
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phonon-mediated strong coupling between a three-
dimensional topological insulator and a two-dimensional

antiferromagnetic material
D. Quang To, Weipeng Wu, Subhash Bhatt, Yongchen Liu, Anderson Janotti, Joshua M. O.

Zide, Mark J. H. Ku, John Q. Xiao, M. Benjamin Jungfleisch, Stephanie Law, and Matthew F.
Doty

Phys. Rev. Materials 7, 045201 — Published 20 April 2023
DOI: 10.1103/PhysRevMaterials.7.045201

https://dx.doi.org/10.1103/PhysRevMaterials.7.045201


Phonon-mediated strong coupling between a three-dimensional topological insulator
and a two-dimensional antiferromagnetic material

D. Quang To,1 Weipeng Wu,2 Subhash Bhatt,2 Yongchen Liu,1 Anderson Janotti,1 Joshua M.O. Zide,1 Mark

J.H. Ku,1, 2 John Q. Xiao,2 M. Benjamin Jungfleisch,2 Stephanie Law,1, ∗ and Matthew F. Doty1, †

1Department of Materials Science and Engineering,
University of Delaware, Newark, DE 19716, USA

2Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
(Dated: March 3, 2023)

We numerically study strong coupling between THz excitations in a hybrid material consisting of
a three dimensional (3D) topological insulator (TI) and a quasi-two dimensional (2D) Van der Waals
antiferromagnet (AFM). We find that the interaction between a surface Dirac plasmon polariton
in the 3D TI and a magnon polariton in the 2D AFM is mediated by the phonon coupling in
the 3D TI material and can result in emergence of a new hybridized mode, namely a surface Dirac
plasmon-phonon-magnon polariton. We numerically study the dependence of the strong coupling on
a variety of structural parameters of the 3D TI / 2D AFM hybrid material. Our results reveal that
the strength of the coupling depends primarily on the anisotropy constant of the 2D AFM material,
as well as on its thickness, and reaches a maximum when the AFM layer is sufficiently thick to
be considered a half-infinite slab. We show that the extremely large anisotropy constant reported
for certain 2D van der Waals AFMs results in a coupling strength that should be experimentally
observable even in the presence of realistic scattering losses.

I. INTRODUCTION

The tremendous progress in materials science and en-
gineering in recent years has resulted in the synthesis of
numerous new classes of materials with unprecedented
properties and the potential to develop new devices that
address the “THz gap” in optoelectronic device tech-
nologies in an important region of the electromagnetic
spectrum[1–10]. For instance, three dimensional topo-
logical insulators (3D TIs) such as Sb2Te3, Bi2Te3 or
Bi2Se3, which host two-dimensional surface Dirac plas-
mons with energy in the THz regime, could be utilized
to guide THz signals within integrated circuits [11–14].
Similarly, two-dimensional van der Waals antiferromag-
netic (2D AFM) materials like FePS3, NiPS3, MnBi2Te3,
or CrI3, which host magnons in the same THz energy
range, could be employed to transfer THz frequency in-
formation without energy dissipation due to the absence
of charge current [15–22]. However, to date the gen-
eration of THz magnons in AFM materials is still not
well controlled, with common techniques relying on con-
version from a thermal source [23–26]. Moreover, the
magnon in an AFM material is insensitive to small ex-
ternal magnetic fields because of a vanishing macroscopic
magnetic moment. Those material properties make it dif-
ficult to utilize magnons in AFMs within devices. Find-
ing ways to generate, control, and detect magnons in an
AFM material-based heterostructure is therefore one es-
sential step toward improved devices. In that context,
a strong interaction between the electric and magnetic
degree of freedoms in a TI/AFM heterostructure, which
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results in a hybridization between the magnetic and plas-
monic resonances of the two constituents, may provide an
effective alternative for the excitation, manipulation, and
detection of the magnon via optical control of the disper-
sion of surface plasmons in the TI. Moreover, the hy-
bridization of magnons with photons [27–30] or phonons
[21, 26] could lead to emergent properties that offer even
more device opportunities.

We numerically study the emergence of strong coupling
between THz excitations in a 3D TI / AFM hybrid ma-
terial. Specifically, we consider hybridization of two ex-
citations: the Dirac plasmon-phonon polariton (DPPP)
on the surface of a 3D TI and a magnon polariton (MP)
in an AFM. The DPPP on the surface of 3D TI is itself a
hybridized state, as described below, and such polaritons
have been studied extensively [31–37]. MPs, which are
the collective excitations of electronic spins in a magnetic
material (i.e. spin waves), have also been studied exten-
sively in numerous material platforms [38–43]. To date
there have been just a few reports on the interaction be-
tween the surface DPPP and the MP in heterostructures
composed of a 3D TI and an AFM, and these have been
limited to 3D antiferromagnetic materials such as NiO,
FeF2, or MnF2 [44–46]. The computationally-predicted
anticrossing splitting in the systems studied to date is
too small to be observed experimentally. In other words,
these previous reports suggest that it will not be possible
to create hybridized states or reach the strong coupling
regime in such systems with presently available materials.

We show that three changes to the 3D TI / AFM hy-
brid material composition and structure allow for en-
try into the regime in which strong coupling should
be experimentally observable. First, we consider 2D
van der Waals AFMs such as FePS3, which has an
anisotropy energy with magnitude between 2.66 meV
and 3.6 meV [26, 47–50], up to three orders of magnitude
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larger than that of a typical 3D antiferromagnetic mate-
rial like MnF3. This remarkably large anisotropy energy
significantly increases the strength of coupling between
the magnon polariton in the 2D AFM and the surface
DPPP in a 3D TI. The relatively high magnon energy
(≈ 3.7 THz) in FePS3 [26, 51] also reduces the need for
an extremely high quality 3D TI such as that reported
previously for a hybrid composed of a 3D TI and a tra-
ditional 3D AFM [46]. Second, increasing the thickness
of the AFM material allows one to tune the number of
magnons in the hybridized states, which in turn increases
the coupling constant. Third, the coupling of an electro-
magnetic wave with a phonon in the bulk of a 3D TI
allows one to tune the energy of the DPPP by changing
the thickness of the TI. This provides a tool for tuning
the DPPP toward resonance with the MP in the AFM
material, thereby enhancing the strength and visibility of
the coupling between the excitations in the two materials.

The paper is organized as follow. In Sect. II, we present
the methods and models employed to investigate the in-
teraction between the 3D TI layer and the 2D AFM ma-
terial. We first introduce a conceptual model and compu-
tational framework for studying the anticrossing between
hybridized states of a DPPP and MP. We next introduce
the optical response functions of TIs and AFMs to the
electric and magnetic components of an electromagnetic
wave propagating within each constituent material. We
end Sect. II with a description of the global scattering
matrix method we employ to solve Maxwell’s equations
within the TI / AFM heterostructure and compute a dis-
persion relation describing the dependence of the energy
(or frequency) of the excitations (E(k) / ω(k)) on the
wave vector k. In Sect. III we discuss the calculated
dispersion relations for the surface DPPPs. We explore
the dependence of these dispersion relations on various
material properties and, in particular, explore the mate-
rial and device properties required to obtain strong cou-
pling between the 3D TI and the 2D AFM heterostruc-
ture. The roles of the material parameters in tuning the
strength of this coupling provide important guidance as
to how the strong coupling regime can be reached exper-
imentally. Finally, we provide conclusions and perspec-
tives for this work in Sect. IV.

II. THEORY AND MODEL

A. Conceptual Framework

Hybridized states are established when two distinct
excitations interact with sufficient strength to create a
new mode whose character and dispersion relation can-
not be understood by considering either excitation alone
[33, 52, 53]. A good example is the formation of a surface
plasmon polariton, which is a hybridized state formed
from an electromagnetic wave (photon) and charges os-
cillating at a metallic sample surface (plasmon). The
emergence of such a hybridized state is typically observed

through an anti-crossing (avoided crossing) in the dis-
persion relation. The strength of the interaction can be
parameterized by the amplitude of the avoided-crossing
splitting between the two polariton branches. By anal-
ogy to cavity quantum electrodynamics, we define strong
coupling to be the regime in which the observed mode
splitting δ becomes comparable to the line width of
the involved excitation, making the cooperativity factor

C = δ2

4Γ1Γ2
≥ 1 [54], where Γ1 and Γ2 are the line widths

of the isolated excitations that comprise the hybridized
states. These line widths originate in the loss (dissipa-
tion) for each excitation.

Tuning the DPPP into resonance with the MP results
in stronger and more easily observable coupling. This can
be understood conceptually from a 2 × 2 matrix Hamil-
tonian:

Ĥ =

[
EDPPP (k, dTI) Vint

Vint EMP (k)

]
(1)

where EDPPP (k, dTI) is the energy of the DPPP in the
TI, which depends on the wave vector k and the TI thick-
ness dTI , EMP is the energy of the magnon polariton in
the AFM, and Vint is the strength of the coupling be-
tween the DPPP and the MP. The energies of the hy-
bridized state that arises due to coupling are found from
the eigenvalues of this matrix. The eigenstates are the
hybridized modes with both DPPP and MP character-
ized, i.e the superposition ΨHybrid = ΨTI +ΨAFM where
ΨTI and ΨAFM describe the surface Dirac plasmon-
phonon-polariton state in the TI and the magnon po-
lariton state in the AFM, respectively.

When EDPPP and EMP are significantly different, the
eigenstates remain largely dominated by either the DPPP
or MP modes. The perturbation induced by the coupling
is small and difficult to distinguish from the normal k-
dependence of the energy for the independent DPPP or
MP. In other words, the two excitations are only weakly
coupled. Two factors impact the strength and visibil-
ity of the coupling. First, when dTI is chosen so that
EDPPP (k) and EMP (k) are degenerate for some value of
k, the eigenstates at the degeneracy point have energy
EDPPP (k) ± Vint (which is equal to EMP (k) ± Vint for
this value of k). In other words, the eigenstates are fully
hybridized polaritons with equal DPPP and MP com-
position. For this reason, the dependence of the DPPP
energy on dTI provides a powerful tool for tuning the ex-
citations into resonance and creating a fully hybridized
state. Second, the magnitude of the interaction parame-
ter Vint controls the magnitude of the anti-crossing split-
ting (δ = 2Vint). As we will show below, the choice of a
2d AFM with large anistropy energy and an increasing
thickness of the AFM material both increase the strength
of the interaction between magnons and the EM wave.
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B. Computational Framework

An EM wave will excite both surface Dirac plasmon
phonon polaritons (DPPPs) in the TI and magnon po-
laritons (MPs) in the AFM via its electric and mag-
netic field components. Those excitations will interact
with each other, resulting in the hybridization between
plasmon-phononic and magnetic resonance, namely the
creation of surface Dirac plasmon-phonon-magnon po-
laritons (SDPP-MPs) that lead to changes in the dis-
persion relationship ω(k). We compute these dispersion
relations using a global scattering matrix that allows us
to a) find a solution to Maxwell’s equations for an elec-
tromagnetic (EM) wave propagating in the considered
structure subject to standard boundary conditions at in-
terfaces and b) pull out information about the electric
field amplitudes at any point or interface within the het-
erostructure. From the output of this technique we plot
the imaginary part of the reflection coefficient, which de-
scribes the amplitudes of the evanescent waves propagat-
ing along the surface of the TI layer as a function of in-
plane wave vector and the frequency of EM wave. Local
maxima of the imaginary part of the reflection coefficient
represent the existence of the modes and thus this type
of plot effectively reveals the dispersion relation. Anal-
ysis of the dispersion relationships for these hybridized
modes as a function of the structural parameters allows
us to explore the physical origins of the interactions. The
inputs for this global scattering method are the optical
response function and thickness of the corresponding ma-
terial constituents of the system, which we present next.

C. Optical response function: TI

We consider two potential 3D TI materials, Bi2Se3 and
Sb2Te3, that host two dimensional spin-polarized Dirac
plasmon on the surface. The behavior of these Dirac
plasmon is analogous to that in graphene and the Dirac
plasmon system on the surface of a pristine 3D TI layer
can be treated as a conducting electron sheet with optical
conductivity given by

σTI =
e2EF
4π~2

i

ω + iτ−1
. (2)

where EF ≈ 260 meV is the Fermi energy of surface
states, τ ≈ 0.06 ps is the relaxation time [37], and e is
the electron charge.

We note that a TI thin film can acquire a nonzero
local magnetic moment due to proximity with an AFM

material when the two materials are put in contact. How-
ever, this effect is normally weak and can be neglected,
especially in the case of an AFM material [55]. In addi-
tion, the hybridized states at the interface between a TI
and another material (e.g. the AFM in this work) may
change the carrier density at the interface, as predicted
by density functional theory for the case of a TI/III-V
semiconductor interface[56]. In the case of a structure
composed of two van der Waals materials, this effect is
expected to be small and can be ignored. We therefore
assume the same optical conductivity expression for the
conducting surface of the TI and the interface between
the TI and the AFM. In other words, in the following
σ0 ≡ σ1 ≡ σ as given by Eq. 2 (where σ0 and σ1 are
respective the optical conductivity of the Dirac plasmon
on the surface of the TI and at the interface between the
TI and the AFM).

Remarkably, interactions between the Dirac plasmon
mode and the lattice vibrations, i.e. phonons, in a bulk
TI significantly alter the dispersion of the surface Dirac
plasmon polariton in the TI, resulting in the formation
of a Dirac plasmon phonon polariton (DPPP) mode that
is different from the polariton modes of 2D materials like
Graphene [12, 34]. In the case of chalcogenide materials
with a rhombohedral lattice and quantum layer struc-
ture, like that of Bi2Se3 and Sb2Te3, two characteris-
tic phonon modes are observable when the AC electric
field is perpendicular to the c axis: the alpha phonon,
also known as the (Eu1) mode, and the beta phonon,
also known as the (Eu2) mode [57]. The strong alpha
phonon mode oscillation contributes to a large variation
in the TI permittivity in the THz regime we consider
in this work. In contrast, the contribution of the beta
phonon is usually small and is negligible for the case of
Sb2Te3. Incorporating all of these effects, the frequency-
dependent permittivity of the bulk TI in the far-IR range
of interest can be described by the Drude–Lorentz model
[37, 46, 56]:

εTI = ε∞ +
S2
α

ω2
α − ω2 − iωΓα

+
S2
β

ω2
β − ω2 − iωΓβ

(3)

where ε∞ is the dielectric constant at high frequency
(ω → ∞), ωx, Γx, and Sx are the frequency, the scat-
tering rate, and the strength of the Lorentz oscillator as-
sociated with the α (x = α) and the β (x = β) phonons of
the TI thin film. Numerical values for all TI parameters
are taken from reference [36] and are listed in Table I. All
the TIs used in this work are non-magnetic materials, so
their permeabilities are set to unity, µTI = 1.

D. Optical response function: 2D AFM

The AFM materials we consider (FePS3, MnPS3,
NiPS3, and CoPS3) belong to a family of quasi-two-

dimensional van der Waals AFMs in which the magnetic
lattice is a honeycomb-like structure akin to graphene
[19, 20]. One of the important theoretical advances re-
ported here is that we use a Heisenberg Hamiltonian
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TABLE I. The TI parameters used in this work, taken from [36].

Materials ε∞ Sα(cm−1) ωα(cm−1) Γα(cm−1) Sβ (cm−1) ωβ(cm−1) Γβ (cm−1)
Bi2Se3 1 675.9 63.03 17.5 100 126.94 10
Sb2Te3 51 1498.0 67.3 10 NA NA NA

model that captures the magnetic interactions in the
quasi 2D AFM material to derive an analytical expression
for the magnetic susceptibility tensor of FePS3. This an-
alytical expression is generalizable to any 2D AFM ma-
terial in the family XPS3 (X=Mn, Fe, Co, Ni). This
magnetic susceptibility tensor, which is the input for our
global scattering matrix method, is distinct from that of
bulk (3D) AFM materials because one has to consider in-
teractions between the spin moments of magnetic atoms
up to the third next-nearest-neighbor. See Appendix A
for details.

Because van de Waals layered structures have very
weak interlayer coupling, the dielectric tensor of FePS3

is frequency independent in the AFM phase and has a
strong anisotropy between the in-plane and out-of-plane
dielectric constants of the bulk materials, which can be
written as

εAFM =

εxx 0 0
0 εyy 0
0 0 εzz

 (4)

where εxx = εyy = ε‖ = 25 and εzz = ε⊥ = 5 [58]. Below
the Neel temperature of TN = 123 K [59], the magnetic
moment of FePS3 is out of plane along the c-direction (z-
direction). We assume that the samples are below their
Neel temperatures in the calculations we conduct here.
The permeability of FePS3 in the absence of an external
magnetic field therefore can be expressed as

µ =

µxx 0 0
0 µyy 0
0 0 1

 (5)

where µxx = µyy = 1 + 4π 2γ2HaM0

Ω2
0−(ω+i/τmag)2

, and µzz = 1.

See Appendix A for the detailed derivation of Eqn. 5.
Here, γ is the gyromagnetic ratio, Ha is the effective
anisotropy field, M0 is the sublattice magnetization sat-
uration, Ω0 is the antiferromagnetic resonance or zero-
wave vector magnon frequency in the AFM material,
and τmag is the magnetic relaxation time. For FePS3,
M0 ≈ 830 G, Ha = 9840 kOe, Ω0 = 3.7 THz, and
ΓAFM = 1/τmag = 0.035 THz [21]. Below we will con-
sider how the scattering loss rate in the AFM material
influences the strength of the coupling between the TI
and AFM materials. Finally, the substrate MgO used in
this study is a non-magnetic material so that its perme-
ability µMgO = 1 and its dielectric constant is given by
εMgO = 9.9 [60].

E. Global scattering matrix approach

Now that we have obtained the optical response func-
tions for the material constituents of our hybrid struc-
ture, we study the interaction between the TI and the
AFM constituents by solving Maxwell’s equations to de-
rive the dispersion relationship for a monochromatic elec-
tromagnetic (EM) wave propagating in our optical struc-
ture. We do this using the scattering matrix formalism
that has proven to be a powerful tool for investigating the
electric and spin transport properties of layered struc-
tures [61–63]. Here we adapt that robust tool to our
optical structure. We note that we have previously used
a recursive method [46, 56] to efficiently calculate the
transmission and reflection coefficients of hybrid struc-
tures, but this recursive approach does not make it easy
to pull out what happens at specific interfaces within the
structure. The ability to isolate and understand what
happens at interfaces within the structure, or in subsets
of the structure, provides important insight into the un-
derlying physics and the ways in which the structure and
composition can be used to tune the optical response.
We therefore develop here a new so-called “global scat-
tering matrix” method from which we can easily extract
what happens at each interface and within each layer.
We present a detailed description of the global scattering
matrix formalism in Appendix B. The most important
outcome of this formalism for the work presented here is
that we can compute the optical response of the entire
structure and the constituent parts from a global scat-
tering matrix constructed based on interfacial scattering
and propagation matrices that capture what happens at
each interface and within each layer of the structure. The
inputs to these interfacial scattering and propagation ma-
trices are the materials parameters of the system and the
optical response functions of each layer.

Starting from the optical response functions derived
in the previous sections, we employ the global scattering
matrix formalism to compute the reflection coefficients
for our hybrid material system. The imaginary part of
the reflection coefficient, Im(r), is proportional to the
losses in the system [37, 56, 64–67]. The presence of loss
in the reflectance spectrum indicates that the incident
EM wave has generated an excitation that is carrying
energy away laterally, i. e., propagating in the x- or y-
direction rather than transmitting or reflecting in the +z
or -z directions, respectively. The frequency dependence
of such loss thus generates the dispersion curves for the
hybridized excitations in the coupled system, which is
the aim of this study. In the next section we consider
how this dispersion relation depends on structural and
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material properties, which allows us to probe the physics
underlying the formation of hybridized excitations.

III. RESULT AND DISCUSSION

The structure under investigation in this paper is
shown in Fig. 1: an AFM material (FePS3) on a substrate
(MgO) is capped with a TI thin film. In this model, an
electromagnetic wave with both TE- and TM-polarized
components is incident on the top TI layer. As a result
of the electromagnetic interaction with the electric and
magnetic field components of the EM wave, surface Dirac
plasmon polaritons in the TI thin film and magnon po-
laritons in the AFM material will be excited at certain
resonant frequencies. The excited surface Dirac plasmon
polaritons can then interact with the phonon in the bulk
of the TI and also couple to the magnon polaritons in
the AFM layer. We note that the TE-polarized EM wave
cannot excite the surface Dirac plasmon polaritons in the
TI [56]. Consequently we consider only TM-polarized in-
cident EM waves in the our analysis. For convenience,
we denote the Cartesian coordinates as in Fig. 1: the z-
axis is along the growth direction of the structure, the
heterostructure has finite width W in the x direction,
and the heterostructure is infinite in the y-direction. We
set the direction of propagation of the EM wave to be
parallel to the x-z plane so that the magnetic field of
TM-polarized EM waves is along the y axis. Throughout
our analysis the color plots in the following figures repre-
sent the amplitude of the imaginary part of the Fresnel
reflection coefficient Im(r) of the entire structure. The
maxima of the function Im(r) reveals the dispersion re-
lationship for the coupled modes. We first discuss the
emergence and characteristics of coupled surface Dirac
plasmon-phonon-magnon modes and then consider how
the strength of the coupling depends on structural and
material parameters.

We first note that in the long-wavelength limit
(kxdTI � 1), the analytical expression for the surface
Dirac plasmon mode in the TI thin film was derived in
[12, 13]

ω2
TI+ =

vF
√

2πn2De
2

ε0h

kx
εtop + εbot + kxdTIεTI

(6)

and

ω2
TI− =

2ε0εTIhvF + e2
√

2πnDdTI√
4ε2

0ε
2
TIh

2v2
F + 2ε0εTIe2

√
2πnDdTI

k2
x (7)

where the subscripts TI+ and TI− stand for the optical
and acoustic mode, respectively. Here vF is the Fermi
velocity for the Dirac plasmon in the TI; n2D is the sheet
carrier concentration of the entire TI thin film, including
the contribution from both surfaces; εtop, εbot and εTI are
the permittivity of the top and bottom dielectric media
and the TI, respectively; kx is the in-plane wave vector;

TI

AFM

MgO substrate

z

x

E 𝜃

𝐓𝐌

𝜖𝑇𝐼 , 𝜇𝑇𝐼

𝜖𝐴𝐹𝑀 , 𝜇𝐴𝐹𝑀

y

𝜎0

𝜎1

dTI

dAFM

FIG. 1. The TI/AFM bilayer structure on an MgO sub-
strate investigated here. The optical response functions in
each material are the permittivity εTI/AFM and permeability
µTI/AFM . An EM wave with both TE- and TM-polarization
is incident on the TI from above with angle of incidence θ.
However only TM-polarized light will excite both electric and
magnetic degrees of freedoms in the structure, namely surface
Dirac-plasmon-phonon polaritons in the TI and magnon po-
laritions in the AFM.

and dTI is the thickness of the TI layer. In this work,
we focus on studying the optical mode of the surface
Dirac plasmon in the TI; only this mode can be excited
in a traditional optical experiment because the acoustic
mode does not have any contribution in the optical dipole
matrix element [13]. In the following parts we will use
relation 6 as a reference for our further analysis of the
hybridized modes.

A. Surface Dirac plasmon-phonon-magnon
polariton: Signature of strong coupling

We will start by treating the AFM as a semi-infinite
slab (i.e. infinitely thick) so that we can focus on the
physics of the TI/AFM interface and the effect of the TI
parameters on the resulting emergent hybridized state.
We apply the global scattering matrix technique de-
scribed in Sect. II E to two different configurations of
the structure shown in Fig. 1: 1) a Sb2Te3 layer with
thickness dTI = 500 nm on a half-infinite bare MgO
substrate and 2) the same Sb2Te3 layer with thickness
dTI = 500 nm on a half-infinite FePS3 material [the
thickness of the FePS3 is very large in comparison to
that of the Sb2Te3 layer so that, in these calculations,
dAFM ≈ 10dTI) ]. The color plot in Fig. 2 displays the
imaginary part of the Fresnel reflection coefficient Im(r)
calculated for the entire structure as a function of the the
frequency ω and the in-plane wave vector kx.

In Fig. 2(a) we plot the dispersion relation for the sur-
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FIG. 2. (a) The dispersion relation of the surface Dirac
plasmon-phonon polariton in a bare Sb2Te3 thin film on
the half-infinite MgO substrate. The dashed white line pro-
vides, for reference, an analytical calculation of the disper-
sion of the surface Dirac plasmon mode in a pristine Sb2Te3
layer on a MgO substrate, as described in the text. The
inset shows the existence of the mode at 0.2 THz, which
is ∼100x weaker than the modes at higher frequency. (b)
The surface Dirac plasmon-phonon-magnon polariton in the
Sb2Te3/FePS3 structure. Both dispersion relations are plot-
ted as a function of in-plane wave vector kx and frequency ω.
These calculations were both performed with the thickness of
the TI thin film dTI = 500 nm and the FePS3 layer in figure
(b) is sufficiently thick to be considered a semi-infinite layer.

face Dirac plasmon-phonon polariton (SDPPP) in a bare
Sb2Te3 layer on the half-infinite MgO substrate. The
dispersion of the SDPPP appears in the color plot in the
range between kx = 0.02×105 cm−1 and 0.2×105 cm−1.
The steeper line in the color plot between kx = 0 and
0.02× 105 cm−1, in both this and subsequent figures, is
the dispersion of the photon in vacuum ω = ck. This
photon dispersion is not important to the focus of this
work and we normally neglect it without further notifi-
cation. The dashed white curve is an analytical calcula-
tion of the dispersion of the surface Dirac plasmon mode
in a pristine Sb2Te3 layer on a half-infinite MgO sub-

strate obtained by using Eq. 6. One can see that the
dispersion of the SDPPP represented in the color plot
in Fig. 2(a) is comparable to the analytical curve, with
very good agreement for polariton branches above 2 THz.
We note that beside the upper surface Dirac plasmon-
phonon polariton branch with frequency above 2 THz,
which can be observed clearly in the Fig. 2(a) color plot,
there is also a mode at around 0.2 THz shown in the in-
set. This lower polariton mode can be seen clearly from
the dashed white analytical curve around 0.2 THz (the
horizontal dashed white line) in the Fig. 2(a), but its
intensity is two orders of magnitude less than the inten-
sity of the modes above 2 THz. This lower intensity is
due to a large scattering loss rate of the surface Dirac
plasmon in the Sb2Te3 material at room temperature.
The surface Dirac plasmon, with high loss, dominates
the modes at low frequency and consequently this lower
frequency mode is barely visible in our color plot. In con-
trast, for the higher frequency mode (above 2 THz), the
interaction with the α phonon plays an important role
and makes the surface Dirac plasmon-phonon polariton
mode become visible. Overall, Fig. 2(a) simply veri-
fies that the global scatting matrix approach (color plot)
agrees with the analytical dispersion (dashed white line)
when applied to a sample in which interactions with the
AFM material are suppressed. We will next turn on in-
teractions with the AFM. Because the energy of magnons
in the AFMs considered here is far higher than the low-
energy Dirac plasmon polariton mode, the interaction
between the magnon polarition in the AFM and the TI
mode below 2 THz is small and can be ignored.

FIG. 3. The imaginary part of the reflectivity Im(r) on a log-
arithmic (log.) scale as a function of frequency ω calculated
for a Sb2Te3/FePS3 structure with the thickness of TI thin
film dTI = 500 nm and the FePS3 layer sufficiently thick to
be considered a semi-infinite layer. The result is calculated
for an plane wave vector kx = 0.03×105 cm−1 around the res-
onance point for the surface Dirac plasmon-phonon-magnon
polariton.

In Fig. 2(b) the Sb2Te3 is put on top of a very thick
FePS3 layer. We observe a significant change in the spec-
trum of the dispersion relation around ω ≈ 3.7 THz ow-
ing to the interaction between the surface Dirac plasmon-
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phonon polariton (SDPPP) in the Sb2Te3 layer and the
magnon polariton (MP) in the FePS3. The coupling be-
tween the SDPPP and MP results in an anti-crossing
highlighted by the green circle in Fig. 2(b). This in-
teraction and anti-crossing lead to the formation of an
upper and a lower mode that are evident through the re-
duction of the amplitude of Im(r) around ω = 3.7 THz
and kx ≈ 0.3 × 105 cm−1 in the color plot. The magni-
tude of the splitting between the two modes that occurs
at 3.7 THz due to the coupling between the SDPPP and
MP can be evaluated by plotting the function Im(r) vs.
frequency ω at a fixed kx ≈ 0.3 × 105 cm−1 (resonance
point) as shown in Fig. 3. In this plot, the peaks at
around ω ≈ 3.5 THz and ω ≈ 4.2 THz indicate, re-
spectively, the lower and upper modes in the color plot
of Fig. 2(b). The separation between the two peaks
denoted by δ is the splitting between the two modes
at the resonance point, which is twice the strength of
the coupling between the two excitations in our system.
The splitting δ ≈ 0.65 THz extracted from Fig. 3 for
the interaction between SDPPP and MP should be ex-
perimentally detectable because it is comparable to the
line width of the isolated mode in the system. This in-
teraction is entering the strong coupling regime if the

cooperativity factor C = δ2

4ΓTIΓAFM
is greater than 1,

where ΓTI and ΓAFM are, respectively, the scattering
loss rates of the Dirac Plasmon phonon polariton in the
TI and the magnon polariton in the AFM. The full width
half maximum line width that represents the scattering
loss rate for the surface Dirac plasmon phonon polariton
in the TI is ΓTI ≈ 3 THz [56]. The line width of the
magnon polariton in the FePS3 is ΓAFM = 0.035 THz
[21]. Inputting these values results in a cooperativity fac-
tor C ≈ 1, which indicates the formation of a hybridized
state that is approaching the strong coupling regime.

B. Dependence of the coupling strength on the TI
thickness: the role of the phonon in the TI

Our primary aim in this study is to explore the ma-
terial and structural parameters that enable us to reach
the strong coupling regime for the interaction between
THz excitations in a TI/AFM structure. We will now
investigate the impact of TI structural parameters on
the strength of the coupling between the surface Dirac
plasmon phonon polaritons (SDPPPs) and magnon po-
laritons (MPs) in our system. In this section we maintain
the very large thickness of the AFM, i.e. the AFM is al-
ways a half-infinite medium while the TI’s thickness is
varied to understand how dTI influences the strength of
the coupling. In Fig. 4 we plot the dispersion relation
of hybridized surface Dirac plasmon phonon magnon po-
laritons (SDPP-MPs) for different thicknesses of the TI
layer (a) dTI = 500 nm, (b) dTI = 200 nm, and (c)
dTI = 0.5 nm. We note that dTI = 0.5 nm is about
the thickness of a single quintuple layer of Sb2Te3, which
is the minimum practical thickness. One observes from

FIG. 4. The imaginary part of the reflectivity Im(r) as a func-
tion of frequency ω calculated for a Sb2Te3/FePS3 structure
with TI thickness (a) dTI = 500 nm, (b) dTI = 100 nm, and
(c) and dTI = 0.5 nm on top of a semi-infinite FePS3 layer.

those plots that the dispersion of SDPP-MPs redshifts,
i.e. shifts toward the low frequency regime, as the thick-
ness of the Sb2Te3 layer is reduced. This arises as a result
of the interaction between the α phonon and the sur-
face Dirac plasmon polaritons in the TI thin film, which
makes the dispersion of the surface Dirac plasmon po-
laritons become thickness-dependent. Indeed, due to a
strong coupling between the EM wave and the α phonon
in the TI, the real part of the dielectric constant of the TI
at low frequency possesses a transition from positive to
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negative sign when the frequency ω of EM wave increases
from zero and crosses 2 THz for both Bi2Se3 and Sb2Te3

TI materials, as shown in Fig. 5. When the ω keeps in-
creasing, the dielectric constant becomes positive again
and converges to the ε∞. For the Sb2Te3 considered here,
the dielectric constant is negative in the range between
2 THz and 6 THz, which is why the SDPP-MP mode
above 2 THz redshifts as the TI thickness decreases. This
dependence can also be seen in the analytical expression
for the surface Dirac plasmon mode in Eq. 6 where the
thickness of the TI and its dielectric constant appear si-
multaneously in the denominator. Physically, this red-
shift occurs because the surface Dirac plasmon polariton
modes in the TI are coupled modes of the two surfaces.
The energy of that coupled modes depends on the cou-
pling constant, which is proportional to both the dielec-
tric constant and the thickness of the TI.

0 2 4 6 8
(THz)

-1000

0

1000

Bi
2
Se
3

Sb
2
Te
3

FIG. 5. Dielectric function (real part) of Bi2Se3 (blue) and
Sb2Te3 (green) as a function of frequency plotted using Eq.
3.

A direct consequence of the dependence of the SDPP-
MPs on the thickness of the TI thin film is that the
strength of the coupling between the surface Dirac plas-
mon phonon polariton (SDPPP) and the magnon polari-
ton (MP), which is measured by the magnitude of the
splitting between the upper and lower mode at 3.7 THz,
reduces as the thickness of TI decreases. This reduction
occurs because the SDPPP shifts away from the reso-
nance with the MP, thus reducing the contribution of
the magnon to the hybridized mode and reducing the cou-
pling strength [46]. We note that Fig. 4(c) effectively de-
scribes the dispersion relation of a surface Dirac-plasmon-
magnon-polariton in a Graphene-like/AFM system. This
is because the thickness of the TI is vanishingly-small in
this case, creating a degeneracy of the two surfaces of the
TI and creating a Graphene-like system with extremely
small coupling strength compared to that of the Sb2Te3

materials with finite thickness (e.g. dTI = 500 nm). The
analysis here reveals the important role of the phonon in
the TI as a mediator of the interaction between the sur-
face Dirac Plasmon-phonon polariton in the TI and the
magnon polariton in the AFM.

Using the TI’s thickness to tune the coupling strength

0 200 400 600 800 1000
d
TI
(nm)

0

0.2

0.4

0.6

0.8

1

(T
H
z)

FIG. 6. Splitting δ indicating the strength of the coupling
between the surface Dirac plasmon phonon polariton in the
Sb2Te3 and the magnon polariton the the FePS3 as a function
of the Sb2Te3 thickness. This calculation is done with the
assumption that the FePS3 layer is very thick and can be
considered as a half-infinite medium.

between the surface Dirac Plasmon-phonon polariton in
the TI and the magnon polariton in the AFM provides a
significant advantage relative to what could be achieved
using graphene instead of a TI. Specifically, one can
enhance the interaction and reach the strong coupling
regime by varying the TI’s thickness whereas the cou-
pling strength for a graphene/AFM structure is fixed.
Our analysis also indicates that pursuing a TI with larger
negative dielectric constant in the frequency regime in
which the hybridized mode is formed would reduce the
time required to grow the TI sample: a larger cou-
pling strength could be achieved with a thinner TI ma-
terial. Specifically Sb2Te3 is a much better candidate
than Bi2Se3 for this application because the stronger in-
teraction with the α phonon in Sb2Te3 leads to larger
magnitude of the real part of the permittivity, as can
be seen in Fig.5. Finally, to get a more complete pic-
ture of the TI thickness-dependent coupling strength we
plot in Fig.6 the splitting δ vs the Sb2Te3 thickness dTI .
The splitting δ simply rises monotonically without sat-
uration upon increasing dTI across this range of sample
thicknesses, from δ ≈ 0.18 THz at dTI = 100 nm up
to δ ≈ 0.9 THz when dTI = 1000 nm. This calcu-
lation shows that dTI ≥ 400 nm would give a splitting
≥ 0.6 THz that should be experimentally observable and
get us into the strong coupling regime for the interaction
between THz excitations in the Sb2Te3/FePS3 structure.

C. Dependence of the coupling strength on 2D
AFM structure parameters and material quality

We now consider the influence of the AFM mate-
rial properties and structural parameters on the inter-
action between the surface Dirac plasmon phonon po-
lariton (SDPPP) and the magnon polariton (MP) in the
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FIG. 7. The imaginary part of reflectivity Im(r) as a function
of frequency ω calculated for Sb2Te3/FePS3 structure with
the thickness of TI thin film dTI = 500 nm and the thickness
of the FePS3 layer (a) dAFM = 2000 nm and (b) dAFM =
1000 nm.

3

3

FIG. 8. Transmission coefficient t23 as a function of fre-
quency ω at fixed wave vector kx = 0.03 × 105 cm−1 for
dAFM = 500 nm (blue) and dAFM = 200 nm (red). The
inset represents the TI/AFM structure and indicates how the
transmission coefficient is calculated for different paths.

TI/AFM structure. To do this, we replace the semi-
infinite AFM slab with a slab of finite thickness on a

semi-infinite MgO substate. The dispersion relations
shown in Fig.7 are calculated by applying the global scat-
tering matrix method with a fixed Sb2Te3 thickness of
dTI = 500 nm for different thickness of the FePS3 layer
(a) dAFM = 2000 nm and (b) dAFM = 1000 nm.
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FIG. 9. Splitting δ indicating the strength of the coupling
between the surface Dirac plasmon phonon polariton in the
Sb2Te3 and the magnon polariton in the FePS3 as a function
of the FePS3 thickness. This calculation is done for fixed
Sb2Te3 thickness dTI = 500 nm.

We previously saw that decreasing the thickness of
the TI redshifted the SDPPP mode, which in turn al-
tered the strength of the surface Dirac plasmon phonon
magnon polaritons (SDPP-MP) coupling. Varying the
AFM thickness does not modify the dispersion of SDPP-
MP in the same way. There is no shift in either the
MP or SDPPP mode with AFM thickness. However,
the coupling strength, as measured by the splitting, in-
creases with increasing AFM thickness. To understand
what is happening in this case, we plot in Fig. 8 the
transmission coefficient t23, on a logarithmic scale, for
the EM wave travelling between the 2nd and 3rd inter-
faces. These interfaces are, respectively, (2nd) the inter-
face between the TI and the AFM and (3rd) the interface
between the AFM and the MgO substrate, as indicated
in the inset of Fig.8. Please refer to Appendix B for a
detailed description of how we calculated this transmis-
sion coefficient from the global scattering matrix tech-
nique. Fig.8 shows the result for dAFM = 1000 nm (blue
curve) and dAFM = 2000 nm (red curve) while keeping
dTI = 500 nm fixed. One can see that the transmission
coefficient t23 decreases over the entire range of frequen-
cies upon increasing the thickness of the AFM layer from
1000 nm to 2000 nm. This shows that the thinner FePS3

layer is more transparent to the EM wave. One can think
of this in analogy to an optical absorption: there is a
fixed interaction probability (cross-section) and conse-
quently the probability of interaction between the EM
wave and the magnetic degree of freedom in the AFM
layer (MP) increases with AFM thickness. Essentially, a
thinner FePS3 results in smaller amplitude of the magnon
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polariton mode and thus a smaller interaction between
the surface Dirac plasmon phonon polariton in the TI
and the magnon polarition in the AFM layer because
fewer magnons participate.

We plot the splitting δ as a function of AFM thickness
in Fig. 9. One observes that the splitting δ increases
rapidly from 0.38 THz at dAFM = 1000 nm to 0.6 THz
at dAFM = 2500 nm. The splitting begins to saturate at
dAFM = 3000 nm with δ ≈ 0.64 THz. The saturation
of the splitting occurs because of a competition between
two effects. The number of magnons generated continues
to increase with increasing AFM thickness. However, the
surface electromagnetic wave associated with the SDPPP
decays exponentially with z, which means that the cross-
section for interaction between the EM wave and the
local spin moment also decreases exponentially with z.
In other words, magnons generated sufficiently far from
the TI/AFM interface do not contribute to the forma-
tion of hybridized states and the splitting saturates at
δ ≈ 0.64 THz when dAFM = 3000 nm. Fig. 9 tells us
that the FePS3 layer should be thicker than 3000 nm in
order to obtain a coupling strength close to the satura-
tion, but that increasing the AFM thickness above this
value is unlikely to be useful.

We next consider the impact of the anisotropy con-
stant of the AFM material constituent of the TI/AFM
heterostructure. The anisotropy constant is defined by
K = γ2HaM0, where γ, Ha, and M0 are, respectively, the
gyromagnetic ratio, effective anisotropy field, and mag-
netization of the AFM spin sublattice. In Fig. 10 we plot
the dispersion of the SDPP-MP for dTI = 500 nm and
dAFM = 5000 nm for different values of the anisotropy
constant of the AFM material: (a) K = 1

10K0, (b)

K = 1
5K0, and (c) K = K0, where K0 is the value of

anisotropy constant for FePS3 used in our previous cal-
culations. We find that the strength of the TI/AFM cou-
pling is proportional to the magnitude of this parameter
K. In other words, a larger value of the anisotropy con-
stant results in stronger coupling and a larger δ, meaning
a larger and more easily detectable splitting between the
SDPP-MP hybrid modes.

We now explain the physical origin of the increased
coupling strength with increasing K shown in Fig 10. The
magnitude of the anisotropy constant K determines the
magnetic dipole of the AFM material. A larger magnetic
dipole leads to a stronger interaction between the mag-
netic component of the EM wave propagating in the sys-
tem and the local spin moment in the AFM. A stronger
interaction between the magnetic component of the EM
wave and the local spin moment means that the EM wave
excites magnon polaritons containing a larger number
of magnons. The increased number of magnon polari-
tons results in a stronger interaction between the magnon
states in the AFM and the Dirac plasmon phonon states
in the TI, resulting in a larger contribution of magnons
to the formation of Dirac plasmon phonon magnon hy-
brid modes. Because the anisotropy constant is primarily
determined by the anisotropy energy and spin sublat-

FIG. 10. Dispersion relation of surface Dirac plasmon
phonon magnon polariton (SDPP-MP) in Sb2Te3/FePS3 bi-
layer structure with thickness of Sb2Te3 dTI = 500 nm and
half-infinite FePS3 layer for different value of anisotropy con-
stant K = γ2HaM0 (a) K = 1

10
K0, (b) K = 1

5
K0 and

(c) K = K0 respectively. Here K0 is the primary value of
anisotropy constant in FePS3.

tice magnetization saturation of an AFM material, this
suggests that any AFM material with anisotropy energy
comparable to that of FePS3 (of order one meV) may
be a promising alternative candidate for realizing strong
coupling between a surface-plasmon-phonon polariton in
a TI and magnon polaritons in an AFM. Possible alterna-
tive AFM material that are promising include: L12 IrMn3

(∆ = 6.81 meV ) [68], Na4IrO4 (∆ = 5.4 meV ) [69], and
Cr–trihalide Janus monolayers with applied strain up to
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5% (giving ∆ = 3.77 meV for Cl3-Cr2-I3 monolayer) [70].

FIG. 11. Mode energies of a SDPP-MP in a Sb2Te3/FePS3

bilayer structure with Sb2Te3 thickness dTI = 500 nm and
a half-infinite FePS3 as a function of the scattering loss rate
in the AFM. The dashed white line represents the evolution
of lower mode v.s. ΓAFM . This calculation is performed at
fixed in plane wave vector kx = 0.03 × 105 cm−1, which is at
the anti-crossing point.

Finally, in the calculations presented thus far we have
assumed that the scattering loss rate in the FePS3 AFM
is ΓAFM = 0.035 THz, which is a value taken from Ref
[21]. This scattering rate parameter depends largely on
crystalline and interface quality, which are specific to
individual samples. We therefore consider the effect of
changing scattering loss rates in the AFM material on
the strength of the coupling between the TI and AFM.
In Fig. 11, we plot the mode energies of SDPP-MPs in the
TI/AFM structure shown in Fig.1 using dTI = 500 nm
and a very thick (half-infinite) AFM layer. We plot the
mode energies near ω = 3.7 THz as a function of the
scattering loss rate in the AFM material for a fixed in-
plane wave vector kx = 0.03×105 cm−1. In other words,
we focus on the anti-crossing point in the dispersion spec-
trum. When the scattering loss rate of the AFM material
is low (left side of Fig. 11), we observe two distinct modes
at 3.5 THz and 4.2 THz. This is the signature of the
interaction between the surface DPPPs in the TI and the
MPs in the AFM layer that results in the anti-crossing
splitting. The two distinct modes disappear when the
scattering loss rate exceeds 0.2 THz. The loss of dis-
tinct modes (collapse of the anti-crossing) occurs when
the loss rate in the AFM exceeds the coupling strength.
ΓAFM = 0.2 THz therefore provides a benchmark for the
AFM quality required to experimentally realize observ-
able strong coupling between a TI and an AFM. We note
that the scattering loss rates of AFM materials are typi-
cally in the GHz range, which is well below this threshold.

IV. CONCLUSION

We have studied strong coupling between surface Dirac
plasmon-phonon-polaritons in a TI thin film and magnon
polaritons in an AFM material using a numerical semi-
classical approach. Our results show that spectral signa-
tures of strong coupling, specifically hybridized surface
Dirac plasmon-phonon-magnon polaritons with cooper-
ativity factor C > 1, can emerge in a Sb2Te3 / FePS3

heterostructure when (a) the thickness of the AFM ma-
terial (FePS3) is sufficiently large (about ≈ 3000 nm),
(b) the thickness of the TI thin film (Sb2Te3) is about
500 nm, and (c) the quality of the AFM material is suffi-
ciently high that the scattering loss rate does not exceed
0.1 THz. All of these structural and materials param-
eters should be experimentally realizable. Equally im-
portantly, our analysis as a function of various structural
parameters allows us to understand the physical interac-
tions that underly the coupling. For example, our anal-
ysis reveals the important role of phonons in the TI as
a mediator of the interaction between the TI and AFM.
Because of the important role played by phonons, and
in particular the ability to tune the energy of the surface
Dirac plasmon phonon polariton mode with the thickness
of the TI, TIs have a significant advantage over 2D ma-
terials such as graphene for achieving strong interactions
between surface Dirac plasmons and magnon polaritons.
Finally, our calculations suggest that any 2D van der
Waals and other types of AFM materials with a large
anisotropy constant could be a viable choice for realizing
strong coupling in a TI / AFM hybrid material.
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Appendix A: Magnetic susceptibility of XPS3 (X =
Mn, Fe, Co, Ni)

In this appendix, we derive the frequency dependent
magnetic susceptibility for 2D antiferromagnetic mate-
rials in the family XPS3 (X = Mn, Fe, Co, Ni), which
includes the FePS3 studied in the main text. These
materials are van der Waals magnets that form layered
structures weakly bound by van der Waals forces. Fig-
ure 12 shows the layered magnetic structure of FePS3

established by only the Fe atoms. Within each layer, the
Fe atoms arrange in a honeycomb-like lattice structure
with opposite spin moments. We consider in this work
the FePS3 magnetic structure with zigzag AFM phase,
but our method presented in this section can be applied
to the general case of any 2D antiferromagnetic material
with different AFM phases.
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FIG. 12. The layered magnetic lattice of FePS3 formed by Fe
atoms. The arrows indicate direction of spin moment with
Zigzag AFM phases investigated in this work. This figure is
plotted by using VESTA software [71]

Due to the small value of the interlayer exchange in-
teraction J ′ in comparison to the intralayer exchange in-
teraction Ji (i = 1, 2, 3), these AFM are, to a very good
approximation, quasi-two dimensional magnets even in
the bulk. The magnon dynamics in FePS3 can there-
fore be considered by investigating a quasi-2D honey-
comb structure of Fe atoms in which the magnetic inter-
actions within the lattice are described via a Heisenberg
Hamiltonian [26]:

H =
∑
i,j 6=i

2Ji,jSi · Sj + ∆
∑
i

(Szi )
2 − γ~

∑
i

hz0S
z
i + γ~

∑
i

h · Si (A1)

where γ is the gyromagnetic ratio, ~ is Planck’s constant,
hz0 is an external static magnetic field applied to the lat-
tice along the z-direction, h is a driven magnetic field,
Si is the spin operator, Jij is the exchange energy of the
interaction between site ith and jth, and ∆ is the single
atom anisotropy energy. Table II presents the spin-spin
interaction parameters of the AFM materials used in this
study.

TABLE II. The spin-spin interaction parameters of the 2D
AFM materials used in this work.

Materials J1 (meV) J2 (meV) J3 (meV) J′ (meV) ∆ (meV)
FePS3 [26] 1.49 0.04 -0.6 -0.0073 -3.6
NiPS3[49] 3.8 -0.2 -13.8 N/A -0.3
MnPS3[49] -1.54 -0.14 -0.36 0.0019 -0.0086

Considering a uniform precession of spin moments un-
der the driven magnetic field h, we use a macrospin ap-
proximation with the uniform sublattice magnetizations
in sublattice A and B, given respectively by MA,B =
γ~NSA,B , where N is the number of spins per unit vol-
ume and SA,B is the spin in units of ~ (S = |SA,B | = 2
in the case of Fe atom). We note that in the XPS3 AFM
family, one needs to consider the exchange interactions
between two magnetic moments up to the third nearest
neighbor Ji=1,2,3 associated with the vectors joining near-
est αi=1,2,3, second nearest βi=1,2,3, and third nearest
γi=1,2,3 neighboring Fe atoms as indicated in the Fig 13
[72]. Using the Hamiltonian A1, one obtains the energy
per unit volume:

E = ξ
(
M2
A +M2

B

)
+ ηMA ·MB + ϑ

[
(Mz

A)
2

+ (Mz
B)

2
]
− hz0 (Mz

A +Mz
B)− h · (MA + MB) (A2)

where ξ = 2(J1+J2)S
γ~M0

, η = 2(J1+4J2+3J3)S
γ~M0

, ϑ = ∆S
γ~M0

, and M0 is the magnetization of one sublattice per volume.
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Suppose a transverse magnetic field h = h(t) =
(hx, hy, 0) e−iωt drives the spin dynamics in the lattice
governed by the Landau-Lifshitz equation

d

dt
MA,B =

gµB
~

MA,B × F eff
A,B (A3)

where F eff
A,B = −∇A,BE (MA,B) is the effective force act-

ing on the A (B) spin sublattice and the magnetic mo-
ment MA,B = mx

A,Be
−iωtx̂+my

A,Be
−iωtŷ +Mz

A,B ẑ.
In this case one has

d

dt
MA,B = −iωe−iωt

mx
A,B

my
A,B

0

 (A4)

and

F eff
A,B = −

2ξmx
A,Be

−iωt + ηmx
B,Ae

−iωt − hxe−iωt
2ξmy

A,Be
−iωt + ηmy

B,Ae
−iωt − hye−iωt

2 (ξ + ϑ)Mz
A,B + ηMz

B,A − hz0


(A5)

leading to a set of equations of transverse motion for the
two-spin sublattices A and B:

m
x
A

my
A

mx
B

my
B

 = D−1C

hyhxhy
hx

 (A6)

where

D = iω −γ (2ϑMz
A + ηMz

B − hz0) 0 γηMz
A

γ (2ϑMz
A + ηMz

B − hz0) iω −γηMz
A 0

0 γηMz
B iω −γ (2ϑMz

B + ηMz
A − hz0)

−γηMz
B 0 γ (2ϑMz

B + ηMz
A − hz0) iω

 (A7)

and C = diag (γMz
A,−γMz

A, γM
z
B ,−γMz

B). The deter- minant of matrix D (Eqn. A7) is given by:

det|D| = ω4 − 2γ2
[
4ϑ2 (Mz

0 )
2 − 4ηϑ (Mz

0 )
2

+ (hz0)
2
]
ω2 + γ4

[
4ϑ2 (Mz

0 )
2 − 4ηϑ (Mz

0 )
2 − (hz0)

2
]2

(A8)

=

[
ω2 − γ2

(√
4ϑ2 (Mz

0 )
2 − 4ηϑ (Mz

0 )
2

+ hz0

)2
][

ω2 − γ2

(√
4ϑ2 (Mz

0 )
2 − 4ηϑ (Mz

0 )
2 − hz0

)2
]

(A9)

=
[
4γ2ϑ2 (Mz

0 )
2 − 4γ2ηϑ (Mz

0 )
2 − (ω − γhz0)

2
] [

4γ2ϑ2 (Mz
0 )

2 − 4γ2ηϑ (Mz
0 )

2 − (ω + γhz0)
2
]

(A10)

=
[
Ω2

0 − (ω − γhz0)
2
] [

Ω2
0 − (ω + γhz0)

2
]

(A11)

Here we have used Ω2
0 = 4γ2ϑ2 (Mz

0 )
2 − 4γ2ηϑ (Mz

0 )
2
.

We now define a total magnetic moment as

Mt =

(
mx
A +mx

B
my
A +my

B

)
=

(
χxx χxy

χyx χyy

)(
hx
hy

)
(A12)

where

(
χxx χxy

χyx χyy

)
is the magnetic susceptibility tensor.

Solving Eq.A6 within the linear approximation Mz
A =

−Mz
B = Mz

0 , one obtains the magnetic susceptibility ten-

sor given by

χxx =
4γ2ϑ (Mz

0 )
2
[
ω2 − Ω2

0 + (γhz0)
2
]

det|D|
(A13)

χxy =
8iγ3ϑ (Mz

0 )
2
hz0ω

det|D|
(A14)

with χxx = χyy and χxy = −χyx.
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FIG. 13. The quasi-2D magnetic lattice of FePS3 formed by
Fe atoms. The arrows indicate the direction of the spin mo-
ments with Zigzag AFM phases investigated in this work.

If we call

He = ηM0 =
2 (J1 + 4J2 + 3J3)S

γ~
(A15)

Ha = 2ϑM0 =
2∆S

γ~
(A16)

the, respectively, effective exchange field and effective
anisotropy field, then in the case of vanishing external
magnetic field hz0 = 0, one obtains

χxx = χyy =
2γ2HaM0

Ω2
0 − ω2

(A17)

χxy = χyx = 0 (A18)

where we have used Mz
0 ≈ M0 and Ω2

0 =
γ2
(
H2
a − 2HeHa

)
is the antiferromagnetic resonance fre-

quency or zero-wave vector magnon frequency in the an-
tiferromagnetic material. In a system with non-vanishing
scattering loss rate, one has

χxx = χyy =
2γ2HaM0

Ω2
0 − (ω + i/τmag)

2 (A19)

χxy = χyx = 0 (A20)

with τmag the relaxation time of the magnon.
The antiferromagnetic resonance frequency or zero-

wave magnon frequency in the FePS3 material ΩFePS3
0 =

3.7 THz [26, 51] and its magnetization MFePS3
0 ≈

830 (G) [73]. In order to obtain the Ha effective
anisotropy field of FePS3 we note that this effective
anisotropy field is proportional to the magnitudes of the
anisotropy energy ∆, and the spin S of the antiferromag-
netic material, which are respective ∆ = 3.6 meV taken

from reference [26] and S = 2 in FePS3. For comparison,
those values in MnF2 are, respectively, about 0.0024 meV
and 2.5, which correspond to the effective anisotropy field
HMnF2
a = 8.2 kOe [74]. We therefore estimate the value

for the effective anisotropy field in FePS3 to be about
HFePS3
a = 9840 kOe and use this value in the calcula-

tions reported in the main text.
Appendix B: Global scattering matrix

We now present in detail the so-called global scatter-
ing matrix method used to solve Maxwell’s equations
to obtain the dispersion relations studied in the main
text. This method is similar to the Green’s function
technique used to investigate scattering for a propagat-
ing wave in a multi-layered structure by an evaluation
of the S-scattering matrix computed from the scatter-
ing path operator and has been successfully employed to
study electric and spin transport in several system [61–
63]. Here we adopt this robust technique to the optical
system studied in this article.

FIG. 14. Schematic of a heterostructure composed of N in-
terface with interfacial scattering matrix Si and propagation
matrix P ij0 describing a scattering process in this structure.

Consider a heterostructure with N interface as shown
in Fig 14. We denote the z-axis as the growth di-
rection of the structure. The dimension of the het-
erostructure along the y-axis is infinite and along the
x-direction it is finite with a width W. Assuming that
an EM wave beam is incident from the left-hand side
of the structure with the direction of propagation to
parallel to the x-z plane, within the mth layer the
electric field Em = (Ex,m, Ey,m, Ez,m) and the mag-
netic field Hm = (Hx,m, Hy,m, Hz,m) components of a
monochromatic electromagnetic wave that is a solution
of Maxwell’s equations propagating along the z direction
take the general form:
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Em = ei(kx,mx−ωt)

 eikz,mz 0 e−ikz,mz 0
0 eikz,mz 0 e−ikz,mz

− ε
‖
mkx,m

ε⊥mkz,m
eikz,mz 0

ε‖mkx,m

ε⊥mkz,m
e−ikz,mz 0


Ax,mAy,m
Bx,m
By,m

 (B1)

Hm =
ei(kx,mx−ωt)

µ0µm

 0 −kz,mω eikz,mz 0
kz,m
ω e−ikz,mz

1
ωkz,m

(
ε‖m
ε⊥m
k2
x,m + k2

z,m

)
eikz,mz 0 − 1

ωkz,m

(
ε‖m
ε⊥m
k2
x,m + k2

z,m

)
e−ikz,mz

0
kz,m
ω eikz,mz 0

kz,m
ω e−ikz,mz


Ax,mAy,m
Bx,m
By,m


(B2)

where A(x,y),m and B(x,y),m are the amplitudes of the
x- and y- components of the forward- and backward-
propagating EM waves, respectively; ω is the frequency of
the EM wave; kx,m and kz,m are the x- and z-components
of the wave vector of the EM wave within the mth layer;
and x and z are the coordinates along the x- and z- di-
rections.

At the mth interface, the amplitudes of the EM wave
should satisfy the standard boundary conditions [75, 76]:

n× (Em+1 −Em)|m = 0 (B3)

n× (Hm+1 −Hm)|m = Jm (B4)

where

n =

0
0
1

 , Jm = σmEm+1, σm =

(
σxxm σxym
σyxm σyym

)
(B5)

Here σm is the optical conductivity tensor of the cor-
responding two-dimensional carrier gas at the mth-

interface. Substituting Eqs. B1 and B2 into Eqs. B3
and B4, one obtainsAx,mAy,m

Bx,m
By,m

 = Im

Ax,m+1

Ay,m+1

Bx,m+1

By,m+1

 (B6)

where Im is an interface matrix that relates the ampli-
tudes of the EM wave in the adjacent mth and (m+ 1)th

layers. If we define:

U =

(
1 0 1 0
0 1 0 1

)
, V =

(
1 0 0
0 1 0

)
(B7)

then the interface matrix Im will read:

Im =

(
I11
m I12

m

I21
m I22

m

)
=

(
U
Lm

)−1(
U
Rm

)
(B8)

where Iijm (i, j = 1, 2) are 2× 2 matrices,

Lm =
V

µ0µm

 0 −kz,mω 0
kz,m
ω

(ε‖mk
2
x,m+ε⊥mk

2
z,m)

ε⊥mωkz,m
0 − (ε‖mk

2
x,m+ε⊥mk

2
z,m)

ε⊥mωkz,m
0

0
kx,m

ω 0
kx,m

ω

 (B9)

and

Rm =
V

µ0µm+1


0 −kz,m+1

ω 0
kz,m+1

ω(
ε
‖
m+1k

2
x,m+1+ε⊥m+1k

2
z,m+1

)
ε⊥m+1ωkz,m+1

0 −
(
ε
‖
m+1k

2
x,m+1+ε⊥m+1k

2
z,m+1

)
ε⊥m+1ωkz,m+1

0

0
kx,m+1

ω 0
kx,m+1

ω

+

(
−σyxm −σyym −σyxm −σyym
σxxm σxym σxxm σxym

)
(B10)

where kz,m =

√
ω2

c2 µ
xx
m ε
‖
m − ε

‖
m

ε⊥m
k2
x,m

We now define a scattering matrix at the mth interface
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Sm such that:

Ax,m+1

Ay,m+1

Bx,m
By,m

 = Sm

 Ax,m
Ay,m
Bx,m+1

By,m+1

 (B11)

This Sm is related to the interface matrix Im by:

Sm =

[ (
I11
m

)−1 −
(
I11
m

)−1
I12
m

I21
m

(
I11
m

)−1
I22
m − I21

m

(
I11
m

)−1
I12
m

]
(B12)

A global scattering matrix S that describes the scattering
processes of an EM wave propagating in a heterostructure
composed of N-1 constituent materials is given by the
super matrix form:

S =



S−1
1 −P (2,1)

0 0 0 ... 0 0

−P (1,2)
0 S−1

2 −P (3,2)
0 0 ... 0 0

0 −P (2,3)
0 S−1

3 −P (4,3)
0 ... 0 0

0 0 −P (3,4)
0 S−1

4 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... S−1
N−1 −P (N,N−1)

0

0 0 0 0 ... −P (N−1,N)
0 S−1

N



−1

(B13)

Here the propagation matrices for an EM wave propagat- ing between the mth and (m + 1)th interfaces takes the
form

Pm,m+1
0 =


eikz,m+1dm+1 0 0 0

0 eikz,m+1dm+1 0 0
0 0 0 0
0 0 0 0

 , Pm+1,m
0 =


0 0 0 0
0 0 0 0
0 0 eikz,m+1dm+1 0
0 0 0 eikz,m+1dm+1

 (B14)

and S−1
m (m = 1÷N) is the inversion of the matrix Sm

given in Eq. B12. The global scattering matrix S can
then be written in terms of

S =


S11 S12 · · · S1N

S21 S22 · · · S2N

...
...

. . .
...

SN1 SN2 · · · SNN

 (B15)

where Sij (i, j = 1÷N) is a 4× 4 block matrix element
of S that describes the scattering event of the EM wave
that starts at the jth interface and ends up at the ith

interface. In particular

Sij =

(
S11
ij S12

ij

S21
ij S22

ij

)
=

(
tij r

′

ij

rij t
′

ij

)
(B16)

where S11
ij and S21

ij are the block matrices giving the

transmission tij and reflection rij coefficients associated
with the incident wave propagating along the +z direc-
tion . In contrast, S22

ij and S12
ij (t′ij and r′ij) correspond

to the incident wave propagating along the -z direction.
For instance, the reflection coefficient of the entire sys-
tem with N interfaces is derived from the S21

11 element
whereas the transmission coefficient of the entire system
is obtained from the S11

N1 element. In summary, using
a global scattering matrix one can compute the optical
response of the entire structure because the global scat-
tering matrix captures what happen at each interface and
within each layer of the structure. In the main text, we
have calculated the imaginary part of S21

11 and used it to
reveal the dispersion relations for the surface plasmon-
phonon-magnon polariton in a TI/AFM structure.
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