

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Facile integration of giant exchange bias in math xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms ub>mi>Fe/mi>mn>5/mn>/msub>mi>Ge/mi>msub>mi>T e/mi>mn>2/mn>/msub>mo>//mo>mi>oxide/mi>/mrow>/ math> heterostructures by atomic layer deposition Jierui Liang, Shanchuan Liang, Ti Xie, Andrew F. May, Thomas Ersevim, Qinqin Wang, Hyobin Ahn, Changgu Lee, Xixiang Zhang, Jian-Ping Wang, Michael A. McGuire, Min Ouyang, and Cheng Gong Phys. Rev. Materials 7, 014008 — Published 31 January 2023 DOI: 10.1103/PhysRevMaterials.7.014008

Facile integration of giant exchange bias in 1 Fe₅GeTe₂/oxide heterostructures by atomic layer 2 deposition 3 Jierui Liang,¹ Shanchuan Liang,¹ Ti Xie,¹ Andrew F. May,² Thomas Ersevim,³ Qinqin Wang,¹ 4 Hyobin Ahn,⁴ Changgu Lee,^{4,5} Xixiang Zhang,⁶ Jian-Ping Wang,⁷ Michael A. McGuire,² Min 5 *Ouyang*,³ *Cheng Gong*^{1*} 6 ¹Department of Electrical and Computer Engineering and Quantum Technology Center, 7 University of Maryland, College Park, Maryland 20742, USA 8 9 ²Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 10 11 ³Department of Physics, University of Maryland, College Park, Maryland 20742, USA 12 ⁴SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon Gyeonggido 13 16419, Republic of Korea 14 ⁵Department of Mechanical Engineering, Sungkyunkwan University, Suwon Gyeonggido 16419, 15 Republic of Korea 16 ⁶King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia. 17 18 ⁷Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, 19 Minnesota 55455, USA 20 *Corresponding author. Email: gongc@umd.edu 21

22 Keywords: exchange bias, van der Waals magnets, Fe₅GeTe₂, atomic layer deposition, surface

23 oxidation

24 ABSTRACT

25 Exchange bias arises from the interfacial exchange coupling in ferromagnet-antiferromagnet 26 bilayers and manifests as a horizontal shift of the magnetic hysteresis loop, constituting a critical 27 component underpinning a broad range of magnetoresistive logic and memory devices. The facile 28 implementation of exchange bias in van der Waals (vdW) magnets would be a key step towards 29 practical devices for emerging vdW spintronics. Here, we report an easy approach to establishing 30 strong exchange bias in the vdW magnet Fe_5GeTe_2 by a single-step process – atomic layer 31 deposition (ALD) of oxides. We successfully created exchange bias of 300~1500 Oe in 32 Fe₅GeTe₂/Al₂O₃, Fe₅GeTe₂/ZnO, and Fe₅GeTe₂/V₂O₅ heterostructures, at 130K. Control 33 experiments showed that increasing the oxidant pulse duration in each ALD cycle or utilizing the 34 stronger oxidant O₃ can enhance the exchange bias strength, revealing the key role of the ALD 35 oxidants. Our systematic work elucidates the essential role of ALD-enabled oxidization of 36 Fe₅GeTe₂ in the formation of exchange bias, and establishes ALD of oxides as a facile, 37 controllable, and generally effective approach to creating giant exchange bias in vdW magnets, 38 representing an integral advance towards practical vdW spintronic devices.

39 I. INTRODUCTION

40 Exchange bias, a magnetic phenomenon emerging at the interface between a ferromagnet (FM) 41 and an antiferromagnet (AFM), originates from the pinning of spins in the FM layer by the adjacent AFM layer [1,2], effectively stabilizing the FM against the environmental stray magnetic fields. 42 43 This phenomenon has been implemented in a wide range of technological applications including 44 magnetic memories [3], magnetic read heads [4], and sensors [5], and plays the foundational role 45 for advanced spintronics [6-12]. The recently emerged van der Waals (vdW) magnets [13-20]46 constitute unique platforms that promise the next generation of atomically thin magnetoelectric 47 and magneto-optic devices; however, the large interlayer spacing poses a fundamental challenge 48 regarding how to establish strong exchange bias in vdW systems.

49 Thus far, the exchange bias has been studied in multiple vdW FM/AFM heterostructures 50 including Fe_3GeTe_2/CrI_3 [21], $Fe_3GeTe_2/FePS_3$ [22], and $Fe_3GeTe_2/MnPX_3$ (X = S and 51 Se) [23,24], which all rely on the sophisticated stacking of dissimilar vdW flakes, and have 52 relatively small magnitudes of exchange bias (e.g., 200 Oe at 10 K in Fe₃GeTe₂/CrI₃). A facile 53 approach that can generate strong exchange bias, while being compatible with the Si-based 54 fabrication technology, is highly desirable. Recently, the exchange bias was observed in vdW FM 55 Fe₃GeTe₂ after being annealed in the air [25], suggesting the possibility of using surface oxidation 56 to convert FM Fe₃GeTe₂ layers into AFM oxidized Fe₃GeTe₂. Compared with thermal annealing 57 in the air with complex gases, atomic layer deposition (ALD) is a cleaner and more rigorous 58 technique for surface reactions due to its use of pure gas precursors (e.g., H₂O or O₃) and the 59 precise time control of each oxidant gas pulse. Moreover, ALD represents an industry-favored 60 technique for growing ultrathin conformal dielectrics on electronic materials [26]. If the exchange 61 bias can be created in vdW magnets by the ALD process, it would reveal not only useful knowledge

62 for applying vdW magnets to spintronic and electronic devices but also practical guidance on 63 device fabrication. In addition, given the exchange bias in air-annealed Fe₃GeTe₂ still drops below 64 250 Oe at 100 K [25], new vdW magnets beyond Fe₃GeTe₂ should be explored to achieve strong 65 exchange bias.

66 Recently, an itinerant vdW ferromagnet Fe₅GeTe₂ has garnered significant attention due to its 67 high magnetic ordering temperature compared to Fe₃GeTe₂ [20,27], meanwhile its exchange bias 68 remains to be explored. Here, via growing non-magnetic oxides by ALD, we demonstrate giant 69 exchange bias in the vdW ferromagnet Fe₅GeTe₂. Through reflectance magnetic circular dichroism 70 (RMCD) studies, we found that the exchange bias in the Fe₅GeTe₂/Al₂O₃ structure reaches 460 Oe 71 at 130 K after field cooling, and the effect persists at 160 K. The strong exchange bias was 72 reproducible by ALD of ZnO and V₂O₅ on Fe₅GeTe₂, suggesting that our ALD integration of 73 exchange bias is generically effective. The exchange bias is potentially formed at the interface 74 between oxidized Fe₅GeTe₂ (AFM) and unoxidized Fe₅GeTe₂ (FM) layers. Remarkably, by 75 increasing the reaction time of oxidant H_2O with Fe_5GeTe_2 or utilizing O_3 as a stronger oxidant 76 during ALD, we enhanced the exchange bias effectively (up to ~1500 Oe). These observations 77 strongly suggest the critical role of initial oxidization in forming and enhancing exchange bias. 78 Our results demonstrated a facile, controllable, and generally effective method to create giant 79 exchange bias for vdW spintronics devices.

80

II. EXPERIMENTAL DETAILS

81 Bulk Fe₅GeTe₂ single crystals were synthesized by a chemical vapor transport method; the 82 crystals of average composition near Fe_{4.7(2)}GeTe₂ were quenched by controlling the growth 83 temperature and have a bulk Curie temperature ($T_{\rm C}$) near 270 - 310 K [28]. Fe₅GeTe₂ flakes were mechanically exfoliated by scotch tape and transferred onto 260-nm-thick-SiO₂/Si chips. Atomic force microscopy confirmed the thickness of Fe₅GeTe₂ flakes to be ~30 to 80 nm. Temperaturedependent RMCD on an exfoliated pristine flake indicates a $T_{\rm C}$ of ~243 K (Fig. S1 in the Supplemental Material [29]). Consistent with the literature [20], $T_{\rm C}$ of exfoliated flakes can be lowered in a range of 30-40 K compared to $T_{\rm C}$ of bulk Fe₅GeTe₂ (270 – 310 K). To avoid unwanted oxidation in the air, we stored the samples in a glovebox filled with N₂ gas, with oxygen and moisture levels < 0.1 ppm.

91 The Fe₅GeTe₂/oxide heterostructures were prepared by ALD in BENEQ TFS 500 reactor with 92 a base pressure of 2 mbar. For ALD of Al₂O₃, Al(CH₃)₃ and H₂O were used as the aluminum 93 precursor and the oxidizing agent, respectively. The pulse of Al(CH₃)₃ or H₂O was controlled by 94 regular ALD valves, which introduce N₂ to the precursor supply vessel, allowing the vapor 95 pressure of Al(CH₃)₃ or H₂O to be established in the N₂ headspace, followed by the injection of 96 the headspace gas to the downstream ALD valves. The 10-nm Al₂O₃ was grown at 150 °C with 87 97 cycles, each consisting of 0.2 s Al(CH₃)₃ pulse, 0.5 s N₂ purge, 0.2 s H₂O pulse, and 0.5 s N₂ purge. 98 For ALD of 10-nm-thick ZnO, all settings were kept the same as the Al₂O₃ growth including the 99 H_2O pulse length of 200 ms, except that the ALD precursor became $Zn(C_2O_5)_2$. Last, for ALD of 100 V_2O_5 , $VO(OC_3H_7)_3$ was used as the vanadium precursor, whereas Ozone was the oxidant instead 101 of water. A MKS O3MEGA ozone delivery subsystem was employed to provide a stable 17.3 wt% 102 O₃ from a pure O₂ source. V₂O₅ of 10 nm was grown at 170 °C with 222 cycles, each having 0.5 103 s VO(OC₃H₇)₃ pulse, 1 s N₂ purge, 2 s O₃ pulse, and 5 s N₂ purge as reported [30]. 104 Furthermore, to study the impact of ALD oxidants on the exchange bias effect, we prepared 105 Fe_5GeTe_2/Al_2O_3 samples with different pulse lengths of H_2O per ALD cycle (i.e., 200 ms, 800 ms,

and 1600 ms) while keeping the rest of the parameters the same. To avoid the incomplete removal

107 of H_2O , we set the N_2 purge to be 4 s instead of 0.5 s after the H_2O pulse for each ALD cycle. And 108 we also compared the exchange bias in two Fe₅GeTe₂/Al₂O₃ heterostructures where Al₂O₃ was 109 grown by different oxidants (i.e., H_2O vs. O₃). For a fair comparison, the 10-nm Al₂O₃ was grown 110 at 150 °C with 87 cycles, each consisting of 0.2 s Al(CH₃)₃ pulse, 0.5 s N₂ purge, 0.2 s H₂O or O₃ 111 pulse, and 0.5 s N₂ purge.

112 The sample's out-of-plane magnetization was probed by RMCD under the out-of-plane magnetic field up to 300 mT in a Montana cryostat (< 10⁻⁴ Torr). A HeNe laser (633 nm, optical 113 114 power of 7 μ W) was focused onto the samples via a 50× objective of numerical aperture 0.5 to 115 achieve a sub-micrometer spot size. A photoelastic modulator at 50 kHz was used to modulate the 116 helicity of the optical excitation between left and right, and a photodiode detected the reflected 117 light from the sample. The RMCD was determined by the ratio between an AC signal at 50 kHz 118 and a low-frequency AC signal at 237 Hz of the reflected light intensity, which was measured by 119 two different lock-in amplifiers.

120

III. RESULTS AND DISCUSSION

121 Fig. 1(a) shows a schematic of the Fe₅GeTe₂ crystal structure with three-layer periodicity along 122 the c axis (out-of-plane direction), where nonequivalent Fe sites are labeled as Fe(1), Fe(2), and 123 Fe(3). Two locations of Fe(1) represent the split sites, and their occupation (either up or down) 124 leads to the adjustment of Ge atom (down or up, respectively). Thus, the crystal structure of 125 Fe₅GeTe₂ was found to be more complex than Fe₃GeTe₂ due to those split sites and vacancy disorder [20]. In this work, Fe₅GeTe₂ flakes (~30 - 80 nm thick) with lateral areas above $8 \times 8 \,\mu m^2$ 126 127 were mechanically exfoliated from bulk crystals onto the Si substrates with 260-nm thick SiO₂, 128 and subsequently examined by optical microscopy (Fig. 1(b)). Raman spectroscopy of Fe_5GeTe_2

129 (Fig. 1(c)) shows the A_{1g} peak (123 cm⁻¹) and the combined $A_{1g} + E_{2g}$ peak (153 cm⁻¹), similar to 130 the Fe₃GeTe₂ feature [31]. For a pristine Fe₅GeTe₂ flake, its out-of-plane magnetization was 131 probed by RMCD at 130 K after a zero-field cooling (ZFC). As expected, the magnetic hysteresis 132 loop remains symmetric to the zero magnetic field (Fig. 1(d)), indicating the absence of exchange 133 bias in pristine Fe₅GeTe₂.

135 **FIG. 1.** Characterizations of Fe_5GeTe_2 and Fe_5GeTe_2/Al_2O_3 . (a) Side view of Fe_5GeTe_2 crystal structure 136 where Fe(1) and Ge are split sites. The optical image (b) and Raman spectrum (c) of a pristine Fe_5GeTe_2 137 flake. (d) RMCD measurement of the out-of-plane magnetization of the pristine Fe₅GeTe₂ at 130 K after 138 ZFC. The vertical and horizontal black dashed lines serve as the eye guide for zero magnetic field (x = 0)139 and zero magnetization (y = 0), respectively. No exchange bias was found in pristine Fe₅GeTe₂. (e) RMCD 140 measurements of a representative Fe₅GeTe₂/Al₂O₃ heterostructure at 130 K after PFC and NFC, 141 respectively. The red (blue) dashed line highlights the shifted center line of the magnetic hysteresis loop 142 after PFC (NFC). The magnitude of the cooling field is 3000 Oe in this study. After ALD of 10-nm-thick 143 Al_2O_3 on Fe₅GeTe₂, negative (positive) exchange bias emerges after PFC (NFC) in the heterostructure. (f) 144 Schematics of the Fe₅GeTe₂/Al₂O₃ heterostructure consisting of oxidized Fe₅GeTe₂. The Fe₅GeTe₂ layers

at the Fe₅GeTe₂/Al₂O₃ interface are likely oxidized upon ALD and serve as the antiferromagnetic pinning
layers to induce the exchange bias effect.

147 Next, a 10-nm thick Al₂O₃ was grown by ALD on top of Fe₅GeTe₂, involving surface chemical 148 reactions between the metal precursor Al(CH₃)₃ and the oxidant H₂O [32,33]. The magnetic 149 hysteresis loops of a Fe_5GeTe_2/Al_2O_3 heterostructure were then measured by RMCD at 130 K after 150 the positive- and negative-field cooling (PFC and NFC), respectively. In stark contrast to the 151 pristine Fe₅GeTe₂ that has a symmetric magnetic hysteresis loop (Fig. 1(d)), significant loop shifts 152 of the Fe₅GeTe₂/Al₂O₃ heterostructure after PFC and NFC clearly confirm the emergence of 153 exchange bias (Fig. 1(e)), with the exchange bias field (H_{ex}) being negative (positive) after PFC 154 (NFC) as expected [2]. We observed the exchange bias at 130 K in multiple Fe₅GeTe₂/Al₂O₃ 155 heterostructures after PFC and NFC (Fig. S2 in the Supplemental Material [29]), suggesting that 156 the phenomena are well reproducible. As further evidence, exchange bias also appears in 157 Fe₅GeTe₂/Al₂O₃ heterostructures after the first ZFC, with random signs and amplitudes (Fig. S3 158 in the Supplemental Material [29]). Because Al₂O₃ itself is non-magnetic, the observed exchange 159 bias indicates the AFM nature of the oxidized Fe₅GeTe₂ layers formed upon ALD of Al₂O₃, as 160 illustrated by Fig. 1(f). This agrees with the recent report of exchange bias in the vdW magnet 161 Fe₃GeTe₂ after being annealed in the air at 100 °C for 30 min [25].

We continued to systematically examine the temperature dependence of the magnetic hysteresis loops and the exchange bias in a representative Fe_5GeTe_2/Al_2O_3 heterostructure. As shown in Fig. 2(a), raising the temperature decreases the coercivity (H_c) by introducing stronger thermal fluctuations, and the hysteresis loop finally disappears at 190 K. The decreasing trend is also observed for H_{ex} as the temperature increases (Fig. 2(d)). Notably, H_{ex} reaches 460 Oe at 130 K after NFC and persists to 160 K with a magnitude of 50 Oe, indicating a blocking temperature (T_B) around 160 - 170 K at which the exchange bias disappears. In short, these results suggest that ALD of Al₂O₃ on top of Fe₅GeTe₂ leads to a strong exchange bias with the relatively high $T_{\rm B}$.

FIG. 2. Temperature dependence of the exchange bias in three types of Fe₅GeTe₂/oxide heterostructures. (a - c) Temperature dependence of magnetic hysteresis loops measured by RMCD in three types of Fe₅GeTe₂/oxides heterostructures: Fe₅GeTe₂/Al₂O₃ (a), Fe₅GeTe₂/ZnO (b), and Fe₅GeTe₂/V₂O₅ (c). Positive shifts of hysteresis loops emerge after NFC for all Fe₅GeTe₂/oxides systems. The black dashed lines serve as the eye guide for zero magnetic field (x = 0). The corresponding ALD reactions for each type of Fe₅GeTe₂/oxide are illustrated in the top schematics. (d - f) The exchange bias H_{ex} as a function of

177 temperature for the three types of $Fe_5GeTe_2/oxides$. To indicate the possible uncertainty in extracted values, 178 H_{ex} data points are marked by stars when the coercivity drops to zero. Error bars represent the standard 179 deviation above the mean of the extracted data.

180 To prove that our method to generate exchange bias is not oxide-specific, we extended to ALD 181 of ZnO [34] and V₂O₅ [30], as illustrated by the top schematics in Fig. 2. Indeed, magnetic 182 hysteresis loops with large positive shifts were observed after NFC for both Fe₅GeTe₂/ZnO and 183 Fe₅GeTe₂/V₂O₅ heterostructures. For Fe₅GeTe₂/ZnO, the hysteresis loop shrinks with the 184 increasing temperature and disappears at ~160 K (Fig. 2(b)). H_{ex} reaches 1007 Oe at 130 K, 185 decreases gradually as the temperature increases, and remains at 710 Oe when H_c drops to zero at 186 160 K (Fig. 2(e)). For Fe₅GeTe₂/V₂O₅, H_{ex} persists at the level of ~1500 Oe to at least 170 K (Figs. 187 2(c) and 2(f), showing an even stronger exchange bias effect compared to Fe₅GeTe₂/Al₂O₃ and 188 Fe₅GeTe₂/ZnO in this work. Remarkably, such a large H_{ex} in Fe₅GeTe₂/V₂O₅ is 600~1000 Oe 189 greater than the reported H_{ex} in other vdW magnets [21–25,35] and is achievable at high 190 temperatures (e.g., 150 to 170 K). The general existence of exchange bias in Fe₅GeTe₂/oxides 191 fabricated by ALD further suggests the scenario that the observed exchange bias is due to the 192 oxidation of top Fe₅GeTe₂ layers during the ALD process.

193 In addition, there is no noticeable dependence of the exchange bias strength on the Fe₅GeTe₂ 194 layer thickness in Fe_5GeTe_2 /oxides (Fig. S4 in the Supplemental Material [29]). This finding is in contrast to the observations in conventional FM/AFM bilayer systems where Hex magnitude 195 196 depends inversely on the FM thickness [2], but agrees with the recent observations on the exchange 197 bias in vdW magnet Fe₃GeTe₂ [21,25], showing a unique magnetic behavior due to the weak 198 interlayer exchange coupling inherent to layered vdW magnets. Therefore, the thickness variance 199 among Fe_5GeTe_2 samples should not interfere with the major finding that the exchange bias in 200 Fe₅GeTe₂/oxides is mainly due to the ALD induced oxidation in Fe₅GeTe₂. Overall, these 201 observations trigger an interesting question regarding whether we can control the exchange bias
 202 strength in Fe₅GeTe₂ by tuning the ALD conditions.

203 It is worth highlighting that the ALD of V₂O₅ adopted O₃ (Figs. 2(c) and 2(f)), a stronger oxidant 204 than H₂O, and the resultant exchange bias in Fe_5GeTe_2/V_2O_5 is clearly stronger than that in 205 Fe₅GeTe₂/Al₂O₃ (Figs. 2(a) and 2(d)) and Fe₅GeTe₂/ZnO (Figs. 2(b) and 2(e)). This again indicates 206 the critical role of ALD-enabled oxidization of Fe₅GeTe₂ in the final formation of exchange bias. 207 We conducted two sets of control experiments to unravel the underlying mechanism further. First, 208 using Fe₅GeTe₂/Al₂O₃ as the model system, we varied the ALD pulse duration of oxidant H₂O and 209 studied its impact on the exchange bias strength (see Experimental Details). We increased the H_2O 210 pulse duration per cycle from 200 to 1600 ms while keeping the rest of the parameters the same 211 (e.g., temperature, pulse duration of the precursor $Al(CH_3)_3$, and cycle numbers). In Fig. 3(a), we 212 summarized all the H_{ex} measured at 130 K after NFC on randomly selected multiple samples for 213 each H₂O pulse duration. By increasing the H₂O pulse duration from 200 to 1600 ms, H_{ex} increases 214 by about 170% from 290 ± 130 Oe to 790 ± 230 Oe (Fig. 3(a)), demonstrating an effective tuning 215 of the resultant exchange bias strength by adjusting the ALD oxidant's pulse duration.

ALD of Al₂O₃ on Fe₅GeTe₂

FIG. 3. Tuning the exchange bias strength in Fe_5GeTe_2/Al_2O_3 heterostructures by adjusting the oxidants during ALD. (a - b) Summary of H_{ex} in Fe_5GeTe_2/Al_2O_3 heterostructures where oxides were prepared using

219 the H₂O pulse durations of 200, 800, and 1600 ms per ALD cycle (a) or using different ALD oxidants (i.e., 220 H_2O vs. O_3) (b). For each set of Fe_5GeTe_2/Al_2O_3 heterostructures, three to five randomly selected sample 221 flakes were measured at 130 K after NFC to show the variance. The average H_{ex} for each set is shown by 222 the histogram, with the original data points shown on the left and the error bar representing the standard 223 deviation above the mean on top of each histogram. The resultant exchange bias is effectively enhanced by 224 increasing the pulse duration of the ALD oxidant (i.e., longer H_2O pulse) or utilizing O_3 as a stronger 225 oxidant during ALD of Al₂O₃. (c) The exchange bias H_{ex} after NFC as a function of temperature for 226 Fe_5GeTe_2/Al_2O_3 prepared by H₂O and O₃. To indicate the possible uncertainty in extracted values, H_{ex} data 227 points are marked by stars when the coercivity drops to zero. Error bars represent one standard deviation 228 above the mean of the extracted data.

229 As a second set of control experiments, we studied the exchange bias strengths in 230 Fe₅GeTe₂/Al₂O₃ samples prepared by two different ALD oxidants (i.e., H₂O versus O₃) while 231 maintaining all other ALD parameters the same. Under the same oxidant pulse duration of 200 ms, 232 the statistic study summarized in Fig. 3(b) shows that H_{ex} increases from an average of 290 ± 130 233 Oe to 870 ± 120 Oe by switching from H₂O to O₃, with a percentage increase of 200%. Moreover, 234 we measured the temperature dependence of H_{ex} in Fe₅GeTe₂/Al₂O₃ prepared by O₃ (hysteresis 235 loops in Fig. S5 in the Supplemental Material [29]) and compared the H_{ex} results with 236 Fe₅GeTe₂/Al₂O₃ prepared by H₂O in Fig 3(c). The maximum H_{ex} reaches 1450 Oe at 170 K after 237 NFC for Fe₅GeTe₂/Al₂O₃ prepared by O₃, which is comparable with that achieved at 170 K in O₃-238 prepared Fe_5GeTe_2/V_2O_5 (see Fig. 2(f)) but about 3 times larger than the maximum exchange bias 239 obtained at 130 K in Fe₅GeTe₂/Al₂O₃ prepared by H₂O. This result suggests that ALD oxidants 240 (i.e., O_3 and H_2O) play a major role in determining the exchange bias strength. It has been well-241 established that O₃, as a stronger oxidant, can react more with the basal plane of many vdW 242 materials than H₂O during the nucleation stage of ALD [26,36–38]. Thus, similar effects by O₃ are 243 expected for ALD of oxides on vdW magnets in this work, which could lead to a stronger oxidation 244 to enhance the exchange bias effect.

245 The giant exchange bias in Fe₅GeTe₂/oxides discovered in this work has been unprecedented for 246 vdW magnets. In Fig. 4, we summarized the maximum values of Hex measured in vdW 247 magnets/heterostructures and their measurement temperatures. For manv all-vdW 248 heterostructures, H_{ex} exceeding 200 Oe can only be achieved at low temperatures (e.g., 10 249 K) [21,23,24,35]. In contrast, H_{ex} with the maximum magnitude in the range from 400 to 1000 Oe 250 at 130 K can be easily induced in Fe₅GeTe₂ by ALD of Al_2O_3 or ZnO using the oxidant H₂O with 251 varying H₂O pulse durations. By means of a stronger oxidant O_3 , the maximum values of H_{ex} reach 252 ~1500 Oe at 170 K in Fe₅GeTe₂/V₂O₅ and Fe₅GeTe₂/Al₂O₃ heterostructures, which are about 1000 253 Oe larger than the reported H_{ex} in most Fe₃GeTe₂-based heterostructures as summarized in Fig. 4.

FIG. 4. The maximum exchange bias versus the measurement temperature for different vdW magnets and heterostructures (data adapted from refs^{21-25,35}). H_{ex} data of this work when H_c becomes zero is not included. The exchange bias in our Fe₅GeTe₂/oxides is strong and retained at relatively high temperatures.

258 IV. CONCLUSIONS

259 In summary, we utilized ALD of oxides to achieve a facile integration of giant exchange bias in 260 vdW magnet Fe₅GeTe₂. Through ALD of Al₂O₃, we induced a sizable exchange bias of 460 Oe at 261 130 K. The exchange bias effect is reproducible by ALD of two other oxides (ZnO and V₂O₅), 262 confirming the general effectiveness of our approach. Through control experiments, we 263 demonstrated that the exchange bias strength can be enhanced by increasing the oxidant pulse 264 duration in each ALD cycle or utilizing the stronger oxidant O_3 . In particular, the maximum 265 exchange bias reaches ~ 1500 Oe at 170 K for Fe_5GeTe_2/V_2O_5 and Fe_5GeTe_2/Al_2O_3 that were both 266 prepared by O_3 , about three times larger than the maximum exchange bias achieved at 130 K for 267 Fe₅GeTe₂/Al₂O₃ by H₂O, highlighting the critical role of the ALD oxidants in the formation of the 268 exchange bias. Our results demonstrate a method that is simple, generally effective, and integrable 269 to the existing Si-based fabrication technology, for creating giant exchange bias persisting up to 270 relatively high temperatures in Fe₅GeTe₂. This ALD-based method allows a one-step integration 271 of giant exchange bias during dielectric growth for simple device assembly, beneficial for 272 ultracompact vdW spintronics devices. We envision that the future optimization of this approach 273 could benefit from the advancement in unravelling the detailed relationship between the chemical, 274 atomic, and magnetic properties of the oxide phase at the interface. Our discovery of the one-step 275 ALD integration of giant exchange bias in Fe₅GeTe₂ represents an important step towards practical 276 vdW spintronic devices.

277

278 ACKNOWLEDGMENTS

279 C.G. acknowledges the grant support from Air Force Office of Scientific Research under the 280 award number FA9550-22-1-0349, Naval Air Warfare Center Aircraft Division under the award 281 number N00421-22-1-0001, Army Research Laboratory cooperative agreement number W911NF-282 19-2-0181, and National Science Foundation under award numbers CMMI-2233592 and 283 49100423C0011. Bulk Fe₅GeTe₂ crystal synthesis and characterization (A.F.M. and M.A.M.) 284 were supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, 285 Materials Sciences and Engineering Division. J.P.W. acknowledges the support of Robert F. 286 Hartmann Endowed Chair Professorship.

287 **REFERENCES**

- 288 [1] W. H. Meiklejohn and C. P. Bean, *New magnetic anisotropy*, Phys. Rev. **102**, 1413 (1956).
- 289 [2] J. Nogués and I. K. Schuller, *Exchange bias*, J. Magn. Magn. Mater. **192**, 203 (1999).
- I. L. Prejbeanu, W. Kula, K. Ounadjela, R. C. Sousa, O. Redon, B. Dieny, and J.-P.
 Nozieres, *Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions*, IEEE Trans. Magn. 40, 2625 (2004).
- 293 [4] C. H. Tsang, R. E. Fontana, T. Lin, D. E. Heim, B. A. Gurney, and M. L. Williams, *Design*,
- *fabrication, and performance of spin-valve read heads for magnetic recording applications,*IBM J. Res. Dev. 42, 103 (1998).
- [5] C. Binek and B. Doudin, *Magnetoelectronics with magnetoelectrics*, J. Phys. Condens.
 Matter 17, L39 (2005).
- [6] C. Chappert, A. Fert, and F. N. Van Dau, *The emergence of spin electronics in data storage*,
 Nat. Mater. 6, 813 (2007).
- T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, *Antiferromagnetic spintronics*, Nat.
 Nanotechnol. 11, 231 (2016).
- 302 [8] P. H. Lin, B. Y. Yang, M. H. Tsai, P. C. Chen, K. F. Huang, H. H. Lin, and C. H. Lai,
 303 *Manipulating exchange bias by spin–orbit torque*, Nat. Mater. 18, 335 (2019).
- 304 [9] S. Peng, D. Zhu, W. Li, H. Wu, A. J. Grutter, D. A. Gilbert, J. Lu, D. Xiong, W. Cai, P. 305 Shafer, K. L. Wang, and W. Zhao, Exchange bias switching in an 306 antiferromagnet/ferromagnet bilaver driven by spin-orbit torque, Nat. Electron. 3, 757

307 (2020).

- 308 [10] M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J. M. Triscone, *Exchange bias in*309 *LaNiO₃-LaMnO₃ superlattices*, Nat. Mater. 11, 195 (2012).
- 310 [11] Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B.
- 311 T. Jonker, *Exchange bias of the interface spin system at the Fe/MgO interface*, Nat.
 312 Nanotechnol. 8, 438 (2013).
- 313 [12] E. Maniv, R. A. Murphy, S. C. Haley, S. Doyle, C. John, A. Maniv, S. K. Ramakrishna, Y.-
- L. Tang, P. Ercius, R. Ramesh, A. P. Reyes, J. R. Long, and J. G. Analytis, *Exchange bias* due to coupling between coexisting antiferromagnetic and spin-glass orders, Nat. Phys. **17**,
- 316 525 (2021).
- 317 [13] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q.
- Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, *Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals*, Nature 546, 265 (2017).
- 320 [14] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong,
- 321 E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X.
- Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer *limit*, Nature 546, 270 (2017).
- [15] C. Gong and X. Zhang, *Two-dimensional magnetic crystals and emergent heterostructure devices*, Science 363, eaav4450 (2019).
- [16] K. S. Burch, D. Mandrus, and J. G. Park, *Magnetism in two-dimensional van der Waals materials*, Nature 563, 47 (2018).

- 328 [17] M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, *Magnetic 2D materials* 329 *and heterostructures*, Nat. Nanotechnol. 14, 408 (2019).
- 330 [18] Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao, D. Xiao, X. Zhu,
- A. F. May, W. Wu, D. H. Cobden, J.-H. Chu, and X. Xu, *Two-dimensional itinerant ferromagnetism in atomically thin Fe₃GeTe₂*, Nat. Mater. **17**, 778 (2018).
- 333 [19] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J.
- Wang, X. H. Chen, and Y. Zhang, *Gate-tunable room-temperature ferromagnetism in two- dimensional Fe₃GeTe₂*, Nature 563, 94 (2018).
- A. F. May, D. Ovchinnikov, Q. Zheng, R. Hermann, S. Calder, B. Huang, Z. Fei, Y. Liu, X.
 Xu, and M. A. McGuire, *Ferromagnetism near room temperature in the cleavable van der*
- 338 *Waals crystal Fe₅GeTe₂.*, ACS Nano **13**, 4436 (2019).
- 339 [21] R. Zhu, W. Zhang, W. Shen, P. K. J. Wong, Q. Wang, Q. Liang, Z. Tian, Y. Zhai, C. W.
- 340 Qiu, and A. T. S. Wee, *Exchange bias in van der Waals CrCl₃/Fe₃GeTe₂ heterostructures*,
 341 Nano Lett. 20, 5030 (2020).
- L. Zhang, X. Huang, H. Dai, M. Wang, H. Cheng, L. Tong, Z. Li, X. Han, X. Wang, L. Ye,
 and J. Han, *Proximity- coupling- induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures*, Adv. Mater. **32**, 2002032 (2020).
- 345 [23] G. Hu, Y. Zhu, J. Xiang, T. Y. Yang, M. Huang, Z. Wang, Z. Wang, P. Liu, Y. Zhang, C.
- 346 Feng, D. Hou, W. Zhu, M. Gu, C. H. Hsu, F. C. Chuang, Y. Lu, B. Xiang, and Y. L. Chueh,
- 347 Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic
- 348 *layered MnPS₃/Fe₃GeTe₂ stacking heterostructure*, ACS Nano **14**, 12037 (2020).

349	[24]	H. Dai, H. Cheng, M. Cai, Q. Hao, Y. Xing, H. Chen, X. Chen, X. Wang, and J. B. Han,
350		Enhancement of the coercive field and exchange bias effect in $Fe_3GeTe_2/MnPX_3(X = S and$
351		Se) van der Waals heterostructures, ACS Appl. Mater. Interfaces 13, 24314 (2021).
352	[25]	H. K. Gweon, S. Y. Lee, H. Y. Kwon, J. Jeong, H. J. Chang, K. W. Kim, Z. Q. Qiu, H. Ryu,
353		C. Jang, and J. W. Choi, Exchange bias in weakly interlayer-coupled van der Waals magnet
354		<i>Fe₃GeTe₂</i> , Nano Lett. 21 , 1672 (2021).
355 356	[26]	H. G. Kim and HBR. Lee, <i>Atomic layer deposition on 2D materials</i> , Chem. Mater. 29 , 3809 (2017).
357	[27]	J. Seo, D. Y. Kim, E. S. An, K. Kim, GY. Kim, SY. Hwang, D. W. Kim, B. G. Jang, H.
358		Kim, G. Eom, S. Y. Seo, R. Stania, M. Muntwiler, J. Lee, K. Watanabe, T. Taniguchi, Y. J.
359		Jo, J. Lee, B. I. Min, M. H. Jo, H. W. Yeom, SY. Choi, J. H. Shim, and J. S. Kim, Nearly
360		room temperature ferromagnetism in a magnetic metal-rich van der Waals metal, Sci. Adv.

- **6**, eaay8912 (2020).
- 362 [28] A. F. May, C. A. Bridges, and M. A. McGuire, *Physical properties and thermal stability of* 363 *Fe_{5-x}GeTe₂ single crystals*, Phys. Rev. Mater. **3**, 104401 (2019).
- 364 [29] See Supplemental Material at [URL will be inserted by publisher] for $T_{\rm C}$ measurement, 365 AFM images for thickness measurements, and exchange bias in multiple Fe₅GeTe₂/oxides 366 heterostructures.
- 367 [30] X. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi, and G. Rubloff, *Ozone-* 368 *based atomic layer deposition of crystalline V₂O₅ films for high performance* 369 *electrochemical energy storage*, Chem. Mater. 24, 1255 (2012).

- [31] L. Du, J. Tang, Y. Zhao, X. Li, R. Yang, X. Hu, X. Y. Bai, X. Wang, K. Watanabe, T.
 Taniguchi, D. Shi, G. Yu, X. Bai, T. Hasan, G. Zhang, and Z. Sun, *Lattice dynamics, phonon chirality, and spin-phonon coupling in 2D itinerant ferromagnet Fe₃GeTe₂, Adv. Funct.
 Mater. 29, 1 (2019).*
- 374 [32] M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, *Electrical characterization*375 *of thin Al₂O₃ films grown by atomic layer deposition on silicon and various metal substrates*,
 376 Thin Solid Films **413**, 186 (2002).
- 377 [33] B. Lee, S.-Y. Park, H.-C. Kim, K. Cho, E. M. Vogel, M. J. Kim, R. M. Wallace, and J. Kim,
 378 *Conformal Al₂O₃ dielectric layer deposited by atomic layer deposition for graphene-based*379 *nanoelectronics*, Appl. Phys. Lett. **92**, 203102 (2008).
- [34] E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R.
 Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, *ALD grown zinc oxide with controllable electrical properties*, Semicond. Sci. Technol. 27,
 074011 (2012).
- [35] Y. Zhang, H. Xu, C. Yi, X. Wang, Y. Huang, J. Tang, J. Jiang, C. He, M. Zhao, T. Ma, J.
 Dong, C. Guo, J. Feng, C. Wan, H. Wei, H. Du, Y. Shi, G. Yu, G. Zhang, and X. Han, *Exchange bias and spin–orbit torque in the Fe₃GeTe₂-based heterostructures prepared by*vacuum exfoliation approach, Appl. Phys. Lett. **118**, 262406 (2021).
- [36] Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D. Ye, *Atomic- layer-deposited nanostructures for graphene-based nanoelectronics*, Appl. Phys. Lett. 92,
 013101 (2008).

391	[37]	H. Liu,	К. У	Ku, X.	Zhang,	and	P. I	D. `	Ye,	The	integration	of	high-k	dielectric	on	two-
392		dimensi	onal o	crystal	s by ator	mic la	ıyer	dep	posit	tion,	Appl. Phys.	Let	t. 100 ,	152115 (2	012).

- 393 [38] S. Jandhyala, G. Mordi, B. Lee, G. Lee, C. Floresca, P.-R. Cha, J. Ahn, R. M. Wallace, Y.
- 394 J. Chabal, M. J. Kim, L. Colombo, K. Cho, and J. Kim, Atomic layer deposition of
- 395 *dielectrics on graphene using reversibly physisorbed ozone*, ACS Nano **6**, 2722 (2012).