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A central challenge in high throughput density functional theory (HT-DFT) calculations is se-
lecting a combination of input parameters and post-processing techniques that can be used across
all materials classes, while also managing accuracy-cost tradeoffs. To investigate the effects of these
parameter choices, we consolidate three large HT-DFT databases: Automatic-FLOW (AFLOW),
the Materials Project (MP), and the Open Quantum Materials Database (OQMD), and compare
reported properties across each pair of databases for materials calculated using the same initial
crystal structure. We find that HT-DFT formation energies and volumes are generally more repro-
ducible than band gaps and total magnetizations; for instance, a notable fraction of records disagree
on whether a material is metallic (up to 7%) or magnetic (up to 15%). The variance between
calculated properties is as high as 0.105 eV /atom (median relative absolute difference, or MRAD,
of 6%) for formation energy, 0.65 A3/atom (MRAD of 4%) for volume, 0.21 ¢V (MRAD of 9%)
for band gap, and 0.15 pp/formula unit (MRAD of 8%) for total magnetization, comparable to
the differences between DFT and experiment. We trace some of the larger discrepancies to choices
involving pseudopotentials, the DFT+ U formalism, and elemental reference states, and argue that
further standardization of HT-DFT would be beneficial to reproducibility.

9 Keywords: high-throughput DFT, uncertainty quantification, reproducibility, materials databases

10 I. INTRODUCTION 3 gle university research group. Third, sophisticated, free,
often open-source, software is readily available for man-
aging large numbers of DFT calculations, post-processing
output, and storing the resulting data systematically in
databases. Thus, a number of HT-DFT databases with
various focus areas have emerged [3, 6-17]; a list of ex-
emplars, including any supporting workflow automation

3

u  Over the past decade, high-throughput (HT) den- @
sity functional theory (DFT) has emerged as a widely- 3
used tool for materials discovery and design [1-3]. In
a standard HT-DFT workflow, software tools automate *
the process of calculating materials properties of in- *
terest within DFT, including submitting jobs to high- * software [18-33|, is given in Section S-I of the Supple-
performance computing infrastructure, on-the-fly error * mental Material (SM) [34].

handling, post-processing and dissemination of results, s However, the entirely-automated nature of HT-DFT
introduces a few key challenges. First, by definition, the

volume of data from HT-DFT is too high for each in-
dividual calculation to undergo manual review or analy-
sis [1]. How, then, are the quality and integrity of cal-
culations monitored in high-throughput? Second, HT-
DFT requires choosing, often at the outset, settings that
are consistent across all calculations, encompassing all
materials classes and properties being calculated. For
example, it may not be known a priori whether the ma-
terial being calculated is a metal or an insulator. As a
result, the calculation parameters that affect, e.g., how
electronic occupancies are smeared near the Fermi level
must be chosen so that they are applicable to both met-
als and insulators. Third, practical HT-DFT calculations
involve balancing accuracy and computational cost; best-
practice recommendations [35] involve steps such as ex-
plicit convergence tests, which become computationally
infeasible in the HT context. Of these challenges, only
the first, related to monitoring the quality and integrity
of calculations in high-throughput has been addressed.
Software frameworks, such as Custodian [36], qmpy [23],
and AiiDa [37], can store provenance information to en-
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1s and so on, enabling researchers to evaluate typically 103~ 4
20 105 materials with minimal human intervention. The re- ¢
sulting database can then be screened for candidate ma- 4
terials exhibiting promising combinations of calculated +
properties or to search for trends amongst materials be- 5
havior to gain new chemical insights or develop surrogate 5
» models. 5
%  The increasingly widespread usage of HT-DFT in ma- 5
terials research can be attributed to a combination of s
three key factors. First, a large number of specialized
codes implement fully automated calculations of specific s
materials properties within DFT, ranging from phonon 5
dispersions to dielectric tensors. For example, VASP s
2 5.1 [4, 5] introduced a feature enabling users to calculate s
elastic tensors by simply setting a parameter in the input ¢
file. Second, the ongoing growth of computing power has ¢

ensured that HT-DFT is now well within reach of a sin- ¢
6.
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sure the integrity of calculations, and gracefully handle
errors associated with catastrophic failures, e.g., those re-
lated to file read /write operations or memory issues dur-
ing runtime, insufficient walltimes on high-performance
computing resources, and misconfiguration of the under-
lying numerical libraries.

Since HT-DFT has become increasingly central to ma-
terials informatics efforts across the spectrum, from high-
throughput screening to machine learning [38, 39] it is
crucial to resolve the following concerns: (a) There is
no one “correct” solution to some of the challenges of
HT-DFT mentioned above, and different databases have
tackled them slightly differently. How sensitive are the
calculated materials properties to the different HT-DFT
parameter choices? (b) The focus areas of many promi-
nent HT-DFT databases in terms of the materials and
properties calculated are often quite different. As a re-
sult, materials data from the various HT-DFT databases
are often mixed with one another for thermochemical or
other analysis. How interoperable are these various cal-
culated materials properties across HT-DFT databases?
We emphasize that such a comparison across HT-DFT
databases is different from analyzing the reproducibil-
ity of DFT across software implementations and poten-
tials, e.g. focusing on equations of state of elemental
crystals: [40] the challenges of HT-DFT lie in choosing
parameters that are applicable across a wide variety of
materials and properties, targeting both reasonable ac-
curacy and computational cost—very distinct from per-
forming highly-accurate DFT calculations of a small set
of materials.

Here, we analyze the reproducibility and interoperabil-
ity of HT-DFT calculations. We critically compare the
agreement between three databases for four properties:
formation energy (AEf), volume (V'), band gap (Eg),
and total magnetization (M). We find certain properties
(formation energies and volumes) to be more consistent
across databases than others (band gap and magnetiza-
tion). We then quantify the variability in each of the
properties across databases and find that the typical dif-
ferences between two HT-DFT databases are similar to
those between DFT and experiment. Finally, we com-
pare properties across different materials classes to iden-
tify characteristics of materials and/or properties that
are harder than others to reproduce. In all cases, we
identify trends, surface outliers, and investigate potential
causes for an observed systematic differences between the
databases.

II. METHODS

We focus on three prominent HT-DFT databases in
this work: Automatic FLOW (AFLOW) [6], the Materi-
als Project (MP) [15], and the Open Quantum Materials
Database (OQMD) [3, 23]. All three databases contain
calculations of a large number of mostly-experimentally
reported, ordered compounds from the Inorganic Crystal
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Structure Database (ICSD) [41]. In addition, they con-
tain calculations of many thousands of hypothetical com-
pounds generated from common structural prototypes or
other informatics approaches. As noted earlier, there
are many other large HT-DFT databases, e.g., JARVIS-
DFT [13], Materials Cloud [14], and others listed in Ta-
ble S-I of the SM [34]. Here, we limit our focus to
AFLOW, Materials Project, and OQMD as the latter (a)
are among the longest-running, mature, widely-used, and
general-purpose, and (b) use the VASP software pack-
age [4, 5] and projector augmented wave (PAW) poten-
tials [42, 43] with the Perdew-Burke-Ernzerhof (PBE) pa-
rameterization [44] of a generalized-gradient approxima-
tion (GGA) to the DFT exchange-correlation functional.
The variance in HT-DFT-calculated properties studied
in the present work is, therefore, almost entirely due to
differences in various choices involved in HT-DFT (e.g.,
those involving calculation parameters such as k-point
density, the DFT+U approach, post-calculation process-
ing techniques, different versions of VASP and any asso-
ciated software bugs, different versions of PBE pseudopo-
tentials used) and not due to different implementations
of DFT or approximations to the underlying exchange-
correlation functional itself.

AFLOW has standardized band structure calcula-
tions [18, 45], binary alloy cluster expansions [46], finite-
temperature thermodynamic properties [47], elastic and
thermomechanical properties [48] calculated for many
materials, and has an application programming inter-
face (API) based on the REpresentational State Trans-
fer (REST) standard (commonly referred to as “RESTful
APT”) for accessing data [6, 49]. The Materials Project
includes a variety of properties calculated for specific sub-
sets of materials in the database, including elastic [50],
thermoelectric [51], piezoelectric [52], dielectric [53], vi-
brational [54] properties, and X-ray adsorption spec-
tra [55]. It also includes a collection of apps such as
a Pourbaix diagram calculator [56], and the underlying
data are accessible via a RESTful API [57, 58]. Fi-
nally, the Open Quantum Materials Database (OQMD)
contains calculations of a large number of hypotheti-
cal compounds based on structural prototypes, [59-61]
and provides tools for the construction of DFT ground
state phase diagrams at ambient and high-pressures [62—
64]. The OQMD provides the entirety of the underlying
database to download all at once, and a RESTful API
for programmatic access [65]. License and access infor-
mation for the three databases is included in Section S-IT
of the SM [34].

We query all three databases (AFLOW: queried June
2021; MP: v2019.05; OQMD: v1.2) for the calculated
properties of materials whose crystal structures were
sourced from the ICSD and aggregate them into a single
dataset, after converting records from all sources into a
unified, consistent data format, the Physical Information
File (PIF) [66, 67]. We then generate a set of comparable
records for each pairwise combination of the databases—
all calculations using the same initial crystal structure,
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by matching their ICSD Collection Codes (hereafter re-
ferred to as “ICSD ID”). In instances where more than one
calculation within a single database was labeled with the
same ICSD ID, we use the lowest energy calculation for
all analysis. In addition, we discard records with obvi-
ously unphysical property values (those with formation
energy outside the [-5 eV /atom, +5 €V /atom| window
and volumes above 150 A3 /atom), and normalize proper-
ties to the same units, where required. We then perform
statistical analysis on the final curated set of compara-
ble records across the three databases. Definitions of the
metrics used in our analysis are given in Appendix A
and details of the query and curation steps are provided
in Section S-IT of the SM [34].

III. RESULTS

The aggregation and processing of the data from the
three HT-DFT databases results in a set of ~70,000 total
comparable DFT calculations. For each property of in-
terest, i.e., formation energy per atom, volume per atom,
band gap, total magnetization per formula unit (f.u.),
the counts of records, and overlapping records for each
pair of databases are shown in Table I. Approximately
15,000-25,000 comparisons can be made for each prop-
erty and database pair, except for comparisons to forma-
tion energies from AFLOW, where only ~2,200 records
are reported. As mentioned earlier, overlapping records
across databases were determined by using exact ICSD
ID matches for the reported calculations.

A. Overall pairwise comparison statistics

Table II shows some overall statistics for comparisons
of all properties across comparable records in the three
databases: the median absolute difference (MAD), the
interquartile range (IQR), the Pearson correlation coef-
ficient (r), and Spearman’s rank correlation coefficient
(p) (definitions of the metrics are in Appendix A). For
band gap and total magnetization, the statistics were
calculated only on subsets of overlapping records where
both databases agreed that a material is non-metallic
(Eg > 0.01 V) and is magnetic (M > 0.01 pg/atom),
respectively. The latter threshold on the per-formula
unit total magnetization ensures that undesired compar-
isons of different magnetic configurations for the same
crystal structure (i.e., ferromagnetic configuration in one
database being compared to antiferromagnetic configu-
ration in another) are avoided as much as possible.

Overall, we find that: (a) The MAD in forma-
tion energy across pairs of databases can be up to
0.105 eV /atom, comparable to the ~0.1 eV/atom dif-
ference between DFT and experimental formation en-
ergies [23]. (b) The MAD in volume across pairs of
databases can be up to 0.65 A3 /atom (median absolute
difference relative to mean (MRAD), of 3.8%), compa-
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rable to error between DFT and experiment [68]. (c)
The MAD in band gap across pairs of databases can be
up to 0.21 eV, even when comparing only records where
both databases agree that a material is not metallic. For
around 5%—7% of overlapping records, databases disagree
whether a material is metallic. (d) The comparison of to-
tal magnetization shows high variability across database
pairs. While the dispersion of differences for the MP-
OQMD comparison is very small (MAD of 0.01 up/f.u.
and IQR of 0.05 up/f.u.), the dispersion of differences in
comparisons with AFLOW are rather large (up to MAD
of 0.15 up /f.u. and IQR of up to 2.0 pp/f.u.). In all cases,
the correlation between calculated values is lower than
for the other three properties, with both Pearson and
Spearman correlation coefficients ranging from 0.6-0.8.
We further note that the latter poor correlation exists
even after excluding overlapping records where the two
databases disagree on whether the material is magnetic
(10%-15% of the records).

B. Distribution of differences in calculated
properties

We first analyze the raw differences in the calcu-
lated properties for records overlapping across pairs of
databases. Figure 1 shows the distribution of the differ-
ences in calculated values for each of formation energy,
volume, band gap, and total magnetization, for each pair-
wise combination of databases.

Formation energy: The distribution of differences in cal-
culated formation energy across AFLOW-MP and MP-
OQMD is surprisingly bimodal, with peaks around 0 and
£0.2 eV/atom. We find that the peak near 0.2 eV /atom
in both pairwise comparisons corresponds mostly to ox-
ides (see Figure S1), and is a result of different approaches
in the two databases toward correcting DFT-calculated
formation energies (see Section IV B). While the median
difference (Ax in Figure 1) are reasonably small across all
three pairwise comparisons (up to ~0.074 ¢V /atom), the
difference distributions for AFLOW-MP and MP-OQMD
are rather wide. The median absolute difference (MAD)
and the interquartile range (IQR), both robust measures
of the spread of a distribution, are up to ~0.105 eV /atom
and ~0.173 eV /atom, respectively.

Volume: The distribution of differences in calculated vol-
umes is skewed towards smaller volumes in the OQMD,
but such a skew is absent in the AFLOW-MP com-
parison. Correspondingly, the median difference be-
tween AFLOW and MP volumes are ~0.01 A®/atom,
whereas the median differences are ~0.62 A?/atom and
~0.47 A3 /atom for AFLOW-OQMD and MP-OQMD,
respectively. The consistently smaller volumes calculated
in the OQMD can be understood to result from the choice
of the plane wave energy cutoff used for DFT relaxation
calculations. The OQMD chooses a plane wave cutoff
that is lower than that used in AFLOW and MP (ENMAX
in the POTCAR file, up to 400 eV in OQMD, as opposed
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AFLOW MP OQMD AFLOW-MP AFLOW-OQMD MP-OQMD

Formation Energy 2196 34907 22248
Volume 21929 34907 22248
Band Gap 21921 34907 22169
Total Magnetization 21929 34907 22248

2070 1717 19082
19258 15857 19082
19253 15790 19007
19258 15857 19082

TABLE I. The number of records after establishing ICSD ID equivalency for each property of interest in the AFLOW, Materials

Project (MP), and OQMD HT-DFT databases, as well as for pairwise comparisons of the three databases.

AFLOW-MP

AFLOW-OQMD

MP-OQMD

MAD IQR r »p

MAD IQR r p

MAD IQR = »p

Formation Energy (eV/atom)
Volume (A% /atom)
Band Gap (eV)*

0.105 0.173 0.99 0.99
0.180 0.389 0.98 0.99
0.078 0.203 0.94 0.92

Total Magnetization (ug/f.u.)* 0.015 0.759 0.77 0.75

0.019 0.036 0.99 0.99
0.647 1.117 0.97 0.97
0.209 0.364 0.92 0.91
0.149 2.001 0.60 0.56

0.087 0.168 0.99 0.99
0.512 0.902 0.98 0.98
0.178 0.277 0.93 0.92
0.012 0.052 0.80 0.74

TABLE II. Overall statistics (median absolute difference (MAD), interquartile range (IQR), Pearson’s linear correlation coeffi-
cient (1), and Spearman’s rank correlation coefficient (p)) for the comparison of properties across HT-DFT databases. For each
property, records overlapping across a pair of databases are compared (* for band gap and magnetization, only non-zero values
are compared). Generally, lower MAD, lower IQR, higher r, and higher p values indicate better reproducibility of calculated

properties.

to 520 eV in MP and up to 560 eV in AFLOW) for full cell
relaxations. The lower plane wave cutoff results in Pulay
stresses and generally smaller volumes than fully relaxed
calculations. The MAD in volumes for comparisons, es-
pecially for OQMD with the other two databases, is up to
~0.65 A3 /atom. In addition, some differences in reported
volumes can result from the different relaxation schemes
employed in the three HT-DFT databases: AFLOW and
MP perform two sequential relaxations, while the OQMD
performs sequential relaxations until the volume change
during a relaxation is less than 5%.

Band gap: The distribution of differences in the calcu-
lated band gaps is slightly skewed towards larger band
gaps in the OQMD, but this skew is absent in the
AFLOW-MP comparison. Correspondingly, the median
difference in band gaps between AFLOW and MP is
~0.01 eV, and up to ~0.14 eV for comparisons with
OQMD. The larger band gaps calculated in the OQMD
might be due to smaller volumes from the choice of lower
plane wave energy cutoffs. An increase in the fundamen-
tal band gap due to compressive strains (in the OQMD,
due to unresolved Pulay stresses) has been observed in
many semiconductor families [69-71]. In addition, the
spread in the differences in calculated band gaps is quite
large: with an MAD of up to ~0.21 eV and an IQR
of up to ~0.36 eV for comparisons with OQMD. The
spread may be, in addition to the choice of energy cutoff
as discussed above, due to the different ways in which the
databases calculate the band gap. For example, OQMD
calculates band gap from the electronic density of states
(DOS), in contrast to AFLOW and MP which calculate
it from band dispersions. The energy grid used for the
calculation of DOS and/or k-point meshes used for band
structure calculations can also have a notable effect on
the precision and accuracy of the reported band gap.
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For instance, while AFLOW and MP both report gaps
calculated from band dispersion calculations, the high-
symmetry k-path in the Brillouin zone used for such cal-
culations can be different [18, 72].

Total magnetization: The median differences in
AFLOW-MP and MP-OQMD are nearly zero, with rea-
sonably small MAD values as well. However, the dif-
ferences between the magnetization reported in AFLOW
and the other two databases skew towards larger values
in AFLOW, with long tails and correspondingly large dis-
persions. The difference between AFLOW and OQMD,
in particular, shows an MAD of ~0.15 pup/atom and
an IQR of ~2.0 ug/atom. Further, as noted earlier, a
significant fraction of 10-15% overlapping records across
databases disagree on whether the material has non-zero
total magnetization. This disagreement may in part be
due to different pseudopotential choices for various ele-
ments (and correspondingly different number of valence
electrons), and sampling of different magnetic configu-
rations, the choice of unit cell in such magnetic config-
uration sampling, etc. For instance, AFLOW and MP
calculate ferromagnetic configurations for all materials,
and ferrimagnetic and antiferromagnetic configurations
for a subset of materials [73, 74|, while the OQMD only
calculates ferromagnetic configurations [23]. For a given
material, since we only compare the lowest-energy config-
urations across databases with one another, it is possible
that a material is predicted to be non-magnetic in one
database and antiferromagnetic in another database. Al-
ternately, a ferrimagnetic configuration in one database
could be compared to a ferromagnetic calculation in an-
other, if both converged to finite magnetic moments.
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FIG. 1. Distribution of the differences in calculated properties across HT-DFT databases. Each panel corresponds to a property
and pair of databases being compared. Solid vertical black lines correspond to the first (Q1) and third (Qs) quartiles of the
distribution. The numbca}; of records overlapping across the two databases is shown in the top right corner of each panel; the
median of distribution (Az), the median absolute difference (MAD), and the interquartile range (IQR) are noted on the left.

355 C. Rank-order comparisons across properties 38 rectly, we compare overlapping records using the ordinal

6 We next seek to make comparisons across properties.

37 Instead of comparing the raw values of the properties di-



30 rank of the property in each database being compared
w0 (hereafter, referred to as “percentile rank”). Comparing
361 the percentile ranks of the properties has a few advan-
w2 tages: (a) It allows for a single consistent metric for com-
33 parison across all four properties regardless of the magni-
s« tude of the actual value and physical units. (b) It is not
365 affected by many systematic differences, e.g., a constant
366 shift of 0.1 eV in all calculated band gaps in one database.
37 Such constant shifts in calculated properties do not affect
s the internal consistency of a HT-DFT database, and the
30 percentile ranks which are similarly unaffected capture
so this property. (c) It is a robust, uniform, identifier of
sn outliers in calculated properties.

s»  Figure 2 consists of percentile rank scatterplots (closely
a3 related to the quantile-quantile or Q-Q plots) of each
s property of interest for each database pair. Note that for
w5 band gap (total magnetization), we only include overlap-
a6 ping records where the two databases being compared
s both report the material to be non-metallic (magnetic),
33 t0 avoid having to rank near-zero or zero values against
one another. A compact line along the diagonal corre-
sponds to perfect correlation between the ranked proper-
ties, with more diffuse scattering indicating lower levels
of correlation.

379
380
381
382
s Formation energy: Of the four properties, formation en-
ergy shows the best correlation between each database
pair, consistent with all » and p values close to 0.99 in
Table II. Nonetheless, there is some off-diagonal scatter
for the MP-OQMD comparison for larger (more positive)
values of formation energy that is not found in the other
database pairs. These calculations correspond to com-
pounds with smaller (positive) formation energies, where
the precision necessary to reliably rank the structure ap-
proaches the accuracy of the calculation.

Volume: The percentile rank comparison of volume
shows higher off-diagonal scatter than that seen in com-
parisons of formation energy. There is a skew towards
higher volumes in AFLOW and MP when compared to
OQMD (scatter towards top-left of the diagonal in the
AFLOW-0OQMD and MP-OQMD comparisons), consis-
tent with the discussion around plane wave energy cutoffs
in the previous section.
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Band gap: The percentile rank comparison of band gap
shows even higher off-diagonal scatter than that observed
in comparisons of both formation energy and volume.
In particular, there is meaningful scatter along the azes,
corresponding to cases where one database predicts the
material to have a near-zero band gap whereas the other
database predicts a (much larger) non-zero band gap.

Total magnetization: The percentile rank comparison of
total magnetization per formula unit in all three pairwise
comparisons shows a few distinct clusters along the diag-
onal, corresponding to nominally integer values of mag-
netic moment per formula unit. There is considerable
off-diagonal “bowing” in the comparisons with AFLOW|
consistent with the distribution of differences between
AFLOW and the other two databases showing a skew
a6 towards larger magnetizations in AFLOW and long tails
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(lower panel in Figure 1). In addition, there is consid-
erable off-diagonal scatter (horizontal and vertical bands
in the magnetization panel of Figure 2) indicating sig-
nificant disagreement between the values reported in the
two databases.

Overall, a comparison of rank-ordered properties
across two databases shows that formation energies and
volumes are more easily reproduced than band gaps and
total magnetizations, consistent with correlation coef-
ficients decreasing from ~0.99 for formation energy to
~0.6 for total magnetization (Table II).

D. Reproducibility across materials classes

Intuitively, we expect the level of agreement among
the databases to be a strong function of materials class.
Therefore, we compare specific subsets of calculations
based on various materials classes to elucidate potential
causes of differences. The materials classes are defined
based on chemical composition, the number of elemental
components, the presence of magnetism, band gap, pseu-
dopotential choices, and space group, as summarized in
Table III. For classes defined by the output of a calcula-
tion (i.e., those based on magnetization and band gap),
comparisons are only made if both databases agree that
the property has a non-zero value. Note that according
to our definition, the “Magnetic” class of materials may
potentially include both ferromagnetic and ferrimagnetic
materials, and the “Non-Magnetic” class may potentially
include both non-magnetic and antiferromagnetic mate-
rials.
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FIG. 2. Comparison of the calculated properties (formation energy, volume, band gap, and total magnetization) over records
overlapping across pairwise combinations of HT-DFT databases plotted as a percentile rank (i.e., ordinal rank of the property
in each database being compared). A compact line along the diagonal corresponds to perfect correlation between the ranked
properties. Overall, formation energies and volumes show better reproducibility than band gaps and magnetizations. The
clusters seen in the magnetization comparisons correspond to nominally integer values of magnetic moments.



Class Definition

Oxide Contains O

Nitride Contains N

Pnictide Contains a group 15 element

Chalcogenide Contains a group 16 element, except O

Halide Contains a group 17 element

Alkali Metal Contains a group 1 element, except H

Alkaline Earth Metal Contains a group 2 element

Transition Metal Contains a d-block element

Metalloid Contains B, Si, Ge, As, Sb, or Te

Rare-Earth Contains an element from the lanthanide series

Actinide Contains an element from the actinide series

Metal-Nonmetal Contains at least one metal element and at least one of C, N, O, F, P, S, Cl, Se, Br, I
Intermetallic Contains only metallic elements

Magnetic Both databases report a net magnetic moment > 10~2 ug/f.u.
Non-magnetic Both databases report no net magnetic moment > 102 ug /f.u.
Disagree on Magnetic The two databases disagree on whether a net magnetic moment > 10™2 ug/f.u. is present
Metallic Both databases predict a band gap of < 1072 eV

Semiconductor Both databases predict a band gap between 1072 and 1.5 eV
Insulator Both databases predict a band gap larger than 1.5 eV

Disagree on Metallic The two databases disagree on whether a band gap < 1072 €V is present
Pseudopotentials Agree Both databases use the same set of pseudopotentials for all elements
Pseudopotentials Disagree The databases use different pseudopotentials for at least one element
Use GGA+U Both databases use the GGA+ U approach

Use GGA Both databases use plain GGA

Disagree on GGA/GGA+U One database uses GGA whereas the other uses GGA+U

Elements Contains only one element

Binaries Contains two elements

Ternaries Contains three elements

Quaternaries Contains four elements

Triclinic Space group 1-2

Monoclinic Space group 3-15

Orthorhombic Space group 1674

Tetragonal Space group 75-142

Trigonal Space group 143-167

Hexagonal Space group 168-194

Cubic Space group 195-230

TABLE III. Definitions for the materials classes used in this work.
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FIG. 3. Median percent absolute differences between properties (formation energy, volume, band gap, total magnetization)
calculated in the three databases (AFLOW, MP, OQMD), compared two at a time, across various classes of materials as defined
in Table III. The numbers in parentheses indicate the number of overlapping records belonging to the respective material class
for a given pair of databases. Trivial comparisons are left blank (e.g., the difference in total magnetization for non-magnetic
compounds).
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Figure 3 contains the median absolute difference rel-
ative to the mean (MRAD) values for pairwise compar-
isons between databases, divided into materials classes
as defined in Table III. Cells are colored based on the
MRAD value listed. Empty cells correspond to triv-
ial comparisons (e.g., values of band gap where both
database agree the structure is metallic). We use MRAD
as the metric here to reduce the effect of outliers (as
compared to calculating means) as well as to enable com-
parisons across properties using the same metric. Over-
all, HT-DFT volumes show the best agreement (low-
est MRAD values), from 1-4%. Band gaps show the
worst overall agreement (highest MRAD values), 4-10%
across all pairwise comparisons. Formation energy com-
parisons with MP show MRAD values up to 6%, but the
AFLOW-OQMD MRAD is only 1.3%. MRAD values for
total magnetization vary highly from 0.5% for compar-
isons with MP to 7.6% for AFLOW-OQMD. In all cases,
certain materials classes have distinctly higher or lower
MRAD when compared to the MRAD averaged over all

materials classes.

Formation Energy: In the comparisons with AFLOW,
two materials classes, “Halides” and “Disagree on Metal-
lic”, show the highest MRAD values of up to 14% and
40%, respectively. The high MRAD in halide formation
energies can be understood to result from post hoc cor-
rections to the effective elemental reference energies per-
formed in MP and OQMD, but not in AFLOW, for the
halide group of elements (see discussion in Section IV B).
The high MRAD of the “Disagree on Metallic” class is
likely an artifact of the small formation energies of the
few records (~30-50) in the comparison. As noted ear-
lier, since AFLOW reports notably fewer formation en-
ergy values than the other databases, the comparisons
are made with a much smaller set of records (~2,000).
Therefore, we ignore here some of the MRAD outliers
in cases where the number of records being compared is
very small (e.g., the material class “Magnetic” shows an
MRAD of 13% between AFLOW and MP but there are
only 5 records in the comparison). Further, the formation
energies dataset has very few transition metal, rare-earth,
and actinide element-containing compounds (Figures S3
and S7). New, different insights are likely to result from
a larger dataset. In the MP-OQMD comparison, with a
much larger comparable dataset (~19,000), the “Nitride”,
“Pnictide”, and “Chalcogenide” material classes show the
highest MRAD values, 14%, 8%, and 11% respectively.
This is partly due to differences in fitted elemental chem-
ical potentials for pnictogen and chalcogen elements in
MP and OQMD (Section IV B).

Volume: The best agreement is observed in the AFLOW-
MP comparisons, with only the “Actinide” material class
showing an MRAD greater than 2%. For comparisons
with OQMD, the MRAD in volume is generally higher—
due to the choice of lower plane wave energy cutoff used
for cell relaxation, as discussed earlier (Section IIIB).
The highest MRAD wvalues in the comparisons with
OQMD volumes are for the “Nitride” and “Halide” classes
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(~7-9%). The default plane wave energy cutoffs in the
VASP PAW potentials (ENMAX parameter) for N and F
are among the highest (400 eV) of all elements. Thus, the
lower energy cutoff used by OQMD for relaxation impacts
the calculated volumes of nitrides and fluorides the most
(Figures S8 and S12). Another material class, “Triclinic”,
shows similarly high MRAD values of ~8% in compar-
isons with OQMD. Upon examination, we find that most
triclinic materials in the comparisons are oxides, nitrides,
and halides, and thus the high MRAD values are due to
the chemical composition of these compounds rather than
their crystal symmetry.

Band gap: While band gap comparisons show the highest
MRAD values across properties, some materials classes
in particular show MRAD values much greater than
~10%. Of these, in the “Intermetallic’ and “Semicon-
ductor” material classes, the MRAD values are expect-
edly high due to small average band gaps relative to
which differences are reported, even though the abso-
lute differences themselves are not conspicuously large
(Figure S2). In other cases, the high MRAD values are
a result of (a) different pseudopotential choices for el-
ements (e.g., Cu/Cu_pv, Ce/Ce_3, Eu/Eu_2 choices
in the “Disagree on Magnetic” class for the MP-OQMD
comparison with an MRAD of ~53%; see Figure S13),
(b) disagreement on whether to use the GGA or GGA+ U
approach to calculate properties (e.g., the “Actinide” ma-
terial class with MRAD of up to 43% in comparisons
with MP, the “Disagree on GGA/GGA+U” class in all
three comparisons with MRAD of 12-25%), or a com-
bination of both factors (e.g., for the “Magnetic” mate-
rial class with an MRAD of up to 27% in comparisons
with AFLOW), (¢) non-overlapping sampling of magnetic
configurations across databases. For instance, the “Mag-
netic” (MRAD of 13-27% across comparisons) and “Dis-
agree on Magnetic” (MRAD of 17-53% across compar-
isons) classes may respectively include comparing ferro-
magnetic vs ferrimagnetic and non-magnetic vs antiferro-
magnetic ground states across two databases (note, how-
ever, that both the “Magnetic” and “Disagree On Mag-
netic” comparisons also include effects from other HT-
DFT choices, such as choice of pseudopotential used).
Note also that the errors in band gaps for the “Use
GGA+ U” materials class are larger than those for the
“Use GGA” materials class across all three pairwise com-
parisons, the choice of slightly different effective U val-
ues used in the three databases being a likely contribu-
tor. Further discussions of some of the above parameter
choices are in Section IV.

Total magnetization: While MRAD values in the MP-
OQMD comparison are generally small (< 5%), some ma-
terial classes show much higher MRAD values, especially
in comparisons with AFLOW. As in the case of band
gap values, we find these comparisons to be influenced
by pseudopotential choice (of rare-earth elements in par-
ticular, e.g., Nd, Nd_3, Nd_3 in AFLOW, MP, and
OQMD, respectively; see Figures S10 and S14), choice
of using GGA or GGA+U (e.g., MRAD of up to ~40%
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in AFLOW-OQMD comparisons for the “Disagree on
GGA/GGA+U” class), or both (e.g., the “Metalloid” and
“Rare-Earth” material classes in the AFLOW-OQMD
comparisons, “Intermetallic” and “Metallic” classes in the
AFLOW-MP and AFLOW-OQMD comparisons). We
note that some other material classes show high MRAD
values, e.g., “Element”, “Binary”, “Ternary”, “Tetragonal”,
“Hexagonal”, and “Cubic” (up to MRAD values up to
~50%) due to, upon further examination, the parame-
ter choices discussed above rather than due to number of
components in the compound or crystal symmetry.

Finally, we note that while our scheme of construct-
ing a set of comparable records across pairs of databases
(by matching ICSD IDs exactly) ensures comparisons
between the same initial crystal structures, it excludes
a number of experimentally well-studied materials with
multiple ICSD entries associated with them. We investi-
gated whether this “bias away from well-studied materi-
als” affects our results by using a larger comparison set
constructed by linking very similar ICSD entries using
the crystal structure matching algorithm employed by
the Materials Project (see Section S-II in the SM [34]).
While some of the quantitative metrics we report var-
ied by a few percent in the expanded comparison, the
overall conclusions remain unchanged (see Tables S-XI,
S-XII, and Figures S15-S18 in the SM [34]), consistent
with recent findings [75].

IV. DISCUSSION

We discuss some of the most important factors affect-
ing the differences across HT-DF'T calculations of prop-
erties below. Some of the other factors that either have a
minor effect (e.g., post hoc calculation of band gap from
band dispersions or density of states) or are specific to
a database/property (e.g., plane wave cutoff energy for
full cell relaxations in OQMD) have been discussed in the
earlier sections.

A. Effects of pseudopotential choice

For nearly all elements, VASP provides multiple PAW
potentials to choose from, with different numbers of elec-
trons in the valence. The choice of pseudopotential varies
across the HT-DFT databases due to factors such as
changes in VASP recommendations and issues of calcu-
lation convergence or reproduction of experimental ther-
mochemical data [76, 77]. Interestingly, the choice of
pseudopotential has minimal effect on the calculated for-
mation energies and volumes (up to a difference of 1%
in cases where pseudopotentials do or do not match;
see rows “Pseudopotentials Agree” and “Pseudopotentials
Disagree” in Figure 3). On the other hand, the number
of valence electrons and consequently the choice of pseu-
dopotential affects the calculated band gaps and magne-
tization values severely. Especially egregious differences
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across those properties in material classes such as “Rare-
Earth” and “Magnetic” (Figure 3) can be directly traced
to different pseudopotential choices. For rare-earth and
actinide elements in particular, with f-electrons that are
poorly described by DFT [78], using pseudopotentials
that treat f-electrons in core or valence can have a sig-
nificant impact on the calculated band gap (e.g., “Inter-
metallic” and “Magnetic” classes in Figure 3) and mag-
netization (e.g., “Rare-Earth” and “Intermetallic” classes
in Figure 3) values.

B. Elemental references and energy corrections

The largest disagreements in HT-DFT formation ener-
gies can be understood to result from different elemental
reference states and/or post-calculation energy correc-
tions performed in the databases. To our knowledge, the
formation energies reported in AFLOW use DFT total
energies of the bulk elements as the reference states [79].
MP and OQMD both correct DFT-calculated energies to
closely reproduce experimental formation enthalpy data.
While MP adds corrections to the compound formation
energies [76, 77], OQMD fits the elemental reference en-
ergies using a FERE-like approach [16, 23]. Such cor-
rection schemes involve some more HT-DFT choices: (a)
Should all elemental reference energies and/or compound
formation energies be effectively fit to experimental data
or only a subset? For instance, MP corrects the com-
pound formation energies of nitrides, fluorides, chlorides,
hydrides, sulfides of alkali, alkaline earth, and aluminum
containing compounds [22]. The OQMD fits the refer-
ence energies of only elements whose DFT ground states
are poor representation of the experimental reference
states (i.e., elements that are gases or that have a solid-
solid phase transition below room temperature) [23]. (b)
What experimental thermochemical data should be used
such correction schemes, given a lack of a single, widely-
accepted set of standard experimental dataset for solids?
For instance, MP and OQMD use experimental forma-
tion energies from different sources to fit elemental ref-
erence energies: MP uses data from Materials Thermo-
chemistry [80], while OQMD uses data from SGTE SUB-
stance Database (SSUB) [81] in addition to others (see
Refs. 23 and 77 for details of the fitting data used in the
two databases). Some other standard reference databases
are also widely used, such as the NIST-JANAF Thermo-
chemical Tables [82]. Since a given material may have ex-
perimental data in one or more such reference databases
of experimental properties, the choice of the source of
experimental data affects the fitted formation energies in
HT-DFT databases, even in cases where other param-
eters such as pseudopotentials used are held constant.
This effect of fitted elemental reference states is shown
in the calculated formation energies averaged over com-
pounds containing each element in Figures S3, S7, and
S11.



668

669

670

671

672

67

@

674

67!

o

676

67

J

678

67!

©

680

681

682

683

684

685

686

687

688

689

690

691

692

69

®

694

695

696

697

698

699

700

701

702

703

~
=
&

~
oy
15

C. GGA vs. GGA+U approach

One of the ways to treat the issue of over-delocalization
in DFT is to use the DFT+ U approach [83, 84] (or
“GGA+U” when used with GGA). Similar to the case of
fitting elemental references, using the GGA+ U approach
requires additional HT-DFT choices. (a) Whether or not
to use GGA+ U for calculating properties of a given ma-
terial. All three HT-DFT databases have slightly differ-
ent sets of compounds for which the GGA+ U approach
is applied. The OQMD uses GGA+ U only for oxides of
certain 3d transition metals (the V-Cu series) and ac-
tinide metals [23]. MP uses GGA+U for oxides, fluo-
rides, and sulfides of a larger set of transition metals,
but not actinides [77]. AFLOW applies it to an even
larger set of compounds, nearly all those containing d-
or f-block elements [85]. (b) What effective U value
should be used for each element? The three HT-DFT
databases all use different effective U values for each el-
ement, obtained either from previous work (OQMD) or
in-house parameterization by fitting to experimental data
(AFLOW and MP) [18, 86]. Such choices around when to
use the GGA+ U approach to calculate a compound and
what effective U value to use can impact some proper-
ties more than others, e.g., discrepancies in total magne-
tization values in the AFLOW-OQMD comparisons, par-
ticularly for “Rare-Earth”, “Intermetallic”, and “Metallic”
classes. For some properties, such as formation energies,
post hoc corrections are required to maintain consistency
between those calculated using the GGA and GGA+U
approaches, especially while constructing phase diagrams
involving compounds calculated using the two different
approaches. Such corrections are obtained by fitting to
experimental reaction energies, and can be different be-
tween HT-DFT databases based on the source of such
reaction energies.

V. CONCLUSION

Recent years have seen a dramatic increase in the ap-
plication of informatics methods for materials develop-
ment, using high-throughput DFT data. Several promi-
nent HT-DFT databases exist and each uses different in-
put parameters and post-processing techniques to calcu-
late materials properties. Quantifying the uncertainty
in calculated properties due to such parameter choices
is therefore crucial to understanding the reproducibility
and interoperability of such data. In this work, we cen-
tralize data from three of the largest HT-DFT databases,
AFLOW, Materials Project, and OQMD, into a com-
mon data repository, allowing records to be accurately
compared. We then compare four properties—formation
energy, volume, band gap, and total magnetization—of
materials calculated in each of the HT-DFT databases
using the same initial crystal structure.

Our comparisons show that formation energy and vol-
ume are more easily reproduced than band gap and total
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magnetization. Interestingly, we find that the average
difference in calculated properties across two HT-DFT
databases is comparable to that between DFT and exper-
iment: up to 0.105 eV /atom for formation energy, 4% for
volume, 0.21 €V for band gap, and 0.15 up/formula unit
for total magnetization. Further, certain input parame-
ter choices disproportionately affect HT-DF'T properties
of particular classes of materials, e.g. choice of planewave
cutoff on formation energies and volumes of oxides and
halides, and the choice of pseudopotential on the band
gaps and magnetization of rare-earth compounds. Our
results inform users of the variability to account for in
reported materials properties, especially when using data
from multiple HT-DFT databases in their own analyses.
In addition, our quantitative uncertainty estimates can
directly aid materials informatics efforts, e.g., for separa-
tion of model uncertainty and inherent noise in data.

As HT-DFT databases continue to mature, system-
atic comparisons, interoperability, and standardization of
calculations become increasingly crucial. Efforts to im-
prove the interoperability of materials databases, e.g., by
the development of a common data schema by the OP-
TiMaDe consortium [87], are already ongoing. Toward
improving the standardization of calculations, HT-DFT
choices and reproducibility in particular, we list a few
recommendations for next-generation and new iterations
of current HT-DFT databases:

(a) In-depth, wversioned documentation of the vari-
ous parameter choices made in a high-throughput
project, including the data-driven rationale for the
choices, if any.

Visibility for possible uncertainty in reported prop-
erties (in both the web and programmatic interfaces
used to interact with HT-DFT data) for which HT-
DFT choices are expected to have a significant im-
pact. Further, we recommend providing estimated
uncertainties in calculated properties, either deter-
mined from literature references (e.g., this work),
or from in-house investigations (e.g., by performing
a set of HT-DFT calculations with different input
parameters as part of a sensitivity analysis).

Community-led initiative to reach a consensus on
which HT-DFT choices ought to be standardized
(e.g., energy cutofls, fitting sets for empirical cor-
rections, post-processing steps to determine proper-
ties such as band gap) and which HT-DFT choices
could be a source of greater scientific insight if they
were more diverse (e.g., DFT codes, pseudopoten-
tials, DFT exchange-correlation functionals).
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Appendix A: Definitions of statistical quantities

The definitions of statistical quantities and their sym-

s02 bols used in this work throughout are as follows (z; and
a3 1y; refer to the two sets of data being compared, e.g. from
s0e two different databases):
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1. Median difference (&c)

Az = median(z; — y;) (A1)
2. Median absolute difference (MAD):
MAD = median( |z; — y;|) (A2)
3. Interquartile range (IQR):
IQR = Q3 —Q (A3)
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where Q; and Qg are the first and third quartiles
(25th and 75th percentiles), respectively.

. Median relative absolute difference (MRAD):

MRAD = median (H/ x 100) (A4)
lx: + yil/2
. Pearson correlation coefficient (r):
(i —T)(yi — ¥
rlo,y) = i D) (49)

V@ - 22 (i - )2

where Z = X3 "z, is the sample mean, and n is
7% K3
the sample size.

. Spearman’s rank correlation coefficient (p) is de-
fined as the Pearson correlation coefficient between
rank variables i and y® corresponding to raw data
values z; and y;, respectively:

p('rv Z/) = T(xR’ yR) (AG)
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