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A puckered sheet is a freestanding crystalline membrane with an embedded array of bistable
buckled units. Recent work has shown that the bistable units behave like spins in a two-dimensional
compressible Ising antiferromagnet with, however, a coupling to flexural phonons. At finite temper-
ature, this purely mechanical system displays Ising-like phase transitions, which drive anomalous
thermal expansion. Here, we show that geometry can be used to control phase behavior: curva-
ture produces a radius-dependent “external field” that encourages alignment between neighboring
“spins,” disrupting the ordered checkerboard ground state of anti-aligned neighbors. The effective
field strength scales as the inverse of the radius of curvature. We identify this effective field theo-
retically with both a discrete real space model and a nonlinear continuum elastic model. We then
present molecular dynamics simulations of puckered sheets in cylindrical geometries at zero and
finite temperature, probing the influence of curvature on the stability of configurations and phase
transitions. Our work demonstrates how curvature and temperature can be used to design and
operate a responsive and tunable metamaterial at either the macroscale or nanoscale.

I. INTRODUCTION

Mechanical systems composed of coupled bistable units
have been explored in recent years for applications in
soft robotics, shape memory, and information processing
[1–18]. An appealing feature of these metamaterials is
their tunability—each of N bistable units can be indi-
vidually inverted, possibly leading to ∼ 2N metastable
states and diverse macroscopic behaviors [19]. Tunable
materials are of interest for many technological appli-
cations, from optical filtering [20, 21] to reconfigurable
structures [22, 23] in which it is desirable to have a sin-
gle material serve multiple functions. A shared challenge
of many tunable materials is determining how to eas-
ily and reversibly control microscopic configurations, en-
abling the desired macroscopic transformations.

Recently, we proposed that one such system, a free-
standing elastic sheet with an array of buckled bistable
units, can be understood as a mechanical analog of a com-
pressible Ising antiferromagnet with spin-flexural phonon
coupling [24]. In this system, bistable puckers are created
by locally dilating the surface at a regular array of lat-
tice sites embedded in a crystalline membrane—when the
dilation is sufficiently large, it becomes energetically fa-
vorable for the affected site to buckle, either up or down,
into the third dimension. Each buckled dilation acts like
a “spin,” and an interaction between neighboring spins is
generated via the difference in the elastic energy of differ-
ent deformation patterns (as in Fig. 1(a,b)). At zero tem-
perature, the energy of a system with stress-free in-plane
periodic boundaries is minimized by a checkerboard con-
figuration of up/down puckers, equivalent to an antifer-
romagnetic spin configuration (Figs. 1b,e 2a,b) [24, 25].
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Zero temperature puckered sheets provide a theoretically
tractable system to explore shape memory and metasta-
bility, and are relevant to recent experimental realizations
of macroscale metasheets [3–5].

When the temperature is increased, thermal energy
becomes comparable to the energy barrier between the
up and down puckered states, and “spins” are able to
flip. At a critical temperature, the staggered magne-
tization, which quantifies the checkerboard spin order,
drops abruptly and the susceptibility and specific heat
diverge. In addition to these standard signatures of an
Ising phase transition (albeit with an unusual specific
heat exponent [24]), one finds an anomalous, diverging
coefficient of thermal expansion at the critical tempera-
ture due to the competition between spin degrees of free-
dom and out-of-plane thermal fluctuations [24]. Ther-
mally activated dilation arrays are relevant to experimen-
tally realized puckered atomically-thin monolayers such
as SnO [26–28].

Given an Ising-like mechanical model, a natural next
question is: Can we define a mechanical analog of an
external field that acts on our “spins?” An effective ex-
ternal field would ideally enable us to control microscopic
spin configurations by varying a macroscopic quantity, al-
lowing a puckered sheet to function as a programmable
metamaterial with tunable properties.

In this paper, we demonstrate with theory and sim-
ulations that the extrinsic curvature of the host lattice
plays the role of an external field in our system, encour-
aging dilations to defy antiferromagnet nearest-neighbor
coupling and buckle in the same direction. A large cur-
vature corresponds to a high effective uniform magnetic
field. Figure 1 provides an intuitive understanding of
why host lattice curvature can bias dilations to buckle
away from the center of curvature—the angle between
two aligned, or “ferromagnetic” puckers is smoothed by
the presence of curvature, decreasing the cost of bend-
ing. Our framework is consistent with observations in
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FIG. 1. Curvature influences the interaction between neighboring buckled dilations. Dilations are drawn as large (blue or
yellow) spheres and undilated host lattice sites are drawn as smaller black spheres. (a) Two dilations buckled in the same
direction will have a bending energy contribution which we model as κ̂(1 − nα · nβ). (b) Anti-aligned puckers pay a smaller
bending energy penalty, as the plaquettes between the two dilations are parallel. When a background curvature (dotted green
line) is introduced, as might happen on a cylinder, it becomes somewhat less costly for puckers to be outwardly aligned (c),
and somewhat more costly to be anti-aligned (d). (e) A top down view of the network of harmonic springs connecting dilation
and host lattice nodes in a square array. (f) An example of a system with 18 × 18 dilations with planar periodic boundary
conditions. (g) The same system as in (f) now rolled into a cylinder to produce an extrinsic radius of curvature R.

the literature of mechanical Ising-like systems with free
boundaries adopting curved configurations when nodes
are assigned to be in the same state [1–5]. Extrinsic
curvature is an appealing candidate stimulus for many
applications, as it can often be tuned at the boundary
[29].

In order to study curvature in a controlled manner, we
focus on square arrays of dilations rolled into cylinders
(Fig. 1g). This geometry allows us to explore the effect
of a background of nonzero mean curvature without the
stretching associated with nonzero Gaussian curvature
[30, 31]. A cylindrical geometry also allows us to connect
more closely to the literature on functionalized carbon
nanotubes with defects [32, 33], van der Waals nanotubes
(e.g., MoS2 monolayer wrapped into a cylinder) [34, 35]
and ferromagnetic nanotubes [36, 37].

We support our claim that a background curvature acts
as a biasing external field in Ising-like puckered cylin-
ders with two complementary theoretical models as well
as molecular dynamics simulations at both zero and fi-
nite temperature. In Sec. II, we introduce a computa-
tional model for an array of buckled bistable nodes on a
cylinder and briefly summarize key simulation results. In
Sec. III, we provide a discrete real space theory based on
approximations to the energy used in simulations, and
show that couplings between neighboring spins and be-
tween spins and curvature take the same forms as terms
in the microscopic Ising Hamiltonian. In Sec. IV, we
develop a nonlinear continuum model using shallow shell
theory, which we use to derive a Landau-like expansion
of the energy with a field-like coupling between curvature
and magnetization. In Sec. V, we use molecular dynam-
ics simulations to confirm that ferromagnetic buckling is
preferred for high curvature and antiferromagnetic buck-
ling is preferred for intermediate/vanishing curvature at
zero temperature. We then increase the temperature and
track the phase behavior of the system. Finite size effects
are inevitable, since for our cylindrical geometry, we can-

not increase the curvature without decreasing the cylin-
der circumference. Nonetheless, we generate an approxi-
mate phase diagram in the curvature-temperature plane
showing that finite staggered magnetization can only be
maintained at either low temperatures or small curva-
tures. We conclude by discussing prospects for future
work, including studying the influence of higher order
couplings to curvature predicted by our theory, arrays
of contractile inclusions, systems with nonzero Gaussian
curvature, and high temperature crumpling.

II. MODEL

In this section, we present the computational model
used in simulations (Sec. V) whose behavior we seek to
understand using theory (Secs. III and IV).

To model an antiferromagnetic array of dilations em-
bedded in a thin elastic sheet, we use the energy func-
tional introduced in ref. [38], but generalized to have a
square microstructure [25]. Lattice sites are connected by
harmonic springs, shown as grey lines in Fig. 1e, and each
triangular plaquette is assigned a normal vector that is
used to penalize bending, as shown in Fig. 1a,c. This
type of model has been used to study the mechanics
and thermal behavior of atomically-thin materials such
as graphene and MoS2 [39–43].

The total energy of our lattice model is given by

E =
k

2

∑
〈i,j〉

(|rrri − rrrj | − aij)2 + κ̂
∑
〈α,β〉

(1−nnnα ·nnnβ). (1)

The first sum is over neighboring nodes and gives the
stretching energy in terms of the spring constant k and
the rest length of the spring connecting nodes i and j, aij .
The second sum is over neighboring plaquettes and gives
the bending energy in terms of the microscopic bending
rigidity κ̂. The rest lengths aij are chosen to model a
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FIG. 2. Mapping from buckled dilation nodes to spin/staggered spin in planar and cylindrical geometries at T = 0 (first row)
and T = 0.15 < Tc (second row), where Tc is the critical temperature of the staggered (“antiferromagnetic”) pucker phase
transition in the planar geometry. Temperatures are measured in units of the microscopic bending rigidity κ̂. (a) Height
profile at equilibrium of a 48a0×48a0 puckered sheet with 24×24 dilation nodes with periodic boundary conditions in the x
and y directions. The colors represent nodes’ positions relative to the zero plane in units of the lattice spacing a0. (b) Spin
configurations associated with column (a), where dilations that buckle above the local plane formed by their neighbors are
designated spin up (σ = +1, colored blue) and dilations that buckle below are designated spin down (σ = −1, colored yellow).
(c) Staggered spin configurations associated with the spins in column (b), measuring each spin’s adherence to a checkerboard
ordered phase. This transformation amounts to multiplying the spins on every other lattice site by −1 (d) The same puckered
sheet as in columns (a)-(c), but now wrapped into a cylinder with periodic boundaries in the axial direction. Staggered spins
are shown following energy minimization at T = 0 or equilibration at T = 0.15. Node positions are visualized using OVITO
software [44].

dilation array with each dilation separated by two lattice
spacings (Fig. 1e). The short bonds with projections
lying in either the x or y directions have rest length a0

if they are not connected to a dilation node and rest
length a0(1 + ε), ε > 0, if they are. The rest lengths of
diagonal bonds are set so as to allow for a state with
zero stretching energy in the inextensible limit. See refs.
[24, 25] and Appendix A for details.

We first simulate square sheets of area L×L (Fig. 1f),
and then compare with results for cylinders with axial
lengths L tuned to match their circumference, L = 2πR
(Fig. 1g). Periodic boundary conditions in the x and y
directions are used for the planar membranes. We form
cylinders by wrapping the square membranes around the
y axis, with periodic boundary conditions along the tube
axis such that the planar membranes and the cylinders
are topologically equivalent with, however, very different
extrinsic curvatures. Energies are measured in units of
κ̂. We use ε = 0.1, k = 100κ̂/a2

0 and κ̂ = 1, which
corresponds to a continuum 2D Young’s modulus Y =
4k/3, a continuum bending rigidity κ = κ̂, and a dilation

Föppl-von Kármán number [24, 25] γ =
16ka20ε

3κ̂ ≈ 53.3.
The elastic parameters are chosen so that buckling either
up or down out of the local tangent plane is energetically

preferred by dilations (γ > γc ' 21 [24], Appendix A).

We now introduce our main simulation results graphi-
cally via Fig. 2, though we postpone detailed discussions
to Sec. V. In the top row, we show relaxed configura-
tions at zero temperature obtained by minimizing en-
ergy and stress with the Fast Inertial Relaxation Engine
(FIRE) algorithm [45]. Dilations embedded in a host
lattice buckle in the local z direction in a checkerboard
pattern (column a). These buckled nodes can be mapped
to up and down spins (column b), which can then be used
to determine the staggered spin (column c). The stag-
gered spin variable is obtained by multiplying the spin by
(−1)xi+yi , where the integers xi and yi index the spin’s
position on the lattice. Thus the spins on one sublattice
of the bipartite square lattice are multiplied by −1, while
the others remain the same. This transformation means
that if one superimposes a checkerboard on the spin con-
figurations shown in column b, a spin is assigned to be
staggered spin +1 if it is consistent with that particular
checkerboard and −1 if it is not. Thus, both a pure stag-
gered spin up state and a pure staggered spin down state
correspond to perfect checkerboard order, with their cor-
responding spin configurations differing by an overall fac-
tor of −1. The average of the staggered spin is the stag-
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gered magnetization, the order parameter identifying the
checkerboard phase. In column d, the surface is shown
wrapped into a cylinder in real space with its staggered
spin configuration superimposed.

In the bottom row of Fig. 2, we carry out the same
set of transformations at a temperature greater than zero
but less than the critical temperature (Tc ' 0.20) [24] of
the staggered magnetization phase transition in the pla-
nar geometry. In column a, we now observe long wave-
length thermal fluctuations generating out-of-plane dis-
placements significantly greater than the dilation buck-
ling amplitude (≈ 0.4a0). To assign spin configurations,
we use the nodes’ positions relative to the local planes
formed by their neighbors. In columns b and c, we ob-
serve that checkerboard order is largely maintained at
T = 0.15. However, checkerboard order is broken up for
the same system when equilibrated in a cylindrical geom-
etry! The curvature has decreased the effective critical
temperature of the phase transition, and T = 0.15 now
lies in the mst = 0 phase. This outcome is reminiscent
of the effect of a uniform external field in Ising antiferro-
magnets (see Appendix D and refs. [46, 47]). However,
as we shall see, the strength of this effective field is size
dependent, varying inversely as the radius of the cylinder.

III. DISCRETE REAL SPACE THEORY

To better understand these results, we now derive a mi-
croscopic field-like interaction between the curvature and
the buckled dilations at zero temperature by working di-
rectly with an approximate form of the energy functional
used in simulations, Eq. 1.

If we assume as a first approximation that there are
no displacements tangent to the surface defined by the
host lattice and only dilation nodes have displacements
normal to the surface (consistent with a large Föppl-von
Kármán number), we can express the energies of the pairs
of buckled dilations in Fig. 1 solely in terms of the out-
of-plane displacement, the lattice constant, and the ener-
getic parameters. For the dense arrays studied here and
in ref. [24], applying this approximation to planar ar-
rays leads to quantitatively accurate predictions for the
buckling threshold, the height of buckled dilations, and
macroscopic expansion if the lattice constant is allowed
to vary (Appendices A 1 and A 2) [48]

With these assumptions, all the terms in the energy
of the ferromagnetic and antiferromagnetic spin pairs on
a curved host lattice (Fig. 1c and d) are identical ex-
cept for the bending energy generated by the two sets
of adjacent plaquettes with normals labeled nα and nβ .
The contribution to the bending energy from these sets
of plaquettes along a cross section line of a cylinder can
be found by directly calculating the interactions between

the normals (Appendix A 3), which gives

2κ̂(1− nα · nβ) = 2κ̂

(
1 +

1√
a20 + f2

1

√
a20 + f2

2

(
f1f2

(
1− 2a20

R2

)

−2a20
R

(f1 + f2)

√
1− a20

R2
+ a20

(
2a20
R2
− 1

)))
,

(2)

where f1 and f2 are the perpendicular displacements of
the left and right dilations relative to the host lattice in
Fig. 1c,d respectively.

A. Effective external field

To see that curvature enters Eq. 2 as an effective ex-
ternal field acting on an antiferromagnetic Ising model,
we set f1 = σ1f and f2 = σ2f , where σ1,2 = ±1. While a
good assumption in a planar geometry, this approxima-
tion is less accurate for the cylinder—curvature breaks
the up/down symmetry of the system, and |f1| 6= |f2| in
our simulations of antiferromagnetically buckled nodes.
We relax this assumption in Appendix A 3 a, and also
consider the total energy of a small patch, rather than
just the bending between an isolated pucker pair, with
only minor changes in the results.

Upon expanding Eq. 2 in the limit a0/R � 1 (small
curvature/large radius) and simplifying, we find

2κ̂(1−nα · nβ) ≈ 2κ̂

f2 + a2
0

(
f2 +

2a4
0

R2

)
+

2κ̂f2

f2 + a2
0

(
1− 2a2

0

R2

)
σ1σ2 −

4κ̂a2
0f

R(f2 + a2
0)

(σ1 + σ2)

+O(a3
0/R

3). (3)

After neglecting the σj-independent term, this contribu-
tion to the bending energy has the form of the Ising
Hamiltonian ∆H12 (per nearest neighbor pair of dila-
tions) for a spin system in an external field, where

∆H12 = Jeffσ1σ2 − heff

2 (σ1 + σ2), with

Jeff =
2κ̂f2

f2 + a2
0

(
1− 2a2

0

R2

)
, (4)

heff ≈
8κ̂a2

0f

R(f2 + a2
0)
. (5)

Note that the effective uniform field heff is size-dependent,
vanishing like the reciprocal of the cylinder radius. This
calculation describes the interaction between two puckers
connected along the azimuthal direction of the cylinder,
as in Fig. 1. The dilations connected along the axial di-
rection will have an interaction of strength Jeff(R→∞)
(Appendix A). We only simulate cylinders with a circum-
ference larger than or equal to 12a0, for which this esti-
mate of Jeff is always positive, as expected for an antifer-
romagnet. Curvature biases the system towards positive
σ1, σ2 (outward buckling), at linear order in a0/R, and
reduces the strength of the antiferromagnetic interaction
at quadratic order in a0/R.



5

B. Estimate of the threshold radius

As the cylinder becomes more strongly curved (1/R
increases), the effective external field will bias the di-
lations to buckle away from the center of curvature, as
pictured in Fig. 1c, and the new term in the effective
coupling will weaken the antiferromagnetic interaction.
At some threshold radius (which will be a function of
the elastic parameters), ferromagnetism will become the
preferred ground state at zero temperature. A rough es-
timate of this threshold radius follows if we assume that
the buckling magnitude f is the same for both ferromag-
netic and antiferromagnetic patterns. We calculate the
energy difference between two small patches of antifer-
romagnetically and ferromagnetically puckered dilations
curved into cylindrical caps (explicitly given in Eqs. A15
and A16), and find the energy difference per pucker,

EAFM − EFM

Np
= − 8κ̂f2

f2 + a20
+

8κ̂a20f
2

(a20 + f2)R2
+

8κ̂a20f

√
1− a20

R2

(a20 + f2)R
.

(6)

Upon solving Eq. 6 for when EAFM and EFM are equal,
we find a threshold radius below which outward ferro-
magnetic puckering dominates,

Rt =
a0

f

(√
f2 + a2

0

)
, (7)

where f is the local pucker amplitude. We estimate Rt
for the parameters used in simulations by substituting
f = 0.374a0, the buckling amplitude for systems with
planar periodic boundaries (Appendix A 2, [49]), which
gives

Rt ≈ 2.85a0. (8)

Although this estimate depends sensitively on our as-
sumptions about the value of f , it does reveal the exis-
tence of a threshold radius in the discrete theory. In Sec.
V, we measure the threshold radius in simulations and
find a larger value, Rt ≈ 4a0.

IV. NONLINEAR CONTINUUM ELASTIC
THEORY FROM SHALLOW SHELL THEORY

We now introduce a complementary continuum theo-
retical model for puckers on a cylindrical host lattice us-
ing shallow shell theory [50–53]. We use this model to cal-
culate the energy in terms of the amplitudes of the stag-
gered magnetization and magnetization buckling modes,
which reveals a field-like coupling between curvature and
magnetization. In contrast to the discrete model pre-
sented in Sec. III, which only accurately describes inter-
actions between spins whose associated plaquettes share
an edge, the complementary continuum model is most
accurate in the limit of dilute dilation arrays, for which
dilations are far apart and can be reasonably modeled
as delta-function perturbations in the preferred metric

[54]. Though we only work at zero temperature in what
follows, we comment on how this calculation could be
extended to nonzero temperatures as well.

A. Energy functional

Consider a patch of puckered dilations with a cylindri-
cally curved host lattice, as in Fig. 1(c,d). For a shallow,
nearly flat cylinder of radius R, we can parametrize the
curved background surface of the cylinder, r0, using the
Monge representation, placing the origin at the top of
the cylinder,

r0(x1, x2) = (x1, x2, Z(x1)) , (9)

where

Z(x1) = R

(√
1− x2

1

R2
− 1

)
. (10)

Shallow shell theory assumes that the slope of the sur-
face is small, which for our case requires∣∣∣∣ ∂Z∂x1

∣∣∣∣ =

∣∣∣∣∣ x1√
R2 − x2

1

∣∣∣∣∣� 1, (11)

thus restricting our attention to the region close to the
origin where x2

1 � R2/2. Deformations relative to the
cylindrical background surface r0 can now be decom-
posed into displacements tangent to the surface (in the
t̂0
1 and t̂0

2 directions) and normal to the surface (in the
n̂0 direction) such that

r(x1, x2) = r0 + u1t̂
0
1 + u2t̂

0
2 + f n̂0. (12)

A deformation with positive f corresponds to a “spin
up” pucker with a increased radial displacement relative
to the cylindrical background surface [55].

Upon applying the small slope approximation such
that ∂Z/∂x1 ≈ −x1/R and neglecting (∂Z/∂x1)2 and
fu1∂Z/∂x1 terms, Eq. 12 can be reexpressed as

r(x1, x2) =
(
x1 + u1 + f

x1

R
, x2 + u2, Z(x1) + f

)
. (13)

Consistent with these approximations, an array of di-
lations can be modeled as a sum over delta-functions at
regularly spaced positions {ri} in the preferred metric
tensor g0

αβ , [25, 54],

g0
αβ = δαβ

(
1 + Ω0

∑
i

δ2(r− ri)

)
≡ δαβ (1 + Ω0c(r)) ,

(14)
where where α, β ∈ {1, 2}, Ω0 is the extra area provided
by each dilation, and c(r) is the concentration of dila-
tions.

The metric tensor of the deformed/actual configura-
tion can be found by computing gαβ = ∂r

∂xα
· ∂r
∂xβ

using



6

Eq. 13. Thus, the strain tensor that penalizes deviations
from the metric of Eq. 14 is given by

ũαβ ≡
1

2

(
gαβ − g0

αβ

)
=

1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

+
∂f

∂xα

∂f

∂xβ

)
+
f

R
δ1αδ1β −

1

2
Ω0c(r),

(15)

which defines our stretching energy in terms of the Lamé
parameters,

Es =
1

2

∫
d2r

[
2µũ2

αβ + λũ2
γγ

]
. (16)

We also impose a bending energy via the bending rigid-
ity, κ, penalizing the square of the mean curvature [38],

Eb =
κ

2

∫
d2r

(
∇2(Z(x1) + f)

)2
=
κ

2

∫
d2r

(
∇2f − 1

R

)2

.

(17)

The total energy is the sum of these two terms, and
is in general a function of both tangential and normal
displacements. However, for the purposes of our study,
we are only interested in normal displacements, which
determine the spin configuration. As described in Ap-
pendix B, we can eliminate the tangential displacements

at either zero or low finite temperature: At zero temper-
ature, we minimize the energy functional with respect to
tangential displacements uα for a fixed function of f [25],
and at finite temperatures, we integrate over the tangen-
tial phonon degrees of freedom in the partition function
[56]. For either case, we find a relatively simple (free) en-
ergy for phonon displacements normal to the host lattice
surface,

E =
κ

2

∫
d2r

(
∇2f − 1

R

)2

+
Y

2

∫ ′
d2r

(
1

2
PTαβ∂αf∂βf −

Ω0

2
c(r) + PT11

f

R

)2

,

(18)

where Y = 4µ(µ+λ)
(2µ+λ) is the 2D Young’s modulus and PTαβ is

the transverse projection operator [56]. The prime on the
second integral signals that the q = 0 mode is excluded.

To probe the structure of Eq. 18, we Fourier transform
the energy E by introducing f(q) = 1

A

∫
d2rf(r)e−iq·r,

where A is area spanned by x1 and x2. The Fourier trans-
form of the dilation concentration is c(q) = 1

v

∑
G δq,G,

in terms of v, the real space area of the unit cell, and
a set of reciprocal lattice vectors {G}. Upon neglecting

constants and a term of order (Ω0/v)
2
, we arrive at an

energy per unit area,

E

A
= −Y Ω0

2vR

∑
q6=0
G

PT11(q)f(q)δG,−q +
Y Ω0

4v

∑
q1+q2=q6=0
G=−q6=0

PTαβ (q1 + q2) q1αq2βf (q1) f (q2) δG,−q1−q2

+
κ

2

∑
q 6=0

q4f(q)f(−q) +
Y

2R2

∑
q6=0

(
PT11(q)

)2
f(q)f(−q)− Y

2R

∑
q1+q2=q6=0

PTαβ(q1 + q2)q1αq2βf(q1)f(q2)PT11(q1 + q2)f(−q1 − q2)

+
Y

8

∑
q1+q2=q6=0

q3+q4=−q6=0

PTαβ (q1 + q2) q1αq2βf (q1) f (q2)PTγδ (q3 + q4) q3γq4δf (q3) f (q4) . (19)

Note that linear, quadratic, cubic, and quartic terms in
f(q) are all present.

B. Fourier space order parameters

We now introduce two order parameters into our the-
ory by associating the magnitude of the ferromagnetic
buckling mode with a uniform magnetization and the
magnitude of the antiferromagnetic buckling mode with
a uniform staggered magnetization.

As discussed in detail in ref. [25], each buckled pattern
can be associated with a set of Fourier modes. For a fer-
romagnetic buckling pattern, the set of allowed Fourier
modes is simply the reciprocal lattice vectors of the dila-

tion superlattice:

G(k1, k2) =

(
k1

2π

na0
, k2

2π

na0

)
≡ g0 (k1, k2) , (20)

where k1 and k2 are integers, na0 is the real space dis-
tance between dilation sites when Ω0 = 0, and g0 is the
magnitude of the smallest vector in the subspace, 2π/na0.
Thus, the area of the real space unit cell is v = n2a2

0. In
the discrete model and simulations, n = 2.

In the spirit of the nearly free electron model in
solid state physics [57], we approximate the ferro-
magnetic buckling pattern as a sum over the eight
smallest nonzero reciprocal lattice vectors: {Gi} =
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{(±g0,±g0) , (±g0, 0) , (0,±g0)}.

fFM(r) =

8∑
i=1

f(Gi)e
iGi·r (21)

This truncation is consistent with a square Brillouin
zone that includes |qx|, |qy| ≤ 2π

na0
. To determine the

relevant coefficients for the Fourier modes, {f(Gi)}, we
calculate the first eigenvector to go unstable in the limit
R → ∞ in the truncated basis by diagonalizing the
quadratic terms in Eq. 19, enforcing f∗(Gi) = f(−Gi),
as displacements must be real [25].

We find an unstable eigenvector that has all f(Gi)
real and of the same sign. The magnitude of f(Gi) for

|Gi| = g0 is (1 +
√

5) times the magnitude of f(Gi) for

|Gi| = g0

√
2 at the buckling threshold (away from thresh-

old the eigenvector depends on elastic parameters in the
combination Y Ω0

κ = γ). We normalize the f(Gi) values
so that the real space peak-to-trough distance is ma0, in
order to match our intuitive notion of the magnetization.

Our ansatz for the real space ferromagnetic buckling
deformation is thus

fFM(x1, x2) =

ma0

4

(
cos(g0x2) + cos(g0x1)

(
1 +

2 cos(g0x2)

1 +
√

5

))
(22)

Similarly, the Fourier modes associated with checker-
board buckling can be found by direct calculation:

B(b1, b2) =

(
(2b1 + 1)π

na0
,

(2b2 + 1)π

na0

)
≡ g0

2
(2b1 + 1, 2b2 + 1) , (23)

where b1 and b2 are integers.

We now approximate the antiferromagnetic buckling
pattern by a sum over the four smallest nonzero wavevec-
tors given by Eq. 23: {Bi} = {

(
± g02 ,±

g0
2

)
}. The first

unstable eigenvector in this basis has all f(Bi) values
equal and real. We normalize these values so that the
real space peak-to-trough distance is 2msta0. The real
space antiferromagnetic buckling deformation is there-

fore approximated by

fAFM(r) =

4∑
i=1

f(Bi)e
iBi·r = msta0 cos

(g0x1

2

)
cos
(g0x2

2

)
.

(24)
We assume that, within the parameter regime studied
here, other buckling modes play only a minor role in the
phase behavior of the system.

C. Zero temperature behavior

Through this point, our calculations apply to both
zero and low finite temperatures (far below the crum-
pling transition). If one wished to perform a low tem-
perature expansion, for example, one could approximate
f(q) in Eq. 19 as a sum over wavevectors correspond-
ing to ferromagnetic and antiferromagnetic order (Eqs.
20 and 23), wavevectors nearby the order parameter
subspaces, generated by pucker-scale thermal fluctua-
tions, and wavevectors with q � g0, generated by long
wavelength thermal fluctuations. This procedure would
reveal interesting temperature-dependent couplings be-
tween Fourier modes. For example, we can directly ob-
serve that the field-like linear term will only contribute
when wavevectors with exactly the periodicity of the dila-
tion superlattice are present, due to the delta function in
that term. Similar restrictions prevent long wavelength
modes from contributing to any term proportional to Ω0,
though the wavevectors close to the order parameter fre-
quencies would certainly enter. An explicit low tempera-
ture expansion is, however, beyond the scope of this work,
and we consider only the zero temperature behavior of
the continuum theory.

At zero temperature, we assume that the deformation
can be represented as a sum over the truncated subspace
of ferromagnetic and antiferromagnetic modes defined in
Sec. IV B.

f(r) = m

8∑
i=1

Cie
iGi·r +mst

4∑
i=1

Die
iBi·r, (25)

where the Fourier modes {Gi} and {Bi} are given by
Eqs. 20 and 23, and Ci and Di are the constants pro-
viding the normalizations in Eqs. 22 and 24, discussed
above.

By substituting Eq. 25 into the energy per unit area,
Eq. 19, we can examine couplings between m and mst.
These terms would also appear as part of the low tem-
perature expansion procedure described above.

Upon using n = 2 in g0 = 2π
na0

and v = n2a2
0, we obtain

a polynomial expansion in the order parameters m and
mst,
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E(m,mst)

A
=− (3 +

√
5)Y Ω0

128Ra0
m+

(
(19−

√
5)Y a2

0

1024R2
+

(5−
√

5)π4κ

64a2
0

−
√

5π2Y Ω0

256a2
0

)
m2 +

(
Y a2

0

32R2
+
π4κ

32a2
0

− π2Y Ω0

128a2
0

)
m2

st

+
5π2Y a0

256R
mm2

st +
(5
√

5− 5)π2Y a0

2048R
m3 +

(3 +
√

5)π4Y

2048
m2m2

st +
(7− 2

√
5)π4Y

8192
m4 +

π4Y

2048
m4

st. (26)

Note that we impose a cutoff on the sums over q1 and q2

in the quartic term such that |qx|, |qy| ≤ 2π/na0 in order
to have a consistent Fourier space truncation.

Upon inspecting Eq. 26, we see that the term

− (3+
√

5)Y Ω0

128Ra0
m is in fact a field-like coupling with the

same dependence on cylinder radius R and sign as the
effective field derived in the real space model (Eq. 5). If
we expand the discrete model in the amplitudes of the
buckling modes (Appendix A 3 a), we find an expansion
with all of the same terms, with all the same signs as Eq.
26, though the coefficients differ. With the exception of
the m2

stm and m3 terms, similar terms also appear in the
usual mean field free energy of an Ising antiferromagnet
(Appendix D).

In summary, both the continuum elastic theory and
the discrete theory display couplings between the uni-
form magnetization and a magnetic field-like term that
scales as 1/R. The coefficient multiplying 1/R in this
field term differs between the two theories, as expected
since the theories pertain to complementary approxima-
tions to the physics of dilation arrays. However, upon
expanding the discrete model by treating the amplitudes
of the buckling modes as small parameters and compar-
ing it to the continuum model, we see that the energies
of both models have the same structure.

V. MOLECULAR DYNAMICS SIMULATIONS

We now present simulation results for puckered cylin-
ders at zero and finite temperature, comparing with the-
oretical expectations from the preceding sections when
possible. Simulation details can found in Appendix C
and our recent work [24].

A. T = 0 results

At zero temperature, we can test the prediction of
the discrete model that there exists a threshold cylin-
der radius below which ferromagnetic order is preferred
over antiferromagntic order. We simulate square mem-
branes wrapped into cylinders with sizes ranging from
12a0 ≤ L ≤ 120a0, or equivalently, cylinders with radii
ranging from 1.9a0 ≤ R ≤ 19.1a0. We initialize the
pucker heights in either an antiferromagnetic or ferro-
magnetic configuration (with puckers pointing outward)

and use the FIRE algorithm to perform structural relax-
ation and find the closest energy minimum [45].

In Fig. 3(a) we plot the difference in total, bending,
and stretching energy between ferromagnetic and anti-
ferromagnetic states (e.g., ∆Ebending = Ebending[FM] −
Ebending[AFM]), normalized by the total number of sites
(N = L2/a2

0) for systems R <∼ 8a0 (L ≤ 48a0). We
find the total energy of the ferromagnetic state is lower
than that of the antiferromagnetic state, i.e. ∆Etotal =
Etotal[FM]−Etotal[AFM] < 0, when R <∼ 4a0 (L < 24a0).

B. T > 0 results

At finite temperature, we can test the prediction of
both the discrete and continuum theory that the presence
of curvature lowers the effective critical temperature at
which the staggered magnetization undergoes a contin-
uous phase transition. Because our cylinders are finite,
such transitions will always be rounded due to finite size
effects [58–60].

We monitor the behavior of two order parameters, in-
troduced in Sec. II and Fig. 2: the magnetization m and
the staggered magnetization mst, defined as spatial aver-
ages over the up/down “spin” configurations associated
with the puckers,

m =
1

Np

Np∑
i

σi, mst =
1

Np

Np∑
i

σi(−1)xi+yi , (27)

where xi and yi index the spin’s lattice position, andNp is
the total number of puckers. Note that these convenient
quantities differ somewhat from the buckling amplitudes
we used as proxies for magnetization/staggered magneti-
zation in Secs. III and IV. Here, spins are assigned to be
either 1 or −1 depending on their buckling direction, re-
gardless of their buckling amplitude. These definitions of
magnetization/staggered magnetization can be easily an-
alyzed at finite temperature and emphasize connections
with the Ising model.

In Fig. 4, we compare the staggered magnetization of
three planar systems to three cylindrical systems with
the same number of sites, displayed in Fig. 3b. We
see a number of striking differences. The planar sys-
tem displays a smoothly sharpening drop in the order
parameter at T ≈ 0.2 as the system gets larger, indica-
tive of a continuous phase transition in a finite system
broadened in the usual way by conventional finite size
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R<Rt(0) 
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R>Rt(0) 

cyl-L 
R>Rt(0) 

AFM 

FIG. 3. (a) Difference in energy per site between cylinders
with ferromagnetic and antiferromagnetic pucker configura-
tions. ∆E is defined as the energy of the ferromagnetic state
minus the energy of the antiferromagnetic state—therefore,
for small radii/large curvatures, EAFM > EFM, ∆E < 0 and
ferromagnetism (with puckers pointing outward) is preferred.
The dashed vertical line estimates the T = 0 threshold ra-
dius from the simulation data, Rt(T = 0) ≈ 4a0. Insets
show cross-sectional views of a relaxed ferromagnetic puck-
ered cylinder of size L = 24a0 and a relaxed antiferromagnetic
puckered cylinder of size L = 48a0. (b) The three representa-
tive cylinder sizes (small, medium, large) used in this work,
with radii R = 3.8a0, 7.6a0, and 19.1a0 (L = 24a0, 48a0, and
120a0) respectively. In the figures that follow, simulation data
are colored according to the key provided by this figure: green
for small cylinder results, blue for medium cylinder results,
and red for large cylinder results. Periodic boundary condi-
tions along the cylinder axis are imposed at the two ends of
all cylinders.

effects [59, 61, 62]. The large cylinder behaves similarly
to the planar sheet, experiencing a smooth decay in the
order parameter as a function of T . The medium cylinder
has a more gradual decay, starting at a lower tempera-
ture, and the small cylinder displays different behavior
entirely, as its ground state has zero staggered magneti-
zation due to its high curvature. As emphasized by the
insets to Fig. 4, as well as Fig. 2, a planar system can
be in the ordered phase at the same temperature that a

0 0.05 0.1 0.15 0.2 0.25 0.3
T

0

0.2

0.4

0.6

0.8

1

〈|m
st
|〉

planar-L
planar-M
planar-S

0 0.05 0.1 0.15 0.2 0.25
T

0

0.2

0.4

0.6

0.8

1

〈|m
st
|〉

cyl-L
cyl-M
cyl-S

T=0.15 

T=0.21 

T=0.15 T=0.05 

(a) 

(b) 

FIG. 4. Comparison of the average of the absolute value
of staggered magnetization as a function of temperature for
three different system sizes in (a) a square planar geome-
try with relaxed (tensionless) periodic boundary conditions
and (b) a cylindrical geometry with the same dimensions.
The insets to (a) compare staggered spin configurations for
a 48a0 × 48a0 puckered plane (24×24 puckers) at T = 0.15,
below the critical temperature, and T = 0.21, just above the
critical temperature, with red and yellow circles represent-
ing up and down staggered spins respectively. The insets to
(b) compare staggered spin configurations for a 48a0 × 48a0
puckered cylinder with radius R = 7.6a0 at T = 0.05 and
T = 0.15. Notice that at T = 0.15 the puckered plane dis-
plays strong antiferromagnetic ordering whereas the puckered
cylinder is already in the disordered phase, indicating that the
two systems behave in a qualitatively different fashion, as if
they have different critical temperatures, due to the radius-
dependent ordering field from the cylindrical geometry. Error
bars were calculated using the jackknife method [63]

cylinder of puckers is in the disordered phase.

Figure 5 shows the average magnetization 〈m〉 of puck-
ered cylinders and sheets as a function of T . For pla-
nar puckered sheets of all sizes, 〈m〉 ' 0 at any T . For
the medium and large cylindrical systems, 〈m〉 increases
from zero and reaches a small positive value at around
T = 0.2 before decreasing monotonically with increasing
T . In contrast, the small cylinder has nonzero magneti-
zation in its ground state, which decreases rapidly from
〈m〉 ≈ 1 for 0 < T < 0.1 and continues to decrease slowly



10

0.1 0.15 0.2 0.25 0.3 0.35 0.4
T

-0.01

-0.005

0

0.005

0.01

〈m
〉

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
〈m

〉
cyl-L
cyl-M
cyl-S

Planar sheets

T=0.01 

(a) 

(b) 

T=0.01 

FIG. 5. (a) Average ferromagnetic pucker magnetization 〈m〉
of three representative cylinder sizes as a function of temper-
ature T . The inset shows 〈m〉 ' 0 for puckered sheets for
the three sizes we studied in a planar geometry. (b) Typ-
ical spin configurations for small and medium cylinders at
T = 0.01. The blue and yellow spheres represent spins (puck-
ers) pointing outward and inward, respectively. At very low
T , the small cylinder has most of its puckers pointing radi-
ally outwards (m > 0) whereas the medium cylinder has most
of its puckers pointing in and out in a checkerboard pattern
(m ≈ 0).

for T > 0.2.
Note that we plot the absolute value of mst, as in our

recent work [24] and in Monte Carlo studies of Ising sys-
tems [64]. Taking the absolute value is helpful because
〈mst〉 averages to zero in finite-size simulations, i.e. true
spontaneous symmetry breaking only occurs in the ther-
modynamic limit. We do not, however, take the absolute
value of m, since the curvature of the cylinder breaks the
up/down symmetry. In Fig. 5, for example, 〈m〉 > 0
(puckers point radially outward) for all cylinders, dra-
matically differing from their planar counterparts.

Finally, we examine the susceptibility of the staggered
magnetization,

χ′(mst) =
Np
kBT

(
〈m2

st〉 − 〈|mst|〉2
)
, (28)

as a function of temperature for different system sizes,
shown in Fig. 6. In the planar systems, we again see
a clear signature of critical behavior in a finite system:
growing peaks in the susceptibility, with the location of
the maxima converging to a well-defined Tc in the ther-
modynamic limit. In cylindrical systems, we observe a
dramatic broadening of the peak of the susceptibility and
a substantial shift in the location of the maximum as we
go from a large cylinder to a medium cylinder. While the
data for cylinders do not conclusively indicate the exis-
tence of a critical point obscured by finite size effects, if
we assume that this is the case we can use the energy
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FIG. 6. Comparison of the thermally averaged staggered sus-
ceptibility as a function of temperature for three different sys-
tem sizes in (a) a planar geometry and (b) a cylindrical ge-
ometry. The staggered susceptibility of the large cylinder is
similar to that of planar systems. For the medium cylinder,
however, the peak broadens and shifts to a lower tempera-
tures, with even more striking changes for the small cylinder.

derived in Eq. 26 to predict the shift in the critical tem-
perature caused by the cylindrical geometry.

Following the logic of Landau theory, we assume that
the coefficients in the energy expansion given by Eq. 26
become functions of temperature once the order param-
eter Fourier modes are permitted to couple to thermal
fluctuations, as discussed in Sec. IV C, but that no new
terms appear since all terms allowed by symmetry are
already present. Close to the staggered magnetization
phase transition, we only consider the temperature de-
pendence of the m2

st term. We relabel the coefficients in
Eq. 26, neglecting higher order terms in m and mst, to
express the free energy as

F

A
≈ −h(R)m+r1(T )m2

st +r2m
2 +ζ(R)mm2

st +βm2m2
st.

(29)
We identify the phase transition temperature within this
mean field theory as the point at which the coefficient of
m2

st passes through zero, assuming that r1(T ) = a(T−Tc)
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FIG. 7. Estimated staggered magnetization order-disorder
phase boundary plotted as curvature 1/R vs. critical temper-
ature of cylinders Tc(R) offset by Tc for R→∞. Tc(R→∞)
is the estimated Tc in the thermodynamic limit of the planar
system [24]. Inset shows the linear relationship between 1/R2

and Tc(∞)-Tc(R). The dashed line is the piecewise linear fit
line to the data points.

close to Tc:

r1(Tc(R)) = a [Tc(R)− Tc(∞)] = −ζ(R)m− βm2. (30)

The value of m that minimizes Eq. 29 in the limit of

small m2
st is m = h(R)

2r2
. Upon substituting this value of

m into Eq. 30 and the 1/R scalings of h(R) and ζ(R)
given in Eq. 26, we find that the critical temperature for
a cylinder with radius R decreases as 1/R2.

Tc(R) = Tc(∞)− ζ(R)h(R)

2r2a
− βh(R)2

4r2
2a

,

= Tc(∞)− cst.
1

R2
. (31)

We test this scaling in simulations by identifying the
maximum in the (possibly very broad) peak of the stag-
gered susceptibility with Tc(R). We plot the puta-
tive phase boundary obtained in this way in curvature-
temperature space in Fig. 7. As shown in the inset, the
shift in the critical temperature is consistent with a 1/R2

scaling. Since the finite size effects strengthen as the
curvature increases (and the cylinder size decreases), we
cannot draw firm conclusions about how quantities scale
with system size without further analysis/simulations.
We briefly discuss the effect of changing the axial length
in Appendix C2.

VI. DISCUSSION

We have argued that the effect of curvature on arrays
of buckled bistable nodes embedded in a thin elastic sheet
is analogous to the effect of an external field on an Ising
antiferromagnet at lowest order for large cylinder radii
and to leading order in a Landau-like expansion. First,
we showed that a field-like quantity scaling as 1/R, where
R is the radius of curvature, couples to a ferromagnetic
order parameter in two distinct theoretical models of a
puckered sheet. Next, we conducted molecular dynamics
simulations of puckered sheets wrapped into cylinders at
zero and finite temperature and found behavior consis-
tent with curvature acting as an external field, strongly
modulated by finite-size effects. In particular, as the ra-
dius of the cylinder decreases/curvature increases, the
lowest energy state switches from an antiferromagnetic
configuration to a ferromagnetic configuration, and at
intermediate values of the curvature we observe a shift in
the effective critical temperature of the phase transition
in the staggered magnetization, defined as its maximum.

In our previous work studying phase transitions in flat
puckered surfaces, we were able to make precise measure-
ments of critical exponents via finite-size scaling [24]. We
did not make similar measurements in this work, since
changing the size of the cylinder also changes the strength
of the applied field, complicating the analysis. The cor-
relation length in the axial direction is limited by the ax-
ial length of the cylinder whereas the correlation length
in the circumferential direction will be limited by the
circumference, which couples to the effective field. We
hope to investigate these subtle boundary effects in fu-
ture work.

Intriguingly, both theoretical models reveal additional
terms in the energy proportional to 1/R that scale as
m3 and m2

stm, where m and mst are the amplitudes
of magnetization-like and staggered magnetization-like
buckling respectively. These additional couplings to our
field-like quantity are not present in the standard free en-
ergy expansion of an Ising model in an external field. The
m3 term might allow for a first order phase transition in
the magnetization to a state with negative magnetization
(puckers buckled radially inwards). Although evidence of
such a transition was not observed in our simulations, it
would be interesting to search for by using parameters
that increase the relative strength of the m3 term.

Finally, we comment on three interesting extensions of
this work. First, we have focused exclusively on systems
with positive dilations. Negative dilations (or contractile
inclusions) in dense planar arrays have been shown to
have similar phase behavior [24], but assume profoundly
different ground states in isolation [65, 66]. Both theo-
retical models can be generalized to negative dilations, as
discussed in ref. [24] and Appendix A 4. Second, cylin-
ders allowed us to isolate the effects of background mean
curvature from the more complicated (though interesting
and experimentally relevant) effects of background Gaus-
sian curvature [67, 68]. Our shallow shell theory could
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be straightforwardly extended to more general curved
surfaces [69, 70]. Third, at higher temperatures, ther-
mal fluctuations are able to crush cylindrical shells [50].
The simulations presented here could be used to study
whether dilation arrays can stiffen cylindrical shells and
impede thermally-driven collapse.

We conclude by noting that our findings are relevant
for controlling the buckled phase of 2D materials such
as SnO, borophane polymorphs, and many others [26–
28, 71–73]. Local strains and the nature of buckling affect
the electronic, optical, and spin properties of 2D materi-
als [74–81]. Hence, the idea of using curvature as a con-
trol parameter to alter buckled structure can be applied
to 2D materials on curved geometries [82] which can be
realized experimentally in many ways, such as by rolling
2D materials into nanoscrolls [32, 33, 35, 83], adhering 2D
materials onto curved substrates [74, 76, 77, 80], pressur-
izing 2D materials with clamped boundaries [84], and ap-
plying in-plane strains [85]. This suggests the possibility
of developing “curvetronics,” through which electronic
and spin properties could be controlled via curvature.

ACKNOWLEDGMENTS

A.P., P.Z.H. and D.R.N. acknowledge support through
NSF Grant No. DMR-1608501 and via the Harvard Ma-
terials Science Research and Engineering Center, through
NSF Grant No. DMR-2011754. We also thank the KITP
program, “The Physics of Elastic Films: from Biological
Membranes to Extreme Mechanics,” supported in part
by the National Science Foundation under Grant No.
NSF PHY-1748958. HOOMD simulation input scripts
and other codes are available at https://github.com/
phanakata/programmable-matter.

Appendix A: Calculations using the discrete real
space model

1. Positive dilations with planar periodic
boundaries

With some simplifying assumptions, we calculate the
energy of a small system of buckled positive dilations at
T = 0, show that we can extract an effective antifer-
romagnetic coupling due to bending, and estimate the
buckling threshold.

We consider the smallest (0, 2) system [25] for which
an antiferromagnetic pattern is allowed by the periodic
boundary conditions, pictured in Fig. 8. Because of the
boundaries, there are only four independent dilations in
the system. We make the following simplifications.

1. We set all in-plane displacements ux and uy to zero.

2. We assume that the blue nodes in Fig. 8 all have
height σ1f and the yellow nodes have height σ2f ,

FIG. 8. A perspective view of the small model system we
consider in the checkerboard state. Blue and yellow nodes
buckle in opposite directions. Top view is shown in Fig. 1e.

where σ1,2 = ±1 and f > 0 is a positive height dis-
placement. This assumption restricts us to study-
ing either ferromagnetic or antiferromagnetic con-
figurations (see ref. [25] for a discussion of other
states).

3. We require that only the dilation nodes have
nonzero out-of-plane displacement.

Bending and stretching energy is now calculated using
the discrete form of the energy, Eq. 1. The preferred
length of the bonds lying along the x and y directions
connected to positive dilations is a0(1 + ε) and the corre-

sponding length of the diagonal bonds is a0

√
2 + 2ε+ ε2,

constructed so as to allow for a stress-free prismatic limit
[25]. The stretching energy is

Estretch =8k

(√
f2 + a2

0 − a0(1 + ε)

)2

+ 8k

(√
f2 + 2a2

0 − a0

√
2 + 2ε+ ε2

)2

,

(A1)

where k is the spring constant of the lattice model. The
stretching energy is minimized when f = a0

√
2ε+ ε2,

independent of σ1 and σ2.
The bending energy is calculated by explicitly comput-

ing the normals to the triangular plaquettes in Fig. 8,
with the result,

Ebend =16κ̂

(
1 +

f2σ1σ2 − a2
0

f2 + a2
0

)
+ 16κ̂

(
1− a2

0

f2 + a2
0

)
=16κ̂

f2(2 + σ1σ2)

f2 + a2
0

, (A2)

where the first term in the first line comes from bending
across hinges formed by short bonds, and the second term
from bending across hinges formed by long bonds. The
bending energy is minimized when f = 0 (i.e., the system
is flat).

a. Effective antiferromagnetic coupling

We observe that the bending energy given by Eq. A2
has a contribution from the interaction between neigh-

https://github.com/phanakata/programmable-matter
https://github.com/phanakata/programmable-matter
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boring buckled dilations that is exactly of the form of
an Ising coupling σ1σ2. The interaction term leads to
an Ising Hamiltonian

∑
〈i,j〉 Jeffσiσj , where we sum over

a square of four nearest neighbor bonds connecting our
puckers, with

Jeff =
2κ̂

1 + a2
0/f

2
≥ 0. (A3)

Jeff is zero when f = 0, since there is no interaction be-
tween dilations in the flat state (bending energy is zero).
When f 6= 0, Jeff is strictly positive, confirming an effec-
tive antiferromagnetic interaction.

If we assume that f ∼ a0
√
γ − γc close to the buckling

threshold γc [25],

Jeff ∼
κ̂(γ − γc)
γ − γc + 1

∼ κ̂(γ − γc), (A4)

when γ − γc � 1.

b. Buckling threshold

The competition between bending and stretching en-
ergies decides whether the flat or buckled state is pre-
ferred, and allows an estimate of γc, the buckling thresh-
old. The vanishing of the second derivative of the total
energy E(f) = Estretch +Ebend with respect to f , evalu-
ated at f = 0, determines when E(f) becomes a double-
well potential and the flat state becomes unstable. The
condition that E(f) is a quartic polynomial for small f
is thus

ka2
0

(
−2 + 2ε+

√
4 + 2ε(2 + ε)

)
= 4(2 + σ1σ2)κ̂. (A5)

If we neglect terms of order ε2 and eliminate k, κ̂, and ε
in favor of their macroscopic analogs Y = 4k

3 , κ = κ̂, and

Ω0 = 4a2
0ε,

γc =
Y |Ωc0|
κ

=
64

9
(2 + σ1σ2). (A6)

This threshold is first reached for antiferromagnetic buck-
ling, σ1σ2 = −1, when γc = 64

9 ≈ 7.11. This result
underestimates the threshold measured in simulations of
a (0, 2) array, γc = 20.8, because disallowing in-plane
phonons makes the flat state artificially expensive (its
“breathing mode” is not permitted). We note that this
treatment does correctly reproduce the finding that the
antiferromagnetic state buckles before the ferromagnetic
state as γ is increased.

For an alternative continuum treatment of the antifer-
romagnetic interaction between two positive dilations in
a thin elastic sheet, see ref. [86].

2. Incorporating unit cell expansion

In order to make our simplified real space model more
realistic, we now allow the system to lower its energy by

expanding or contracting uniformly. We thus scale the
lattice constant a0 by a factor η. All other assumptions
of the previous section are unchanged.

The stretching energy for the system in Fig. 8 becomes

Estretch = 8k

(√
f2 + η2a2

0 − a0(1 + ε)

)2

+ 8k

(√
f2 + 2η2a2

0 − a0

√
2 + 2ε+ ε2

)2

+ 8ka2
0(η − 1)2.

(A7)

The bending energy becomes

Ebend = 16κ̂
f2(2 + σ1σ2)

f2 + η2a2
0

. (A8)

We now estimate a more accurate buckling threshold
by first computing the value of η that minimizes the en-
ergy in the flat state by solving ∂E

∂η

∣∣
f=0

= 0. To linear

order in ε, we find

η
∣∣
f=0

= 1 +
ε

2
. (A9)

This result is consistent with the finding in Ref. [25] that
Ω0 = 4a2

0ε.

We then calculate ∂2E
∂f2 and evaluate at f = 0 and η =

1 + ε
2 . This second derivative now vanishes when

ka2
0 (2 + ε)

(
−2 +

√
4 + 2ε(2 + ε)

)
= 8(2 + σ1σ2)κ̂.

(A10)
As above, we neglect terms of order ε2 and eliminate k,
κ̂, and ε to find two distinct puckering thresholds, one
for ferromagnetism (σ1σ2 = 1) and one for antiferromag-
netism (σ1σ2 = −1)

γc =
64

3
(2 + σ1σ2). (A11)

The instability to antiferromagnetism (σ1σ2 = −1) again
occurs first for increasing γ, with γc = 64

3 ≈ 21.3, very
close to the value measured in simulations, γc = 20.8.

Away from the buckling threshold, we can numeri-
cally minimize the energy with respect to η and f (see
Fig. 9). For the parameters used in the main text,
ε = 0.1, k = 100κ̂/a2

0, we find that ηmin = 1.017 and
fmin = 0.374a0. These values are identical to those mea-
sured in simulations, where η = 1.017 and f = 0.374a0.

In summary, for dense, (0, 2) arrays, this simplified
model, focused on just four nearest neighbor puckers, can
quantitatively reproduce key simulation results. This ac-
curacy does not carry over to more dilute arrays such
as those studied in [25], as neighboring spins become un-
coupled when their associated plaquettes do not share an
edge under these assumptions.

3. Effect of curvature

Building on the model introduced in Appendix A 1
(with a fixed lattice constant for simplicity) at T = 0,
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FIG. 9. Contour plot of the total energy of a system of
four antiferromagnetic dilations as a function of the dilation
factor η and the height of the buckled dilations f . Energy
is measured in units of κ̂, the bending rigidity. ε = 0.1, k =
100κ̂/a20. The minimum occurs in the purple region, when
η = ηmin = 1.017 and f = fmin = 0.374a0.

we now show that a small imposed curvature leads to
an effective external field term, and estimate the radius
of curvature below which ferromagnetic puckers are pre-
ferred.

We start by explicitly calculating the normals nα and
nβ labeled in the curved, cylindrical geometry of Fig. 1c.
Consider the three (non-dilated) nodes that lie along the
dotted green circle. Their positions in the (x, z) plane
are

r1 = R(− sin(∆θ), cos(∆θ)),

r2 = R(0, 1),

r3 = R(sin(∆θ), cos(∆θ)),

where R is the radius of the circle that defines a cylin-
drical cross section. Upon assuming that the distance
between r1 and r2 (and r2 and r3) is 2a0, we have
∆θ = 2 sin−1(a0/R).

We assume that the left dilation in Fig. 1c is displaced
from the midpoint of r1 and r2 a distance f1, and the
right dilation is displaced from the midpoint of r2 and
r3 a distance f2. Their positions in the (x, z) plane are
respectively

p1 =

(
−a0

√
1− a2

0

R2
− a0

R
f1, R−

a2
0

R
+ f1

√
1− a2

0

R2

)
,

p2 =

(
a0

√
1− a2

0

R2
+
a0

R
f2, R−

a2
0

R
+ f2

√
1− a2

0

R2

)
.

The normal to the line formed by p1 and r2 is

nα =
1√

a2
0 + f2

1

(
−a

2
0

R
+ f1

√
1− a2

0

R2
, a0

√
1− a2

0

R2
+
a0

R
f1

)
,

(A12)
and the normal to the line formed by p2 and r2 is

nβ =
1√

a2
0 + f2

2

(
a2

0

R
− f2

√
1− a2

0

R2
, a0

√
1− a2

0

R2
+
a0

R
f2

)
.

(A13)

The two sets of adjacent plaquettes with normals nα
and nβ thus contribute a term to the bending energy
between neighboring plaquettes of the form

2κ̂(1− nα · nβ) = 2κ̂

(
1 +

1√
a2

0 + f2
1

√
a2

0 + f2
2

(
f1f2(1− 2x2)

− 2a0(f1 + f2)x
√

1− x2 + a2
0(2x2 − 1)

))
,

(A14)

where x = a0/R. We assume, for relatively small bends
a0/R � 1, that the other terms in the bending energy
and stretching energy (e.g. Eq. A2 and A7) are un-
changed and remain independent of the cylinder radius
R.

a. Comparison with free energy expansions

We now demonstrate that the energy derived using the
real space model has a similar structure to the energy de-
rived using shallow shell theory by expanding the energy
in terms of the amplitudes of the ferromagnetic and an-
tiferromagnetic buckling modes.

We consider all sources of bending and stretching en-
ergy (rather than just the single term considered above)
for the small system pictured in Fig. 8 wrapped into
a cylindrical cap as in Fig. 1c,d. We assume dilations
in blue have a height f1 measured relative to the tilted
plane formed by their neighbors (the base of the square
pyramid with the dilation node at the vertex), and sim-
ilarly dilations in yellow have a height f2. We assume
that all of the neighbor nodes of a given dilation lie in
the same plane to simplify the calculation, but no longer
require |f1| = |f2|. We also rescale f1,2 by a0 to make
these quantities dimensionless.

The stretching energy is the same as in Appendix A 1,
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generalized to two different pucker heights.

Estretch =4ka2
0

(√
f2

1 + 1− (1 + ε)

)2

+ 4ka2
0

(√
f2

1 + 2−
√

2 + 2ε+ ε2
)2

+ 4ka2
0

(√
f2

2 + 1− (1 + ε)

)2

+ 4ka2
0

(√
f2

2 + 2−
√

2 + 2ε+ ε2
)2

. (A15)

The bending energy has a term that is unchanged rel-
ative to the flat case corresponding to bending within
a pyramid. The remaining source of bending energy is
the relative rotation of neighboring plaquettes from dif-
ferent pyramids. Some neighboring pyramids experience
additional rotation due to the underlying curvature. Our
final result for the bending energy is

Ebend =8κ̂

(
f2
1

f2
1 + 1

+
f2
2

f2
2 + 1

)
+ 8κ̂

(
1− 1− f1f2√

1 + f2
1

√
1 + f2

2

)

+ 8κ̂

(
1 +

1√
1 + f2

1

√
1 + f2

2

(
f1f2(1− 2x2)

− 2(f1 + f2)x
√

1− x2 + (2x2 − 1)
))

,

(A16)

where x = a0/R as in Eq. A14.
We now expand x to linear order, ε to linear order, and

f1 and f2 to quartic order. These approximations are
most accurate for small dilations on weakly curved sur-
faces (a0/R� 1) close to the buckling threshold. Then,
we define the amplitude of the ferromagnetic and anti-
ferromagnetic buckling modes respectively as

m =
1

2
(f1 + f2), (A17)

mst =
1

2
(f1 − f2), (A18)

Upon substituting these expressions in to the expansion
and dividing by Npv = 4Npa

2
0 = A, we find the energy

density as a function of these two order parameters,

E

A
≈− 2κ̂

Ra0
(m−m2

stm−m3) +

(
3κ̂

a2
0

− 3kε

4

)
m2

+

(
κ̂

a2
0

− 3kε

4

)
m2

st +

(
3k

16
(6 + 5ε)− 10κ̂

a2
0

)
m2

stm
2

+

(
k

32
(6 + 5ε)− 3κ̂

a2
0

)
m4 +

(
k

32
(6 + 5ε)− κ̂

a2
0

)
m4

st.

(A19)

Similar to our results for shallow shell theory, this ex-
pansion has a field-like term linear in m that scales as
1/R, and quadratic terms that become negative as a func-
tion of γ (agreeing with previous results in the absence
of unit cell expansion: γFMc = 64/3 and γAFMc = 64/9).
Higher order terms in m and mst could be required for
stability at intermediate values of γ.

(a) (b)

FIG. 10. (a) A top-down view of a small (0, 2) array of
negative dilations (shown as large black spheres along the
boundary and at the center). The nodes on the lattice dual
to the dilation superlattice (highlighted in blue and yellow)
buckle in a checkerboard pattern, while the dilation nodes
themselves remain in plane. (b) The checkerboard state for
the buckled negative dilation array viewed in perspective.

4. Comments on negative dilations

Though a complete treatment would be beyond the
scope of this manuscript, we now briefly explore how
these real space models can be adapted to planar arrays
of negative dilations, studied in ref. [24].

When a (0, 2) array of negative dilations buckles, the
sites with significant out-of-plane displacement from the
average height are the host lattice sites dual to the dila-
tion superlattice (highlighted in blue and yellow in Fig.
10), rather than the dilations themselves. We recalculate
the energy of the small system with negative dilations
shown in Fig. 10, assuming that the blue and yellow
highlighted nodes are the only nodes with out-of-plane
displacements, taking values of ±f in either a checker-
board or ferromagnetic configuration.

If we assume that the lattice constant is fixed, as we do
in Appendix A 1, we find that the flat state is always sta-
ble, even for arbitrarily large negative dilations. A global
contraction seems to be a necessary condition for buck-
ling in negative dilation arrays, in contrast to positive
dilation arrays. We therefore allow for a breathing mode
by multiplying the lattice constant a0 by a factor η, as
in Appendix A 2, with no other in-plane displacements
permitted. The stretching energy is then

Estretch = 8k

(√
f2 + η2a20 − a0

)2

+ 8k

(√
f2 + 2η2a20 − a0

√
2 + 2ε+ ε2

)2

+ 8ka20(η − 1− ε)2.

(A20)

The stretching energy differs from Eq. A7 because the
bonds connected to the displaced nodes have different
rest lengths. Note that ε < 0 in Eq. A20, as is appro-
priate for negative dilations. We find that the bending
energy is unchanged from Eq. A8

Ebend = 16κ̂
f2(2 + σ1σ2)

f2 + η2a2
0

. (A21)
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Following the same steps as in Appendix A 2, minimiz-
ing the energy with respect to η gives, to linear order in
ε < 0,

η
∣∣
f=0

= 1 +
ε

2
. (A22)

We then calculate ∂2E
∂f2 and evaluate at f = 0 and η =

1 + ε
2 . This second derivative vanishes when

ka2
0 (2 + ε)

(
−2− 2ε+

√
4 + 2ε(2 + ε)

)
= 8(2 + σ1σ2)κ̂.

(A23)
As above, we neglect terms of order ε2, which leads to

− ka2
0ε = 8(2 + σ1σ2)κ̂. (A24)

Upon eliminating k, κ̂, and ε, we find

γc =
Y |Ωc0|
κ

=
64

3
(2 + σ1σ2). (A25)

This buckling threshold for ε < 0 thus again occurs first
for antiferromagnetism (σ1σ2 = −1) and has the same
magnitude as the corresponding threshold for ε > 0 un-
der the same set of assumptions. In simulations, we in-
stead find that the negative dilation arrays first buckle
at higher values of γ (γc = 26.1) compared to positive
dilation arrays (γc = 20.8). We previously showed that
the nonlinear continuum theory introduced in ref. [25] is
able to capture this delay [24].

As before, away from the buckling threshold, we can
numerically minimize the system with respect to η and
f . When ε = −0.1, k = 100κ̂/a2

0, we now find that
ηmin = 0.919 and fmin = 0.346a0. These values are again
identical to those measured in simulations of a small sys-
tem. We note that this ∼ 8% contraction is more signifi-
cant than the ∼ 2% expansion found for positive dilation
arrays at the same magnitude of γ.

Appendix B: Elimination of tangential phonons

We present here additional details on how to eliminate
the tangential displacements in the energy functional de-
fined by Eqs. 16 and 17.

If we wish to work at finite temperature, we can inte-
grate over the tangential phonons in the partition func-
tion. At zero temperature, we instead assume the energy
is minimized with respect to tangential phonons. For ei-
ther scenario, the first step in the calculation is to shift uα
by a function of f such that the energy becomes quadratic
in the variable containing uα (completing the square).

The appropriate shifted variable in Fourier space is

wα(q) = uα(q) + φα(q)− λ

2µ+ λ

iqα
q2

(
Φ(q) +

f(q)

R

)
+

(µ+ λ)

2µ+ λ

iqα
q2

(
Ω0c(q) + 2

q2
1

q2

f(q)

R

)
− 2

iq1δ1α
q2

f(q)

R
,

(B1)

with the following notation [25]: φα(q)and Φ(q) are
the longitudinal and transverse parts of Aαβ(q) re-

spectively, where Aαβ(r) = 1
2

(
∂f
∂xα

∂f
∂xβ

)
, and c(q) is

the Fourier transform of the concentration of dilations,
c(r) =

∑
i δ

2(r − ri). The Fourier convention used is
f(r) =

∑
q f(q)eiq·r, f(q) = 1

A

∫
d2rf(r)e−iq·r.

In terms of the shift variable wα(q), the stretching
energy (Eq. 16) becomes

E

A
= µ

(
ũ0
αβ

)2
+
λ

2

(
ũ0
γγ

)2
+

κ

2R2
+
κ

2

∑
q

q4|f(q)|2

+
∑
q6=0

(
µ

2
q2|w(q)|2 +

µ+ λ

2
|q ·w(q)|2

)

+
Y

2

∑
q6=0

∣∣∣∣Φ(q)− Ω0

2
c(q) + PT11(q)

f(q)

R

∣∣∣∣2 , (B2)

where Y = 4µ(µ+λ)
2µ+λ is the 2D Young’s modulus, A is the

area of the system, and PT11 = 1− q21
q2 .

Upon minimizing (or integrating) over wα(q) and ũ0
αβ ,

we find the energy (or free energy) as a function of f .

E =
κA

2R2
+
A

2

∑
q 6=0

[
κq4|f(q)|2 + Y

∣∣∣∣Φ(q)− Ω0

2
c(q) + PT11(q)

f(q)

R

∣∣∣∣2
]
,

(B3)

In real space, this functional becomes

E =
κ

2

∫
d2r

(
∇2f − 1

R

)2

+
Y

2

∫ ′
d2r

(
1

2
PTαβ∂αf∂βf −

Ω0

2
c(r) + PT11

f

R

)2

,

(B4)

where the prime on the second integral signals that the
q = 0 mode is excluded.

Appendix C: Molecular dynamics simulations

All simulations are performed on HOOMD-blue pack-
age v2.8.1 [87]. Simulation details for the planar mem-
branes can be found in our recent work [24]. We set
k = 100κ̂/a2

0, κ̂ = 1 and a0 = 1. Temperatures are
reported in units of κ̂. We vary the temperature from
T = 0.05 to T = 0.500. Following our previous work [24],
we initialize the heights of the puckers with the ground
state pattern, either an AFM or FM configuration de-
pending on the radius. A small amount of noise is added
to every node. We then perform zero-temperature struc-
tural relaxation using the Fast Inertial Relaxation Engine
(FIRE) algorithm [45] with a force and energy conver-
gence criteria of 10−6 and 10−10, respectively, and a step
size dt = 0.005 to minimize energy and stress.

At finite temperature, NPT (fixed number of parti-
cles, pressure, temperature) molecular dynamics simula-
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tions with zero stress condition are used after employ-
ing the zero-temperature structural relaxation. Pres-
sure and temperature are controlled by the Martyna-
Tobias-Klein barostat-thermostat [88] with a time step
dt = 0.001, thermostat coupling τT = 0.2 and barostat
coupling τP = 1.0. Periodic boundaries are applied in
the x and y directions for the membranes and along the
tube axis for the cylinders. NPT simulations are run for
107 time steps for cylinders with L < 60a0 and 2 × 107

for cylinders with L ≥ 60a0. Snapshots are taken every
10,000 steps and the first half of data is discarded for
thermal equilibration. We typically perform 10 indepen-
dent runs at each temperature and 20+ independent runs
closer to the transition temperature. HOOMD simula-
tion input scripts and other codes are available at https:
//github.com/phanakata/programmable-matter

1. Thermal equilibration with random initial
conditions

To check the robustness of our thermalization protocol,
Fig. 11 shows additional simulations of systems prepared
with random initial conditions. Specifically, we initialize
the pucker heights of cylinders with L = 60a0 (R > Rt,
AFM ground state) and L = 24a0 (R < Rt, FM ground
state) with random values and omit the zero-temperature
structural optimization. We find that the order param-
eters converge to the average values obtained from sys-
tems prepared with ground state initial conditions but
in a much longer time. We therefore save computational
resources by performing simulations with ground state
initial conditions as described above.

2. Extending axial length

Here we provide additional simulations of a cylinder in
which we vary both the axial length, Lax and the circum-
ference, Lcirc. In the main text, these lengths were always
equal. In Fig. 12, we observe that the staggered suscepti-
bility of the medium cylinder with Lax = Lcirc = 48a0 is
similar to the staggered susceptibility of a cylinder with
Lax = 96a0, Lcirc = 48a0. However, doubling the circum-
ference as well leads to a very different behavior, consis-
tent with Fig. 6.

Appendix D: Ising antiferromagnet in a uniform field

Here, we provide a standard derivation for the free
energy expansion for a conventional Ising antiferromag-
net on a square lattice in a uniform external field using
Bragg-Williams mean field theory (see, e.g., ref. [89]) and
provide references on how to improve these results. The
resulting Landau-like theory bears some resemblance to
the energy functionals we find for puckers on a cylinder
(Eqs. A19 and 26).
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(a) L=60a0, R=9.55a0, T=0.1

(b) L=24a0, R=3.82a0, T=0.05

FIG. 11. Magnetization m and staggered magnetization mst

as a function of time t of cylinders with (a) L = 60a0 (R > Rt)
and (b) L = 24a0 (R < Rt) prepared using random initial
conditions. At t = 0, both m and mst are approximately zero.
At long times, m and mst are close to the average values of
systems prepared with ground state initial conditions (green
circle and blue triangle, respectively).

The energy of an Ising antiferromagnet with a spin con-
figuration {σj}, σj = ±1 in the presence of an external
field h that favors up spins is

E = J
∑
〈i,j〉

σiσj − h
∑
i

σi, (D1)

with J > 0.

The square lattice is bipartite, so it can be divided
into sublattices A and B such that all interactions are
between (and not within) sublattices A and B. We define
mA = 1

NA

∑
i∈A σi and mB = 1

NB

∑
i∈B σi, the uniform

magnetization per spin of each sublattice.

Each sublattice has an entropy of mixing due to the
number of ways to achieve a magnetization mA,B with

https://github.com/phanakata/programmable-matter
https://github.com/phanakata/programmable-matter
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FIG. 12. Staggered susceptibility χ′[mst] as a function
of temperature T for three cylinders, [(Lax = 48a0, Lcirc =
48a0), (Lax = 48a0, Lcirc = 96a0), (Lax = 96a0, Lcirc = 96a0)].
Doubling the axial length Lax while keeping the curvature
(Lcirc) fixed has small effect on the effective Tc (the location
of the peak in χ′[mst]).

NA,B spins:

s(mA,B) =
S(mA,B)

NA,B
≈− kB

[(
1 +mA,B

2

)
log

(
1 +mA,B

2

)

+

(
1−mA,B

2

)
log

(
1−mA,B

2

)]
.

(D2)

We now approximate Eq. D1 by replacing each spin with
a spatial average. On combining the approximated en-
ergy with Eq. D2, the Bragg-Williams free energy per
spin for an Ising antiferromagnet reads

F

N
=
E − TS
N

= 2JmAmB −
h

2
(mA +mB)− T

2
(s(mA) + s(mB)) .

(D3)

In the limit of small h, with T close to Tc, we expect
both mA and mB to be small. We now expand in mA

and mB , neglecting terms of order m5
A,B .

F

N
≈− kBT log 2 + 2JmAmB −

h

2
(mA +mB)

+
kBT

4
(m2

A +m2
B) +

kBT

24
(m4

A +m4
B). (D4)

We then define the magnetization and staggered mag-
netization in terms of mA and mB :

m =
1

2
(mA +mB),

mst =
1

2
(mA −mB).

Upon making these substitutions, the expansion be-
comes

F

N
≈− kBT log 2− hm+ 2J(m2 −m2

st) +
kBT

2
(m2 +m2

st)

+
kBT

12
(m4 +m4

st) +
kBT

2
m2m2

st. (D5)

We see that the coefficient of the term quadratic in
mst changes sign at kBTc = 4J

1+m2 ≈ 4J − 4Jm2. The
coupling with m shifts the transition temperature but
does not affect the nature of the phase transition. When
h = 0, m = 0, and we regain the mean field theory crit-
ical temperature of the Ising model, kBT

0
c = 4J . Upon

neglecting terms quartic in m and quadratic in mst, we
minimize f with respect to m and estimate m ≈ h

4J+kBT
.

On substituting this result in our estimate of Tc, we find
the shift in the critical temperature as a function of the

external field kBTc ≈ 4J−4J
(

h2

64J2

)
= 4J− h2

16J . Unlike

the ferromagnetic Ising model, we have a critical line in
the h−T plane, rather than a single critical point. With
the mean field approximations described above, the crit-
ical line is given by

h(Tc) = ±
√

16JkB(T 0
c − Tc). (D6)

Many better approximations for the critical line have
been derived [90–93]. The “interface solution” of Müller-
Hartmann and Zittartz [46], though not the most accu-
rate among them [94], has a particularly simple form and
agrees well with simulations [47] and exact results in the
limits h→ 0 and T → 0.

cosh

(
h

kBTc

)
= sinh2

(
2J

kBTc

)
. (D7)

As discussed in the main text, we observe that Eq.
D5 has many of the same terms as Eqs. A19 and 26–a
linear term coupling the field and magnetization, and all
even terms in m and mst. However, Eq. D5 is missing
terms that scale as m3 and mm2

st. Terms of this form
would be created if Eq. D3 had a term w(m3

A + m3
B) =

2wm3 + 6wmm2
st.
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