain 
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size and defects are found strong, and no reported experimental data has reached the intrinsic 

theoretical thermal conductivity of ZrC yet. 

Keywords: Ultra-high temperatures, temperature-dependent force constant, ZrC, first principle 

prediction 

 

I. INTRODUCTION 

 

High melting point [1,2], high hardness [3], good thermal conductivity [4,5], excellent chemical 

stability, good electrical conductivity [5], high strength and stiffness [6,7], and resistance to 

oxidation even at high temperature [8] makes ZrC a suitable material for various high-temperature 

engineering applications [9–13] such as rocket nozzles, turbine blades, heat shields, cutting tools, 

refractory materials, armor materials, etc. Furthermore, ZrC is a common material used in the 

nuclear industry due to its ability to withstand high temperatures and radiation exposure, making 

it an ideal choice for fuel elements [14,15]. In addition to these applications, ZrC is also used to 

make electrodes in batteries and fuel cells [16,17]. To effectively design and optimize these 

applications, a thorough understanding of the underlying heat transfer mechanism on ZrC is 

necessary. 

 

The study of heat transfer mechanisms in ZrC has been a topic of great interest. Many experimental 

thermal conductivity data of ZrC from room temperature up to its melting point (~3700 K) have 

been reported [4,5,18–23]. However, the measured thermal conductivity data are scattered across 

the literature. For example, at room temperature, the values vary from as low as 20 W m-1
 K-1 to 

as high as 40 W m-1
 K-1, and at 2000 K, they are scattered from 22 to 46 W m-1

 K-1. ZrC is a semi-

metallic material, with the total thermal conductivity (κ) arising from the combined effect of 

electronic (κel) and lattice thermal conductivity (κph). However, since direct measurement of lattice 

thermal conductivity is challenging, it is typically derived from the total thermal conductivity by 

subtracting the electronic contribution by the Wiedemann-Franz law [24,25]. This approach leaves 

some uncertainty because the Lorenz number (L) is not necessarily 𝐿0= 2.44×10-8 W Ω K-2. 

Moreover, κph is found to be more sensitive to external factors such as defects, grain boundaries, 

and impurities than κel, making it further challenging to unveil the intrinsic thermal conductivity 

directly from the existing experimental data.  
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Different theoretical studies [26–29] based on molecular dynamics (MD) and density functional 

theory (DFT) have been done to understand the thermal conductivity of ZrC. Crocombette [26] 

studied the phonon and electronic thermal conductivity of ZrC from 1000 to 3500 K using 

molecular dynamics (MD). They further found that the impacts of defects are strong. Although 

they account for the temperature effect and predict thermal conductivity correctly using MD, they 

did not discuss intrinsic scattering and fundamental thermal transport mechanisms. Zhou, 

Fahrenholtz, Graham, and Hilmas found that carbon vacancy [27] and Hf additive [28] greatly 

suppress the phonon thermal conductivity by using first-principles calculations. However, their 

results are based on the Debye-Callaway model (of which accuracy can be questionable) and 

ignored the higher order scattering, which is found important at elevated temperatures [30,31]. 

Moreover, their study is focused only on lattice thermal conductivity. Mellan, Aziz, Xia, Grau-

Crespo and Duff [29] predicted the thermal conductivity of ZrC by incorporating both three 

phonon scatterings (3ph) and four phonon scatterings (4ph), as well as phonon renormalization for 

the 2nd order force constant. However, their calculations were only based on ground state force 

constants (GSFC), which may not be accurate for high-temperature calculations as found in 

Ref [32]. In this work, we predict the thermal conductivity of ZrC by including high-order phonon 

scattering, lattice expansion, and temperature-dependent force constants (TDFC). We also 

calculate the off-diagonal (Wigner) thermal conductivity, which is found to be significant for 

various materials at high temperatures. Additionally, we have analyzed the impact of extrinsic 

factors such as grain boundary scattering, defect scattering, and impurity scattering on phonon 

thermal conductivity at different temperatures.  

 

 

II. METHODOLOGY 

 

ZrC is a semi-metallic material with thermal conductivity (κ) being 

𝜅 = 𝜅𝑝ℎ +  𝜅𝑒𝑙 . (1) 

Based on the Boltzmann transport equation (BTE), the κph can be calculated as: 

𝜅𝑝ℎ
𝛼𝛽 =  ∑ 𝑐𝜆𝑣𝜆  

𝛼 𝑣𝜆  
𝛽

𝜏𝜆
𝑝ℎ

𝜆

, (2)  
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where λ = (q,υ) denotes the phonon mode with wave vector q and polarization υ. 𝑐𝜆 is the specific 

heat per mode, 𝑣𝜆  
𝛼 and 𝑣𝜆  

𝛽
are phonon group velocities along α and β directions. 𝜏𝜆

𝑝ℎ
 is the phonon 

relaxation time and can be calculated using 
1

𝜏
𝜆
𝑝ℎ =  

1

𝜏
𝜆
𝑝ℎ−𝑝ℎ +

1

𝜏
𝜆
𝑝ℎ−𝑖 +  

1

𝜏
𝜆
𝑝ℎ−𝑒𝑙 where the three terms on 

the right are phonon-phonon (including 3ph and 4ph), phonon-isotope, and phonon-electron (ph-

el) scattering rates, respectively. 

 

Similarly, κel is calculated based on BTE and Onsager [33] relations as: 

𝜎𝛼𝛽 =  −
𝑒2 𝑛𝑠

𝑉
∑

𝑑𝑓𝑖𝐤

𝑑𝜀
 𝜐𝑖𝐤

𝛼

𝑖𝐤

𝜐𝑖𝐤
𝛽

𝜏𝑖𝐤
𝑒𝑙 (3) 

[𝜎𝑆] =  −
𝑒 𝑛𝑠

𝑉𝑇
∑(𝜀𝑖𝐤 − 𝜇)

𝑑𝑓𝑖𝐤

𝑑𝜀
 𝜐𝑖𝐤

𝛼

𝑖𝐤

𝜐𝑖𝐤
𝛽

𝜏𝑖𝐤
𝑒𝑙 (4) 

𝐾𝛼𝛽 =  −
 𝑛𝑠

𝑉𝑇
∑(𝜀𝑖𝐤 − 𝜇)2

𝑑𝑓𝑖𝐤

𝑑𝜀
 𝜐𝑖𝐤

𝛼

𝑖𝐤

𝜐𝑖𝐤
𝛽

𝜏𝑖𝐤
𝑒𝑙 (5) 

Here, 𝜎𝛼𝛽 and 𝑆𝛼𝛽 denotes the electrical conductivity and Seeback coefficient. 𝐾𝛼𝛽 is used to 

calculate κel as κel = 𝐾 −  𝑆𝜎𝑆𝑇. 𝑒 is the elementary charge, 𝐤 is the electronic wave vector at band 

index 𝑖, 𝑉 is the volume of the primitive cell, 𝑓𝑖𝐤 is Fermi-Dirac distribution. 𝜀𝑖𝐤 and 𝜇 denotes 

electron energy and chemical potential respectively. 𝜐𝑖𝐤 and 𝜏𝑖𝐤
𝑒𝑙 denotes electron velocity and 

relaxation time and 𝛼 and 𝛽 are directional components. The formulation is referred from 

Refs. [33,34] 

Extrinsic scattering rates due to grain boundary (𝜏𝑔𝑏,𝜆
−1 ) and vacancy (𝜏𝑑,𝜆

−1 ) are calculated using 

the respective formulation shown in Equation (6) and Equation (7) respectively.   

𝜏𝑔𝑏,𝜆
−1 =

𝑣𝑝ℎ,𝜆

𝐷𝑔𝑟𝑎𝑖𝑛
 (6) 

𝜏𝑑,𝜆
−1  = 9

𝜋

2
𝑓𝑣𝜔𝜆

2 ⋅ pDOS(𝜔) (7) 

Here, 𝜆 represents phonon mode (𝐪, 𝑗) with 𝐪 and 𝑗 labeling the phonon wave vector and dispersion 

branch, respectively.  𝑣𝑝ℎ represents the phonon group velocity at 𝜆, and 𝐷𝑔𝑟𝑎𝑖𝑛 is the grain size. 
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Similarly, and 𝑓𝑣 represents the concentration of the vacancy. Likewise, 𝜔 represents the angular 

velocities and pDOS(𝜔) represents the partial density of states of a basis atom. The coefficient 9 

in Equation (7) accounts for the mass and bond loss associated with the defect vacancy. [35,36] 

More detail on the extrinsic scattering rates calculation can be found in Ref. [37] and Supplemental 

Material [38]. 

Figure 1 shows the computational workflow of the study. The first principles calculations based 

on DFT are performed by using Vienna Ab initio Simulation Package (VASP) [39,40], using 

projected augmented wave (PAW) [41] method and Perdew-Burke-Ernzerhof (PBE) [42] 

functional. ZrC belongs to the Fm3m space group and exhibits a cubic FCC structure. The plane-

energy cutoff is 500 eV and the energy and force convergence threshold are 2×10-8 eV and 2×10-

8 eV Å -1, respectively. The relaxed lattice constant is 4.710 Å , which closely resembles the 

experimental value [2] of 4.694 Å . Harmonic (2nd-order) force constants (HFC or 2FC) are 

extracted using Phonopy [43]. The anharmonic force constants (AFC), including 3rd (3FC) and 4th 

order (4FC), are calculated using Thirdorder and Fourthorder packages built inside 

ShengBTE [44], considering the 4th  and 2nd nearest atoms, respectively. In all DFT calculations, 

supercells of 4×4×4 (128 atoms) are used with a k-point grid of 6×6×6. Temperature-dependent 

2nd, 3rd, and 4th order force constants are obtained by the TDEP method [45,46] with the input 

being the energy, forces, and stresses of atoms in randomly a displaced supercell lattice at provided 

temperature. The effect of the temperature is factored in as a thermal expansion as well as in the 

displacement of the generated supercells. 300 random configurations are found to be sufficient at 

lower temperatures (300 to 1000 K), while 500 configurations are needed at higher temperatures 

(1500 to 3500 K) to obtain converged force constants. 

ShengBTE [44] is used to solve the BTE and calculate the 3ph and 4ph rates and κph. The 

convergence of ShengBTE is tested and provided in the Supplemental Material [38]. Specifically, 

the 3ph calculation converges at a q-mesh density of 36×36×36, and the 3ph+4ph calculation 

converges at 12×12×12, respectively. Different extrinsic scattering rates, such as grain boundary 

scattering, defect scattering, and isotope scattering are calculated using their respective 

formulations. Phonon-electron scattering is calculated using density functional perturbation theory 

(DFPT) [47–49] and maximally localized Wannier functions using EPW [50–53]. Finally, total 
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scattering rates are obtained by adding all the phonon scattering rates and are used to calculate the 

intrinsic κph. 

 

 

Figure 1: Computation workflow of this study. 

 

Electronic contribution to κ is calculated using EPW [50–53] interfaced with Quantum 

Espresso [54,55]. The structure is relaxed with a k-mesh of 12×12×12, a kinetic energy cutoff of 

200 Ry, and Gaussian smearing with a spreading parameter of 0.002 Ry. Self-consistency is 

achieved using Davidson iterative diagonalization with a convergence threshold of 10-12. Phonon-

electron scattering rates are calculated using a 12×12×12 k-mesh. Electron-phonon scattering rates 

are calculated using a coarse 6×6×6 q-mesh and k-mesh and a fine 60×60×60 q-mesh and k-mesh 

for convergence. The sp3 and d entanglement is used for C and Zr, respectively. The electrons’ 

velocities are calculated using the Wannier90 [56] under the EPW package. The Fermi window is 

selected so that the electron band dispersions obtained using the EPW package and DFT match 

with each other. Likewise, the outer window is selected so that it includes all the bands of interest. 

Finally, σ, κel, and S are calculated. 

 

III. RESULTS AND DISCUSSION 

 

A. Thermal Expansion Coefficient 
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Figure 2: Predicted volumetric thermal expansion coefficient of ZrC as a function of temperature. 

The DFT predicted data by Zhang and McMahon [57] and Abdollahi [58], as well as different 

experimental data [4,23,56–58], are included for comparison. 

 

The thermal expansion coefficient (TEC) is calculated using quasi-harmonic approximation 

(QHA) with the formalism found in Ref. [59]. As shown in Fig. 2, the predicted TEC (blue curve) 

deviates from experimental data at high temperatures, which is commonly seen for QHA. To 

resolve the discrepancy, we replace the constant bulk modulus (229 GPa [4]) in the formalism with 

temperature-dependent (TD) bulk modulus, and the predicted TEC (black dashed curve) agrees 

better with experimental data. After we include TDFC, the TEC (black solid curve) at high 

temperature agrees even better with experimental data. It is important to note that TD bulk modulus 

tends to increase the slope of TEC with temperature, while TDFC tends to decrease it. Overall, 

these findings suggest that utilizing TD bulk modulus and TDFC is a promising approach for the 

accurate prediction of TEC at high temperatures. 

 

 

B. Temperature-dependent phonon band dispersion 
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The phonon dispersion relations of ZrC at 0, 300, 1000, and 3000 K are shown in Fig. 3, which 

match well with the experimental data [60–62]. The temperature softening effect in ZrC is not 

significant. The phonon dispersion calculated from TDEP at finite temperature deviates slightly 

from the ground state calculations. The partial density of states (PDOS) shows that the heavier 

metal Zr dominates the acoustic phonon of frequency (0-10 THz), while the lighter element C 

dominates the optical phonon of frequency (12-20 THz). Since the acoustic phonon modes 

contribute the most to lattice heat transfer, we can expect Zr vibration dominates the heat transfer. 

 

 

Figure 3: Phonon dispersion relations of ZrC at 0, 300,1000, and 3000 K, compared to the 

experimental data [60–62]. The right side shows the partial density of states of Zr and C at 0 K. 

 

C. Scattering rates 

The 3ph, 4ph, and ph-el rates, at three different temperatures of 300, 1000, and 3000 K are 

presented in Fig. 4. 3ph dominates throughout all temperatures, and 4ph becomes important at high 

temperatures, while ph-el is insignificant at all temperatures (even though a very small portion of 

phonons show high ph-el rates). 4ph plays a more important role in optical phonons than acoustic 

phonons, similar to the findings in Si, BAs, and diamond [30]. The large 4ph rates are due to the 

large acoustic-optical phonon band gap, which restricts 3ph processes. 
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Figure 4: Comparison of 3ph (a, b, c), 4ph (d, e, f), and ph-el (g, h, i) scattering rates of ZrC at 

different temperatures. Results by using GSFC and TDFC are compared. GSFC indicates all 2FC, 

3FC, and 4FC are ground-state. TDFC indicates all 2FC, 3FC, and 4FC are temperature-dependent. 

 

Figures 4 (a-c) show the impacts of TDFC on 3ph rates at various temperatures. It is seen that 

TDFC decreases the 3ph rates at all temperatures. One reason is that the TD 2FC changes the 

phonon dispersion and reduces the 3ph phase space by making the 3ph processes’ energy and 

momentum conservation rules harder to be satisfied, which has been widely discovered in many 

other materials [63,64]. We explicitly check the 3ph phase spaces of ZrC at 3000 K using GS and 

TD 2FC separately, as shown in Fig. 5 (a). It is seen that most modes are reduced even though 

some are increased. We have also compared the 3ph rates using GS and TD 2FC and found that 
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TD 2FC gives smaller 3ph rates than GS 2FC, as shown in Fig. 5 (e). The other reason is that the 

3FC is softened by temperature [32]. As seen in Fig. 5 (f), using TD 3FC gives slightly smaller 

3ph rates than using GS 3FC. 

 

 

Figure 5: Effects of GS and TD FC on 3ph and 4ph phase space and rates at 3000 K. (a) Effect of 

TD 2FC on 3ph phase space. (b-d) Effect of TD 2FC on 4ph phase space. (b) is for splitting 4ph 

processes (𝜆1 → 𝜆2 + 𝜆3 + 𝜆4). (c) is for redistribution 4ph processes (𝜆1 + 𝜆2 → 𝜆3 + 𝜆4). (d) is 

for recombination 4ph processes (𝜆1 + 𝜆2 + 𝜆3 → 𝜆4). (e) Effect of TD 2FC on 3ph rates. (f) Effect 

of TD 3FC on 3ph rates. (g) Effect of TD 2FC on 4ph rates. (h) Effect of TD 4FC on 4ph rates. 

 

Figures 4 (d-f) show the impacts of TDFC on 4ph rates at various temperatures. Interestingly, 

acoustic 4ph rates decrease while the optical 4ph rates increase when using the TDFC instead of 

the GSFC. This trend becomes more prominent as the temperature increases. To understand the 

physical reason behind this phenomenon and tell whether this is induced by the temperature 

dependence of 2FC or 4FC, we have done the following two comparisons at 3000 K. First, we 

compare the “GS 2FC + TD 4FC” and “TD 2FC + TD 4FC” to isolate the impact of TD 2FC. As 

shown in Fig. 5 (g), TD 2FC results in higher 4ph rates for both acoustic and optical phonons than 

GS 2FC. This is because TD 2FC flattens both acoustic and optical phonon dispersions, which 

makes the 4ph energy conservation rule easier to be satisfied, especially for the 4ph redistribution 

processes (𝜆1 + 𝜆2 → 𝜆3 + 𝜆4) where the modes 𝜆1 and 𝜆3 sit on the same flat band while the 

modes 𝜆2 and 𝜆4 sit on the other same flat band. This effect is clearly shown in Figs. 5 (b-d), which 
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shows the scattering phase space for splitting 4ph processes (𝜆1 → 𝜆2 + 𝜆3 + 𝜆4), labeled as “--”, 

redistribution 4ph processes (𝜆1 + 𝜆2 → 𝜆3 + 𝜆4), labeled as “+-”, and recombination 4ph 

processes (𝜆1 + 𝜆2 + 𝜆3 → 𝜆4), labeled as “++”, respectively. It is seen that TD 2FC significantly 

increases the scattering phase space. This effect is stronger for optical phonons than acoustic 

phonons as optical branches are flattened more. Second, we compare the “TD 2FC + GS 4FC” and 

“TD 2FC + TD 4FC” calculations to isolate the impact of TD 4FC. As seen in Fig. 5 (h), using TD 

4FC gives smaller 4ph rates for both acoustic and optical phonons. This agrees with the fact that 

TD 4FC reduces the scattering cross section, as found for UO2 [32]. In summary, TD 2FC and TD 

4FC have competing impacts, with the former increasing 4ph rates while the latter decreases them. 

The impact of TD 2FC dominates for optical phonons while the impact of TD 4FC dominates for 

acoustic phonons, which results in an increase of 4ph rates in optical phonon modes and a decrease 

in acoustic phonon modes. 

 

D. Phonon thermal conductivity calculation 

Figure 6 shows the κph as a function of temperature, using various force constants. In the following, 

we track the changes of κph at a low (300 K) and a high temperature (3500 K) when we gradually 

increase the calculation comprehensivity. First, we calculate the basic 3ph thermal conductivity 

using GSFC, which gives 56.9 and 6.3 W m-1
 K-1 at 300 and 3500 K, respectively. When we replace 

the GS 2FC with TD 2FC, κph increases by 9% and 33% to 62.1 and 8.4 W m-1
 K-1, respectively. 

Then, we include 4ph, and κph decreases significantly by 2% and 75% to 61 and 2.1 W m-1
 K-1, 

respectively. After that, we replace the GS AFC with the TD AFC, and κph increases by 0% and 

52% to 61 and 3.2 W m-1
 K-1, respectively. This increase in κph is attributed to the decrease in 

scattering cross-section with increasing temperature [32]. In the end, we add the ph-el scattering, 

and κph slightly decreases by 10% to 55.0 and 2.9 W m-1
 K-1 at 300 and 3500 K, respectively. The 

inset illustrates the reduction of thermal conductivity by 4ph as a function of temperature. Further 

analysis on 4ph using different force constants is provided in the Supplemental Material [38]. The 

off-diagonal term, calculated from Wigner formalism, is not found to make a significant 

contribution, unlike in some other materials [65,66]. Although the Wigner contribution increases 

with temperature, it only reaches a maximum value of 0.2 W m-1
 K-1 at 3500 K, which is much 

lower than the standard Peierl κph of 2.9 W m-1
 K-1 at that temperature. Considering all these 

intrinsic effects, the κph is found to follow a temperature dependence of  ̴ T
-1.5 rather than  ̴ T

-1. 
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Figure 6: Temperature-dependent phonon thermal conductivity of ZrC calculated using different 

scattering mechanisms. The inset shows the relative contribution of 4ph rates compared to 3ph 

rates. 

E. Electronic thermal conductivity calculation 

The predicted electrical conductivity (σ) as a function of temperature is shown in Fig. 7. The 

experimental data along with the DFT prediction from Ref. [29] are also shown for comparison. 

The σ decreases with temperature monotonically as a result of the increase of electron-phonon 

scattering [34,67–69]. The σ calculated in this study is consistent with the results of stoichiometric 

ZrC obtained in Ref. [26] using ab initio molecular dynamics simulations. However, it should be 

noted that our σ prediction is higher than most of the experimental data, particularly at low 

temperatures. This could be because the DFT calculations assume a perfect crystal and do not 

consider the effects of defects (especially the carbon vacancies) and porosity that are present in 

experimental samples. This idea is supported by the findings in Ref. [26], where an increase in 

electrical resistivity (equivalently decrease in σ) is observed with impurities and defects in the 

sample. Furthermore, the Lorenz number (L) using the Wiedemann-Franz law: 𝐿 = κel /𝜎𝑇 is 

calculated, which is found to deviate significantly from the Sommerfeld value of 2.44×10-8 W Ω 

K-2 and vary from 1.6 to 3.3×10-8 W Ω K-2 at different temperatures. This deviation from the 

standard value highlights the limitations of using the Lorenz number to calculate κel from σ, as 

such an approach can lead to overprediction at lower temperatures and underprediction at higher 

temperatures. 
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Figure 7: Electrical conductivity and Lorenz number of ZrC as a function of temperature. 

Literature data of electrical conductivity [2,4,5,21,22,26,29,70,71] are included for comparison. 

The κel is compared to κph as a function of temperature in Fig. 8. Phonons dominate thermal 

transport at lower temperatures whereas electrons dominate at higher temperatures, similar to 

results found in Refs. [26,29]. As temperature increases, e.g., from 300 K to 3500 K, κel increases 

from 30 W m-1
 K-1 to 54.7 W m-1

 K-1, whereas κph decreases from 55.0 W m-1
 K-1 to 2.9 W m-1

 K-1. 

At room temperature, κph accounts for roughly 70% of κ, which declines to just about 35% and 

10% at 1000 and 3500 K respectively. 
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Figure 8: Temperature-dependent κph, κel, and κ of ZrC. The inset shows the relative contribution 

of κph. 

In Fig. 9, the predicted κ (= κph + κel) is compared to various experimental data. The blue-shaded 

and yellow-shaded region represents the contribution of κel and κph, respectively. We can find that 

the experimental data are scattered and considerably lower than our prediction. This should be due 

to the presence of various defects, porosity, and vacancies in the experimental samples, which 

significantly decrease κ. Carbon vacancy is known to inevitably present in ZrC due to the intrinsic 

thermodynamic instability [72,73]. This decrease is much more significant at lower temperatures 

compared to higher temperatures due to the suppression of κph. κel also gets suppressed due to 

impurities, defects, and vacancy scattering; however, the effect is smaller as found by 

Crocombette [26] through molecular dynamics. In that study, the predicted κ for stoichiometric 

ZrC was much higher than the reported experimental data. However, when some vacancy was 

introduced, both κel, and κph decreased, and the predicted κ matched the experimental data. It is 

worth noting that our κ, as well as κel, matches Crocombette's [26] results with good accuracy. 

 

We also compare our results to those predicted in Ref. [29] by first principles. We find that they 

underpredict κel and overpredict κph. As a result, their total κ prediction agrees with ours at low 

and ultra-high temperatures, but is lower than ours in the intermediate temperature range, from 

500 to 3000 K. In Ref. [29], at the temperature of 1500 K, κph is overestimated by ~27.5% 

(9.93~12.67 W m-1
 K-1), and κel is underestimated by ~38% (43.21  ~26.78 W m-1

 K-1), leading 

to κ underestimation of ~25.81% (53.15  ~39.43 W m-1
 K-1). At ultra-high temperatures of 3500 
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K, κph is overestimated by ~75% and κel is underestimated by ~8%, leading to a slight κ 

underestimation of ~4%. At lower temperatures of 300 K, κph is overestimated by ~26.5% and κel 

is underestimated by ~50.6%, leading to a slight κ underestimation of ~1.0%. The matching of the 

predicted κ in Ref. [29] with experimental data is due to the error-cancellation effect where the 

prediction underpredicts the κ and the experimental samples’ defects reduce κ. 

 

Figure 9: Comparison of our predicted thermal conductivity with various literature data collected 

by Jackson and Lee [4], and theoretical prediction by ab initio molecular dynamics  [26] and 

DFT [29]. 

F. Effect of extrinsic defects and grain boundary 

To understand the effect of extrinsic factors such as grain size, we calculate the cumulative thermal 

conductivity with respect to the mean free path (MFP). As shown in Fig. 10 (a), in bulk ZrC, 80% 

of κph at 300, 1000, and 3000 K is contributed by the phonons with an MFP of less than 300, 60, 

and 20 nm, respectively. The effect of grain boundaries on thermal conductivity is more 

pronounced at lower temperatures. The MFP of electrons is much smaller than that of phonons. 

80% of heat transfer occurs with electrons having MFPs less than 15, 4, and 0.7 nm. This suggests 

that the contribution of grain boundary scattering is much less significant for electrons compared 

to phonons. Figure 10 (b) shows the normalized κph as a function of grain size from 10 to 10000 

nm. The solid line represents the current method (TDFC, 3ph+4ph), while the dashed line 

represents the traditional approach (GSFC, 3ph). The graph explains how much κph gets suppressed 
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(in terms of %) at various grain sizes and temperatures. For instance, if the grain boundary size is 

100 nm, the κph at 300, 1000, 2000, and 3000 K is roughly 55%, 76%, 87%, and 94% of the bulk 

values, respectively. The inset shows the grain size required to reduce κph to 80% of the bulk 

values. At 300 and 3500 K, such grain sizes are 445 and 25 nm, respectively. The difference in 

grain boundary scattering between TDFC and GSFC is not substantial. Since the grain size in the 

experimental samples [2,4] is in the order of µm ( ~2 to 20 µm), the grain boundary scattering 

might not be the primary reason behind κph suppression. 

 

 

 

Figure 10: (a) Cumulative κph and κel with mean free path at various temperatures. (b) Percentage 

normalized κph as a function of grain size. The inset shows the grain size at which κph is 80% of 

the bulk value. 

 

The impact of carbon and zirconium vacancies on κph of ZrC is calculated and found to be strong, 

using perturbation theory, as shown in Fig. 11 (a). For example, at 300 K, 1% and 2% carbon 

vacancies can decrease κph by 39% and 56% respectively. The impact of Zr vacancy is even 

stronger, e.g., at 300 K, even 0.5% of Zr vacancy can lead to a decrease in κph by 80%. This can 

be explained by the partial density of states presented in Fig. 3. Zr has a much larger mass than C 

and dominates the acoustic frequency bands, which dominate the heat transfer. A small 

concentration of Zr vacancy can lead to a significant decrease in κph. 
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Figure 11 (b) displays κ of ZrC for various C/Zr ratios, with experimental data collected by Jackson 

and Lee [4] and DFT prediction by Mellan, Aziz, Xia, Grau-Crespo, and Duff [29]. The figure 

reveals that the experimental κ increases exponentially as the crystal structure approaches the 

stoichiometric ratio, which is in line with the trend predicted by DFT. It is worth noting that our 

prediction accounts only for the κph suppression caused by C and Zr vacancies. If we include the 

κph and κel suppression due to impurities, porosity, and grain boundaries as well, we can safely 

assume that our prediction will become lower and approaches the experimental value. This 

suggests that the experimental κ value does not reach the maximum theoretical limit of κ of ZrC, 

as κph and κel are suppressed by the presence of vacancies, impurities, grain boundaries, and 

porosity in the sample. 

 

 

Figure 11: (a) Effect of C and Zr vacancy on phonon thermal conductivity of ZrC. (b)Variation of 

total thermal conductivity of ZrC with different C/Zr ratios. DFT prediction by Mellan et al. [29] 

and various experimental data collected by Jackson and Lee [4] are presented for comparison. 

 

IV. CONCLUSIONS 

In this study, the thermal transport of ZrC is predicted using the first principles calculations. 

Various factors affecting thermal transport, especially at high temperatures, are considered, 

including high-order phonon scattering, lattice expansion, TDFC, and inter-band phonon 

conduction. The following conclusions can be drawn. (1) TD bulk modulus and TDFC are 

important for the accurate prediction of TEC at high temperatures. (2) Phonons and electrons 
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dominate the heat transfer at lower and higher temperatures respectively. κph contributes roughly 

70% at room temperature and declines to about 35% and 10% when the temperature increases to 

1000 and 3500 K, respectively. (3) The 4ph is important at high temperatures and reduces κph by 

2%, 34%, 59%, and 76% at 300, 1000, 2000, and 3500 K, respectively. (4) Although the electron-

phonon scattering increases with temperature but its impact is much smaller than 3ph and 4ph 

scattering. (5) Interestingly, TD 2FC decreases 3ph rates but increases 4ph rates by decreasing and 

increasing the scattering phase spaces, respectively. For 4ph phase space, the TD 2FC flattens 

phonon bands, and allow more redistribution 4ph processes (𝜆1 + 𝜆2 → 𝜆3 + 𝜆4) to happen. (6) 

We confirm that the TD 3FC and 4FC decrease the phonon scattering cross-section at elevated 

temperatures and increase the κph significantly in metals (by 52% at 3500 K), in addition to that 

found in insulators [32]. (7) The combination effect of TD 2FC and TD 4FC reduces 4ph rates of 

acoustic modes but increases those of optical modes. (8) The maximum Wigner off-diagonal 

(diffuson) contribution to κph (0.2 W m-1
 K-1) is much lower compared to standard Peierls phonon 

contribution κph (2.9 W m-1
 K-1 at 3500 K). (9) The σ decreases monotonically while κel increases 

as temperature increases. The Lorenz number (L) deviates significantly from the Sommerfeld value 

of 𝐿0 =2.44×10-8 W Ω K-2, highlighting the limitations of using the 𝐿0 to calculate κel. (10) No 

experimental data have reached the predicted intrinsic thermal conductivity values due to the 

presence of inherent defects in the experimental samples. The matching of κ predicted in the 

literature with experimental data is due to the error-cancellation effect where the prediction 

underpredicts the κ and the experimental samples’ defects reduce κ. Overall, our study makes a 

critical revisit to the thermal transport from room to ultra-high temperatures. 
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