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Abstract 

 

We employ machine learning (ML) combined with first principles calculations to discover 

novel rare-earth-free magnetic iron-cobalt silicide compounds. Deep machine learning 

models are used to provide rapid screening of over 350,000 hypothetical structures to select 

a small fraction of promising structures and compositions for further studies by first-

principles calculations. Adaptive genetic algorithm (AGA) is used to search for new lower 

energy structures based on the promising chemical compositions. Such a ML-guided 

approach dramatically accelerates the pace of materials discovery. We discover four new 

ternary Fe-Co-Si compounds, which exhibit desirable properties such as a large magnetic 

polarization (Js > 1.0 Tesla), a significant easy-axis magnetic anisotropy (K1 ≥ 1.0 MJ/m3), 

and a high Curie temperature (Tc > 840 K). Moreover, the formation energies of these 

compounds are all within 70 meV/atom relative to the ternary convex hull, offering the 

possibility of synthesis. 
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Introduction 
 

Magnetic materials play an important role in advanced technology and clean energy. 

Specific applications include computer hard drives, cell phones, medical equipment, 

electric vehicles, and wind turbines. The key properties governing the performance of a 

magnet include the magnetization, the magnetocrystalline anisotropy, and the Curie 

temperature. High anisotropy also allows for high coercivity. Although rare-earth elements 

could lead to high magnetization and anisotropy, such as the case in Nd2Fe14B5 and SmCo5, 

economic risks call for the search for rare-earth-free alternatives (1-8). Iron-cobalt based 

compounds in particular appear promising in this respect (9). For example, elemental body-

centered cubic Fe and B2-FeCo intermetallics possess sizable ferromagnetic 

magnetization. However, these compounds are cubic, so no magnetic anisotropy is 

expected. Anisotropy can be introduced by growing FeCo thin film on substrates, which 

leads to tetragonal distortion. Alternatively, doping with nonmagnetic elements can 

stabilize noncubic structures and lead to the enhancement of magnetic anisotropy. 

Nontoxic dopants for this purpose include Si, N, P, and B. In particular, iron-cobalt silicide 

is of interest since it is anticipated to be compatible with a silicon substrate. Magnetic 

devices, such as storage, using this material may be integrated on silicon technology. The 

subsystems Fe-Si and Co-Si binary phases have been previously studied (10-12). In 

addition, ternary iron-cobalt silicides of varied levels of crystallinity have been synthesized 

(13, 14). Most studies on these compounds are focused on characterizing their structural or 

electric and optical properties. One particular study reported the magnetic properties of two 

compounds: Fe2CoSi and FeCo2Si (15). They possessed sizable magnetization (magnetic 

moment per metal atom > 1.6 𝜇𝐵). However, their in-plane anisotropy (anisotropy constant 

> 1.6 MJ/m3) is not suitable for permanent magnet applications. An extensive exploration 

of the Fe-Co-Si ternary space to identify easy-axis anisotropy candidates is lacking.  

 

Traditional trial and error with experiment can be inefficient in discovering new materials. 

Alternatively, data-intensive approaches coupled with first-principles calculations is 

quickly advancing (8, 16-34). ML can assist in rapidly screening a vast composition space 

(35-38). The concept of active learning is particularly useful in the context of high 

throughput first-principles calculations. Active learning seeks to adaptively refine a ML 

model by expanding the training data in the desired property space. By incorporating new 

calculated data of relevant structures, the model is expected to improve. Success on using 

such technique for magnetic materials has been reported for two-dimensional materials 

(33). However, the size of the dataset was small. A quantitative evaluation of the model 

improvement is in demand.  

 

We use a ML-guided framework, which we proposed recently (39). Our framework 

effectively integrates deep neural network ML with first-principles calculations and AGA. 

We demonstrated the efficiency of this approach in accelerating materials discovery for 

similar materials – Fe-Co-B. In this paper, we extensively search for new magnetic ternary 

Fe-Co-Si compounds for permanent magnet applications. The improvement over three 

“generations” (details below) of models is quantified. We show that training ML on Fe-

Co-X data specifically results in an accuracy superior to training on general materials. In 

addition, feeding back first-principles data of Fe-Co-Si further improves the accuracy. We 
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discover five new ternary Fe-Co-Si compounds that exhibit high magnetic polarization (Js 

≥ 1.0 Tesla), easy-axis magnetic anisotropy (K1 ≥ 1.0 MJ/m3), and a high Curie temperature 

(Tc > 840K). The formation energies of these compounds are within 70 meV/atom relative 

to the ternary convex hull. We expect compounds this close to the convex hull to be 

accessible in terms of synthesis.  

 

 

Methods 

 

In our approach, ML models are utilized to provide rapid predictions of chemical 

compositions and crystal structures, which are likely to be energetically stable and possess 

desired magnetization. Selected structures from the ML screening are further validated by 

first-principles calculations, and promising compositions from ML predictions are further 

explored using AGA to search for low energy structures. Furthermore, new low-energy 

structures and their properties obtained from the first-principles calculations and AGA 

search are used to adaptively refine the ML model, thus improving the accuracy of the 

prediction.  

 

The machine learning model is a crystal graph convolutional neural network (CGCNN) 

(38). In CGCNN, the crystal structure is represented by a graph. The nodes and the edges 

represent the atoms and the bonds, respectively. The atomic descriptors include properties 

such as the location in the periodic table (group and period), the electronegativity, the 

covalence radius, the number of valence electrons, the first ionization energy, the electron 

affinity, and the atomic volume. The bond descriptor is the bond length. Convolutional 

layers “convolutes” the atom feature vectors with their neighboring atoms and bonds. A 

pooling layer sums the atom feature vectors into one overall feature vector. After a few  

hidden layers, the prediction is output. The depths mentioned are optimized. In this study, 

we set the hyperparameters mostly to default values in the code provided in Ref. 38. We 

use 3 convolutional layers, one pooling layer, and one hidden layer after pooling for the 

model training. Batch size is set to 256 and total number of epochs to run is set to 100. 

Stochastic Gradient Descent is used as optimization algorithm. Crystal structures and their 

properties are the input to the training (and validation and testing) of the model. When a 

collection of new structures without the correspond properties are supplied, the ML model 

outputs the predicted properties. After 100 epochs of run, the best model with the minimum 

mean absolute error of the validation set is selected. Mean absolute error here is used as 

the criteria of the accuracy of the prediction, which is adaptively improved through an 

iterative process. The first CGCNN model was directly adopted from Ref. 38, which was 

trained using the structures and energies of 28,046 compounds in the Materials Project 

database from density functional theory (DFT) calculations (38). We refer to this model as 

the first generation (1G) generalized CGCNN model. In training the models, the dataset is 

divided into training set (80%), validation set (10%) and test set (10%). The mean absolute 

error of the validation set for the 1G model for formation energy is 0.039 eV/atom. 1G-

CGCNN is used to screen hypothetical structures. Then a second generation (2G) CGCNN 

model is trained using the DFT formation energies of 427 Fe-Co-Si structures selected 

from the prediction of 1G-CGCNN and 3469 Fe-Co-X (X=B, C, N, S) structures from our 

novel magnetic materials database (8). Finally, a third generation (3G) CGCNN model is 
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further trained by adding 1775 Fe-Co-Si structures from 2G-CGCNN prediction and AGA 

structure search (details below).  

 

The trained 2G-CGCNN for formation energy prediction has low mean absolute error for 

the validation set (0.104 eV/atom) and the test set (0.136 eV/atom). 3G-CGCNN has lower 

mean absolute error for validation set (0.058 eV/atom) and test set (0.60 eV/atom). We 

note that 1G-CGCNN is more general since it is trained on data involving many different 

combinations of chemical elements. On the other hand, the 2G and 3G-GCGNN models 

are specifically trained on Fe-Co-X systems. For magnetic polarization, we use the same 

procedure as above. 

 

The first-principles calculations are based on DFT (40). We adopt the generalized gradient 

approximation of Perdew, Burke, and Ernzerhof (PBE) (41) for the exchange-correlation 

energy functional. We selected the projector-augmented wave (PAW) method (42). The 

Monkhorst-Pack scheme (43) is utilized to generate a 𝑘-point grid with a mesh size of 2𝜋 ×

0.025 Å−1 for spin-polarized calculations (44). A cutoff energy of at least 500 eV is used 

for the wavefunctions. These settings are used to compute the formation energy and 

magnetization of structures from ML and AGA (45). 

 

We employ AGA to search for low energy structures for a given chemical composition (46, 

47). For each composition, up to four formula units per unit cell are generated with initial 

128 randomized structures. AGA adds an additional loop on the traditional GA loop to 

adaptively adjust the interatomic potential. The most time-consuming step of structural 

optimization and energy evaluation is accelerated by using an auxiliary interatomic 

potential based on the embedded atom method (48). One-shot DFT calculations are 

performed at the end of each GA cycle on several of the lowest energy structures. The DFT 

results are used to update the parameters of the potential. Another cycle of GA search is 

then performed using the latest adjusted interatomic potential. This is followed by a re-

adjustment of the potential parameters. The AGA iteration process is then repeated. AGA 

enjoys the efficiency of the traditional GA prediction while retaining a high level of 

accuracy owing to the DFT feedback.  

 

The formation energy per atom relative to the elemental phases of a FeαCoβSiγ with α+β+

γ=1 is defined as 

 

𝐸𝑓 = 𝐸൫Fe𝛼Co𝛽Si𝛾൯ − 𝛼𝐸ሺFeሻ − 𝛽𝐸ሺCoሻ − 𝛾𝐸ሺSiሻ. 

 

Here, 𝐸൫Fe𝛼Co𝛽Si𝛾൯ is the total energy per atom of a Fe𝛼Co𝛽Si𝛾 structure. Reference 

energies are the total energies per atom of body-centered cubic Fe, hexagonal close-

packed Co, and diamond Si. We also calculate the energy above convex hull, Ehull, by 

comparing the formation energy of Fe𝛼Co𝛽Si𝛾 with respect to the nearby three known 

stable phases. The chemical compositions of these phases are located at the vertexes of 

the Gibbs triangle that encloses the composition of Fe𝛼Co𝛽Si𝛾. We use this construction 

to assess the thermodynamic stability against decomposition into the stable phases. 
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We calculate the magnetocrystalline anisotropy energy for the structures with high 

magnetic polarization (Js > 1.0 Tesla) and with formation energies within 0.1 eV/atom 

above the convex hull. We perform spin-polarized calculations for collinear magnetism 

self-consistently. We then include the spin-orbit couplings and perform a non-self-

consistent calculation (49-51). When the spin-orbit couplings are included, symmetry 

operations are removed and the spin-quantization axis is set to the chosen direction. For 

the magnetocrystalline anisotropy calculations, we use a finer mesh size of 2𝜋 × 0.016 

Å−1 to achieve better accuracy. For the candidate structures, the formation energy and 

magnetization are updated using these settings.  

 

For each structure, we calculate the total energy for magnetic moments oriented along the 

Cartesian (100), (010), and (001) directions, respectively. The direction associated with the 

lowest total energy is labeled as the magnetic “easy” direction. The direction with the 

second lowest total energy is labeled as the “intermediate” direction. The 

magnetocrystalline anisotropy constants K1 is the total-energy difference between the 

ferromagnetic states with magnetization in the easy and intermediate directions divided by 

the unit cell volume:  

𝐾1 = ൫𝐸𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝐸𝑒𝑎𝑠𝑦൯ 𝑉Τ  

 

A high easy-axis anisotropy is desirable for permanent magnet applications.  

 

We calculate Curie temperature Tc using a full potential Korringa-Kohn-Rostocker (KKR) 

Green function method (52, 53). The non-spherical part of the potential is taken into 

account in the wavefunctions exactly. The method has advantages of speed, accuracy, and 

stability.  

 

The phonon dispersion is calculated using density functional perturbation theory through 

the Phonopy code (54, 55). 

 

Results and Discussion 

 

We first collect the 11,916 ternary structures from MP which all have an experimental ID 

in the Inorganic Crystal Structure Database (ICSD) (56). A structure pool of hypothetical 

ternary Fe-Co-Si compounds is then generated by threading the three elements Fe, Co, and 

Si on the lattice of the 11,916 structures. There are six ways to shuffle the three elements 

on a ternary structure. We also allow the volume of the unit cell to vary by a scaling factor 

of 0.96 to 1.04, in increments of 0.02. Since the CGCNN model does not have the 

interatomic forces to relax the bond lengths in the structures, the use of scaling factor for 

the volume helps the model differentiate the energetic stability of the same structure with 

different bond lengths. There are 357,480 ternary Fe-Co-Si structures generated in this 

way. The 1G-CGCNN model is first used to evaluate the formation energy of these 357,480 

structures. The model predicted that there are 832 structures having Ef < -0.5 eV/atom. We 

show the distribution in Fig. 1 (a). Out of these, 427 were found to have negative formation 

energy after DFT structural optimization and removing equivalent structures. 
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Fig. 1: Formation energy distribution from ML predictions 
 

 
 

Formation energies from the (a) first, (b) second, (c) and third generations CGCNN models 

for structures generated from the MP database. The total number of structures are 357,480 

in (a) and (b) and 854,070 in (c). 

 

We also apply the 2G-CGCNN on the 357,480 hypothetical structures. The formation 

energy distribution is shown in Fig. 1 (b). Structures with negative predicted Ef are selected 

for DFT optimization, after which 4,014 non-equivalent new structures are found to have 

negative Ef.  

 

Next, we apply the 3G-CGCNN to a larger hypothetical structure pool. The pool is 

generated in the same way as described above except we collect all ternary structures from 

MP including those without an experimental ID in ICSD to access more structures. There 

are 854,070 hypothetical Fe-Co-Si structures in this larger pool. The formation energy 

histogram from 3G-CGCNN prediction is shown in Fig. 1 (c). There are 6,185 non-

equivalent new structures with predicted Ef < 0 eV. By further applying the ML model for 

magnetization prediction (35), we find that only 4,748 are predicted to have Js > 0.5 Tesla. 

These 4,748 structures are optimized by DFT calculations, resulting in 1,119 non-

equivalent structures which cover 270 compositions. The distribution of these 270 

compositions and those obtained from DFT calculations on the 1G and 2G-CGCNN 

selected structures are shown in Fig. 2. 

 

In Fig. 3 (a), the energetic stability and magnetic polarization from DFT calculation for the 

structures selected by different ML generations are displayed. Structures with Ehull < 0.1 

eV/atom and Js > 1 Tesla would be promising for magnetic materials. We can see that there 

are no structures from 1G-CGCNN selection in this area. The structures with Ehull < 0.1 

eV/atom and Js > 2 Tesla all come from 3G and are non-cubic. 
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Fig. 2: Convex hull phase diagram. 
 

 
Known stable phases on the convex hull are indicated by black pentagons. Compositions 

examined by ML are labeled with red circles indicating those examined by 1G+2G and 

blue diamonds by 3G.  

 

 

Fig. 3: Stability and magnetic polarization 

 
 

Stability and magnetic polarization of structures from (a) ML (b) and AGA compared to 

ML. Diamond markers indicate known structures from MP. 
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From the ML screening and DFT calculation, we discover 8 promising compositions which 

are transition-metal rich and yields low-energy and high-magnetization structures. The 

compositions are Fe-Co-Si = 2-1-1, 4-5-1, 12-1-3, 3-4-1, 9-1-2, 9-2-1, 15-4-1, and 6-1-1. 

These compositions are chosen for further exploration by AGA. 40 AGA iterations are 

performed, with 16 candidate structures selected from each iteration. After 40 AGA 

iterations, 50 structures are selected with the lowest energies calculated by DFT. We get 

1,000 structures from AGA search in total. In Fig. 3 (b), the formation energy and magnetic 

polarization for the structures from AGA are compared to those from ML. We can see that 

a large proportion of AGA structures are within the “target region”: Ehull < 0.1 eV/atom, Js 

> 1 Tesla and are non-cubic. For Fe-Co-Si compositions of 9-1-2 and 6-1-1, some 

structures obtained from AGA are energetically more favorable than those obtained by 

CGCNN screening.  

 

To demonstrate how the iterative process can effectively improve the accuracy of the 

CGCNN model for the system of interest, we examine the accuracy of different generations 

of the model on 2,281 Fe-Co-Si new structures obtained by our CGCNN and AGA search. 

The prediction accuracy of 2G improves upon 1G because 2G is specifically trained on Fe-

Co-X structures. Then the model is being further optimized by feeding in more Fe-Co-Si 

to the 3G-CGCNN training. In Fig. 4 (a) and (b), we see that Ef and Js of Fe-Co-Si 

structures predicted by the 3G model are in good agreement with those from DFT 

calculations. The mean absolute error for predicting Ef evolves from 0.334 eV/atom for 

1G, 0.091 eV/atom for 2G, to 0.082 eV/atom for 3G as shown in Fig. 4 (c). Similarly, 

0.284, 0.190, 0.119 Tesla for 1G, 2G, 3G for Js prediction. The improvement of Ef 

prediction from 1G to 2G is especially significant compared to that from 2G to 3G. The Js 

prediction improves at a roughly constant rate over the generations. 
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Fig. 4: ML predictions for Ef and Js compared to DFT results. 

 

 
 

(a) Formation energies, Ef, and (b) magnetic polarization, Js, of Fe-Co-Si structures 

predicted by 3G-CGCNN model compared to DFT calculations. (c) Evolution of the ML 

model over generations. Mean absolute errors in predicting Ef and Js are shown in blue and 

red, respectively. 

 

According to Fig. 3 (b), we obtained 114 structures from our CGCNN+DFT+AGA 

approach with Ehull < 0.1 eV/atom and Js > 1 Tesla. We evaluate the magnetic anisotropy 

constant K1
 and Curie temperature Tc for these 114 structures using DFT calculations. We 

found five structures with K1 ≥ 1 MJ/m3 and Tc higher than 840 K. Their formation energies 

are within 70 meV/atom above the convex hull. We carried out the phonon calculations for 

the 5 structures shown in Fig. 5 (a)-(e). Four ( (a)-(d) ) of these structures are found to be 

dynamically stable. The Fe6Co8Si2 structures shown in Fig. 5 (e) exhibits some imaginary 

modes.  We attempted to stabilize this structure by moving the atoms in the direction of 

the eigenvector of the soft phonon mode near R then relaxing the structure. We arrived at 

a dynamically stable structure with lower energy as shown in Fig. 5 (f). However, this 

lower-energy and dynamically stable structure is a cubic structure and has no magnetic 

(eV/atom) 

(e
V

/a
to

m
) 
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anisotropy. Further investigation by inserting small elements (e.g., B or N) into the 

interstitial sites to stabilize the structure in the tetragonal symmetry to enhance and 

magnetic anisotropy might be interesting. We present the phonon dispersion in Fig. 6. One 

candidate structure in Fig. 5 (a) resembles a stacking of body-centered cells. The other 

three candidate structures in Fig. 5 (b), (c), and (d) are in the Pmm2 space group. Among 

these, Fe4CoSi with space group P4/mmm has large Js = 1.7 T, K1 = 1.4 MJ/m3 and the 

highest Tc = 1,413 K. More structure information on these four promising ternary 

compounds is given in the Supplementary Material (57). 

 

Finally, we confirm that ferromagnetic (FM) configuration is indeed the ground state for 

the candidates. We test a number of antiferromagnetic (AFM) configurations of the four 

final candidates. We check configurations in which the spins of each metal layer point in 

the same direction (detailed figures are in the Supplementary Material (57)). Inter-layer 

directions point oppositely. For our top candidate, Fe4CoSi, we also extensively examine 

27 AFM configurations, including 1x2x1 supercells. The FM configuration is found to be 

lower in energy than all of the AFM configurations by at least 43 meV/atom. These 

results confirm that the four candidates are promising for permanent magnet applications. 

In magnetic materials studies, the stability comparison of FM/AFM is important. ML 

models to study FM/AFM competitions would be interesting but also more challenging 

(see, for example, Ref. 33). However, since the scope of this paper is to find stable FM 

structures for rare-earth free permanent magnets, ML models trained for FM structure 

predictions are a more efficient approach. As long as the predicted FM structures (usually 

small numbers for a given ternary) are checked to be energetically favorable than the 

competing AFM states by ab initio calculations, “false positive” FM predictions can be 

avoided. Those structures which have AFM as ground state would likely be eliminated by 

such ML screenings, but these structures are not suitable for permanent magnets and are 

not what we are searching for in this paper. 

 

Fig. 5: Candidate structures with easy-axis anisotropy. 
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Fe, Co, and Si atoms are indicated by yellow, blue and green spheres, respectively. (a) – 

(d) are the four candidate structures. (e) stabilizes to (f), which has no anisotropy. 

 

 

Fig. 6: Phonon dispersion of the candidate structures. 

 
Phonon dispersion corresponding to Fig. 5. 

 

 

Summary 

 

Iron-cobalt silicides are promising rare-earth-free magnet candidates since they may be 

integrated with silicon technology. We utilized a machine learning guided framework with 

first principles calculations to discover such ternary compounds. Three generations of 

CGCNN ML models screened more than 350,000 theoretical structures. AGA was useful 

for access to new low energy structures based on the promising compositions selected by 

ML. We demonstrated that the accuracy of the ML models can be improved adaptively by 

incorporating additional Fe-Co-Si structures obtained from the ML and AGA search in the 

training dataset. We proposed four easy-axis anisotropy candidates for synthesis. In 

particular, the easy-axis Fe4CoSi compound possessed Js = 1.7 Tesla, K1 = 1.4 MJ/m3, Tc 

= 1,413 K.  

 

 

Data availability 

 

The data leading to the findings in this paper are available on Materials Project (24) and 

Magnetic Materials Database (8). The ML models are available from the authors upon 

reasonable request. 
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