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Molecular dynamics simulations are used to study melts of asymmetric sphere-forming diblock
copolymers with two significantly different values of the invariant degree of polymerization, N =
3820 and 960. In both systems, changes in parameters that correspond to decreasing temperature
lead to the appearance of micelles at a critical micelle temperature (CMT) and crystallization at
a lower order-disorder transition temperature (ODT). The CMT is identifiable in simulations by
the appearance of large clusters with a strongly segregated core region, but has no equally clear
signature in scattering experiments on systems of modest N . The value of the product χN at the
CMT (where χ is the Flory-Huggins parameter and N is degree of polymerization) is close to that
predicted by SCFT for the ODT, while the value at the actual ODT is larger and increases with
decreasing N . Micelles exhibit significant and comparable dispersity in aggregation number in the
crystalline and liquid phases near the ODT. Both the liquid and crystal phases exhibit transient
dimers consisting of pairs of neighboring spherical micelles with cores connected by a bridge of
core-block material.
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I. INTRODUCTION

Melts of highly asymmetric AB diblock copolymers tend to self-assemble into spherical micelles with a core con-
taining the minority block. A variety of experiments and simulations [1–8] suggest the existence of three temperature
regimes in systems with a positive heat of mixing (the usual case): The high temperature regime produces a molec-
ularly disordered state with relatively small composition fluctuations. With decreasing temperature, micelles appear
over a relatively narrow range of temperatures near a critical micelle temperature (CMT), forming a liquid of mi-
celles over an intermediate temperature range. Upon further decreasing temperature, this liquid crystallizes at an
order-disorder transition temperature (ODT), creating an ordered phase. The most commonly observed crystalline
arrangement of micelles is a body-centered cubic (BCC) lattice, but a variety of more complicated Frank-Kasper and
quasi-crystalline arrangements have been observed [9–19].

Three different types of experiments have provided evidence for the existence of a liquid of micelles over a range of
temperatures above the ODT. First, several early transmission electron microscopy (TEM) images showed a dense,
disordered arrangement of spherical micelles at temperatures above the ODT [6, 7]. Second, results of small angle
X-ray and neutron scattering (SAXS and SANS) experiments in the liquid phase near the ODT show the presence of a
secondary peak or shoulder in plots of scattering intensity I(q) vs. scattering wavenumber q, consistent with the picture
of a disordered micellar phase [1–5]. An early analysis by Kinning and Thomas [1] showed that the existence and
approximate position of this secondary feature could be explained by a model of the melt as a strong correlated liquid
of spherical micelles, using the Percus-Yevick theory of hard spheres [20] to model a structure function factor that
describes correlations in micelle center-of-mass positions. This analysis was repeated and refined in several subsequent
scattering studies [2–5]. Finally, measurements of linear viscoelastic properties have also shown the existence of an
elastic-like response at high frequencies that is believed to be the result of stress created by straining a disordered
micro-phase separated state [21].

Establishing the theoretical basis for the disordered micelle regime has been a longstanding challenge. To establish
notation, consider an incompressible melt of AB diblock polymers with degree of polymerization N , volume fraction
f for the minority block, Flory-Huggins parameter χ, statistical segment lengths bA and bB for A and B monomers,
respectively, and a total monomer concentration c = 1/v, where v is a monomer reference volume. Let g denote the
free energy per polymer divided by kT , where k is Boltzmann’s constant and T is absolute temperature. Self-consistent
field theory (SCFT), the most widely used theory for describing block polymer phase behavior, yields a prediction for
g in a given phase that depends only on the dimensionless parameters χN , f , and bA/bB , which we refer to as the
SCFT state parameters. We focus hereafter on conformationally symmetric systems with bA = bB = b, for which the
remaining state parameters are χN and f . SCFT predictions for structural lengths such as the micelle core radius
and equilibrium unit cell dimensions in a crystalline phase of such a system are given by R times a dimensionless
function of the same state parameters, where R = b

√
N is the end-to-end distance of the polymer. SCFT predicts

the simultaneous appearance and crystallization of micelles at a first-order transition from a micelle-free disordered
phase to a crystal of micelles. This predicted order-disorder transition occurs at a critical value of χN , denoted here
by (χN)scf

odt, that depends only on f . The systems simulated here all have f = 0.125 for which (χN)scf
odt = 36.6 [22].

The magnitude and nature of deviations from SCFT predictions for block copolymer melts are controlled by the

invariant degree of polymerization N = N(cb3)2. The parameter N
1/2

is proportional to the ratio R3/Nv of the
volume R3 pervaded by a random walk polymer to the occupied volume per chain Nv. Theoretical analyses [23–25]
and simulations of simple models [26–32] both suggest that SCFT becomes exact in the limit N → ∞, and that
deviations from SCFT exhibit a universal dependence on N , independent of many details of a particular simulation
model or experimental system. Specifically, simulations of symmetric and modestly asymmetric diblock copolymers
have provided strong evidence for the hypothesis that g is a nearly universal function of N and the SCFT state
parameters [29, 30, 32]. However, SCFT is based on a qualitatively incorrect picture of the disordered phase near
the ODT because it assumes random mixing at a monomer level within the disordered phase. In systems with
experimentally relevant values of N , the disordered phase of a diblock copolymer melt near the ODT is instead found
to contain disordered but rather strongly segregated A and B domains [29, 30, 33]. Highly asymmetric copolymers
with f < 0.2 such as those simulated here, form disordered arrangements of spherical micelles [1–7]. The appearance
of local segregation without crystalline order stabilizes the disordered phase, and pushes the value of χN at the actual
order-disorder transition (χN)odt to values significantly greater than (χN)scf

odt.
There are two key prior theoretical studies of the disordered micelle regime that are relevant to the present work. In

the first, Dormidontova and Lodge presented a relatively simple and qualitatively correct theory of thermodynamics in
sphere-forming diblock copolymers that predicts the existence of a micellar liquid regime at intermediate temperatures
[34]. This theory extended earlier work by Semenov [35, 36] on a strong-stretching theory for asymmetric copolymers,
which provided analytic expressions for both the free energy of an isolated micelle and for an effective interaction
between pairs of micelles. Dormidontova and Lodge [34] combined this with a simple treatment of the effects of
micelle and unimer translational entropy, and allowed for the possible formation of a disordered micellar fluid. The
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resulting theory yields predictions for both an apparent CMT and the ODT. In the second relevant study, Wang et
al. presented an analysis of the appearance of micelles within the disordered phase that is based upon a numerical
SCFT calculation of the free energy of formation of an isolated micelle within an otherwise disordered melt [33].
This formation free energy, denoted here by Wm, becomes negative at values of χN greater than a critical value,
denoted here by (χN)scf

m , thus favoring the proliferation of micelles for χN > (χN)scf
m . The value of (χN)scf

m was
found to be very similar but slightly greater than the value (χN)scf

odt at which SCFT predicts formation of a crystal to
become favorable. The slight difference reflects the fact that the crystal phase is stabilized by the existence of weak
attractions between neighboring micelles in a crystal. For example, for the case f = 0.1 that they studied in greatest
detail, Wang et al. found (χN)scf

m = 48.14, while we obtain (χN)scf
odt = 47.95 for a BCC crystal candidate phase. The

difference (χN)scf
m − (χN)scf

odt is, however, much smaller than other differences of interest here, such as the difference
(χN)odt − (χN)scf

odt, and so is negligible for our current purposes.
In the present contribution, we report data for coarse-grained bead-spring diblock copolymer melt simulations

performed for two models with significantly different values of N . We recently provided a preliminary report [8] for
a system with N = 3820, focusing on the development of methods to identify the CMT. Here, we present a more
thorough analysis of those data [8] and new data for a system with N = 960, with the latter system bringing to the
fore the impact of fluctuation effects that should be prominent for experimentally-relevant degrees of polymerization.
Where appropriate, we reproduce some results reported in Ref. [8] alongside new data for N = 960 so that the impact
of lowering N is readily discernible. The analysis presented here involves a detailed structural characterization,
comparisons to SCFT predictions, and analyses of both ordered and disordered phases. In addition to the additional
data at low N̄ and the accompanying discussion that did not appear in Ref. [8], this contribution provides an
interpretation of the structure factor in the context of Percus-Yevick theory [20], calculation of the number of free
chains, comparison of the most probable aggregation number to an estimate from SCFT, computation of the latent
heat at the ODT [37], and a thorough analysis of dimer formation in both the ordered and disordered state, including
an analysis of their dynamics [37].

II. SIMULATION DETAILS

In this work we have used constant pressure, constant temperature molecular dynamics (MD) simulations of coarse-
grained bead-spring models of asymmetric AB diblock copolymers. Each chain contains N beads, of which NB = fN
are of monomer type B (the minority species), and the remainder of type A. For all systems studied in this work,
N = 64 and NB = 8, giving f = 1/8.

We use a potential energy with a harmonic bond potential and a soft nonbonded pair interaction similar to that
introduced in dissipative particle dynamics simulations, employing choices of parameters used in several previous
simulation studies by our group [29–32]. A repulsive non-bonded potential acts between all bead pairs that are
separated by a distance r less than a cutoff distance σ, with a potential of the form εij [1− (r/σ)]2/2 between beads
of types i and j for r < σ, with εAA = εBB . We define a parameter α ≡ (εAB − εAA)/kBT that is adjusted to control
the driving force for microphase separation. Adjacent beads within each chain interact via a harmonic bond potential
of the form κr2/2, where κ is a spring constant. Additional details on the simulation method are provided in the
Supplementary Material [37].

We simulate two systems, each of which is defined by a fixed set of choices for all model parameters except α, and
simulate each system over a range of values of α. The two systems studied here correspond to models S1-64 and S2-64
as defined in Ref. [30]. These models have previously [29, 30] been shown to yield invariant degrees of polymerization
N = 960 (S1-64) and N = 3820 (S2-64). For clarity in what follows, we will refer to the different simulation systems
by their invariant degrees of polymerization since this is the physically relevant descriptor. Previous work [29, 30]
further established a relationship between α and the Flory-Huggins interaction parameter χ for each of these models,
which was approximated by the function

χ(α) =
zα+ aα2

1 + dα
. (1)

Table I lists values for the fixed input parameters for the two models studied in this work, along with values of the
coefficients z, a and d and other properties that were obtained in previous work [29, 30] by analyzing simulations of
these models; the reader is referred to Ref. [30] for a detailed explanation of the model parameters.

We have also performed simulations to identify conditions under which an initially disordered melt will spontaneously
crystallize or an initially ordered crystal will spontaneously melt in systems that are designed so that the periodic
simulation unit cell is, as nearly as possible, commensurate with the preferred crystallographic unit cell. The latter
results and a discussion on the latent heat of the transition are provided as Supplementary Material [37]. The number
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TABLE I. Model parameters and properties for models S1 and S2, in units with kBT = σ = 1. The self-interaction parameter
εAA, spring stiffness κ, and pressure P have fixed values for each model. The monomer concentration c and statistical segment
length b are extrapolated values for infinite homopolymers (α = 0 and N → ∞). The quantities z, a and d are coefficients that
appear in Eq. (1) for χ(α).

Model εAA κ c P b z a d

S1 25.0 3.406 3.0 20.249 1.088 0.237 0.138 0.438

S2 25.0 1.135 1.5 4.111 1.727 0.0916 -0.00087 0.00420

FIG. 1. Visualization of the core of a micellar cluster composed of 83 chains. Minority block beads belonging to all molecules
in the cluster are shown as as overlapping translucent red spheres. The conformation of one representative molecule is shown
as sequence of points representing beads connected by line segments, with blue points for majority/corona block beads and red
points for minority/core block beads.

of polymer molecules, denoted by M , was chosen in most simulations so as to approximately accommodate a 3×3×3
array of BCC unit cells if the system were to crystallize [37].

Much of our analysis relies on the identification of physical clusters of molecules that are candidates for identification
as micelles. Two molecules are taken to belong to the same cluster if their minority blocks are in close contact, i.e.,
if the distance between any inter-molecular pair of minority block beads from these molecules is less than 0.8σ. This
value was selected based on prior simulations of micelles using these models [38], where aggregation numbers using
this cutoff were consistent with those obtained by counting the number of chains in a micelle. Using this criterion,
we may assign every molecule in the system to a unique cluster. Fig. 1 shows a visualization of a micellar cluster
identified by this method, in a format that shows the micelle core and the conformation of one molecule.

III. STRUCTURE FACTOR

The structure factor S(q) is defined here as

S(q) =

〈
1

V
|ψ̃(q)|2

〉
, (2)

where ψ̃(q) =
∫
dr ψ(r)eiq·r is a Fourier amplitude of the composition field ψ(r) = [cA(r) − cB(r)]/2, ci(r) is the

concentration of i monomers, V is total system volume, and q = |q|. Fig. 2 compares S(q) data for different values of
χN for both N = 960 and the previous data [8] for N = 3820. The most obvious feature in this figure is the existence
of a maximum in S(q) at a wavenumber denoted by q∗.

To identify any secondary features, we fit the data in Fig. 2 to a functional form S(q) = KSRPA(q), where SRPA(q),
the solid lines in Fig. 2, are the prediction of the random-phase approximation (RPA) [39]. In this fit, the prefactor
K and the parameters Rg and χ that are required as inputs to the RPA prediction have all been treated as adjustable
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FIG. 2. Structure factor S(q) vs. non-dimensionalized wavenumber qRg0, for (a) N = 960 and (b) N = 3820 at several values

of χN . Rg0 = b
√
N/6 is the unperturbed polymer radius of gyration. Solid lines are fits of behavior near the peak to the

functional form predicted by the random-phase approximation (RPA). Panel (b) reproduced with permission from Ref. [8].
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FIG. 3. Non-dimensionalized inverse peak intensity cNS−1(q∗)/2 vs. χN for N = 960 (solid red circles) and N = 3820 (solid
blue diamonds). The diagonal dashed line is the RPA prediction. The vertical dotted line marks location of (χN)scf

odt. Error
bars are smaller than the data points and provided in the Supplementary Material [37].

parameters that are chosen to fit the data in the vicinity of the peak. The RPA functional fits the data for both
models at the lowest value of χN , which in both cases is near (χN)scf

odt = 36.6, but the RPA does not fit the results

for higher values of χN for neither value of N . Comparison of the data to this fit helps emphasize the appearance
at higher values of χN of a weak shoulder centered around qRg0 ∼ 3-4, where Rg0 = b

√
N/6 is the unperturbed

radius of gyration, which becomes more prominent with increasing χN . The existence of this secondary feature in
S(q) was first noted in experimental scattering data by Kinning and Thomas [1], who attributed it to the presence
of strong correlations in the positions of micelles within a dense micellar liquid. This secondary shoulder develops at
significantly lower values of χN in the system with larger value of N ; note that the strength of the shoulder in the
system with N = 3820 and χN = 46.5 (Fig. 2b) is greater than that seen in the system N = 960 (Fig. 2a) at a higher
value of χN = 54, and comparable to that observed for N = 960 at the much higher value of χN = 68.5.

To discern the deviations between the RPA model and the simulation data across the full range of χN , Fig. 3
shows how the normalized inverse peak intensity cNS−1(q∗)/2 within the disordered phase changes with χN for both
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FIG. 4. Normalized peak wavenumber q∗Rg0 vs. χN for N = 960 (solid circles) and N = 3820 (solid blue diamonds),

where Rg0 = b
√
N/6. The dotted vertical line and the solid vertical gray line marks the disordered-FCC phase transition at

(χN)scf
odt = 36.6 and the order-order transition from FCC to BCC at χN = 38.5, respectively. The solid horizontal black line

shows the RPA prediction for q∗Rg0 in the disordered phase, which is shown only for χN < (χN)scf
odt. The dot-dashed and

dashed curves plotted for χN > (χN)scf
odt show SCFT predictions for the value of q∗Rg0 corresponding to the primary Bragg

peaks in the BCC and FCC phases, respectively.

invariant degrees of polymerization. The results for N = 3820 have been reported previously [8]. A strongly first-order
ODT of the type predicted by SCFT would be accompanied by a dramatic increase in S(q∗), and a corresponding
decrease in S−1(q∗), due to the appearance of Bragg peaks in S(q). Appearance and proliferation of disordered
micelles within a sufficiently narrow range of values of χN near (χN)scf

odt also would be expected to produce a sudden
increase in S(q∗), or, equivalently, a sudden decrease in S−1(q∗), with increasing χN , due to the appearance of
additional scattering from micelles. A hint of this type of behavior is visible in Fig. 3 for N = 3820, which exhibits an
inflection at a value of χN near (χN)scf

odt at which the magnitude of the slope dS−1(q∗)/d(χN) appears to show a weak

maximum. There is, however, no sign of such an inflection in corresponding results for N = 960. Rather, S−1(q∗) vs.
χN exhibits a uniformly positive curvature and flattening out near an apparent spinodal value analogous to that seen
in corresponding plots of results for more symmetric copolymers [26, 28, 40]. This difference in the behavior of the
peak intensity in systems with different values of N suggests that micelles proliferate over a smaller range of values
of χN in systems with larger values of N .

The location of the structure factor peak at q∗ provides further information on the intermicellar distance. Figure 4
thus compares simulation results for both invariant degrees of polymerization to (i) RPA predictions for q∗ for
χN < (χN)scf

odt and (ii) SCFT predictions for the wavenumber of the primary family of Bragg peaks for χN > (χN)scf
odt,

where q∗ is made dimensionless with Rg0. The results for N = 3820 have been reported previously [8]. Data for both

values of N exhibit a monotonic decrease of q∗ with increasing χN . Values of q∗ at χN = 0 are slightly greater than
those predicted by the RPA for both models, with closer agreement between the RPA prediction for χN < (χN)scf

odt

and the larger N . For χN > (χN)scf
odt, simulation results for q∗ in the disordered phase seem to approach the SCFT

predictions for the BCC phase that SCFT predicts to be stable over most of this range. This behavior of q∗ is broadly
analogous to that seen in previous simulations of the disordered phase of less asymmetric copolymers [28, 31].

The structure factor S(q) measured here is analogous to the scattering intensity I(q) measured in small-angle x-
ray and neutron scattering studies. In an analysis that was introduced by Kinning and Thomas [1] and refined in
subsequent work [2, 3, 5, 7], I(q) in the disordered phase of asymmetric copolymers was modeled as scattering from
a liquid of spherical micelles. In those analyses, experimental data for I(q) are compared to a model in which S(q)
is expressed as a product of a form factor for a spherical micelle core times a structure factor for the centers of the
micelle cores, denoted here by Z(q). The Percus-Yevick (PY) theory for hard spheres [20] is used to model the micelle
structure factor Z(q), while treating the sphere radius and effective volume fraction as adjustable parameters. The
resulting model was shown [1–5] to account naturally for the appearance of a primary peak and secondary shoulder
in S(q) with approximately the observed ratio of characteristic wavenumbers, in a model in which both features are
assumed to be consequences of inter-micellar correlations in a dense fluid.

Using our simulation data, we can directly measure the relevant micelle structure function Z(q), and thereby test
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FIG. 5. Symbols show the calculated intermicellar correlations Z(q) at two values of χN for (a) N = 960 and (b) N = 3820.
The solid lines in the plot are fits to the Percus-Yevick theory, in which the sphere radius, Rhs, an the effective volume fraction,
η, and an overall constant of proportionality are adjusted to fit the data. The resulting fit parameters are in Table II. Note
that a different ordinate scale is used for each N .

TABLE II. Values of Rhs/Rg0, and η extracted from the fits of the intermicellar correlation Z(q) to the Percus-Yevick theory
[20]. The data were fit to a prediction of the form Z(q) = KZPY (qRhs, η), where ZPY (qRhs, η) denotes the Percus-Yevick
prediction the structure factor of hard spheres of diameter Rhs and volume fraction η. The parameters K, Rhs and η are
adjusted to fit the data.

N α χN Rhs/Rg0 η

960 2.5 44.5 1.228 0.1132

960 3.75 68.5 1.8098 0.4648

3820 7 37.2 1.1917 0.12414

3820 9 46.5 1.6503 0.44237

the assumptions underlying this analysis. Our calculation of Z(q) is based on an analysis of “micellar” clusters, defined
as clusters for which the aggregation number lies within a specific range of values using the algorithm described in
Section II. Let xn denote the fraction of chains that belong to clusters of aggregation number n. In systems that
contain well defined micelles, the distribution xn exhibits a local minimum and a local maximum, as discussed in
detail in Section IV. To compute Z(q), micellar clusters are taken to be those for which the aggregation number n
lies between the value at which xn exhibits a local minimum and 1.6 times the value at the local maximum. For
each such micellar cluster, we define a central position defined as the center-of-mass of the minority block beads of
molecules that belong to the cluster (i.e., the center of mass of the core). The micelle structure function Z(q) is then
defined by the sum

Z(q) =
∑
j,k

〈
1

V
eiq·(Rj−Rk)

〉
, (3)

where Rj represents the central position of micellar cluster number j. The sums over j and k are taken over all
micellar clusters.

Figure 5 provides simulation results for Z(q) for two values of χN for each of the two values of N . For each value
of N , the higher value of χN shown corresponds to a state in which S(q) exhibits both a primary peak and a clear
secondary shoulder. The corresponding results for Z(q) exhibit both a primary peak at a value of qRg0 ' 2 close to
the value at which S(q) in Fig. 2 exhibits a primary maximum, and a secondary peak at a value of qRg0 ∼ 3.6 to
3.8 similar to that at which S(q) shows a secondary shoulder. This confirms that the secondary shoulder in S(q) is
indeed caused by the existence of a corresponding peak in Z(q), reflecting strong correlations in micelle positions, as
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FIG. 6. Mole fraction xn of chains that belong to clusters of aggregation number n for (a) N = 960 and (b) N = 3820. Note
that the axis limits differ between panels. Panel (b) reproduced with permission from Ref. [8].

suggested by previous analyses of scattering data [1–5]. The lower value of χN corresponds to a state relatively close
to the CMT in which S(q) exhibits a primary peak but no secondary shoulder. The corresponding results for Z(q)
are now nearly structureless, though S(q) still shows the single pronounced peak seen in Fig. 2 for lower values of χN .
This indicates that at these lower values of χN ∼ (χN)scf

odt, S(q) probably cannot be correctly described by a model
that attributes all scattering as originating from a liquid of spherical micelles.

IV. CLUSTER POPULATION ANALYSIS

In this section, we characterize micelles in the disordered phase by analyzing results of the cluster analysis described
in Section II. To begin this analysis, Fig. 6 depicts the fraction xn of chains with aggregation number n for both
models over a range of values of χN . At the higher invariant degree of polymerization (data reported previously [8]) xn
is a monotonically decreasing function of n for all values less than (χN)scf

odt = 36.6 (measured values χN ≤ 34.8) and
develops a local maximum for all values greater than (χN)scf

odt (measured values χN ≥ 37.2). This indicates emergence

of proper micelles over a narrow range of values of χN near (χN)scf
odt [8]. Corresponding results for N = 960 in Fig. 6

are qualitatively similar to those at N = 3820. Here, xn is still a monotonically decreasing function of n for χN = 39.7
and exhibits a weak maximum for χN ≥ 44.5. The value of χN at the apparent CMT thus does appear to increase
somewhat with decreasing N , though the results for N = 3820 suggest that the CMT rapidly approaches (χN)scf

odt

with increasing N for N > 103.
Under conditions for which proper micelles exist, results of the cluster analysis can be used to quantify the fraction

of free chains that remain outside of micelles. We apply this analysis only at values of χN for which xn exhibits a
local minimum and local maximum, and classify chains that belong to clusters of aggregation numbers less than the
value of n at the local minimum as “free” chains. Let xfree denote the total fraction of such chains, given by the sum
of values of xn from 1 to the value at which xn is minimum.

Figure 7 shows simulation results for the fraction xfree where results from simulations of ordered BCC phases are
used throughout the range of values of χN in which the ordered phase is found to remain stable (solid symbols),
while results from disordered melts are used at lower values of χN (open symbols). For both values of N , results from
disordered and ordered phases form an apparently continuous line, indicating that crystallization has little if any effect
on xfree. Moreover, xfree is substantial at the lowest value studied (xfree ' 0.2 to 0.4) and decreases with increasing
χN . Figure 7 also compares simulation results to an SCFT prediction of xfree that we obtained by measuring the
volume fraction of the minority monomer type at the midpoint between two neighboring micelles, and equating this
to fxfree, with f = 1/8. Agreement with this SCFT prediction is reasonably good at larger values of χN , particularly
in light of differences between the definitions of xfree used in the cluster analysis and the SCFT analysis.

It is also illuminating to examine how the micelle aggregation numbers are influenced by χN and N . To do so, we
define n∗ to be the value of n at which xn is maximum. This quantity is estimated by fitting a region near the peak
in xn to a Gaussian function (using a region within ±20% of the maximum) and approximating n∗ by the value of n
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FIG. 7. Fraction of free chains xfree as a function of χN from simulations (symbols) and as predicted by SCFT. Diamonds
and circles represent simulation results for N = 3820 and N = 960, respectively. Open and closed symbols represent results of
simulations of disordered and ordered phases, respectively.
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FIG. 8. Most probable micelle aggregation number n∗ vs. χN for (a) N = 960 and (b) N = 3820. Results are shown
only for values of χN for which xn exhibits a local maximum. Open and closed symbols represent results obtained from
simulations of disordered and ordered states, respectively. Results obtained from ordered states are shown for all values of χN
for which the ordered state remained stable. Lines represent SCFT predictions for BCC and FCC crystals, which are visually
indistinguishable on the scale of this plot. Note that the axis limits differ between panels.

at the maximum of that Gaussian. Figure 8 shows that n∗ increases substantially with increasing χN in both ordered
and disordered phases. Results for N = 980 show a statistically measurable difference in values of n∗ from ordered
and disordered phases at χN = 68.5, the lowest value for which the ordered phase was found to remain stable. For
N = 3820, the corresponding difference between values of n∗ in the ordered and disordered phases is significantly
smaller, and difficult to reliably measure because the difference (if any) is comparable to the scatter in our results for
n∗. Results for n∗ in the ordered phase are very sensitive to our choice of the number of molecules in the simulation
[37].

SCFT predictions for n∗ in crystalline structures, shown as lines in Fig. 8, were estimated as n∗ = m(1 − xfree),
where m is an SCFT prediction for the total number of molecules per micelle, and xfree is the SCFT prediction for the
fraction of free chains, computed as described above. The SCFT prediction for m is computed by combining SCFT
predictions for the optimal unit cell size with values of statistical segment length b and monomer concentration c
appropriate to the simulation model (Table I). These predictions agree rather well with measurements of n∗ in both
the disordered and ordered micellar state.
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FIG. 9. Average mole fraction of chains xn present in clusters of aggregation number n for N = 960 at χN = 68.5 for the BCC
phase (solid line) and the disordered phase (dashed line).

While we have focused on the disordered liquid phase thus far, the cluster analysis may be applied in simulations
of ordered micelle crystals as well. By way of example, Fig. 9 provides the aggregation number fraction for a BCC
crystal phase and the disordered liquid for N = 960 at χN = 68.5. Interestingly, the cluster analysis clearly shows
that micelles exhibit a polydispersity in the ordered phase as well as in the disordered phase: Note that the width of
the primary peak in xn in Fig. 9 is rather similar for both the ordered and disordered systems. Relative frequencies of
micelles of different aggregation numbers can be related to corresponding differences in free energies of a hypothetical
system containing one test micelle of constrained aggregation number in a fluctuating environment. The observation
of similar polydispersities in crystal and liquid phases thus can be rationalized if we assume that the free energy
differences associated with changes in aggregation number are controlled primarily by changes in intra-micellar free
energy contributions rather than free energies arising from changes in the surrounding liquid or crystal of neighboring
micelles that must be made to accommodate a change in the aggregation number of a test micelle. We expect these
intra-micellar contributions, which arise primarily from changes in chain stretching and changes in the area of AB
interface surrounding the core block of the test micelle, to be very similar in liquid and crystal phases.

Returning our attention to the distributions for xn in the disordered system in Fig. 6, we note that the data for
N = 3820 and χN = 46.5 exhibits a small second maximum at a value of n approximately twice that at which xn
exhibits a primary maximum. An analogous secondary feature is even more clearly visible in the cluster distribution
for a BCC crystal shown in Fig. 9. We discuss the physical origin of this feature in the penultimate section of this
paper, where we show that it arises from the formation of a small population of dimers consisting of two spherical
micelles with connected cores regions.

V. MICELLE STRUCTURE

We focus in this section on analyzing the spatial structure of clusters with aggregation numbers within a range that
corresponds to the main peak in the distribution for xn, which we refer to here as micellar clusters. In well-segregated
systems, for which the probability density for xn exhibits a local minimum and a local maximum, we consider clusters
for which n lies between the value at the local minimum and 1.6 times the value at the local maximum, as in our
calculations of Z(q) and xfree. At lower values of χN , for which xn decreases monotonically with n, we consider
clusters with n in a range 20-140 for N = 960 and 30-160 for N = 3820. We then characterize the concentration
profile of a micelle by considering how the average composition of the resulting population of clusters varies with
distance from the center of mass (COM) of the the B (minority block) beads in each such cluster. We define the
effective volume fraction φB of B beads within a region of volume ∆V as the ratio φB ≡ mB/c∆V , where mB is the
actual number of B beads in the region, and c is the monomer concentration (see Table I).

Let φB(r) denote the average volume fraction of B beads at a distance r from the COM of a cluster. We compute
this quantity from the average of φB over a thin spherical annular region of inner radius r around the COM of each
cluster, averaged over time and over all micellar clusters that satisfy the above constraints on n [8]. Figure 10 shows
the results of the calculation of φB(r) in the disordered phase. In the analysis for N = 3820, which we reported
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FIG. 10. Local volume fraction of the minority B-block as a function of the distance from the micelle center for different values
of χN for (a) N = 960 and (b) N = 3820. The dotted vertical lines indicate the distances rc used to compute the core volume

fractions φ
(c)
B . Note that the abscissa scales are different in the two panels. Panel (b) reproduced with permission from Ref. [8].

previously [8], the observed value of φB(r = 0) at the micelle COM is found to be nonzero for all values of χN , but
to increase particularly rapidly over a narrow range of values of χN centered around (χN)scf

odt = 36.6, and to saturate

to values that approach unity at higher values of χN . Analogous behavior is seen here for N = 960, but the increase
in φB(r = 0) is somewhat more gradual and occurs at somewhat higher values of χN .

At sufficiently low values of χN , for which xn is a monotonically decreasing function, the clusters that are identified
by our algorithm are not true micelles, but more diffuse geometrical clusters that arise from random contacts between
minority block beads. Our measurement of φB(r) at values of χN comparable to (χN)scf

odt presumably includes
contributions both from such diffuse clusters and from micelles with a more dense core region. To distinguish these
two sub-populations, we have considered the probability distribution for the effective volume fraction φB within a

small spherical region at the center of each cluster. We define φ
(c)
B to be the value of φB within a sphere of radius

rc of the cluster COM of mass, and use cutoff radii rc = 1.5σ for N = 3820 and rc = 1.2σ for N = 960; the values
are indicated in Fig. 10 as vertical dotted lines. These values of rc were chosen so as to be small enough to remain
within the B-rich core region of a well segregated micelle, but large enough to contain many beads. Denoting ∆V as
the volume of the core region, these choices for rc furnish c∆V = 21.7 for N = 960 and c∆V = 21.2 for N = 3820
using the monomer concentrations c in Table I.

Figure 11 shows the calculated probability distributions of φ
(c)
B . For N = 960, the most probable volume fraction

is φ
(c)
B = 0 for χN = 0 and 35, characteristic of diffuse clusters. At χN = 39.7, we obtain a broad distribution of

values of φ
(c)
B , suggesting the co-existence of both diffuse and dense clusters at this value. At χN ≥ 44.5, we see clear

evidence of a peak with a maximum at φ
(c)
B ' 1, indicating the emergence of a new population of proper micelles with

a core region that is nearly pure B. As shown in Fig. 11b, results for N = 3820, which we reported previously [8],
show the emergence of proper micelles at somewhat lower values of χN closer to (χN)scf

odt.

To identify the emergence of micelles, Fig. 12 shows results for the most probable value of φ
(c)
B and its mean value

as a function of χN . The results for N = 3820 have been reported previously [8]. The most probable value shows a

discontinuous jump with increasing χN from a most probable value of φ
(c)
B = 0 at lower values of χN to a nonzero

value comparable to unity at higher values. The value of χN at which the most probable value of φ
(c)
B becomes

nonzero provides a simple estimate of the value of χN at the CMT [8]. The jump in the most probable value occurs
very near (χN)scf

odt = 36.6 for N = 3820, but occurs at a slightly higher value of χN ' 40 − 45 for N = 960. The

mean value of φ
(c)
B , shown in Fig. 12b, shows a somewhat more smeared sigmoidal behavior centered around a higher

value of χN for N = 960 than for N = 3820.
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FIG. 11. Probability density for the minority block volume fraction in the micelle core at different values of χN for (a) N = 960
and (b) N = 3820. Note that the axis limits differ between the two panels. Panel (b) reproduced with permission from Ref. [8].
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FIG. 12. Statistical characteristics of the minority component core volume fraction φ
(c)
B . (a) Most probable value of φ

(c)
B for

both models (N = 960 and N = 3820). (b) Mean value of φ
(c)
B for both models. In both plots, the vertical dotted line shows

the SCFT ODT value (χN)scf
odt, and the dashed purple line shows the SCFT prediction for the the average B volume fraction

at the center of a micelle within a BCC crystal for χN > (χN)scf
odt.

VI. MICELLE DIMERS

We now consider the interpretation of the secondary feature visible in Figs. 6 and 9, in which some plots of xn
show a secondary maximum at an aggregation number approximately twice that of value at which xn is maximum.
Figure 13 replots the data for xn on a semi-logarithmic scale, so as to emphasize this secondary feature. In each plot
results for both ordered and disordered phases are shown at the lowest value of χN for which an initially ordered
structure was found to remain stable (χN = 68.5 for N = 960 and χN = 46.5 for N = 3820). Results for ordered
phases for both values of N (dashed red lines) show the existence of multiple local maxima at values of n that are
approximately equal to integer multiples of the value of n at first local maximum. Results obtained in the disordered
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FIG. 13. Semilogarithmic plot of the mole fraction xn of aggregation number n for the disordered phase (solid blue line) and
ordered BCC phase (dashed red line). Results for the BCC phase are vertically shifted for clarity by multiplying xn by 106.
Data for (a) N = 960 are for χN = 68.5 and (b) data for N = 3820 are at χN = 46.5. Note that the axis limits differ between
panels.

phase (solid blue lines) differ with N . Data for the higher N = 3820 show a clear second local maximum at n ' 2n∗,
whereas there is a shoulder for N = 960. We show in what follows that clusters with n ' 2n∗ correspond primarily to
pairs of spherical micelles with core blocks connected by threads or bridges of minority block material, each of which
our cluster analysis algorithm identifies as a single larger cluster. Similarly, the higher order bumps in plots of xn in
the ordered phase correspond to groups of three or more micelles with core regions that are connected in a way that
causes our algorithm to identify each as a single cluster. The more frequent formation of dimers in the BCC state
can also serve as a mechanism for chain exchange, which could be connected to the more facile exchange kinetics in
BCC packings of block polymer micelle solutions when compared to the disordered solution state [41].

Further information about micelle structure can be obtained by characterizing each micelle by a measure of shape
anisotropy [42] as well as aggregation number. Let S denote a cluster gyration tensor, defined as a matrix with
elements

Sαβ =
1

N

N∑
i=1

riαriβ , (4)

where riα denotes Cartesian component α of the position of the ith minority block (B) bead within a cluster, measured
relative to the center-of-mass of the B beads in the cluster, and N is the number of such beads in the cluster. Let ∆
denote the shape anisotropy defined as

∆ =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
, (5)

where λ1, λ2, and λ3 are the eigenvalues of the gyration tensor S. Note that ∆ = 0 for a spherically symmetric
cluster, for which all three eignevalues are equal, and ∆ ' 1 for a rod-like cluster, for which one eigenvalue is much
larger than the other two.

Figure 14 furnishes a heat map of the two-dimensional (2D) joint probability of finding a cluster with a specified
pair of values of n and ∆ in the ordered BCC phase at (i) χN = 68.5 for N = 960 and (ii) χN = 46.5 for N = 3820.
Note that the primary maximum in each plot, corresponding to the main peak in a corresponding plot of xn vs. n,
is located at a small value of ∆ < 0.1, indicating that the peak around this maximum corresponds to a set of nearly
spherical micelles. The secondary maximum in each plot appears at a value of n approximately twice that of the
primary peak but now with a rather large shape anisotropy of ∆ ' 0.7. This secondary maximum, which corresponds
to the second peak in xn vs. n, thus arises from a population of much more anisotropic objects.

We now show that the secondary peak in these 2D plots arise from micelle dimers. The red star markers in both
plots of Fig. 14 show the predicted values of ∆ for an idealized model of a dimer consisting of two nearest neighbor
micelles within a BCC lattice. The model used to compute this value consists of two spherical micelle cores with
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FIG. 14. Heat map for the joint probability density of specified aggregation number n and shape anisotropy ∆ in simulations
of the BCC ordered phase for (a) N = 960 at χN = 68.5 and (b) N = 3820 at χN = 46.5. The red star marker in each plot is
the theoretically calculated shape anisotropy for a dimer of two micelles on nearest-neighbor lattice positions. Straight lines in
(b) are boundaries of the regions used to divide clusters into individual micelle and micelle multiplets of different multiplicity.
Note that the abscissa scales differ between panels.

φB = 1 within a region of radius R, separated by a distance X between the sphere centers. This model can be shown
to yield

∆ =
3

2

[0.4 + 2(X/2R)2]2 + 0.32

[1.2 + 2(X/2R)2]2
− 1

2
. (6)

To obtain the values shown in Fig. 14, the intermicelle distance X has been set equal to the distance between nearest
neighbors in a perfect BCC lattice in the simulated unit cell, while the core radius R has been chosen so that the
number (4πR3/3)c of monomers in each micelle core in the model corresponds to the number of B monomers in a
micelle of aggregation number equal to the most probable aggregation number. The prediction of this idealized model
is seen to be very close to the observed value of ∆ at the secondary local maximum in the 2D histogram, confirming
that this maximum corresponds to a population of nearest neighbor micelle dimers within a micelle crystal.

Red lines in Fig. 14b show boundaries that we have constructed to divide the population of all clusters within a
simulation of an ordered BCC crystal into regions corresponding to nearly spherical micelle “unimers” (corresponding
to the main peak in xn vs. n), micelle dimers, trimers, and (rare) quadrimers. Dimers are aligned along {111}
directions, producing a single peak in the heat map. There are three types of trimers in which the two end unimers
are at the corners of a cube and aligned along a {100}, {110}, or {111} direction relative to each other, producing
the lobes in the trimer distribution.

To test the consistency of this classification scheme, we count the total number of micelles in the system, denoted
by K, by counting each cluster in the unimer region of the 2D histogram as a single micelle, each cluster in the
dimer region as two micelle, and so on for trimers and quadrimers. In a simulated system designed to accommodate
a BCC lattice of 54 micelles, for N = 960 and χN = 78.3, this scheme yields an average value K = 54 with a very
small standard deviation of 0.003 micelles, thereby confirming that the scheme correctly categorizes almost all clusters
within such a crystal as either individual micelles or micelle multiplets. A similar classification was developed for all
simulations of ordered phases for both models, and verified using the same methodology.

Using this classification scheme, we can unambiguously count the number of bridges between nearest-neighbor
micelles within a BCC crystal, and the fraction of all possible nearest-neighbor “bonds” within a BCC crystal along
which there are such bridges between micelles. This fraction was less than 0.02 (i.e., less than 2%) for all the cases
considered here, and decreases with increasing χN .

We have performed a similar analysis for the disordered state in Fig. 15, using the same values of χN as in Fig. 14.
The structure in the disordered phase is qualitatively similar to that in the ordered phase. In the disordered phase,
however, the main and secondary peaks are less well separated, suggesting a somewhat greater tendency for micelles
to form elongated objects of intermediate aggregation number in addition to simple micelle “dimers”.

We next consider the geometrical structure of a population of clusters formed from micelle dimers. For this purpose,
it is useful to use the eigenvectors of the gyration tensor S to define a coordinate system for each cluster. In an
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FIG. 15. Heat map for the frequency of observing shape anisotropy ∆ and aggregation number n, similar to Fig. 14, but now
for the disordered phase for (a) N = 960 at χN = 68.5 and (b) N = 3820 at χN = 46.5. Note that the abscissa scales differ
between panels.

idealized model of the minority beads of a dimer as a dumbbell consisting of two connected spheres, the eigenvector of
S associated with its largest eigenvector would lie along the axis connecting the centers of the spheres. To characterize
real clusters, we thus define a coordinate z for each B bead given by the distance projection of its position relative
to the cluster center-of-mass onto the eigenvector of S associated with the largest eigenvalue. Given a population of
clusters generated by a simulation, we then can compute a histogram of values of z for all B monomers belonging to
molecules in each cluster, and use this histogram to create a one dimensional density ρ(z) at each value of z, defined
such that

∫
dzρ(z) is the average number of B monomers per cluster. We then define an effective radius reff(z) at

each value of z to be the radius of a hypothetical cylindrically symmetric object of monomer concentration c that
would give the same one-dimensional density ρ(z) as that measured in the simulation, such that ρ(z) = cπr2

eff , where
c is the average total monomer concentration in the simulation model (Table I).

In our analysis of reff(z), it proves important to take into account that micelle dimers and other multiplets are
transient structures that are constantly formed when new bridges are formed between nearby micelles and destroyed
when bridges break. An analysis of the dynamics of these processes is given in the Supplemental Material [37]. We
find that a significant fraction of dimers are very short-lived structures that break apart in less than 1000 molecular
dynamics time steps. There is, however, also smaller fraction that is stable for thousands of time steps. In our analysis
of structure, we present separate results for short lived and long-lived dimers within a BCC crystal. For this purpose,
we classify a dimer as long-lived if it survived for at least 1000 timesteps, and short-lived if it survived for less than
1000 steps.

The values of the effective radius reff as a function of position z along the main axis of the dimers within a BCC
crystal appears in Fig. 16. Results are plotted as functions of a normalized coordinate 2z/r0 in which r0 is the distance
between nearest-neighbor lattice points in a perfect 3× 3× 3 BCC crystal constructed within the simulation unit cell.
In a simplified model of a dimer as two connected spheres, this would yield 2z/r0 = ±1 at the centers of the spheres.
The value of reff at the local maxima that occur at approximately these values thus correspond approximately to
the radii of the micelle cores. The fact that reff(z) exhibits local maxima very close to 2z/r0 = ±1 indicates that
connected micelles within a BCC crystal remain very close to their ideal lattice positions. Each plot of reff(z) vs. z
also shows a local minimum at z = 0. The value at this local minimum is a measure of the radius of the bridge of B
monomers that connects the two micelle cores. The fact that all of these plots show a distinct minimum confirms that
these are clusters do indeed all have a dimer or “dumbbell” shape with mass concentrated near the two ends, rather
than a more uniform rodlike distribution. The ratio of the the bridge radius to micelle core radius ranges from 0.2 to
0.3 for short-lived dimers and and 0.4 to 0.55 for the long-lived dimers. The bridges between micelles appear to be
thick enough to be visualized as bridges formed by the core blocks of multiple molecules, rather than more tenuous
single-molecule bridges, particularly for the long-lived dimers.
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FIG. 16. Short lived (top row) and long lived (bottom row) micelle dimer profiles showing the variation in an effective radius
reff vs. the distance z from the center of the micelle dimer. z is normalized by r0/2 where r0 is the distance between the nearest
neighboring micelles in a BCC crystal with a unit cell length of L/3 where L is the simulation box length. reff is given in
simulation units, in which the range σ of the pair interaction is set to unity. Note that the axis limits differ between panels.

VII. SUMMARY

The present contribution builds substantially on our preliminary communication on simulations of disordered asym-
metric diblock copolymer melts [8], which focused solely on a limited analysis of the results obtained at the higher
invariant degree of polymerization N = 3820 available from Model S2-64. Here, we have investigated for those same
properties at an even more experimentally-relevant value of N = 960 using Model S1-64, and we have provided ad-
ditional information on the structure, dynamics and thermodynamics for both values of N . In this final section, we
summarize the key outcomes of our analysis of the simulation data and their implications for experiments and theory.

Overall, the results presented here support the picture of the disordered micelle state described in our prior work
[8]. Explicitly, we found previously [8] for N = 3820 that there exists (i) a shoulder in S(q) as χN increases in the
disordered state that is not predicted by the RPA (Fig. 2); (ii) a systematic deviation from the linear dependence of
S−1(q) that is roughly coincident with the ODT predicted by SCFT but without the sudden decrease of S−1(q) that
would accompany an order-disorder transition (Fig. 3); and (iii) a clear emergence of a population of a peak in the
average mole fraction of chains with aggregation number n above the SCFT ODT (Fig. 6) where the nearly spherical
micelles have cores that are almost pure (Figs. 11 and 12). Taken together, these data support a model where the
CMT is roughly coincident with the ODT predicted by SCFT [8], with the true ODT taking place at a higher value
of χN .

Inspection of Figs. 2, 3, 6, 11 and 12 shows that the picture we developed previously [8] at N = 3820 holds for the
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substantially lower value of N = 960 investigated here, albeit with smaller aggregation numbers and larger values of
χN at N = 960 required to produce the phenomena seen at N = 3820. The most notable effects of N are qualitative
differences in the structure factor near the SCFT ODT. Namely, results for the system with a larger value of N = 3820
exhibit a weak inflection at χN ' (χN)scf

odt in a plot of S−1(q∗) vs. χN . The analogous plot for the system with a

smaller value of N = 960 does not, however, exhibit such an inflection, and instead exhibits behavior qualitatively
similar to that observed in studies of more nearly symmetric copolymers [26, 28, 40]. We assume that the inflection in
this plot would become sharper for systems of even greater N , approaching a discontinuous jump in the limit N →∞,
but that it is washed out in systems of modest N for which both the appearance of micelles and the build-up of
correlations in micelle position is found to occur over a wider range of values of χN . The appearance of an inflection
in a plot of S−1(q∗) vs. χN (or, equivalently, inverse temperature 1/T ) thus seems to provide a reliable signature of
the CMT only in systems with very large values of N . Overall, our results confirm the existence of a crossover from
molecularly disordered regime to a liquid of micelles with increasing χN , and suggest that, with increasing N , the
crossover occurs over an increasingly narrow range of values of χN centered around a value that rapidly approaches
(χN)scf

odt, in qualitative agreement with earlier theoretical predictions [33, 34].
In addition to the approaches used in our prior work [8] to identify the onset of the disordered micellar liquid, we

have developed new evidence here by analyzing the structure factor in the context of the Percus-Yevick theory [20]
in Fig. 5, which has impact on analyses of scattering data in experiments. The peaks in the intermicellar correlations
Z(q) occur at the same wavenumbers q of the corresponding features in the structure factor S(q). This correspondence
between features in Z(q) and S(q) is largely independent of N . Our analysis of Z(q) shows, however, that micelles
are present at significantly lower values of χN than those at which this feature becomes visible, because correlations
in micelle positions remain rather weak near the CMT. Analysis of both S(q) and Z(q) also clearly shows that the
strength of correlations among micelle positions increases more rapidly with increasing χN in systems of greater N .
Observation of this secondary feature in S(q) thus indicates the existence of a correlated liquid of micelles, but is not
a sufficiently sensitive indicator to be used to identify the CMT.

Our analysis of the primary peak in the structure factor (Fig. 4), the derivative of the free energy with χN [37], the
fraction of free chains (Fig. 7), and the most probable micelle aggregation numer (Fig. 8) show that predictions from
SCFT for ordered BCC structures provides remarkably good estimates for these properties in the disordered micellar
liquid. These results support prior work [29, 30, 32] comparing SCFT predictions to simulations of disordered diblock
copolymer melts. Unfortunately, we were unable to determine definitively how much the true ODT in our simulations
deviates from the SCFT prediction; initially ordered systems spontaneously melt at sufficiently low χN , but initially
ordered systems fail to crystallize in our simulations. The lower bounds on (χN)odt obtained here [37] are, however,
enough to show that the difference (χN)odt − (χN)scf

odt between values of χN at the actual and SCFT predictions
for the order-disorder transition is substantially greater than the difference between the value at the CMT and the
predicted SCFT transition. If we tentatively treat these lower bounds as the best available estimates of (χN)odt, the
results suggest that (χN)odt increases rather rapidly with decreasing N in the experimentally relevant range of values.

The cluster analysis presented here shows the existence of a small but easily measurable population of micelle dimers
at conditions near the order-disorder transition. Evidence of dimers was found in both ordered and disordered phases,
but the analysis and evidence are particularly clear in the ordered phase. Analysis of dynamics in the ordered phase,
discussed in the Supplemental Material [37], showed frequent formation and rapid destruction of bridges between
the core blocks of nearest-neighbor micelles. The presence of these short-lived dimers is not expected to affect most
experimentally accessible properties, but drew our attention in part because we found that it complicates attempts to
use our cluster analysis to characterize dynamics in these systems by identifying elementary dynamical processes such
as unimer insertion and expulsion and micelle fission or fusion. We anticipate that the dynamics of the disordered
micelle liquid will be a fruitful avenue for future work.
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