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We model amorphous zirconia-doped tantala with machine learning (ML) interactomc potentials based on

explicit multi-element spectral neighbor analysis (EME-SNAP). These atomic structure models can reproduce

partial radial distribution functions obtained from first-principles calculations and elastic moduli found from

experimental measurements. The two-body pair forces calculated from EME-SNAP further affirm that the

potentials capture the atomic interactions well. Molecular dynamics simulations of simulated annealing with

EME-SNAP show that the final density of the amorphous models depends on the thermal history even when

the annealing rate is kept constant, which captures experimental observations of history-dependent densities.

Mechanical spectroscopy is also simulated using both Morse-BKS pair potentials and EME-SNAP. The success

in applying the EME-SNAP to amorphous zirconia-doped tantala pushes the boundaries of simulation accuracy

and system size, and enables better and more realistic atomistic modeling for amorphous systems. There are

still some limitations in applying the potentials generated in this work. They are only optimized for trained

amorphous phases; high temperature stability and transferability need to be further investigated.

I. INTRODUCTION

Tantala is an important material in the semiconductor in-
dustry, where it can serve as a barrier layer due to its sufficient
band gap. With a high refractive index and low optical ab-
sorption, amorphous tantala is used in dielectric mirrors such
as those in the laser interferometer gravitational-wave obser-
vatory (LIGO), alternating with thin layers of silica (SiO2)1,2.
Thermal annealing at higher temperature can reduce both op-
tical and mechanical losses, the latter important for reducing
thermal noise in precision measurement applications such as
LIGO. Zirconia also has a high refractive index and recent
experiments show that zirconia can frustrate crystallization in
tantala thin films, allowing for annealing at much higher tem-
peratures without crystallization3. To better understand the
doping effects, modeling and simulations are essential to ob-
tain the underlying atomic structures.

Atomic structures of amorphous materials depend on their
deposition methods and thermal history3–6, which makes it
very difficult to generate proper structure models even with
the physical constraints from experimental measurements
such as density and radial distribution functions (RDFs). Vari-
ous approaches such as melting-and-quenching, simulated an-
nealing, reverse Monte Carlo, etc., have been used to build
realistic models. By combining experimental RDFs with
the reverse Monte Carlo (RMC) method and forces from
calculations, force-enhanced atomic refinement (FEAR) has
been shown to produce realistic atomic models of amorphous
materials.7

Doping introduces additional challenges to the modeling
process, as more element types will create more complex
atomic structures. Also, different elements have different in-
teractions. Unified inter-atomic potentials8–10 have been de-
veloped to account for this. By simply mixing potentials

from pure oxides of the same form with effective coulomb
interactions between different metal atoms, complex dop-
ing systems can be described with the combined potentials.
Beest-Kramer-Santen (BKS) potentials were initially invented
for silica (SiO2) and aluminophosphate (AlPO4).8 Zirconia
(ZrO2) BKS potentials have also been developed and com-
bined with the silica BKS potential to enable the study of en-
ergy recoil damage in ZrSiO4. The thermal expansion, rela-
tive stability and phase transition properties calculated with
these potentials are consistent with experimental and den-
sity functional theory (DFT) results.9 By adding a Morse
term to the BKS potential, amorphous silica (SiO2), zirco-
nia (ZrO2), tantala (Ta2O5), titania (TiO2) and hafnia (HfO2)
are unified into Morse-BKS potential form, and models based
on Morse-BKS potentials give radial distribution functions
(RDF) that agree with DFT models generated from exper-
imental results.10 With these potentials the optimal TiO2-
doping concentration for amorphous Ta2O5 that produces the
lowest mechanical loss from molecular dynamics modeling
is consistent with the experimental measurements.11 By com-
bining classical pair potentials with the reverse Monte Carlo
RMC method to fit to experimental X-ray grazing-incidence
pair distribution function (GIPDF) data, it has been shown
that annealing reduces the percentage of face-sharing and
edge-sharing polyhedra in ZrO2-doped Ta2O5

12, which led
to the discovery of TiO2-doped GeO2 with superior mechan-
ical loss performance for LIGO mirror coatings.13 Morse-
BKS potentials have also been used to identify two differ-
ent types of two-level system transitions in amorphous ZrO2-
doped Ta2O5, denoted non-cage-breaking and cage-breaking
transitions, which contribute to the loss peaks at different
temperatures.14 In pure Ta2O5 the in silico broadband me-
chanical spectroscopy method, using the Morse-BKS poten-
tials the calculated mechanical loss matches experimental
measurements closely at low temperature.15
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Despite these successful applications of the RMC method
and unified Morse-BKS potential for amorphous doped ox-
ides mentioned above, there are still some problems that re-
main to be solved. For example, the metal-metal interactions
are not accurate. In ZrO2-doped Ta2O5, the Ta-Ta and Ta-
Zr partial RDFs show much lower strength at the first metal-
metal peak compared to experimental and DFT results. The
energies calculated from Morse-BKS potentials do not agree
with the DFT calculated energies. With exactly the same set
of atomic structures, the potential energy differences between
any two of them computed with DFT are about three times
larger than those computed with Morse-BKS potentials. The
Morse-BKS potential form is not fit for some amorphous ox-
ides, such as amorphous germanium dioxide whose BKS po-
tential gives longer Ge-Ge distances compared to experimen-
tal observations16–20.

Compared to the force field approach, simulations based
on DFT calculations can be quite accurate for these complex
systems, but the size of the models is limited due to the rela-
tively high calculation cost, which increases rapidly with the
number of atoms. For amorphous modeling, simulation boxes
containing more than a few hundred atoms for pure systems
and a few thousand of atoms for doped systems are needed
to give statistically meaningful results from averaging over all
possible atomic environments, for which DFT calculations are
prohibitively expensive.

In this work, we generate an explicit multi-element spec-
tral neighbor analysis potential (EME-SNAP) for amorphous
zirconia-doped tantala to enable the modeling of amorphous
materials more accurately than the Morse-BKS potentials and
faster than density functional theory (DFT) calculations. The
SNAP has a general form, which can potentially be applied to
different oxides and doped systems.

II. METHOD

A. Bispectrum and SNAP formalism

Simulations using machine-learned potentials start from ab-
stracted features to calculate material properties such as en-
ergy and force. In this work, the spectral neighbor analysis
potential (SNAP) is used, which utilizes bispectrum compo-
nents as features to characterize the local neighborhood of
each atom and linear regression to fit to targeted properties.
The bispectrum was initially used in Gaussian Approxima-
tion Potentials (GAP) and proved to have accuracy compa-
rable to quantum mechanics in calculating the potential en-
ergy surface without the electrons.21–23 Instead of the original
weighted density (WD) SNAP,24,25 the explicit multielement
(EME) SNAP26 is used due to its improved chemical sensi-
tivity, which is achieved by separating the contributions from
different elements with partial atomic densities.

To calculate the explicit multielement bispectrum compo-
nents, the partial atomic neighbor density for element µ at po-

sition r is defined as

ρµ(r) = wself
µiµδ(0) +

∑

rik<R
µiµk
cut

δµµk
fc(rik;R

µiµ
cut )wµk

δ(rik),

(1)
where rik is the position of neighbor atom k relative to central
atom i, and wµ is a dimensionless weight to discriminate atom
types. The cutoff function fc ensures that the neighbor atomic
density decreases smoothly to zero at the cutoff radius Rµiµk

cut .
Only the element µ contributes to the partial density ρµ.

The radial distribution is converted into an additional po-
lar angle θ0 defined by θ0 = rik θ

max
0

/Rµiµk

cut ). Thus the
density function can be represented in 3-spherical coordinates
(θ0, θ, φ) coordinates instead of (r, θ, φ), and the density func-
tion on the 3-sphere can be expanded with 4-dimensional hy-
perspherical harmonics Uj(θ0, θ, φ), as

ρµ(r) =
∞∑

j=0,1/2,...

u
µ
j ·Uj(θ0, θ, φ), (2)

where the coefficients u
µ
j are obtained as the inner product of

the neighbor density functions with the basis function given
by

u
µ
j = wself

µiµUj(0) (3)

+
∑

rik<R
µiµk
cut

δµµk
fc(rik;R

µiµ
cut ) · wµk

Uj(θ0, θ, φ).

The bispectrum components Bj1j2j can then obtained via

Bj1j2j =

Nelem∑

κ,λ,µ=1

Bκλµ
j1j2j

, (4)

Bκλµ
j1j2j

=
1

2j + 1
uκ
j1 ⊗j1j2j u

λ
j2 · (u

µ
j )

∗, (5)

where ⊗j1j2j represents the Clebsch-Gordan product of ma-
trices of degrees j1 and j2 that produces a matrix of degree j
defined in the original SNAP formulation24; j must satisfy the
conditions ‖j1 − j2‖ ≤ j ≤ ‖j1 + j2‖.

In EME-SNAP, the total energy E(rN ) and forces Fk are
expressed as linear functions of projected bispectrum compo-
nents Bi and their derivatives,

E(rN ) =

Nelem∑

µ=1

βµ ·

N∑

i=1

Bi, (6)

Fk = −

Nelem∑

µ=1

βµ ·
N∑

i=1

∂Bi

∂rk
, (7)

where Bi are the (NB ×N3

elem) EME bispectrum components
for atom i and the βµ are the (NB ×N3

elem) coefficients fitted
from the training process.
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B. Training structures and parameters optimization

In this section, we generate an EME-SNAP machine learn-
ing potential for amorphous zirconia-doped tantala that in-
cludes three elements (Ta, Zr, O) explicitly.

The first step in constructing a potential is to prepare the
training set. In addition to the crystalline zirconia and crys-
talline tantala models, amorphous zirconia, amorphous tan-
tala, and amorphous zirconia-doped tantala models are also
used as training structures. The crystalline models are exper-
imentally verified phases from The Materials Project.27 The
amorphous models are made from melting-quenching crystal
structures using classical pair potentials or DFT calculations.
Each model produces a series of training structures by ran-
domly shifting atoms, distorting cells and creating molecular
dynamics (MD) trajectories. The energies, forces and stresses
of these models from DFT calculations are used as the train-
ing set. The comparison between experimental elastic moduli
and calculated ones is discussed in Subsection III D.

MD simulations based on classical pair potentials and
SNAP potentials are performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
software package.28 The BKS pair potential9 for zirco-
nia and Morse-BKS potential10 for tantala are used as the
classical pair potentials. First-principles calculations are
performed using the Vienna Ab-initio Simulation Program
(VASP) code29–31 derived from self-consistent density func-
tional theory (DFT)32 using projector-augmented wave poten-
tials (PAWs)33,34 in conjunction with the plane-wave expan-
sion. The exchange and correlation functional are calculated
using the parameter-free generalized gradient approximation
(GGA) developed by Perdew, Burke, and Ernzerhof (PBE).35

The energy cutoff is 520 eV. For crystal structures the k-mesh
is 7×7×7 or 11×11×11 using the Monkhorst-Pack scheme36

depending on the unit cell size. For amorphous structures,
only the Γ point is considered in the calculations. The energy
and force convergence criteria are 10−6 eV and 0.02 eV/Å, re-
spectively.

Once we have the training set, the bispectrum coefficients
are calculated using the LAMMPS28 software package devel-
oped by Thompson.24 The training of the SNAP potentials is
performed using the python package FitSNAP.37 The hyper
parameters and cutoffs of atoms are optimized through grid
searching. The cutoff radius for Ta is 3.43 Å, for O is 2.45 Å
and for Zr is 3.67 Å. The weights of Ta, O and Zr are 0.92,
1.00 and 0.67.

III. SNAP POTENTIAL RESULTS AND APPLICATIONS

A. Training errors of energies, forces and stresses

The training structures for crystal Ta2O5 are mp-10390,
mp-554867 and mp-624688. For crystalline ZrO2, mp-
1190186, mp-1565, mp-2574, mp-2858, mp-556605 and mp-
963 are used. (IDs are indexed in materials project database27)
The crystal structures are only primitive cells. The shifted,
distorted and MD trajectories of the crystal phases are starting
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FIG. 1. The distribution of training and testing errors for energies,

forces and stresses when EME-SNAP results are compared to DFT

references.

from crystalline supercells, which are 300–1000 atoms, and
the supercells are enlarged to be as cubic in shape as possible.

The reference energies, forces and stresses (DFT) and pre-
dicted energies, forces and stresses (SNAP) from the training
set (randomly selected in all models) are plotted in Fig. 1(a),
(c) and (e) respectively. The testing set (randomly selected
from all models besides the training models) error distribu-
tions are shown in Fig. 1(b), (d) and (f). These results demon-
strate that the energies and forces from SNAP are in agree-
ment with the DFT references. The total mean absolute errors
(MAEs) are 1.5meV per atom for energy and 0.22 eV/Å for
force. The MAEs of energies and forces for each type of train-
ing set are shown in Table I. The force stress tensors of each
model calculated from SNAP also match the DFT references
reasonably well, even though they are not training properties.
Both the training and the testing errors show almost the same
error distribution and no over-fitting is found during training
tests with different training set sizes.
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Type Nconfig Nforce EMAE (eV/atom) FMAE (eV/Å)

crystalline Ta2O5 860 2.7× 10
4

1.2× 10
−3

1.5× 10
−1

crystalline ZrO2 2104 9.2×10
4

8.2× 10
−4

6.5× 10
−2

liquid O2 37 7.1× 10
4

2.1× 10
−3

2.9× 10
−1

amorphous Ta2O5 261 5.7× 10
5

8.7× 10
−4

1.8× 10
−1

amorphous ZrO2 540 1.1× 10
6

7.3× 10
−4

1.1× 10
−1

12% ZrO2-doped Ta2O5 48 1.4× 10
5

7.5× 10
−4

2.1× 10
−1

25% ZrO2-doped Ta2O5 56 1.6× 10
5

9.0× 10
−4

2.1× 10
−1

38% ZrO2-doped Ta2O5 69 2.0× 10
5

6.7× 10
−4

2.1× 10
−1

50% ZrO2-doped Ta2O5 1143 3.0× 10
6

2.9× 10
−4 2.9×10

−1

50% ZrO2-doped Ta2O5 small 3926 3.3× 10
6

3.0× 10
−3 3.3×10

−1

TABLE I. The mean absolute errors (MAE) of energies and forces for each type of training set

B. Two-body pair force comparison

Unlike the simple form of the classical two-body pair po-
tential, the EME-SNAP has hundreds of parameters and in-
cludes many-body interactions. Besides comparing energies,
forces and stresses to first-principle calculations, it is nec-
essary to check two-body interactions and see how well the
EME-SNAP works in this limit. Here we performed force cal-
culations between various pairs in the system to give insight
into the EME-SNAP. With only two atoms included the forces
are calculated by continually changing the distance between
the two atoms. There are six types of pairs: Ta-O, Zr-O, O-
O, Ta-Ta, Zr-Zr and Ta-Zr. The two-body pair forces of each
type are shown in Fig. 2. The forces shown are calculated
based on self-consistent density functional theory (DFT), the
Morse-BKS pair potentials and the EME-SNAP for compari-
son.

From these results, we find that the EME-SNAP two-body
pair forces for Ta-O and Zr-O are similar to the forces derived
from the Morse-BKS potentials, which are almost on top of
the DFT results below 3.5 Å. All sets of forces have a min-
imum near 2.0 Å for Ta-O and 2.1 Å for Zr-O, with similar
magnitudes. In amorphous oxides, the metal atoms are mostly
surrounded by oxygen atoms, which makes the metal-oxygen
“bonds” one of the most important interactions. From previ-
ous studies,8–10 the analytic form of the Morse-BKS poten-
tial comes from physical understanding and has proven to be
very successful in modeling amorphous oxides such as Ta2O5

and ZrO2. On the other hand, the EME-SNAP is only trained
from the energies, forces and stresses from first-principle cal-
culations, and thus there is no physical understanding such as
bonds or effective charges included. The similarity in the two-
body pair forces of Ta-O and Zr-O from DFT, Morse-BKS,
and EME-SNAP is solid evidence that both the Morse-BKS
potential and EME-SNAP have captured the physical interac-
tions between metal and oxygen atoms in amorphous ZrO2-
doped Ta2O5. These metal-oxygen interactions are directly
related to the short-range order of the radial distribution func-
tions (RDF) in amorphous oxides, and indeed the RDFs in
the following section affirm that both potentials agree on the
short-range order.

The two-body pair forces of O-O from the Morse-BKS
potential are always repulsive, while O-O from EME-SNAP
show bonding behavior near 1.4 Å, similar to DFT, which
makes the EME-SNAP more correct physically when con-
sidering only O-O interactions. For the Morse-BKS poten-
tials, Ta-Ta, Ta-Zr and Zr-Zr pairs include only the coulomb
repulsion from effective charges. The EME-SNAP gives the
same trend in forces for each pair, but they are slightly differ-
ent from the Morse-BKS potentials, as expected. The metal-
metal pairs in amorphous oxides are connected through oxy-
gen atoms and their pair distances are longer than 3 Å. The
slightly different two-body pair forces and many-body contri-
butions in SNAP beneficially affect the Ta-Ta, Ta-Zr and Zr-Zr
RDFs beyond 3 Å, which is noted in the following subsection.
The DFT O-O and metal-metal pair forces in the calculations
only consider the interactions between a single type of ele-
ment, different from pair forces of the Morse-BKS potentials
and EME-SNAP for amorphous oxides.

We also compared cohesive energies Ec of amorphous 50%
ZrO2-doped Ta2O5 models computed by various potentials.
The cohesive energy from DFT is computed as

Ec =
[Etotal −NTa × ETa −NZr × EZr −NO × EO]

Ntotal

, (8)

where Nx and Ex are the number and energy of element x;
and Ntotal and Etotal are the total number of atoms and total
energy of the system in the unit cell.

Fig.4 shows cohesive energies computed from Morse-BKS
and from EME-SNAP potentials on the vertical axis vs. DFT
cohesive energies on the horizontal axis. Each point in the plot
represents one structural model. Two sets of models are in-
vestigated, one generated by RMC (square symbols, blue and
red) and the other (cross symbols, purple and orange) from
RMC models further relaxed using DFT energy minimization.
The black dotted line is where the calculated cohesive energy
matches perfectly the DFT energy. From the results, we find
that the calculated cohesive energies from EME-SNAP are
closer to the dotted lines compared to Morse-BKS for both
RMC and DFT relaxed models. Deviations of EME-SNAP
from DFT energies are around 0.05 eV, and of Morse-BKS are
around 0.25 eV. The EME-SNAP behaviours, as lines parallel
to the black dotted line, means the energy differences between
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FIG. 2. Two body pair force comparison between DFT (black), EME-SNAP potential (red) and Morse-BKS potential (blue) for (a) Ta-O, (b)

Zr-O, (c) O-O, (d) Ta-Ta, (e) Ta-Zr and (f) Zr-Zr in amorphous ZrO2-doped Ta2O5.

models have even lower errors besides the total energy shift,
which are more important in the MD simulations.

C. Radial Distribution Function

In order to get a better idea about the amorphous atomic
structures, we calculate partial RDFs for models from DFT,
EME-SNAP, and Morse-BKS potentials. The calculated par-
tial RDFs in Fig. 3 are from two sets of models with dif-
ferent numbers of atoms. One set comes from models with
975 atoms (solid lines) that are initially generated by fitting
to the experimental X-ray GIPDF using the RMC method14,
and the other comes from models with 19500 atoms (dotted
lines) starting from randomly generated structures based on
the experimental measured density followed by heating up and
cooling down from 3000K with NVT ensemble. The black
lines are the references, which represent the atomic struc-
tures starting from RMC models and relaxed with DFT energy
minimization. From previous work, we find the RMC mod-
els are slightly different from the DFT models after energy
minimization.12,14 EME-SNAP is generated based on DFT
calculations; here we are only focusing on the comparison
between Morse-BKS and EME-SNAP with DFT as a refer-
ence. The red and blue lines represent configurations collected
from MD trajectories generated at 300K in the isothermal iso-
baric ensemble (NPT) based on the Morse-BKS potentials and
EME-SNAP respectively. Their initial atomic structures are
also from the same RMC models. Here, due to the extremely
long DFT calculation time for models with 975 atoms, we use
DFT-relaxed structures as references instead of configurations
from room temperature MD trajectories.

From the results, we find that the partial RDFs from the

EME-SNAP models with 975 atoms (red solid lines) match
the DFT results (black solid lines) fairly well through the
whole range. Meanwhile, the partial RDFs from models with
975 atoms generated from the Morse-BKS potentials (blue
solid lines) also have good agreement with the DFT partial
RDFs, except for slightly underestimating the first peaks of
Ta-Ta, Zr-Zr and Ta-Zr pairs. The partial RDFs from the
975-atom models are in agreement with the DFT results be-
cause both the Morse-BKS potentials and EME-SNAP are
both good at describing atomic structures near the same ini-
tial RMC structures. Figs. 3(d) and (f) show significant dif-
ferences in metal-metal partial RDFs from the 19500 atom
models generated from the Morse-BKS potentials (blue dot-
ted lines) and DFT (black solid lines), especially for the first
peak of the Ta-Ta and Ta-Zr pairs, while EME-SNAP gener-
ated models (red dotted lines) still give similar partial RDFs
compared to those from DFT generated models. Since all
19500 atom models are from random structures and prepared
with the same recipe, we assert that the EME-SNAP is more
robust and can lead to structures that agree with partial RDFs
from DFT models without the need for RMC fitting.

D. Elastic Modulus

The elastic moduli from experimental measurements can
be used to verify the quality of the potentials, providing ad-
ditional information for modeling and simulations. For amor-
phous materials, calculating elastic moduli with small sam-
ples (such as 364-atom models) tend to have significant vari-
ations. It is necessary to average over multiple configurations
or use a larger model with more atoms to obtain converged
results. The calculations with DFT need huge mount of com-
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FIG. 3. Radial distribution function comparison of the Morse-BKS potential, SNAP potential, and DFT results.

Zr:Ta2O5 Zr [%] Density (g/cm3) Young’s (GPa) Bulk (GPa) Shear (GPa) Poisson ratio

EME-SNAP 50 6.4 125 91 49 0.27

Morse-BKS 50 6.8 172 123 68 0.27

MLD 20183
50.2 ± 0.3 – 130 ± 2 – – –

UMP 5513
41± 3 6.1± 0.2 125 ± 2 – – 0.21 ± 0.05

UMP 5543
43± 3 5.9± 0.2 114 ± 2 – – 0.36 ± 0.03

UMP 6783
47± 2 6.6± 0.2 111 ± 4 – – 0.28 ± 0.09

UMP 6803
47± 2 6.5± 0.2 110± 4 – – 0.28 ± 0.09

CSU III3
54± 3 7.1 143± 5 – – 0.37± 0.05

TABLE II. Elastic properties of ZrO2 doped Ta2O5 from the Morse-BKS models, EME-SNAP models, and experimental measurements.

putational resources, which make it prohibitively expensive.
On the other hand, calculations using classical pair potentials
and machine learning potentials can easily solve this problem,
since they can be at least 103 times faster than DFT.

In this work, the elastic moduli of amorphous ZrO2-doped

Ta2O5 are calculated using models with 19500 atoms based on
the Morse-BKS potentials and EME-SNAP. The elastic mod-
uli are calculated from the elastic strain tensors according to
Voigt-Reuss-Hill approximations.38–41 By changing the sim-
ulation box size along different directions, the elastic strain
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tial and EME-SNAP. The horizontal axis is the cohesive energy from

DFT and the vertical axis is the calculated cohersive energy from

Morse-BKS or EME-SNAP. The black dotted line is for reference

where the calculated energy match the DFT energy. The square

symbols are RMC models and the cross symbols are models whose

atomic structures are relaxed by minimizing their DFT energies.

Experimental densities

FIG. 5. Temperature vs. atomic density of amorphous models dur-

ing simulated annealing. The blue triangle represents models from

Morse-BKS potentials. The grey region is the experiment densities.

tensors are calculated from the change of the system ener-
gies under strain. Compared to the models with 975 atoms
or 364 atoms, the larger models (19500 atoms) the elastic ten-
sors are more isotropic in different directions and the calcu-
lations of the elastic moduli are more consistent due to the
better statistics. Table II contains the elastic properties from
the Morse-BKS potentials and EME-SNAP, as well as the ex-
perimental measurements. The Morse-BKS potentials tend to
over-estimate Young’s modulus, while the EME-SNAP results
agree well with experiments.3

E. Simulated Annealing with MD Simulation

The experimental estimated density of amorphous zirconia-
doped tantala with 50% Zr cation concentrations is about
6.5 g/cm3.12 We use this value as the initial density for the
models. The final density of the amorphous models from
the Morse-BKS potentials and EME-SNAP are 6.8 g/cm3 and
6.4 g/cm3 respectively, after having been equilibrated at 300K
with the NPT ensemble. From Table II, we found that there is
a non-linear relationship between density and doping concen-
tration. The experimental densities of the amorphous materi-
als are also dependent on the deposition methods and anneal-
ing processes, further complicating the comparison between
experiments and models.

We simulate the annealing of 50% zirconia-doped tantala
with the EME-SNAP by heating and cooling the models at dif-
ferent rates. First we heat the models at 20K/ps from 300K,
then cool the snapshots from different temperatures with dif-
ferent rates. All simulations are performed using models with
19500 atoms, and we take one snapshot every 10 fs. The re-
sults are plotted in Fig. 5.

Fig. 5 gives the density and temperature of each configu-
ration. From these results, the models cooled with slower
rates from higher temperatures had lower energies, and the
potential energies and the densities of models after simulated
annealing depend on both annealing temperature and cool-
ing rate. The final densities range from 6.2 to 6.4 g/cm3,
which is slightly lower than the targeted experimental value
of 6.5 g/cm3. The experimental atomic density vs. temper-
ature curve during annealing is not available for compari-
son, but the large variation of the experimental densities of
amorphous SiO2,5 amorphous Ta2O5,5 and amorphous ZrO2-
doped Ta2O5

3 suggest a non-trivial dependence on the depo-
sition conditions and annealing temperatures.

F. Simulated Mechanical Spectroscopy

By applying a periodic strain on the simulation box and cal-
culating the stress responses from MD simulations, we can
simulate the mechanical spectroscopy42–44 of the amorphous
materials. The strain vs. potential energy curve can reveal the
potential energy response to the strain, and it can also be used
to check the volume stability of the models. Mechanical spec-
troscopy has been used to extract mechanical loss properties
successfully for amorphous tantala.15

We applied periodic strain with 0.01 amplitude to 50%
zirconia-doped tantala with both Morse-BKS and EME-
SNAP to simulate mechanical spectroscopy. Before we col-
lect the results, 50 ns simulations are performed to allow the
atomic structures to be further relaxed under strain. We found
that both potentials give similar mechanical spectroscopy. As
soon as the additional strain is applied, the potential energies
go up. Compression strains show larger energy changes com-
pared to tensile strains with the same amplitude. Comparing
the results from Morse-BKS and EME-SNAP, we note that
Morse-BKS gives larger energy changes and stress response,
which is consistent with results that Morse-BKS gives larger
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FIG. 6. Mechanical spectroscopy simulations of 50% ZrO2-doped

Ta2O5. The frequency of the strain is 1×10
9 Hz at 300K. (a), (c)

,and (e) are from models with Morse-BKS potential, and (b), (d), and

(f) are from models with EME-SNAP.

elastic modulus in table II.

IV. CONCLUSION AND DISCUSSION

With training from the energies, forces, and stresses from
DFT calculations, we generated an EME-SNAP for amor-
phous zirconia-doped tantala. The EME-SNAP faithfully re-
produces the energies, forces and stresses compared to the
DFT references. The amorphous zirconia-doped tantala mod-
els generated from SNAP are able to capture the correct short-
range order and better metal-metal partial pair RDFs than the
well-built Morse-BKS classical pair potentials. Without any
prior knowledge EME-SNAP is able to learn from training and
give a computable potential for the targeted system. The rela-
tively fast calculation speed of EME-SNAP enables large-size
models and long-time simulations, which makes more realis-
tic amorphous models with better statistics for properties such
as RDFs and elastic moduli. Doping is also automatically in-
cluded and becomes a non-issue compared to the classical pair
potentials.

Despite the success of the EME-SNAP in this work, there
are still some problems that must be mentioned. In this work,
the EME-SNAP is developed for zirconia-doped amorphous
tantala with both crystals and amorphous structures included
in the training set, but it cannot capture the re-crystallization
process when we cool very slowly from high temperatures

(> 1000K). The atoms will have the chance to aggregate to-
gether and result in unphysical structures with extremely high
potential energies. The higher the temperature and the slower
the cooling rate is, the higher chance the potential fails. This
behavior is partially mitigated by using EME-SNAP instead of
WD-SNAP, which improves the chemical sensitivity and force
accuracy by explicitly considering the partial atomic density
for each type of element. Failed structures, DFT MD trajec-
tories at higher temperatures are also added into the training
set. They can improve the high temperature stability, but they
also increase errors in the amorphous structures of interest in
this work. Failure in the simulations can also be triggered by
the formation of oxygen molecules. Oxygen molecules may
exist in real amorphous oxides, and in the two-body force
test SNAP shows O-O bonding in oxygen molecules around
1.4 Å. But currently SNAP does not include them properly,
even with liquid oxygen added to the training set. We can
avoid this problem by adding an additional repulsive inter-
action between O atoms, but this modification will increase
the training errors significantly and lead to low-density states
which are not close to experimental measurements. To avoid
these failures, the best approach for now is smoothly mixing
10 to 20% Morse-BKS potentials in the EME-SNAP at high
temperatures. Another possible solution is applying the ma-
chine learning on-the-fly technique45,46 to add training struc-
tures during simulations and adjust the parameters based on
the different atomic environments.

In summary, the EME-SNAP based on machine learning
techniques give us an alternate way of calculating forces and
energies with a good balance of accuracy and calculation
cost, which enables the modeling of complex systems such
as doped amorphous oxides. With a proper training of the tar-
geted structures, it can be used to study energy landscapes,
as well as elastic and thermal properties. More effort in im-
proving generality and stability of the potential is required
to study more complex physics such as re-crystallization and
phase transitions.
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interatomic potential for amorphous carbon,” Physical Review B

95, 094203 (2017).
23 Daniele Dragoni, Thomas D Daff, Gábor Csányi, and Nicola

Marzari, “Achieving dft accuracy with a machine-learning inter-

atomic potential: Thermomechanics and defects in bcc ferromag-

netic iron,” Physical Review Materials 2, 013808 (2018).
24 Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M

Foiles, and Garritt J Tucker, “Spectral neighbor analysis method

for automated generation of quantum-accurate interatomic poten-

tials,” Journal of Computational Physics 285, 316–330 (2015).
25 Mitchell A Wood and Aidan P Thompson, “Extending the ac-

curacy of the snap interatomic potential form,” The Journal of

Chemical Physics 148, 241721 (2018).
26 Mary Alice Cusentino, Mitchell A Wood, and Aidan P Thomp-

son, “Explicit multielement extension of the spectral neighbor

analysis potential for chemically complex systems,” The Journal

of Physical Chemistry A 124, 5456–5464 (2020).
27 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen,

William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan

Gunter, David Skinner, Gerbrand Ceder, and Kristin a. Persson,

“The Materials Project: A materials genome approach to acceler-

ating materials innovation,” APL Materials 1, 011002 (2013).
28 Steve Plimpton, “Fast parallel algorithms for short-range molec-

ular dynamics,” Journal of computational physics 117, 1–19

(1995).
29 Georg Kresse and J Hafner, “Ab initio molecular dynamics

for open-shell transition metals,” Physical Review B 48, 13115

(1993).
30 Georg Kresse and Jürgen Furthmüller, “Efficient iterative schemes

for ab initio total-energy calculations using a plane-wave basis

set,” Physical review B 54, 11169 (1996).
31 Georg Kresse and Jürgen Furthmüller, “Efficiency of ab-initio

total energy calculations for metals and semiconductors using a

plane-wave basis set,” Computational materials science 6, 15–50

(1996).
32 Walter Kohn and Lu Jeu Sham, “Self-consistent equations includ-

ing exchange and correlation effects,” Physical review 140, A1133

(1965).
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