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A central challenge in high throughput density functional theory (HT-DFT) calculations is se-
lecting a combination of input parameters and post-processing techniques that can be used across
all materials classes, while also managing accuracy-cost tradeoffs. To investigate the effects of these
parameter choices, we consolidate three large HT-DFT databases: Automatic-FLOW (AFLOW),
the Materials Project (MP), and the Open Quantum Materials Database (OQMD), and compare
reported properties across each pair of databases for materials calculated using the same initial
crystal structure. We find that HT-DFT formation energies and volumes are generally more repro-
ducible than band gaps and total magnetizations; for instance, a notable fraction of records disagree
on whether a material is metallic (up to 7%) or magnetic (up to 15%). The variance between
calculated properties is as high as 0.105 eV/atom (median relative absolute difference, or MRAD,
of 6%) for formation energy, 0.65 Å3/atom (MRAD of 4%) for volume, 0.21 eV (MRAD of 9%)
for band gap, and 0.15 µB/formula unit (MRAD of 8%) for total magnetization, comparable to
the differences between DFT and experiment. We trace some of the larger discrepancies to choices
involving pseudopotentials, the DFT+U formalism, and elemental reference states, and argue that
further standardization of HT-DFT would be beneficial to reproducibility.
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I. INTRODUCTION10

Over the past decade, high-throughput (HT) den-11

sity functional theory (DFT) has emerged as a widely-12

used tool for materials discovery and design [1–3]. In13

a standard HT-DFT workflow, software tools automate14

the process of calculating materials properties of in-15

terest within DFT, including submitting jobs to high-16

performance computing infrastructure, on-the-fly error17

handling, post-processing and dissemination of results,18

and so on, enabling researchers to evaluate typically 103–19

106 materials with minimal human intervention. The re-20

sulting database can then be screened for candidate ma-21

terials exhibiting promising combinations of calculated22

properties or to search for trends amongst materials be-23

havior to gain new chemical insights or develop surrogate24

models.25

The increasingly widespread usage of HT-DFT in ma-26

terials research can be attributed to a combination of27

three key factors. First, a large number of specialized28

codes implement fully automated calculations of specific29

materials properties within DFT, ranging from phonon30

dispersions to dielectric tensors. For example, VASP31

5.1 [4, 5] introduced a feature enabling users to calculate32

elastic tensors by simply setting a parameter in the input33

file. Second, the ongoing growth of computing power has34

ensured that HT-DFT is now well within reach of a sin-35
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gle university research group. Third, sophisticated, free,36

often open-source, software is readily available for man-37

aging large numbers of DFT calculations, post-processing38

output, and storing the resulting data systematically in39

databases. Thus, a number of HT-DFT databases with40

various focus areas have emerged [3, 6–17]; a list of ex-41

emplars, including any supporting workflow automation42

software [18–33], is given in Section S-I of the Supple-43

mental Material (SM) [34].44

However, the entirely-automated nature of HT-DFT45

introduces a few key challenges. First, by definition, the46

volume of data from HT-DFT is too high for each in-47

dividual calculation to undergo manual review or analy-48

sis [1]. How, then, are the quality and integrity of cal-49

culations monitored in high-throughput? Second, HT-50

DFT requires choosing, often at the outset, settings that51

are consistent across all calculations, encompassing all52

materials classes and properties being calculated. For53

example, it may not be known a priori whether the ma-54

terial being calculated is a metal or an insulator. As a55

result, the calculation parameters that affect, e.g., how56

electronic occupancies are smeared near the Fermi level57

must be chosen so that they are applicable to both met-58

als and insulators. Third, practical HT-DFT calculations59

involve balancing accuracy and computational cost; best-60

practice recommendations [35] involve steps such as ex-61

plicit convergence tests, which become computationally62

infeasible in the HT context. Of these challenges, only63

the first, related to monitoring the quality and integrity64

of calculations in high-throughput has been addressed.65

Software frameworks, such as Custodian [36], qmpy [23],66

and AiiDa [37], can store provenance information to en-67
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sure the integrity of calculations, and gracefully handle68

errors associated with catastrophic failures, e.g., those re-69

lated to file read/write operations or memory issues dur-70

ing runtime, insufficient walltimes on high-performance71

computing resources, and misconfiguration of the under-72

lying numerical libraries.73

Since HT-DFT has become increasingly central to ma-74

terials informatics efforts across the spectrum, from high-75

throughput screening to machine learning [38, 39] it is76

crucial to resolve the following concerns: (a) There is77

no one “correct” solution to some of the challenges of78

HT-DFT mentioned above, and different databases have79

tackled them slightly differently. How sensitive are the80

calculated materials properties to the different HT-DFT81

parameter choices? (b) The focus areas of many promi-82

nent HT-DFT databases in terms of the materials and83

properties calculated are often quite different. As a re-84

sult, materials data from the various HT-DFT databases85

are often mixed with one another for thermochemical or86

other analysis. How interoperable are these various cal-87

culated materials properties across HT-DFT databases?88

We emphasize that such a comparison across HT-DFT89

databases is different from analyzing the reproducibil-90

ity of DFT across software implementations and poten-91

tials, e.g. focusing on equations of state of elemental92

crystals: [40] the challenges of HT-DFT lie in choosing93

parameters that are applicable across a wide variety of94

materials and properties, targeting both reasonable ac-95

curacy and computational cost—very distinct from per-96

forming highly-accurate DFT calculations of a small set97

of materials.98

Here, we analyze the reproducibility and interoperabil-99

ity of HT-DFT calculations. We critically compare the100

agreement between three databases for four properties:101

formation energy (∆Ef), volume (V ), band gap (Eg),102

and total magnetization (M). We find certain properties103

(formation energies and volumes) to be more consistent104

across databases than others (band gap and magnetiza-105

tion). We then quantify the variability in each of the106

properties across databases and find that the typical dif-107

ferences between two HT-DFT databases are similar to108

those between DFT and experiment. Finally, we com-109

pare properties across different materials classes to iden-110

tify characteristics of materials and/or properties that111

are harder than others to reproduce. In all cases, we112

identify trends, surface outliers, and investigate potential113

causes for an observed systematic differences between the114

databases.115

II. METHODS116

We focus on three prominent HT-DFT databases in117

this work: Automatic FLOW (AFLOW) [6], the Materi-118

als Project (MP) [15], and the Open Quantum Materials119

Database (OQMD) [3, 23]. All three databases contain120

calculations of a large number of mostly-experimentally121

reported, ordered compounds from the Inorganic Crystal122

Structure Database (ICSD) [41]. In addition, they con-123

tain calculations of many thousands of hypothetical com-124

pounds generated from common structural prototypes or125

other informatics approaches. As noted earlier, there126

are many other large HT-DFT databases, e.g., JARVIS-127

DFT [13], Materials Cloud [14], and others listed in Ta-128

ble S-I of the SM [34]. Here, we limit our focus to129

AFLOW, Materials Project, and OQMD as the latter (a)130

are among the longest-running, mature, widely-used, and131

general-purpose, and (b) use the VASP software pack-132

age [4, 5] and projector augmented wave (PAW) poten-133

tials [42, 43] with the Perdew-Burke-Ernzerhof (PBE) pa-134

rameterization [44] of a generalized-gradient approxima-135

tion (GGA) to the DFT exchange-correlation functional.136

The variance in HT-DFT-calculated properties studied137

in the present work is, therefore, almost entirely due to138

differences in various choices involved in HT-DFT (e.g.,139

those involving calculation parameters such as k-point140

density, the DFT+U approach, post-calculation process-141

ing techniques, different versions of VASP and any asso-142

ciated software bugs, different versions of PBE pseudopo-143

tentials used) and not due to different implementations144

of DFT or approximations to the underlying exchange-145

correlation functional itself.146

AFLOW has standardized band structure calcula-147

tions [18, 45], binary alloy cluster expansions [46], finite-148

temperature thermodynamic properties [47], elastic and149

thermomechanical properties [48] calculated for many150

materials, and has an application programming inter-151

face (API) based on the REpresentational State Trans-152

fer (REST) standard (commonly referred to as “RESTful153

API”) for accessing data [6, 49]. The Materials Project154

includes a variety of properties calculated for specific sub-155

sets of materials in the database, including elastic [50],156

thermoelectric [51], piezoelectric [52], dielectric [53], vi-157

brational [54] properties, and X-ray adsorption spec-158

tra [55]. It also includes a collection of apps such as159

a Pourbaix diagram calculator [56], and the underlying160

data are accessible via a RESTful API [57, 58]. Fi-161

nally, the Open Quantum Materials Database (OQMD)162

contains calculations of a large number of hypotheti-163

cal compounds based on structural prototypes, [59–61]164

and provides tools for the construction of DFT ground165

state phase diagrams at ambient and high-pressures [62–166

64]. The OQMD provides the entirety of the underlying167

database to download all at once, and a RESTful API168

for programmatic access [65]. License and access infor-169

mation for the three databases is included in Section S-II170

of the SM [34].171

We query all three databases (AFLOW: queried June172

2021; MP: v2019.05; OQMD: v1.2) for the calculated173

properties of materials whose crystal structures were174

sourced from the ICSD and aggregate them into a single175

dataset, after converting records from all sources into a176

unified, consistent data format, the Physical Information177

File (PIF) [66, 67]. We then generate a set of comparable178

records for each pairwise combination of the databases—179

all calculations using the same initial crystal structure,180
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by matching their ICSD Collection Codes (hereafter re-181

ferred to as “ICSD ID”). In instances where more than one182

calculation within a single database was labeled with the183

same ICSD ID, we use the lowest energy calculation for184

all analysis. In addition, we discard records with obvi-185

ously unphysical property values (those with formation186

energy outside the [−5 eV/atom, +5 eV/atom] window187

and volumes above 150 Å3/atom), and normalize proper-188

ties to the same units, where required. We then perform189

statistical analysis on the final curated set of compara-190

ble records across the three databases. Definitions of the191

metrics used in our analysis are given in Appendix A192

and details of the query and curation steps are provided193

in Section S-II of the SM [34].194

III. RESULTS195

The aggregation and processing of the data from the196

three HT-DFT databases results in a set of ∼70,000 total197

comparable DFT calculations. For each property of in-198

terest, i.e., formation energy per atom, volume per atom,199

band gap, total magnetization per formula unit (f.u.),200

the counts of records, and overlapping records for each201

pair of databases are shown in Table I. Approximately202

15,000–25,000 comparisons can be made for each prop-203

erty and database pair, except for comparisons to forma-204

tion energies from AFLOW, where only ∼2,200 records205

are reported. As mentioned earlier, overlapping records206

across databases were determined by using exact ICSD207

ID matches for the reported calculations.208

A. Overall pairwise comparison statistics209

Table II shows some overall statistics for comparisons210

of all properties across comparable records in the three211

databases: the median absolute difference (MAD), the212

interquartile range (IQR), the Pearson correlation coef-213

ficient (r), and Spearman’s rank correlation coefficient214

(ρ) (definitions of the metrics are in Appendix A). For215

band gap and total magnetization, the statistics were216

calculated only on subsets of overlapping records where217

both databases agreed that a material is non-metallic218

(Eg > 0.01 eV) and is magnetic (M > 0.01 µB/atom),219

respectively. The latter threshold on the per-formula220

unit total magnetization ensures that undesired compar-221

isons of different magnetic configurations for the same222

crystal structure (i.e., ferromagnetic configuration in one223

database being compared to antiferromagnetic configu-224

ration in another) are avoided as much as possible.225

Overall, we find that: (a) The MAD in forma-226

tion energy across pairs of databases can be up to227

0.105 eV/atom, comparable to the ∼0.1 eV/atom dif-228

ference between DFT and experimental formation en-229

ergies [23]. (b) The MAD in volume across pairs of230

databases can be up to 0.65 Å3/atom (median absolute231

difference relative to mean (MRAD), of 3.8%), compa-232

rable to error between DFT and experiment [68]. (c)233

The MAD in band gap across pairs of databases can be234

up to 0.21 eV, even when comparing only records where235

both databases agree that a material is not metallic. For236

around 5%–7% of overlapping records, databases disagree237

whether a material is metallic. (d) The comparison of to-238

tal magnetization shows high variability across database239

pairs. While the dispersion of differences for the MP-240

OQMD comparison is very small (MAD of 0.01 µB/f.u.241

and IQR of 0.05 µB/f.u.), the dispersion of differences in242

comparisons with AFLOW are rather large (up to MAD243

of 0.15 µB/f.u. and IQR of up to 2.0 µB/f.u.). In all cases,244

the correlation between calculated values is lower than245

for the other three properties, with both Pearson and246

Spearman correlation coefficients ranging from 0.6–0.8.247

We further note that the latter poor correlation exists248

even after excluding overlapping records where the two249

databases disagree on whether the material is magnetic250

(10%–15% of the records).251

B. Distribution of differences in calculated252

properties253

We first analyze the raw differences in the calcu-254

lated properties for records overlapping across pairs of255

databases. Figure 1 shows the distribution of the differ-256

ences in calculated values for each of formation energy,257

volume, band gap, and total magnetization, for each pair-258

wise combination of databases.259

Formation energy : The distribution of differences in cal-260

culated formation energy across AFLOW-MP and MP-261

OQMD is surprisingly bimodal, with peaks around 0 and262

±0.2 eV/atom. We find that the peak near 0.2 eV/atom263

in both pairwise comparisons corresponds mostly to ox-264

ides (see Figure S1), and is a result of different approaches265

in the two databases toward correcting DFT-calculated266

formation energies (see Section IV B). While the median267

difference (∆̃x in Figure 1) are reasonably small across all268

three pairwise comparisons (up to ∼0.074 eV/atom), the269

difference distributions for AFLOW-MP and MP-OQMD270

are rather wide. The median absolute difference (MAD)271

and the interquartile range (IQR), both robust measures272

of the spread of a distribution, are up to ∼0.105 eV/atom273

and ∼0.173 eV/atom, respectively.274

Volume: The distribution of differences in calculated vol-275

umes is skewed towards smaller volumes in the OQMD,276

but such a skew is absent in the AFLOW-MP com-277

parison. Correspondingly, the median difference be-278

tween AFLOW and MP volumes are ∼0.01 Å3/atom,279

whereas the median differences are ∼0.62 Å3/atom and280

∼0.47 Å3/atom for AFLOW-OQMD and MP-OQMD,281

respectively. The consistently smaller volumes calculated282

in the OQMD can be understood to result from the choice283

of the plane wave energy cutoff used for DFT relaxation284

calculations. The OQMD chooses a plane wave cutoff285

that is lower than that used in AFLOW and MP (ENMAX286

in the POTCAR file, up to 400 eV in OQMD, as opposed287
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AFLOW MP OQMD AFLOW-MP AFLOW-OQMD MP-OQMD

Formation Energy 2196 34907 22248 2070 1717 19082
Volume 21929 34907 22248 19258 15857 19082
Band Gap 21921 34907 22169 19253 15790 19007
Total Magnetization 21929 34907 22248 19258 15857 19082

TABLE I. The number of records after establishing ICSD ID equivalency for each property of interest in the AFLOW, Materials
Project (MP), and OQMD HT-DFT databases, as well as for pairwise comparisons of the three databases.

AFLOW-MP AFLOW-OQMD MP-OQMD

MAD IQR r ρ MAD IQR r ρ MAD IQR r ρ

Formation Energy (eV/atom) 0.105 0.173 0.99 0.99 0.019 0.036 0.99 0.99 0.087 0.168 0.99 0.99
Volume (Å3/atom) 0.180 0.389 0.98 0.99 0.647 1.117 0.97 0.97 0.512 0.902 0.98 0.98
Band Gap (eV)* 0.078 0.203 0.94 0.92 0.209 0.364 0.92 0.91 0.178 0.277 0.93 0.92
Total Magnetization (µB/f.u.)* 0.015 0.759 0.77 0.75 0.149 2.001 0.60 0.56 0.012 0.052 0.80 0.74

TABLE II. Overall statistics (median absolute difference (MAD), interquartile range (IQR), Pearson’s linear correlation coeffi-
cient (r), and Spearman’s rank correlation coefficient (ρ)) for the comparison of properties across HT-DFT databases. For each
property, records overlapping across a pair of databases are compared (* for band gap and magnetization, only non-zero values
are compared). Generally, lower MAD, lower IQR, higher r, and higher ρ values indicate better reproducibility of calculated
properties.

to 520 eV in MP and up to 560 eV in AFLOW) for full cell288

relaxations. The lower plane wave cutoff results in Pulay289

stresses and generally smaller volumes than fully relaxed290

calculations. The MAD in volumes for comparisons, es-291

pecially for OQMD with the other two databases, is up to292

∼0.65 Å3/atom. In addition, some differences in reported293

volumes can result from the different relaxation schemes294

employed in the three HT-DFT databases: AFLOW and295

MP perform two sequential relaxations, while the OQMD296

performs sequential relaxations until the volume change297

during a relaxation is less than 5%.298

Band gap: The distribution of differences in the calcu-299

lated band gaps is slightly skewed towards larger band300

gaps in the OQMD, but this skew is absent in the301

AFLOW-MP comparison. Correspondingly, the median302

difference in band gaps between AFLOW and MP is303

∼0.01 eV, and up to ∼0.14 eV for comparisons with304

OQMD. The larger band gaps calculated in the OQMD305

might be due to smaller volumes from the choice of lower306

plane wave energy cutoffs. An increase in the fundamen-307

tal band gap due to compressive strains (in the OQMD,308

due to unresolved Pulay stresses) has been observed in309

many semiconductor families [69–71]. In addition, the310

spread in the differences in calculated band gaps is quite311

large: with an MAD of up to ∼0.21 eV and an IQR312

of up to ∼0.36 eV for comparisons with OQMD. The313

spread may be, in addition to the choice of energy cutoff314

as discussed above, due to the different ways in which the315

databases calculate the band gap. For example, OQMD316

calculates band gap from the electronic density of states317

(DOS), in contrast to AFLOW and MP which calculate318

it from band dispersions. The energy grid used for the319

calculation of DOS and/or k-point meshes used for band320

structure calculations can also have a notable effect on321

the precision and accuracy of the reported band gap.322

For instance, while AFLOW and MP both report gaps323

calculated from band dispersion calculations, the high-324

symmetry k-path in the Brillouin zone used for such cal-325

culations can be different [18, 72].326

Total magnetization: The median differences in327

AFLOW-MP and MP-OQMD are nearly zero, with rea-328

sonably small MAD values as well. However, the dif-329

ferences between the magnetization reported in AFLOW330

and the other two databases skew towards larger values331

in AFLOW, with long tails and correspondingly large dis-332

persions. The difference between AFLOW and OQMD,333

in particular, shows an MAD of ∼0.15 µB/atom and334

an IQR of ∼2.0 µB/atom. Further, as noted earlier, a335

significant fraction of 10–15% overlapping records across336

databases disagree on whether the material has non-zero337

total magnetization. This disagreement may in part be338

due to different pseudopotential choices for various ele-339

ments (and correspondingly different number of valence340

electrons), and sampling of different magnetic configu-341

rations, the choice of unit cell in such magnetic config-342

uration sampling, etc. For instance, AFLOW and MP343

calculate ferromagnetic configurations for all materials,344

and ferrimagnetic and antiferromagnetic configurations345

for a subset of materials [73, 74], while the OQMD only346

calculates ferromagnetic configurations [23]. For a given347

material, since we only compare the lowest-energy config-348

urations across databases with one another, it is possible349

that a material is predicted to be non-magnetic in one350

database and antiferromagnetic in another database. Al-351

ternately, a ferrimagnetic configuration in one database352

could be compared to a ferromagnetic calculation in an-353

other, if both converged to finite magnetic moments.354
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FIG. 1. Distribution of the differences in calculated properties across HT-DFT databases. Each panel corresponds to a property
and pair of databases being compared. Solid vertical black lines correspond to the first (Q1) and third (Q3) quartiles of the
distribution. The number of records overlapping across the two databases is shown in the top right corner of each panel; the
median of distribution (∆̃x), the median absolute difference (MAD), and the interquartile range (IQR) are noted on the left.

C. Rank-order comparisons across properties355

We next seek to make comparisons across properties.356

Instead of comparing the raw values of the properties di-357

rectly, we compare overlapping records using the ordinal358
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rank of the property in each database being compared359

(hereafter, referred to as “percentile rank”). Comparing360

the percentile ranks of the properties has a few advan-361

tages: (a) It allows for a single consistent metric for com-362

parison across all four properties regardless of the magni-363

tude of the actual value and physical units. (b) It is not364

affected by many systematic differences, e.g., a constant365

shift of 0.1 eV in all calculated band gaps in one database.366

Such constant shifts in calculated properties do not affect367

the internal consistency of a HT-DFT database, and the368

percentile ranks which are similarly unaffected capture369

this property. (c) It is a robust, uniform, identifier of370

outliers in calculated properties.371

Figure 2 consists of percentile rank scatterplots (closely372

related to the quantile-quantile or Q-Q plots) of each373

property of interest for each database pair. Note that for374

band gap (total magnetization), we only include overlap-375

ping records where the two databases being compared376

both report the material to be non-metallic (magnetic),377

to avoid having to rank near-zero or zero values against378

one another. A compact line along the diagonal corre-379

sponds to perfect correlation between the ranked proper-380

ties, with more diffuse scattering indicating lower levels381

of correlation.382

Formation energy : Of the four properties, formation en-383

ergy shows the best correlation between each database384

pair, consistent with all r and ρ values close to 0.99 in385

Table II. Nonetheless, there is some off-diagonal scatter386

for the MP-OQMD comparison for larger (more positive)387

values of formation energy that is not found in the other388

database pairs. These calculations correspond to com-389

pounds with smaller (positive) formation energies, where390

the precision necessary to reliably rank the structure ap-391

proaches the accuracy of the calculation.392

Volume: The percentile rank comparison of volume393

shows higher off-diagonal scatter than that seen in com-394

parisons of formation energy. There is a skew towards395

higher volumes in AFLOW and MP when compared to396

OQMD (scatter towards top-left of the diagonal in the397

AFLOW-OQMD and MP-OQMD comparisons), consis-398

tent with the discussion around plane wave energy cutoffs399

in the previous section.400

Band gap: The percentile rank comparison of band gap401

shows even higher off-diagonal scatter than that observed402

in comparisons of both formation energy and volume.403

In particular, there is meaningful scatter along the axes,404

corresponding to cases where one database predicts the405

material to have a near-zero band gap whereas the other406

database predicts a (much larger) non-zero band gap.407

Total magnetization: The percentile rank comparison of408

total magnetization per formula unit in all three pairwise409

comparisons shows a few distinct clusters along the diag-410

onal, corresponding to nominally integer values of mag-411

netic moment per formula unit. There is considerable412

off-diagonal “bowing” in the comparisons with AFLOW,413

consistent with the distribution of differences between414

AFLOW and the other two databases showing a skew415

towards larger magnetizations in AFLOW and long tails416

(lower panel in Figure 1). In addition, there is consid-417

erable off-diagonal scatter (horizontal and vertical bands418

in the magnetization panel of Figure 2) indicating sig-419

nificant disagreement between the values reported in the420

two databases.421

Overall, a comparison of rank-ordered properties422

across two databases shows that formation energies and423

volumes are more easily reproduced than band gaps and424

total magnetizations, consistent with correlation coef-425

ficients decreasing from ∼0.99 for formation energy to426

∼0.6 for total magnetization (Table II).427

D. Reproducibility across materials classes428

Intuitively, we expect the level of agreement among429

the databases to be a strong function of materials class.430

Therefore, we compare specific subsets of calculations431

based on various materials classes to elucidate potential432

causes of differences. The materials classes are defined433

based on chemical composition, the number of elemental434

components, the presence of magnetism, band gap, pseu-435

dopotential choices, and space group, as summarized in436

Table III. For classes defined by the output of a calcula-437

tion (i.e., those based on magnetization and band gap),438

comparisons are only made if both databases agree that439

the property has a non-zero value. Note that according440

to our definition, the “Magnetic” class of materials may441

potentially include both ferromagnetic and ferrimagnetic442

materials, and the “Non-Magnetic” class may potentially443

include both non-magnetic and antiferromagnetic mate-444

rials.445
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FIG. 2. Comparison of the calculated properties (formation energy, volume, band gap, and total magnetization) over records
overlapping across pairwise combinations of HT-DFT databases plotted as a percentile rank (i.e., ordinal rank of the property
in each database being compared). A compact line along the diagonal corresponds to perfect correlation between the ranked
properties. Overall, formation energies and volumes show better reproducibility than band gaps and magnetizations. The
clusters seen in the magnetization comparisons correspond to nominally integer values of magnetic moments.
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Class Definition

Oxide Contains O
Nitride Contains N
Pnictide Contains a group 15 element
Chalcogenide Contains a group 16 element, except O
Halide Contains a group 17 element
Alkali Metal Contains a group 1 element, except H
Alkaline Earth Metal Contains a group 2 element
Transition Metal Contains a d-block element
Metalloid Contains B, Si, Ge, As, Sb, or Te
Rare-Earth Contains an element from the lanthanide series
Actinide Contains an element from the actinide series
Metal-Nonmetal Contains at least one metal element and at least one of C, N, O, F, P, S, Cl, Se, Br, I
Intermetallic Contains only metallic elements
Magnetic Both databases report a net magnetic moment > 10−2 µB/f.u.
Non-magnetic Both databases report no net magnetic moment > 10−2 µB/f.u.
Disagree on Magnetic The two databases disagree on whether a net magnetic moment > 10−2 µB/f.u. is present
Metallic Both databases predict a band gap of < 10−2 eV
Semiconductor Both databases predict a band gap between 10−2 and 1.5 eV
Insulator Both databases predict a band gap larger than 1.5 eV
Disagree on Metallic The two databases disagree on whether a band gap < 10−2 eV is present
Pseudopotentials Agree Both databases use the same set of pseudopotentials for all elements
Pseudopotentials Disagree The databases use different pseudopotentials for at least one element
Use GGA+U Both databases use the GGA+U approach
Use GGA Both databases use plain GGA
Disagree on GGA/GGA+U One database uses GGA whereas the other uses GGA+U
Elements Contains only one element
Binaries Contains two elements
Ternaries Contains three elements
Quaternaries Contains four elements
Triclinic Space group 1–2
Monoclinic Space group 3–15
Orthorhombic Space group 16–74
Tetragonal Space group 75–142
Trigonal Space group 143–167
Hexagonal Space group 168–194
Cubic Space group 195–230

TABLE III. Definitions for the materials classes used in this work.



9

FIG. 3. Median percent absolute differences between properties (formation energy, volume, band gap, total magnetization)
calculated in the three databases (AFLOW, MP, OQMD), compared two at a time, across various classes of materials as defined
in Table III. The numbers in parentheses indicate the number of overlapping records belonging to the respective material class
for a given pair of databases. Trivial comparisons are left blank (e.g., the difference in total magnetization for non-magnetic
compounds).
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Figure 3 contains the median absolute difference rel-446

ative to the mean (MRAD) values for pairwise compar-447

isons between databases, divided into materials classes448

as defined in Table III. Cells are colored based on the449

MRAD value listed. Empty cells correspond to triv-450

ial comparisons (e.g., values of band gap where both451

database agree the structure is metallic). We use MRAD452

as the metric here to reduce the effect of outliers (as453

compared to calculating means) as well as to enable com-454

parisons across properties using the same metric. Over-455

all, HT-DFT volumes show the best agreement (low-456

est MRAD values), from 1–4%. Band gaps show the457

worst overall agreement (highest MRAD values), 4–10%458

across all pairwise comparisons. Formation energy com-459

parisons with MP show MRAD values up to 6%, but the460

AFLOW-OQMD MRAD is only 1.3%. MRAD values for461

total magnetization vary highly from 0.5% for compar-462

isons with MP to 7.6% for AFLOW-OQMD. In all cases,463

certain materials classes have distinctly higher or lower464

MRAD when compared to the MRAD averaged over all465

materials classes.466

Formation Energy : In the comparisons with AFLOW,467

two materials classes, “Halides” and “Disagree on Metal-468

lic”, show the highest MRAD values of up to 14% and469

40%, respectively. The high MRAD in halide formation470

energies can be understood to result from post hoc cor-471

rections to the effective elemental reference energies per-472

formed in MP and OQMD, but not in AFLOW, for the473

halide group of elements (see discussion in Section IV B).474

The high MRAD of the “Disagree on Metallic” class is475

likely an artifact of the small formation energies of the476

few records (∼30–50) in the comparison. As noted ear-477

lier, since AFLOW reports notably fewer formation en-478

ergy values than the other databases, the comparisons479

are made with a much smaller set of records (∼2,000).480

Therefore, we ignore here some of the MRAD outliers481

in cases where the number of records being compared is482

very small (e.g., the material class “Magnetic” shows an483

MRAD of 13% between AFLOW and MP but there are484

only 5 records in the comparison). Further, the formation485

energies dataset has very few transition metal, rare-earth,486

and actinide element-containing compounds (Figures S3487

and S7). New, different insights are likely to result from488

a larger dataset. In the MP-OQMD comparison, with a489

much larger comparable dataset (∼19,000), the “Nitride”,490

“Pnictide”, and “Chalcogenide” material classes show the491

highest MRAD values, 14%, 8%, and 11% respectively.492

This is partly due to differences in fitted elemental chem-493

ical potentials for pnictogen and chalcogen elements in494

MP and OQMD (Section IV B).495

Volume: The best agreement is observed in the AFLOW-496

MP comparisons, with only the “Actinide” material class497

showing an MRAD greater than 2%. For comparisons498

with OQMD, the MRAD in volume is generally higher—499

due to the choice of lower plane wave energy cutoff used500

for cell relaxation, as discussed earlier (Section III B).501

The highest MRAD values in the comparisons with502

OQMD volumes are for the “Nitride” and “Halide” classes503

(∼7–9%). The default plane wave energy cutoffs in the504

VASP PAW potentials (ENMAX parameter) for N and F505

are among the highest (400 eV) of all elements. Thus, the506

lower energy cutoff used by OQMD for relaxation impacts507

the calculated volumes of nitrides and fluorides the most508

(Figures S8 and S12). Another material class, “Triclinic”,509

shows similarly high MRAD values of ∼8% in compar-510

isons with OQMD. Upon examination, we find that most511

triclinic materials in the comparisons are oxides, nitrides,512

and halides, and thus the high MRAD values are due to513

the chemical composition of these compounds rather than514

their crystal symmetry.515

Band gap: While band gap comparisons show the highest516

MRAD values across properties, some materials classes517

in particular show MRAD values much greater than518

∼10%. Of these, in the “Intermetallic” and “Semicon-519

ductor” material classes, the MRAD values are expect-520

edly high due to small average band gaps relative to521

which differences are reported, even though the abso-522

lute differences themselves are not conspicuously large523

(Figure S2). In other cases, the high MRAD values are524

a result of (a) different pseudopotential choices for el-525

ements (e.g., Cu/Cu_pv, Ce/Ce_3, Eu/Eu_2 choices526

in the “Disagree on Magnetic” class for the MP-OQMD527

comparison with an MRAD of ∼53%; see Figure S13),528

(b) disagreement on whether to use the GGA or GGA+U529

approach to calculate properties (e.g., the “Actinide” ma-530

terial class with MRAD of up to 43% in comparisons531

with MP, the “Disagree on GGA/GGA+U ” class in all532

three comparisons with MRAD of 12–25%), or a com-533

bination of both factors (e.g., for the “Magnetic” mate-534

rial class with an MRAD of up to 27% in comparisons535

with AFLOW), (c) non-overlapping sampling of magnetic536

configurations across databases. For instance, the “Mag-537

netic” (MRAD of 13–27% across comparisons) and “Dis-538

agree on Magnetic” (MRAD of 17–53% across compar-539

isons) classes may respectively include comparing ferro-540

magnetic vs ferrimagnetic and non-magnetic vs antiferro-541

magnetic ground states across two databases (note, how-542

ever, that both the “Magnetic” and “Disagree On Mag-543

netic” comparisons also include effects from other HT-544

DFT choices, such as choice of pseudopotential used).545

Note also that the errors in band gaps for the “Use546

GGA+U ” materials class are larger than those for the547

“Use GGA” materials class across all three pairwise com-548

parisons, the choice of slightly different effective U val-549

ues used in the three databases being a likely contribu-550

tor. Further discussions of some of the above parameter551

choices are in Section IV.552

Total magnetization: While MRAD values in the MP-553

OQMD comparison are generally small (< 5%), some ma-554

terial classes show much higher MRAD values, especially555

in comparisons with AFLOW. As in the case of band556

gap values, we find these comparisons to be influenced557

by pseudopotential choice (of rare-earth elements in par-558

ticular, e.g., Nd, Nd_3, Nd_3 in AFLOW, MP, and559

OQMD, respectively; see Figures S10 and S14), choice560

of using GGA or GGA+U (e.g., MRAD of up to ∼40%561



11

in AFLOW-OQMD comparisons for the “Disagree on562

GGA/GGA+U ” class), or both (e.g., the “Metalloid” and563

“Rare-Earth” material classes in the AFLOW-OQMD564

comparisons, “Intermetallic” and “Metallic” classes in the565

AFLOW-MP and AFLOW-OQMD comparisons). We566

note that some other material classes show high MRAD567

values, e.g., “Element”, “Binary”, “Ternary”, “Tetragonal”,568

“Hexagonal”, and “Cubic” (up to MRAD values up to569

∼50%) due to, upon further examination, the parame-570

ter choices discussed above rather than due to number of571

components in the compound or crystal symmetry.572

Finally, we note that while our scheme of construct-573

ing a set of comparable records across pairs of databases574

(by matching ICSD IDs exactly) ensures comparisons575

between the same initial crystal structures, it excludes576

a number of experimentally well-studied materials with577

multiple ICSD entries associated with them. We investi-578

gated whether this “bias away from well-studied materi-579

als” affects our results by using a larger comparison set580

constructed by linking very similar ICSD entries using581

the crystal structure matching algorithm employed by582

the Materials Project (see Section S-II in the SM [34]).583

While some of the quantitative metrics we report var-584

ied by a few percent in the expanded comparison, the585

overall conclusions remain unchanged (see Tables S-XI,586

S-XII, and Figures S15–S18 in the SM [34]), consistent587

with recent findings [75].588

IV. DISCUSSION589

We discuss some of the most important factors affect-590

ing the differences across HT-DFT calculations of prop-591

erties below. Some of the other factors that either have a592

minor effect (e.g., post hoc calculation of band gap from593

band dispersions or density of states) or are specific to594

a database/property (e.g., plane wave cutoff energy for595

full cell relaxations in OQMD) have been discussed in the596

earlier sections.597

A. Effects of pseudopotential choice598

For nearly all elements, VASP provides multiple PAW599

potentials to choose from, with different numbers of elec-600

trons in the valence. The choice of pseudopotential varies601

across the HT-DFT databases due to factors such as602

changes in VASP recommendations and issues of calcu-603

lation convergence or reproduction of experimental ther-604

mochemical data [76, 77]. Interestingly, the choice of605

pseudopotential has minimal effect on the calculated for-606

mation energies and volumes (up to a difference of 1%607

in cases where pseudopotentials do or do not match;608

see rows “Pseudopotentials Agree” and “Pseudopotentials609

Disagree” in Figure 3). On the other hand, the number610

of valence electrons and consequently the choice of pseu-611

dopotential affects the calculated band gaps and magne-612

tization values severely. Especially egregious differences613

across those properties in material classes such as “Rare-614

Earth” and “Magnetic” (Figure 3) can be directly traced615

to different pseudopotential choices. For rare-earth and616

actinide elements in particular, with f -electrons that are617

poorly described by DFT [78], using pseudopotentials618

that treat f -electrons in core or valence can have a sig-619

nificant impact on the calculated band gap (e.g., “Inter-620

metallic” and “Magnetic” classes in Figure 3) and mag-621

netization (e.g., “Rare-Earth” and “Intermetallic” classes622

in Figure 3) values.623

B. Elemental references and energy corrections624

The largest disagreements in HT-DFT formation ener-625

gies can be understood to result from different elemental626

reference states and/or post-calculation energy correc-627

tions performed in the databases. To our knowledge, the628

formation energies reported in AFLOW use DFT total629

energies of the bulk elements as the reference states [79].630

MP and OQMD both correct DFT-calculated energies to631

closely reproduce experimental formation enthalpy data.632

While MP adds corrections to the compound formation633

energies [76, 77], OQMD fits the elemental reference en-634

ergies using a FERE-like approach [16, 23]. Such cor-635

rection schemes involve some more HT-DFT choices: (a)636

Should all elemental reference energies and/or compound637

formation energies be effectively fit to experimental data638

or only a subset? For instance, MP corrects the com-639

pound formation energies of nitrides, fluorides, chlorides,640

hydrides, sulfides of alkali, alkaline earth, and aluminum641

containing compounds [22]. The OQMD fits the refer-642

ence energies of only elements whose DFT ground states643

are poor representation of the experimental reference644

states (i.e., elements that are gases or that have a solid-645

solid phase transition below room temperature) [23]. (b)646

What experimental thermochemical data should be used647

such correction schemes, given a lack of a single, widely-648

accepted set of standard experimental dataset for solids?649

For instance, MP and OQMD use experimental forma-650

tion energies from different sources to fit elemental ref-651

erence energies: MP uses data from Materials Thermo-652

chemistry [80], while OQMD uses data from SGTE SUB-653

stance Database (SSUB) [81] in addition to others (see654

Refs. 23 and 77 for details of the fitting data used in the655

two databases). Some other standard reference databases656

are also widely used, such as the NIST-JANAF Thermo-657

chemical Tables [82]. Since a given material may have ex-658

perimental data in one or more such reference databases659

of experimental properties, the choice of the source of660

experimental data affects the fitted formation energies in661

HT-DFT databases, even in cases where other param-662

eters such as pseudopotentials used are held constant.663

This effect of fitted elemental reference states is shown664

in the calculated formation energies averaged over com-665

pounds containing each element in Figures S3, S7, and666

S11.667
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C. GGA vs. GGA+U approach668

One of the ways to treat the issue of over-delocalization669

in DFT is to use the DFT+U approach [83, 84] (or670

“GGA+U ” when used with GGA). Similar to the case of671

fitting elemental references, using the GGA+U approach672

requires additional HT-DFT choices. (a) Whether or not673

to use GGA+U for calculating properties of a given ma-674

terial. All three HT-DFT databases have slightly differ-675

ent sets of compounds for which the GGA+U approach676

is applied. The OQMD uses GGA+U only for oxides of677

certain 3d transition metals (the V–Cu series) and ac-678

tinide metals [23]. MP uses GGA+U for oxides, fluo-679

rides, and sulfides of a larger set of transition metals,680

but not actinides [77]. AFLOW applies it to an even681

larger set of compounds, nearly all those containing d-682

or f -block elements [85]. (b) What effective U value683

should be used for each element? The three HT-DFT684

databases all use different effective U values for each el-685

ement, obtained either from previous work (OQMD) or686

in-house parameterization by fitting to experimental data687

(AFLOW and MP) [18, 86]. Such choices around when to688

use the GGA+U approach to calculate a compound and689

what effective U value to use can impact some proper-690

ties more than others, e.g., discrepancies in total magne-691

tization values in the AFLOW-OQMD comparisons, par-692

ticularly for “Rare-Earth”, “Intermetallic”, and “Metallic”693

classes. For some properties, such as formation energies,694

post hoc corrections are required to maintain consistency695

between those calculated using the GGA and GGA+U696

approaches, especially while constructing phase diagrams697

involving compounds calculated using the two different698

approaches. Such corrections are obtained by fitting to699

experimental reaction energies, and can be different be-700

tween HT-DFT databases based on the source of such701

reaction energies.702

V. CONCLUSION703

Recent years have seen a dramatic increase in the ap-704

plication of informatics methods for materials develop-705

ment, using high-throughput DFT data. Several promi-706

nent HT-DFT databases exist and each uses different in-707

put parameters and post-processing techniques to calcu-708

late materials properties. Quantifying the uncertainty709

in calculated properties due to such parameter choices710

is therefore crucial to understanding the reproducibility711

and interoperability of such data. In this work, we cen-712

tralize data from three of the largest HT-DFT databases,713

AFLOW, Materials Project, and OQMD, into a com-714

mon data repository, allowing records to be accurately715

compared. We then compare four properties—formation716

energy, volume, band gap, and total magnetization—of717

materials calculated in each of the HT-DFT databases718

using the same initial crystal structure.719

Our comparisons show that formation energy and vol-720

ume are more easily reproduced than band gap and total721

magnetization. Interestingly, we find that the average722

difference in calculated properties across two HT-DFT723

databases is comparable to that between DFT and exper-724

iment: up to 0.105 eV/atom for formation energy, 4% for725

volume, 0.21 eV for band gap, and 0.15 µB/formula unit726

for total magnetization. Further, certain input parame-727

ter choices disproportionately affect HT-DFT properties728

of particular classes of materials, e.g. choice of planewave729

cutoff on formation energies and volumes of oxides and730

halides, and the choice of pseudopotential on the band731

gaps and magnetization of rare-earth compounds. Our732

results inform users of the variability to account for in733

reported materials properties, especially when using data734

from multiple HT-DFT databases in their own analyses.735

In addition, our quantitative uncertainty estimates can736

directly aid materials informatics efforts, e.g., for separa-737

tion of model uncertainty and inherent noise in data.738

As HT-DFT databases continue to mature, system-739

atic comparisons, interoperability, and standardization of740

calculations become increasingly crucial. Efforts to im-741

prove the interoperability of materials databases, e.g., by742

the development of a common data schema by the OP-743

TiMaDe consortium [87], are already ongoing. Toward744

improving the standardization of calculations, HT-DFT745

choices and reproducibility in particular, we list a few746

recommendations for next-generation and new iterations747

of current HT-DFT databases:748

(a) In-depth, versioned documentation of the vari-749

ous parameter choices made in a high-throughput750

project, including the data-driven rationale for the751

choices, if any.752

(b) Visibility for possible uncertainty in reported prop-753

erties (in both the web and programmatic interfaces754

used to interact with HT-DFT data) for which HT-755

DFT choices are expected to have a significant im-756

pact. Further, we recommend providing estimated757

uncertainties in calculated properties, either deter-758

mined from literature references (e.g., this work),759

or from in-house investigations (e.g., by performing760

a set of HT-DFT calculations with different input761

parameters as part of a sensitivity analysis).762

(c) Community-led initiative to reach a consensus on763

which HT-DFT choices ought to be standardized764

(e.g., energy cutoffs, fitting sets for empirical cor-765

rections, post-processing steps to determine proper-766

ties such as band gap) and which HT-DFT choices767

could be a source of greater scientific insight if they768

were more diverse (e.g., DFT codes, pseudopoten-769

tials, DFT exchange-correlation functionals).770
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Appendix A: Definitions of statistical quantities800

The definitions of statistical quantities and their sym-801

bols used in this work throughout are as follows (xi and802

yi refer to the two sets of data being compared, e.g. from803

two different databases):804

1. Median difference (∆̃x):805

∆̃x = median(xi − yi) (A1)

2. Median absolute difference (MAD):806

MAD = median
(
|xi − yi|

)
(A2)

3. Interquartile range (IQR):807

IQR = Q3 −Q1 (A3)

where Q1 and Q3 are the first and third quartiles808

(25th and 75th percentiles), respectively.809

4. Median relative absolute difference (MRAD):810

MRAD = median

(
|xi − yi|
|xi + yi|/2

× 100

)
(A4)

5. Pearson correlation coefficient (r):811

r(x, y) =

∑n
i (xi − x̄)(yi − ȳ)√∑n

i (xi − x̄)2
√∑n

i (yi − ȳ)2
(A5)

where x̄ = 1
n

∑n
i xi is the sample mean, and n is812

the sample size.813

6. Spearman’s rank correlation coefficient (ρ) is de-814

fined as the Pearson correlation coefficient between815

rank variables xR
i and yRi corresponding to raw data816

values xi and yi, respectively:817

ρ(x, y) = r(xR, yR) (A6)
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