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Recovery processes in metals with a high defect concentration are at the heart of a structural
alloy’s usability in engineering applications. However, such processes take place via non-conservative
mechanisms mediated by point defect diffusion and are governed by their interactions with the
underlying microstructure. Indeed, one of the main challenges in studying recovery processes is
their intrinsic multiscale complexity, which often negates the use of experimental techniques. In
this work, we study the mechanism of dislocation loop coalescence in metals by simulating the
interaction dynamics between vacancies and prismatic loops using a novel stochastic framework
that seamlessly bridges point defect kinetics with dislocation mechanics. Our simulations reveal two
fundamental discoveries: first, that climb processes are governed by local fluctuations that are not
captured by continuum elasto-diffusion models, and, second, that prismatic loops create internal
traps for vacancies, leading to the formation of rings around the perimeter of the loops that affect
how coalescence takes place. Our results show an excellent agreement with in situ experimental
observations of loop coalescence in Fe under irradiation.

Background – In materials under far-from-equilibrium
situations, such as energetic particle irradiation or rapid
quenching from high temperature conditions, high con-
centrations of metastable defect structures that are ordi-
narily very difficult to observe experimentally can be cap-
tured. Well known examples of this are the observation of
stacking fault tetrahedra in Au, Al, or Ni [1–4], prismatic
dislocation loops in Al, Mo, and Nb [5–12], and the for-
mation of ‘rafts’ of dislocation loops in irradiated Fe and
W [13–16]. As well, during cold-working of engineering
alloys, large numbers of dislocations are produced, cre-
ating metastable conditions that result in high strength
and low ductility [17–19]. Annealing and/or thermal ag-
ing of these microstructures leads to recovery, i.e., evolu-
tion of the microstructure towards stable arrangements
of defects and dislocations. Such stabilization generally
results in an improved toughness and increased thermal
resistance [20–22]. Generally, recovery works in the di-
rection of reducing the overall dislocation line length by
loop coalescence, both in the case of self-interstitial pris-
matic loops during irradiation [23, 24], and for vacancy-
type prismatic loops during annealing of quenched metals
[6, 25].

Recovery is almost always controlled by non-
conservative dislocation processes mediated by point de-
fect motion. As such, it is a time-dependent phenomenon
that displays a strong temperature dependence. In the
most general case, materials containing a high density of
prismatic loops recover through the process of loop coa-
lescence [26–30], brought about by point defect-induced
dislocation segment climb, ultimately resulting in a re-
duction of the total dislocation density in the mate-
rial. Climb allows dislocations to leave their glide planes,
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thereby opening up additional plastic relaxation path-
ways for the defect structures. The resulting elasto-
diffusion problem is solved by coupling vacancy diffu-
sion to the stress fields engendered by the dislocation
microstructure, which in turn evolves in response to lo-
cal defect absorption/emission processes. In fact, therein
lies one of the main challenges of modeling recovery
processes, as dislocation-defect co-evolution comprises a
wide range of vastly different length and time scales that
must be somehow bridged. A common workaround to
close this multiscale gap is to adopt a mean-field de-
scription of the point defect subpopulation, considering
smoothly-varying defect densities and condensing their
behavior into effective continuum kinetic laws. Even
then, such models have only recently begun to be de-
veloped [31–35].

There are numerous situations in physics, however,
where (i) the inherent discrete nature of point defects
cannot be ignored, and (ii) where defects densities are
spatially heterogeneous. In both instances, mean-field
solutions are invalidated by their inability to capture spa-
tial and thermal fluctuations. Such is the case in the
above mentioned examples of irradiation, where defects
are introduced in space-localized bursts, or quenching,
when loops are formed through a standard nucleation
and growth process governed by fluctuations.

In this Letter we study the phenomenon of loop
coalescence in bcc metals containing a high number
density of prismatic loops. Without loss of generality, we
focus on quenched Mo as a representative example of a
materials containing a high number density of prismatic
loops of vacancy character, and later turn our attention
to Fe for validation with irradiation experiments. How-
ever, note that given the qualitative similarities between
both vacancy and self-interstitial loops, our approach is
general and can capture the coalescence kinetics of both
types, depending on the case. As such, the kinetics for
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one type can be qualitatively equated to the kinetics of
the other by using the appropriate signs for the relevant
material parameters and deformation fields. We employ
a recently-developed stochastic simulator that captures
both vacancy diffusion on atomic scales and dislocation
dynamics governed by elasticity within a common
numerical framework. As it will be shown, this seamless
coupling of the atomistic and elastic spatio-temporal
scales, reveals two striking new findings about the loop
coalescence process and its connection to materials
recovery. Furthermore, our simulations are found to be
in excellent agreement with experimental observations
of loop coalescence processes.

Theory and models – The basis for the method devel-
oped here is the model for dislocation climb proposed
by McElfresh et al. [36], which self-consistently couples
vacancy transport with dislocation dynamics (DD) in
a stochastic numerical framework, which we briefly de-
scribe next. Vacancy transport is modeled as a standard
diffusion/advection process:

∂C

∂t
= Dv∇2C − u · ∇C (1)

where Dv is the vacancy diffusivity, C is the vacancy
concentration at position x and time t, u is the drift
velocity vector, and ∇2 is the Laplacian. The general
solution to the above expression in 3D can be shown to
be:

C(x, t) = (6πDvt)
− 1

2 exp

{
− (x− ut)2

4Dvt

}
(2)

which can be superposed for all vacancies to give the
‘wave function’ (spatial probability distribution function)
for the vacancies in the system. We have derived an ex-
pression for the drift velocity of a point particle intro-
ducing hydrostatic lattice distortions:

u =
Dv

kT

Ωrel

3
∇Tr(σ(x)) (3)

where Ωrel is the vacancy relaxation volume, and
Tr (σ(x)) = σkk(x) is the hydrostatic stress at each spe-
cific vacancy position x. Thus, when embedded in an
elastic medium containing dislocations, the stress tensor
σ(x) provides the local driving force in the form of a
diffusion drift that depends on the gradient of its hydro-
static components. It is important to note that eq. (2) is
strictly valid only when u is independent of the vacancy
location, which is not the case here. [37] However, as we
demonstrate in the Supplemental Information at [],the
exact solution of eq. (1) (i.e., with spatially-dependent
u) can be satisfactorily approximated by eq. (2) within
the timescales of vacancy diffusion, thus justifying its use
throughout the rest of the paper.

We implement a method of sampling jump distances
that is consistent with each vacancy’s local gradient and

satisfies a shifted Gaussian as required by a biased ran-
dom walk. Complete details of the method and imple-
mentation are provided in ref. [36, 38]. The evolution
of the vacancy subsystem is then simulated by a kinetic
Monte Carlo (kMC) algorithm that accounts for elastic
drift effects on vacancy diffusion. In this way the va-
cancy transport module is self-consistently linked to the
DD module. The dislocation dynamics module provides
a the stress field at time t everywhere in space, and up-
dates the dislocation microstructure on the basis of the
number and location of vacancy absorptions/emissions
by dislocation segments.

The rates of absorption or emission of vacancies are
calculated in a cylindrical volume around a dislocation
segment i of size Vi = πb2i li, where bi = ‖bi‖ and li
are the modulus of the Burgers vector bi and the seg-
ment length, respectively. The integer-valued expression
for the local rate of emission of vacancies can then be
adapted from the standard expression given by Friedel
[39] as:

Ṅi = Ṅ0
i

[
1− Ni

ρaVi
exp

(
Hf

kT

)]
(4)

Ṅ0
i =

[
2πli
bi

(
1− ti·bi

bi

)]
ν(T ) (5)

where Ni is the number of vacancies emitted, ρa is the
atomic density, Hf is the vacancy formation enthalpy,
ti is the segment’s unit line tangent, and ν(T ) is a
temperature-dependent vacancy jump rate. During a
kMC iteration, each dislocation segment has a unique
emission rate that is added to the list of event rates to
sample in each kMC iteration.

Absorption (emission) of vacancies by a dislocation
segment i results in climb along its normal direction by
an amount:

hi = ± NiΩabi
li|ti × bi|2

(6)

where Ωa is the atomic volume. hi is positive (negative)
if vacancies are absorbed (emitted).

We define the vacancy diffusivity as Dv = zfb2ν(T )
where z = 8 is the coordination number of the bcc lat-
tice, f ≈ 0.8 is a correlation factor, and b ≡ ‖bi‖ is
the jump distance, which is identical to the Burgers vec-
tor modulus. For its part, ν(T ) = ν0 exp (−Em(x)/kT ),
where ν0 is the attempt frequency, k is Boltzmann’s con-
stant, and T is the absolute temperature. The migration
barrier of the vacancy is sensitive to elastic stresses as
Em(x) = E0

m − σ(x) : Ωact where σ(x) is the stress
tensor at the vacancy spatial point x, E0

m is the defect
migration energy in an isotropic medium, and Ωact is the
activation volume tensor [36]. Vacancy migration at or
near dislocation cores (e.g., during pipe diffusion) is by
definition inelastic and necessitates an atomistic treat-
ment [40–42], currently beyond the scope of the present
work. In the following examples, we simulate Mo sin-
gle crystals defined by the material parameters listed in
Table I. To avoid numerical incompatibilities associated
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TABLE I: Material parameters for Mo used in the
present simulations [43, 44].

Parameter Symbol Units Value
Lattice parameter a0 nm 0.317

Atomic density ρa m−3 6.45× 1028

Atomic volume Ωa b3 0.77
Relaxation volume Ωrel Ωa −0.37

Vac formation energy Hf eV 3.0
Vac migration energy E0

m eV 1.6
Attempt frequency ν0 Hz 1012

Burgers vector b nm 0.27

with merging deterministic (DD) and stochastic (kMC)
integration algorithms, we cast the entire elasto-plastic-
diffusive problem within a single stochastic framework,
taking advantage of a parallel kMC algorithm to evolve
the system as a single event-driven process. The coupled
model has been implemented into the massively-parallel
ParaDiS code [45–47] using a synchronous parallel kMC
algorithm [48, 49].

Results: vacancy ring formation – Our first finding
of significance is that vacancies flowing into a hexago-
nal prismatic loop [50] do not get immediately absorbed
but instead become trapped at an offset distance from
the dislocation segments. This is illustrated in Figure
1, which shows three instantaneous time snapshots (at
t = 0, 40, and 80 ms) of the interaction between vacan-
cies and a 40b hexagonal dislocation loop at 1400 K in
thermal conditions (no vacancy supersaturation). As the

0 s

(a)

0.04 s

(b)

0.08 s

(c)

FIG. 1: Snapshots of vacancy clusters forming around
an immobilized vacancy prismatic loop with a core

width of 4b. The simulation was performed with a 40b
loop at 1400 K.

figure shows, vacancies are seen to form a ring outside the
loop’s perimeter, eventually clustering along the edges of
the hexagon. Indeed, inspection of the radial stress field
of the loop reveals the existence of a barrier against point
defect absorption at an offset distance from the loop seg-
ments. This barrier is an intrinsic feature of the stress
field of an isolated prismatic loop, and is shown in Figure
2 by a continuous black line. The near-core local hydro-
static stress minima exist as a result of the use of the
non-singular elasticity theory in the DD implementation
employed here [51]. More details on this implementation
can be found in refs. [51–53]. It is important to note

that this type of structure is not fully-relaxed because
our method does not capture inelastic effects such as
vacancy clustering and/or interactions with dislocation
cores that might disrupt it and take it towards more sta-
ble configurations. Thus, it is more appropriate to refer
to these trapped clusters as being in a transient configu-
ration that may not be representative of the ground state
of the loops.

FIG. 2: Hydrostatic stress as a function of x-coordinate
between two 40b-diameter vacancy loops at various loop

separations. The x = 0 value corresponds to the
midpoint between the loops’ closest points. The two

loops drawn above the figure correspond to a separation
of 10b. Also shown overlaid in black is the hydrostatic

stress profile of an isolated loop.

Additionally, we have discovered that, rather than ap-
proaching the loop from outside the glide cylinder [54],
vacancies are funneled through the inner boundaries of
the compressive stress cone created by the loop, thereby
avoiding encountering the barrier altogether. This is
shown in Figure 3, which includes three snapshots of the
spatial distribution of thermal vacancies around a sta-
tionary 40b-diameter loop at 1400 K, where the color map
indicates the value of Tr(σ)) in GPa. In this fashion, va-
cancies can become trapped without having to overcome
the stress barrier for the isolated loop shown in Figure 2.
Indeed, vacancies are accelerated into the loop’s perime-
ter due to the extremely-high pressure gradient indicated
in the figure. Climb is thus made feasible only after va-
cancies are able to escape this trap, which is itself and
thermally activated process. For completeness, similar
evidence of vacancy clustering behavior on the inside of
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interstitial prismatic loops is provided in the Supplemen-
tal Information figures [37].

(a) (b) (c)

FIG. 3: Kinetic evolution of the vacancies around a
40b-diameter loop at 1400 K. The initial vacancy

distribution is shown in (a). The color bar indicates the
value of Tr(σ) in GPa. The vacancies approach the loop

in the fashion indicated by the red arrows in (b) and
(c), i.e., following the inner boundaries of the
compressive stress lobes created by the loop.

Results: loop coalescence mechanism – The stress profile
shown in Figure 2 substantiates the behavior observed in
Figure 1, i.e., that vacancies can arrange themselves into
a ring outside an isolated loop’s perimeter. As mentioned
earlier, this actually hinders climb, as vacancies are ther-
modynamically trapped at an offset distance from the
actual loop segments. However, when two prismatic dis-
location loops approach one another, whether by climb
or glide, the situation drastically changes. As Figure 2
illustrates for a pair of 40b-diameter circular loops, the
two stress minima corresponding to the two isolated de-
fects gradually merge with one another, giving rise to a
single combined pressure minimum. Most importantly,
however, this joint minimum results in an abundance of
vacancies trapped in the gap between the loops. Figure
2 shows the shape of the pressure profile at various dis-
tances between the two defects. As the loops approach,
the shared stress minimum deepens as it is sandwiched
between the opposing segments. The stress gradient asso-
ciated with such process is seen to increase as well, lead-
ing to a strong driving force for vacancy agglomeration
in that region, as illustrated in Figure 4. Furthermore,
we have seen that an enhanced accumulation of vacancies
in the common interaction zone intensifies the attractive
force between the loops, resulting in coalescence even in
conditions where both glide and climb are required to
bring the process to completion.

The coalescence process is studied in the simulations
presented in Figure 5, where two elongated interstitial
loops with non-overlapping glide cylinders are placed at
an offset distance of 10b from one another. While the
loops here are simulated with Fe as the base material for
direct comparison to experimental results of irradiated
Fe in ref. [29], we expect the simulated behavior to be
qualitative the same in other bcc metals. The relevant

FIG. 4: (a) Hydrostatic stress map for two 60b-diameter
vacancy loops separated by 10b. The color bar indicates
the value of Tr(σ) in GPa. Local vacancy concentration
at (b) t = 0 and (c) 0.002 s. Red dashed arrows mark
the vacancy approach path to the pressure trap shared

between the loops.

physical parameters that were used for Fe were a0 =
0.286 nm, Hf = 1.7 eV, E0

m = 0.68 eV, b = 0.25 nm,
Ωa = 0.80b3, and Ωrel = −0.2. The offset separation,
dv, is along the ‘vertical’ direction in the figure and is
overcome by glide, while the glide cylinders are brought
into contact by climb along the ‘horizontal’ direction, dh.
We then let the loops evolve under no external applied
stress and we track dv and dh. The results are shown
in Figure 5a where both distances are seen to decrease
monotonically to zero. The angle θ representing the ratio
of the glide and climb distances (as θ = tan−1 (dh/dv))
is also included in the figure. The process is eminently
elastic, as demonstrated by the good agreement between
our time-dependent evolution and Kroupa’s expression
to describe climb-mediated annihilation of two pure edge
dislocations [55]:

1

2

(
h

bK

)2

≈ 1

2

(
h0
bK

)2

− 2Dvcj
b2K

t (7)

where h is the dipole width (here equivalent to dh), K
is a temperature-dependent material parameter, cj is
the density of jogs on the dislocation, t is time, and h0
is the initial climb offset at t = 0. As the figure shows,
the offset angle remains practically constant during the
coalescence process. Figure 5b shows several snapshots
of the coalescence simulations. The loops expand via
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(a) (b) (c)

FIG. 5: (a) Horizontal (in blue, solid) and vertical separation (in blue, dashed) between an interstitial prismatic
loop dipole and the corresponding dipole angle (in red, dotted, right axis) as a function of simulation time. The

dipole angle remains relatively constant as the loops climb and glide towards one another and eventually annihilate
the dipole. (b) Snapshots of the interstitial loop dipole shrinking and eventually coalescing under combined
climb-glide mechanics. (c) Coalescence process of two irradiation loops in pure Fe at 300oC (from ref. [29],

reproduced with permission). 25 nm equals approximately 100b in Fe.

climb while also gliding towards one another to bridge
the separation dv. However, climb outpaces glide and in
the end a jog of magnitude ≈ dv is left in the coalesced
structure. The simulated process is remarkably similar
to in situ transmission electron microscopy (TEM)
observations of prismatic loop coalescence in irradiated
Fe at 300◦C [29], as displayed in Figure 5c. While the
origin of the loops differs, once formed the kinetics
of coalescence seen in the experiments matches what
our simulations predict. This is a very encouraging
sign that adds confidence to our models. Videos of
coalescence process observed with both in situ TEM
and the computational method are provided in the
Supplemental Information as well. Additionally, we note
that the loop configuration in Figure 5b was constructed
as an arbitrary dipole but allowed to evolve freely. Both
the kinetics and final configuration may strongly depend
on the type of multiloop metastable configuration that
the dislocations adopt, but a detailed examination is
beyond this short letter [34].

Summary – Our first finding of significance is the exis-
tence of a stress minimum around a prismatic loop that
can create an elastic trap for point defects at an offset dis-
tance on the order of 2-5b from the actual loop segments.
This trap is located outside the perimeter for vacancy
loops (inside for self-interstitial loops). While a sizable
kinetic barrier exists to access this minimum when ap-
proaching the loop from its habit plane, we find that va-
cancies take advantage of a ‘cone’ of favorable (compres-
sive) stress gradients to approach the loops and become

trapped there. The significance of this is that, for iso-
lated loops, vacancies are not immediately absorbed by
the dislocation segments, which is the common assump-
tion to formulate osmotic forces that balance prismatic
loops against climb. A more detailed investigation of the
influence of vacancy cluster formation and inelastic in-
teractions between the vacancies and dislocation cores is
needed to capture the ultimate fate of these structures,
but is presently beyond the scope of this paper.

Second, we find that in a coalescence process between
two prismatic loops belonging to non-overlapping glide
cylinders, the stress traps belonging to each loop merge
and intensify. This actually favors climb, as a relatively
large concentration of vacancies is funneled to that
region, creating extra chemical force for absorption.
Coalescence is thus directly driven by elastic forces that
bring the loops in line via glide, and indirectly through
climb (chemical) forces that expand their glide cylinders
until contact is established and coalescence takes place.
We find a remarkable qualitative agreement with in
situ TEM observations of similar processes in irradiated
Fe. None of these effects can be practically studied
via direct atomistic simulations –as the configurational
space and the relevant timescales are simply far too
large to be explored rigorously–, or with continuum
methods because they fail to capture the fine details of
the interactions between point defects and dislocation
segments, including fluctuations.
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de la Rubia, Journal of nuclear materials 307, 871 (2002).


	Coalescence dynamics of prismatic dislocation loops due to vacancy supersaturation
	Abstract
	References


