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Abstract 

Ferroelectric BaTiO3 thin films epitaxially integrated on Si is an emergent platform for 

fabricating integrated electro-optical modulators using the linear electro-optic effect for 

applications in silicon photonics. These devices hold great promise for optical 

neuromorphic and quantum computing. Understanding the domain morphology of such 

films is essential for building ultra-fast, ultra-low power electro-optic modulators. 

However, the domain morphology of the film is marked by significant complexity and our 

knowledge of it and its relation to the electro-optic response in epitaxial thin films is limited. 

In this paper, we use a phase field model implemented within the finite element method to 

map domain morphologies. The corresponding electro-optic response is also discussed. 

I. Introduction 

Recent advances in developing Si-integrated electro-optical (EO) devices offer a unique 

opportunity to overcome the limitations of pure electronic devices by using ultrafast optics 

controlled by ultralow-power electronics. The renaissance of silicon photonics owes much 

to the technology’s natural compatibility with the current Si-based semiconductor 

manufacturing processes, combined with the promise of a beyond-Moore’s Law paradigm. 

Indeed, Si photonic devices find applications in optical interconnects [1, 2], optical 

reservoirs [3] and, more generally, optical neuromorphic computing [4-7], as well as in 

optical quantum information processing [8, 9]. EO modulators are the essential enabling 

component of this photonic technology, offering advantages of simplicity, speed and low 

power [10]. EO modulators using the Pockels effect are under intensive research and have 

very high modulation speed and reasonably low loss [11-15]. Several other EO-active 

materials are also being considered for integrated photonics, such as commercially used 

ferroelectric LiNbO3 (LNO) [16] and organic materials [17, 18].   

Ferroelectric perovskite oxide BaTiO3 (BTO) is among the most promising candidates for 

integrated Si photonics [19, 20]. The largest component of the Pockels tensor r42 of bulk 

BTO is ~1300 pm/V [21], and in thin films, has been reported to be as high as ~923 pm/V 

[12], much larger than LNO’s ~30 pm/V [22] or strained Si’s 1.7 pm/V (unstrained Si is 

centrosymmetric and therefore does not exhibit the Pockels effect) [23]. Integration of 
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LNO on Si is quite difficult and can be done only for relatively small wafers [16, 24], 

limiting its applications in Si photonics. On the other hand, after the pioneering discovery 

of epitaxial crystalline oxides on Si [20, 25, 26], the mature process of wafer scale epitaxial 

integration of BTO on Si substrate via a SrTiO3 (STO) buffer layer has been developed [20, 

27]. This has enabled the fabrication of Pockels-effect-based EO modulators compatible 

with Si photonics [12-14]. Compared with organic materials, BTO is much more thermally 

stable and can operate at a wider range of temperatures. Low power switching and high-

speed modulation using Si-integrated BTO thin films at room [12] and cryogenic 

temperatures [11] have been demonstrated, suggesting that BTO-based EO modulators can 

also be used for quantum computation at ultralow temperatures [20]. 

Bulk BTO is a prototypical ferroelectric material, found in the tetragonal (T) phase between 

8°C and 125°C; in the orthorhombic (O) phase between -71°C and 8°C; and in the 

rhombohedral (R) phase below -71°C, while above 125°C, it is a cubic paraelectric material. 

The transitions between these phases are sensitive to strain [28]. While at room temperature, 

BTO is expected to be in the tetragonal P4mm phase (T-phase), in epitaxial BTO thin films 

on STO/Si substrate, the electro-mechanical conditions can strongly influence the phase 

composition [29]. This results in highly complex domain morphologies in epitaxial films 

[30]. Because BTO is also piezoelectric, applying an external electric field causes changes 

in the BTO polarization and strain field distributions [31, 32]. As pointed out in Ref. [4], 

the Pockels coefficient is a tensor closely related to both crystallographic and polarization 

distributions. Therefore, it is beneficial to analyze the crystallographic and polarization 

variations in BTO thin films simultaneously under different external conditions and 

establish their connection with Pockels coefficients.  

Despite the astounding progress in EO modulation achieved with epitaxial BTO/STO/Si 

stacks [12], epitaxial BTO thin film effective Pockels coefficients are always smaller than 

that of bulk BTO [19]. Several elements may be responsible for the difference between the 

effective Pockels coefficient in a BTO thin film and in bulk, e.g., the coexistence of 

domains of different orientations or the mere presence of domain walls [33]. 

Experimentally, according to X-ray diffraction (XRD) and scanning transmission electron 

microscopy (STEM), Si-integrated BTO films at room temperature exhibit so-called c-

domains (with the long axis of the T-phase along the out-of-plane growth direction) near 

the BTO/STO interface due to compressive strain. However, the a-domain (the long axis 

of T-phase being in-plane) is found near the BTO top surface due to the relaxation of BTO 

strain and suppression of the out-of-plane polarization thanks to the open-circuit boundary 

condition [34]. This domain reorientation is shown in Fig. 1 (a) and (b). To detect the 

polarization variations of BTO, one can utilize second harmonic generation [31, 35, 36] or 

piezoresponse force microscopy (PFM) [37]. In principle, the crystallographic and 

polarization structures of BTO are defined differently, even though they are strongly 

coupled with each other and completely overlap in bulk BTO. The crystallographic 
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structure is determined by the Ba atoms position while polarization by Ti and oxygen atoms 

displacement. In the literature, there remains an ambiguity when one discusses the polar 

and crystallographic variations across the film, because some authors refer to the 

crystallographic structure via STEM and others refer to polarization structure via PFM or 

STEM. Jia et. al. [38] use STEM to analyze both the crystallographic and polarization 

structures of PbZr0.2Ti0.8O3 thin films. Li et. al. [39] use STEM to analyze both the 

crystallographic and polarization structures of PbTiO3 thin films. One can clearly observe 

the differences between the crystallographic and polarization variations across the film, 

especially at the domain wall. To the best of our knowledge, there is no such data for BTO 

films. 

Usually, EO measurements lack the spatial resolution needed to explore the effects of 

structural variations [34]. This makes the precise determination of the Pockels tensor 

components difficult, and instead one uses an “effective” Pockels coefficient to describe 

the thin film EO response. We currently lack the mapping among the polarization, 

crystallographic and Pockels coefficient variations in Si-integrated BTO thin films [11, 40], 

which requires extremely high spatial resolution (~1 nm scale) measurements. These 

variations influence the effective Pockels coefficient of the film, though not necessarily in 

the same manner. The ambiguity of the connection between the high-resolution domain 

morphologies and the effective Pockels coefficient limits our ability to optimize the BTO 

thin film EO response e.g., by varying growth conditions. In the absence of experimental 

measurements, it is clear that numerical simulations of the domain structure would be 

beneficial. On the theoretical side, density functional theory (DFT) gives accurate 

descriptions of bulk BTO [41, 42]. BTO surface structure has been studies using DFT with 

relatively small simulation cells [43, 44]. However, it is not very helpful in studying 

domain structure, which has a typical length scale of ~1000 Å and involves millions of 

atoms, rendering atomic level DFT impractical. Instead, a phase field model [30, 45] 

simulation tool combining the effects of temperature, strain, and electrostatics, provides 

the appropriate length scale (~100-1000 Å). Using Landau-Khalatnikov theory, Chen and 

Li have constructed a phenomenological free energy model for bulk BTO that accurately 

describes the material phase transitions [28]. We use the finite element implementation of 

their phase field model [46] to study BTO domain morphologies under mechanical and 

electrical boundary conditions close to those found in the top region of a Si-integrated BTO 

film in an EO modulator (see Fig. 1 (b)). And the knowledge of the domain morphology 

will be used to investigate the Pockels effect.  

In this paper, we consider a relatively thick (hundreds of nanometers) BTO film epitaxially 

integrated in a BTO/STO/Si stack at room temperature that is most relevant for hybrid EO 

modulators [11-14]. Our simulations focus on the top region near the surface of BTO where 

the material is fully relaxed and in-plane a-domains dominate at room temperature, as 

indicated by the red box in Fig. 1 (b). According to [15, 19, 34], approximately 20-30 nm 
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above the BTO/STO interface, BTO begins to transition from c-domain to a-domain 

orientation, which is the Pockels active region of the BTO film in hybrid devices using 

such geometry in Refs. [11, 12, 20]. We simulate ~4–10 nm thickness of the surface region 

and explore the morphology of both polarization and crystallographic structures. We then 

explore the relations between the polarization and crystallographic structures and Pockels 

tensor.  

II. Methodology 

The domain morphology in BTO thin films is controlled by multiple competing 

mechanisms such as temperature, strain, electrical boundary conditions, film size, etc. that 

are coupled with each other. To describe the BTO thin film and include these couplings, 

we construct a three-dimensional free energy model (electrical enthalpy ℎ) [30, 46]: 

                      ℎ(𝑢𝑖, 𝐸𝑖, 𝑃𝑖 , 𝑃𝑖,𝑗, 𝜃) = ℎ𝑏𝑢𝑙𝑘 + ℎ𝑤𝑎𝑙𝑙 + ℎ𝑒𝑙𝑎𝑠 + ℎ𝑒𝑙𝑒𝑐, (𝑖, 𝑗 =  1,2,3)     (1) 

where 𝑢𝑖 is the mechanical displacement, 𝐸𝑖 electric field, 𝑃𝑖 polarization, 𝑃𝑖,𝑗 = 𝜕𝑃𝑖/𝜕𝑥𝑗  

polarization gradient and 𝜃 temperature. ℎ𝑏𝑢𝑙𝑘 is temperature-dependent bulk free energy 

of BTO under stress-free conditions in the form of an eighth order Landau-Devonshire 

polynomial formula [30].  ℎ𝑤𝑎𝑙𝑙 is the domain wall energy associated with the polarization 

gradient: 

                                          ℎ𝑤𝑎𝑙𝑙 =
1

2
𝐺𝑖𝑗𝑘𝑙𝑃𝑖,𝑗𝑃𝑘,𝑙, (𝑖, 𝑗, 𝑘 = 1,2,3),       (2) 

where 𝐺𝑖𝑗𝑘𝑙 is the polarization gradient coefficient. ℎ𝑒𝑙𝑎𝑠 is the elastic energy: 

                                                 ℎ𝑒𝑙𝑎𝑠 =
1

2
𝑐𝑖𝑗𝑘𝑙(𝜀𝑖𝑗−𝜀𝑖𝑗

0 )(𝜀𝑘𝑙 − 𝜀𝑘𝑙
0 ),         (3) 

where 𝜀𝑖𝑗  is strain computed as 𝜀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
), 𝑐𝑖𝑗𝑘𝑙  the elastic stiffness tensor and 

𝜀𝑖𝑗
0 = 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 is the spontaneous strain connected to polarization by the electrostrictive 

coefficients 𝑄𝑖𝑗𝑘𝑙. ℎ𝑒𝑙𝑒𝑐 is the electrostatic contribution to the electrical enthalpy: 

                                                            ℎ𝑒𝑙𝑒𝑐 = −(
𝜅𝑜

2
𝐸𝑖𝐸𝑖 + 𝐸𝑖𝑃𝑖),             (4) 

where 𝜅𝑜 is the permittivity of free space. Details of the free energy model and all the 

coefficients used in the phase field simulation can be found in Ref. [46]. 

The evolution of BTO thin film domain morphology is governed by the time-dependent 

Landau-Khalatnikov equation [30, 47]: 

                                                                    𝛽
𝜕𝑃𝑖

𝜕𝑡
= −

𝛿ℎ

𝛿𝑃𝑖
,                      (5) 

where 𝛽 is the kinetic coefficient. Because the time evolution of the free energy is coupled 

with static partial differential equations of the electrical (Maxwell equations) and 
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mechanical equilibrium states [30, 46], we employ the finite element method and treat the 

polarization vector P, mechanical displacement vector u, and electrostatic potential 𝜙 as 

nodal degrees of freedom (DoFs) and solve for them simultaneously (details of the 

governing equations in the finite element method can be found in Ref. [46]). We then 

extract a map of polarization and crystallographic (lattice parameter) domains from the 

solutions and reveal their relationships.  

Here, we will focus on the isothermal condition at 338 K, which is slightly above room 

temperature (~300 K). Aiming to simulate the P4mm phase of relaxed BTO near the 

surface, as reported by Ref. [12, 19, 34], we test a series of temperatures around 300 K 

under the stress-free boundary condition along the in-plane direction. Based on our 

simulations as well as the temperature-strain phase diagram reported in Ref. [30], the BTO 

film is mostly orthorhombic at 300 K, with 338 K being the lowest temperature to stabilize 

the P4mm T-phase in relaxed BTO within this model. We generate the initial configuration 

with unbiased small nodal random fluctuations and let it evolve in accordance with Eq. (5). 

We want to point out that our simulations are quasi-static. It means the initial configuration 

is optimized as it converges to the stable equilibrium one, and we focus on that final 

equilibrium state. Now the essential task is to determine the appropriate electrical and 

mechanical boundary conditions for the film [48]. The schematic of the simulation cell is 

shown in Fig. 2. To describe the boundary conditions, we define the center of each plane 

Ci, the normal vector of each plane ni, and the nodal displacement vector from the center 

ri (i=1-6). To simulate the large in-plane size of the BTO thin film, we vary the in-plane 

size from ~20 to 40 nm in order to allow sufficient in-plane space for the evolution of the 

degrees of freedom and use periodic boundary conditions [48] for polarization 𝑷: 𝑷(𝑪𝑖 +

𝒓𝑖) = 𝑷(𝑪𝑖+𝟏 + 𝒓𝑖+𝟏), (𝑖 = 1,3). We control the strain via displacement in the following 

form, as 𝜀𝑖𝑗 = 𝜕𝑢𝑖/𝜕𝑥𝑗 , 

                        𝒖(𝑪1 + 𝒓1) = 𝒖(𝑪2 + 𝒓2)+ (
𝜀𝑥 ∙ 𝐿

0
0

),         (6.a)  

                        𝒖(𝑪3 + 𝒓3) = 𝒖(𝑪4 + 𝒓4)+ (
0

𝜀𝑦 ∙ 𝐿

0

),         (6.b)  

where L is the length scale of the simulation cell. This boundary condition creates an 

average in-plane strain 𝜀𝑥 and 𝜀𝑦, but allows the out-of-plane direction to respond freely. 

We emphasize that the zero-strain reference is always the cubic BTO phase even at room 

temperature. To satisfy the relaxation of strain near the BTO surface [19, 34, 49], as 

mentioned above, instead of setting 𝜀𝑥 = 𝜀𝑦 = 0, we assign 𝜀𝑥 and 𝜀𝑦 small tensile strains 

so as to create an averaged stress-free state in the plane of the film.  
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To simulate the broken symmetry of the film surface, we apply open-circuit electrical 

boundary conditions and a pointwise traction-free state for planes centered at 𝑪𝟓 and 𝑪𝟔 

(top and bottom) and let 𝑷 and 𝒖 evolve freely. To stabilize the domain morphology with 

180-degree domain walls, we use a plane capacitor model, with 𝜙(𝑪𝟑 + 𝒓𝟑) = 0 as the 

grounded plane and 𝜙(𝑪𝟒 + 𝒓𝟒) = 𝑐𝑜𝑛𝑠𝑡., as well as a net charge control technique [46] 

to stabilize the simulations by placing the external charge at 𝑪𝟒 in Fig. 2.  If a zero charge 

is placed at 𝑪𝟒, we can maintain 𝜙(𝑪𝟒 + 𝒓𝟒) = 0 and the average electric field across the 

film is zero (details of the charge control method are discussed in Ref. [46]). The physical 

reasoning behind the charge control is rooted in experiment. The external charged particles 

as well as charged defects cannot be completely avoided that will induce 180-degree 

domain walls and make the domain morphology more complicated.  

III. Crystallographic and polarization distribution results 

To extract the domain morphology of the BTO film including possible size effects, we 

implement isothermal simulations for simulation cells of different sizes. Experimentally, 

due to the complexity of real boundary conditions, the domain morphologies are quite 

complicated, with 180-dergee and 90-degree domain walls, etc. [50]. To demonstrate both 

the polarization and crystallographic distributions in films without 180-degree domain 

walls, we start our discussion with the phase field simulations that do not use charge control 

technique mentioned in Sec. II. We vary the in-plane mesh size from 19 × 19 elements, 29 

× 29 elements to 39 × 39 elements and fix the out-of-plane dimension at 3 elements. It 

should be pointed out that there exists a characteristic length scale for each element, defined 

as 𝑙0 = 0.35√
𝐺0𝑃0

𝐸0
, where 𝑃0 = 0.1811 𝐶/𝑚2  and 𝐸0 = 3.21 × 105 𝑁/𝐶  are the 

spontaneous polarization and coercive field, respectively, derived from the free energy 

model (Eq. 1) at 398 K. The coercive field is defined as the field needed to trigger 180° 

domain switching in a monodomain BTO [46]. 𝐺0 is the polarization gradient coefficient 

defined under the assumption of  𝐺𝑖𝑗𝑘𝑙 being isotropic. 𝐺0 is related to the domain wall 

thickness. Hence, the characteristic length scale is determined based on the domain wall 

thickness. For brevity, the three simulations are referred to as 19l0 × 19l0 × 3l0, 29l0 × 29l0 

× 3l0, and 39l0 × 39l0 × 3l0. Based on these assumptions and experimental observations of 

90-degree and 180-degree domain walls [51], our simulation volumes correspond 

approximately to films with dimensions of 20 nm × 20 nm × 4 nm to 40 nm × 40 nm × 4 

nm. 

The schematic of the simulation cell is shown in Fig. 3(a). To acquire the domain map, we 

use a plane to scan the nodal values of the various degrees of freedom across the entire cell 

along the y direction, as indicated by a gray plane in Fig. 3(a). From this, we can extract 

information on the BTO phase that is encoded piecewise in the degrees of freedom. Fig. 

3(b) displays the shear strain 𝜀𝑥𝑧 and 𝜀𝑦𝑧 of all nodes for three differently sized simulations 

along with their average values. This shows that the BTO thin film crystallographic 
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structure does not have shear displacement along the z direction. For each x position on the 

two-dimensional scanning plane, we average all degrees of freedom along the z direction 

and calculate the standard deviation, represented by the error bar. As will be shown later, 

the error bars of the z direction fluctuation can usually be ignored except for transition 

areas, implying that the thin film degrees of freedom do not have a large variation along 

the z direction. This is within our expectations since our simulation covers about 4 nm of 

thickness and the stable a-domain is ~30 nm thick, as shown in Fig. 1.  

An example of such a scan with a plane parallel to the x and z axes and located at y=2l0, 

with size 20l0 × 4l0 (red line in Fig. 3(a)) in a 20l0 × 20l0 × 4l0 simulation, is displayed in 

Fig. 3(c). We note that the error bars, representing the z direction fluctuations of the strain 

tensor and polarization vector, are very small, which suggests that the simulated segment 

of the BTO film is uniform along the growth direction. Based on the thermal expansion 

coefficient of BTO [52, 53], we estimate the lattice constant to be 𝑎0 = 4.00 Å at 338 K 

for the cubic phase. The T-phase strain elements referred to the reference cubic BTO phase 

are calculated as  

𝜀𝑎 =
𝑎−𝑎0

𝑎0
< 0 and 𝜀𝑐 =

𝑐−𝑎0

𝑎0
> 0,            (7) 

where a and c represent the short and long axis, respectively. Therefore, we can recover 

the actual lattice parameter in the simulation cell, which is shown with respect to the right 

axis in Fig. 3(c). The 𝜀𝑧𝑧 is constant and negative in the entire scanning plane, confirming 

again the in-plane orientation of the a-domain. The majority of 𝜀𝑥𝑦 is zero but has a small 

peak near the crossing point of 𝜀𝑥𝑥  and 𝜀𝑦𝑦. The 𝜀𝑥𝑥  and 𝜀𝑦𝑦 strains fluctuate and have 

some plateaus within the specific nodal range, which are the BTO domain regions.  

To identify these plateaus, we use a plateau searching algorithm to detect the left and right 

boundary of the plateau. The algorithm uses the criteria between nearest-neighbor nodes 

that if |
𝜀𝑖−𝜀𝑖−1

𝜀𝑖
| > 𝑡 and |

𝜀𝑖−𝜀𝑖+1

𝜀𝑖
| < 𝑡 satisfied (𝑖 is the node index), node i is identified as 

the left boundary of the plateau, where 𝑡 = 0.05 is set to be the tolerance. The criteria 

indicate a drastic strain change happens to the left of node i, which enters the transition 

area. Similarly, the right boundary has the criteria |
𝜀𝑖−𝜀𝑖−1

𝜀𝑖
| < 𝑡 and |

𝜀𝑖−𝜀𝑖+1

𝜀𝑖
| > 𝑡. Thus, 

we obtain these plateaus, represented by rectangular boxes in Fig. 3(c). The height of these 

boxes is set by the standard deviation of the nodal values within each plateau, centered at 

their mean value, as (𝜀𝑥̅𝑥 − 𝛿𝜀𝑥𝑥, 𝜀𝑥̅𝑥 + 𝛿𝜀𝑥𝑥) or (𝜀𝑦̅𝑦 − 𝛿𝜀𝑦𝑦, 𝜀𝑦̅𝑦 + 𝛿𝜀𝑦𝑦). The T-phase 

of BTO can be characterized as: 

                                                    (

𝜀𝑐 0 0
0 𝜀𝑎 0
0 0 𝜀𝑎′

) or (

𝜀𝑎 0 0
0 𝜀𝑐 0
0 0 𝜀𝑎′

) ,    (8) 
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for a-domain along the x and y directions, respectively (here 𝜀𝑐 > 0  and 𝜀𝑎,𝑎′ < 0). 

Theoretically, we should have 𝜀𝑎 = 𝜀𝑎′, but within the domain characterization process, 

we allow a finite tolerance: 

                                                    𝑚𝑎𝑥(|
𝜀𝑎−𝜀𝑎′

𝜀𝑎′
|, |

𝜀𝑎−𝜀𝑎′

𝜀𝑎
|) < 0.2.             (9) 

Using Eq. (8) and (9) to characterize these plateaus, we determine that the plateau ranging 

from 7l0 to 12l0 is an a-domain along the x direction and plateaus from 1l0 to 2l0 and 17l0 

to 20l0 are a-domains along the y direction, meaning that in this scanning plane, the BTO 

film has a 90-degree domain wall. We also note that the c/a ratio is 1.009, agreeing well 

with the experimental value of 1.011 [54]. The remaining regions in the scanning plane are 

the transition areas between two T-phase regions. If we zoom in at around x=6l0 and 14l0, 

𝜀𝑥𝑥 and 𝜀𝑦𝑦 cross each other and 𝜀𝑥𝑦 has a small peak, indicating a non-zero xy shear strain. 

The strain tensor matrix behaves like that of the orthorhombic phase (O-phase), in order to 

accommodate the rotation of the T-phase axes [40].   

We use the same algorithm (|
𝑃𝑖−𝑃𝑖±1

𝑃𝑖
| > 𝑡 or < 𝑡) to find plateaus of polarization in Fig. 

3(d) to obtain information on the polarization variation. The results are also highlighted by 

rectangular boxes. The polarization variations follow the same pattern as the 

crystallographic ones, which possesses a 90-degree domain wall. This is within our 

expectation because, as illustrated in Eq. (3), the strain and polarization are closely coupled. 

However, by comparing Fig. 3 (c) with (e), we observe that the polarization changes more 

rapidly than strain across the transition area. If we move the scanning plane in Fig. 3(a) 

across the entire BTO film and use the same data processing as in Fig. 3(c) and (d), we 

obtain both the polarization and crystallographic distributions shown in Fig. 4. In the 

magnified view of the transition area in the bottom panels of Fig. 4 (shown with blue color), 

we can observe the polarization vectors along [01̅0] and [1̅00], which belong to Py and Px 

domains, respectively. The size of the simulation cell changes only the size of the domain 

and the volume fraction of transition area, but not the domain wall thickness. The volume 

fraction of the transition area for crystallographic distributions is 53%, 34.4% and 20.5% 

for simulation sizes of 19l0 × 19l0 × 3l0, 29l0 × 29l0 × 3l0, and 39l0 × 39l0 × 3l0, respectively, 

indicating that this volume fraction decreases as simulation size increases. In general, the 

transition area with O-phase is significant. 

We want to emphasize that the reason why we use the piecewise scanning and averaging 

first, instead of directly characterizing the domain based on Eq. (8), is that in some 

complicated boundary condition cases, e.g. with charge control, as will be shown in the 

following, the fluctuations of polarization and strain are larger than what is shown in Fig. 

3 (b)-(e), because of the rather complex domain morphology. Hence, in the main part of 

the simulation cell, single nodal polarization and strain may not satisfy any domain 

characterization criteria, but area-averaged values still do. In conclusion, due to the 
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boundary conditions, the whole simulation film is in a-domain. We observe that the 

crystallographic and polarization variations follow the same pattern (strips along diagonal 

direction). We also notice that to accommodate the ninety-degree rotation of two regions 

of T-phase BTO, the domain wall areas experience P4mm symmetry breaking and behave 

like pseudo-O-phase. The size effect of simulation cells plays a role in the portion of 

pseudo-O-phase domain wall area with respect to the whole cells.  

We shall now use the same scanning-plane technique and discuss the simulations with 

charge control and demonstrate how the polarization and crystallographic distributions are 

affected by 180-degree domain walls induced by charge control. We place the external 

charge at C4 in Fig. 2. The simulated BTO film size ranges from 39l0 × 19l0 × 7l0 (size I), 

39l0 × 29l0 × 7l0 (size II), 45l0 × 45l0 × 8l0 (size III), and 67l0 × 67l0 × 13l0 (size IV), 

corresponding to real sizes of ~70 nm × (20-70) nm × 10 nm. Comparing with Fig. 3(b), 

the 𝜀𝑥𝑧 and 𝜀𝑦𝑧 fluctuate more rapidly in Fig. 5(a), while the average values are still zero, 

which confirms again the ignorable z direction shear movement. Fig. 5(b) presents the 

sample data of the plane at y=2l0 with size 40l0 × 8l0 in the phase field simulation for size 

I. We note that the coexistence of positive and negative Py components is stabilized by the 

charge control, creating 180-degree domain walls. We can clearly see the larger fluctuation 

of 𝜀𝑥𝑦, which is non-zero in most nodes, compared with Fig. 3(c). However, as indicated 

by the magenta boxes (𝜀𝑥̅𝑦 − 𝛿𝜀𝑥𝑦, 𝜀𝑥̅𝑦 + 𝛿𝜀𝑥𝑦) in Fig. 5(b), 𝜀𝑥𝑦 = 0 is included, which 

still satisfies the T-phase zero off-diagonal elements in Eq. (8) on average. Because it is 

more difficult to satisfy stress-free boundary condition via Eq. (6) in the more complex 

domain morphologies, we observe that the compressive (negative) strain plateaus of 𝜀𝑥𝑥 

and 𝜀𝑦𝑦 do not overlap with 𝜀𝑧𝑧, unlike in Fig. 3 (c). The large error bar of Py at 26l0 is due 

to the 180-degree domain wall. To extract the information with larger fluctuations 

compared with Fig. 3, we increase the tolerance to 𝑡 = 0.1  in the plateau searching 

algorithm and to 0.65 in domain characterization (Eq. (9)) to address the more complicate 

domain morphologies. After we scan the entire BTO film, the polarization and 

crystallographic distributions in Fig. 6 indicate that they have a similar pattern compared 

with Fig. 4. We still observe ninety-degree domain walls, with the O-phase in the transition 

area. The relationship of polarization and crystallographic variations is also close to Fig. 4. 

However, under the effect of charge control, the polarization has a symmetric structure (“V” 

shape) across the 180-degree domain wall, with opposite Py vectors in Fig. 6 (a) to (c) top 

panels. In the region near the 180-degree domain wall (apex of the “V” shape), the 

crystallographic transition area (shown in blue in Fig. 6) is much larger than that of the 90-

degree domain wall. Another possible domain morphology with the coexistence of two 

head-to-tail polarization channels with opposite directions is shown in Fig. 6(d), a similar 

structure was reported in Ref. [55, 56]. The simulation cell size does play a role based on 

Fig. 6 due to the more complex domain morphologies. With larger in-plane dimensions, 

different domain patterns emerge, e.g. Fig. 6(d). The simulation size also influences the 



10 

 

volume fraction of the transition area. The volume fraction of the crystallographic 

transition area is 48.5% and 39.5% for the size I and size II, respectively. The fraction is 

20.9% and 50.9% for size III and IV, respectively. Fig. 7 points out that the 180-degree 

domain wall is of the Ising type, while the 90-degree domain wall is mixed Ising-Neel type 

[57] but with smaller magnitude compared with 180-degree domain walls, agreeing well 

with Ref. [40].    

In conclusion, after the introduction of 180-degree domain wall, the 90-degree domain wall 

observed without charge control holds. The polarization and crystallographic variations 

also follow the same pattern. The introduction of charge control induces more complex 

force field in the transition area near “V” shape tip, enlarging the transition area of the 

crystallographic structure. Also, under the complicate charge control condition, different 

180-degree domain wall pattern emerges. This is the net result of the energy optimization 

of the whole thin film, depending on multiple effects, e.g., the size effect, initial conditions, 

etc.  

IV. Thin film electro-optic response  

With the knowledge of domain morphologies, we are ready to explore the Pockels effect 

of the simulated BTO thin films. The electrical enthalpy ℎ (Eq. (1)) encodes the values of 

the dielectric tensor with respect to 𝐸𝑖  and 𝑃𝑖 . We use two approaches to simulate the 

Pockels effect described in Sec. IV.A and IV.B.. Please note that, due to the specific 

boundary conditions of the BTO thin film, and the fact that BTO domains all align in-plane, 

we do not consider simulations with the electric field along the z direction or the z-

direction-related dielectric and Pockels tensor.   

IV.A Analytical expression for the Pockels tensor  

Starting from the definition of the Pockels tensor [58]: 

                                                  𝑟𝑖𝑗𝑘 =
𝜕

𝜕𝐸𝑘
(𝜅0𝜅𝑖𝑗

−1),                                             (10) 

we can compute the Pockels tensor analytically from the free energy model (details in 

Supplemental Material Sec. I [59]): 

                                                𝑟𝑖𝑗𝑘(𝜀𝑖𝑗, 𝑃𝑖) = 𝜅0𝜀𝑖𝑙
−1𝛽𝑙𝑝

−1𝛾𝑝𝑞𝑢𝛽𝑞𝑚
−1 𝛽𝑢𝑘

−1𝜀𝑚𝑗
−1           (11) 

where 𝛾𝑖𝑗𝑘 =
𝜕3ℎ0

𝜕𝑃𝑖𝜕𝑃𝑗𝜕𝑃𝑘
, 𝛽𝑖𝑗 =

𝜕2ℎ0

𝜕𝑃𝑗𝜕𝑃𝑗
 and Einstein notation is used. The details of ℎ0 will 

be discussed later. In order to distinguish from strain 𝜀, we use 𝜅 to represent the dielectric 

constant. The dielectric tensor of BTO is 𝜅𝑖𝑗 = 𝛽𝑖𝑗
−1 + 𝜅0𝛿𝑖𝑗 , where 𝛽𝑖𝑗

−1 is actually the 

susceptibility, 𝜅0 is the vacuum permittivity and 𝛿𝑖𝑗 is Kronecker delta.  
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The ℎ0 in Eq. (11) is defined as ℎ0 ≡ ℎ𝑏𝑢𝑙𝑘 + ℎ𝑒𝑙𝑎𝑠. Comparing the definition of ℎ0 with 

Eq. (1), we ignore ℎ𝑤𝑎𝑙𝑙 because it does not depend on P explicitly and we mainly focus 

on the pointwise Pockels coefficient calculation with the analytical form (Eq. (11)). A few 

words need to be said about ℎ𝑒𝑙𝑎𝑠 in ℎ0. Based on the analysis in Refs. [60-63], the Pockels 

coefficient includes the ionic and piezoelectric contributions. If the BTO lattice vectors 

stay constant, then there will be no piezoelectric contribution, which is the so-called 

“clamped” Pockels tensor. If the BTO lattice vectors change is allowed (through the 

converse piezoelectric effect), the piezoelectric contribution is nonzero, which is the so-

called “unclamped” case. In order to include the converse piezoelectric effect, we need to 

minimize ℎ0 with respect to strain 𝜀𝑖𝑗 (𝜕ℎ0/𝜕𝜀𝑖𝑗 = 0). Based on Eq. (1) and (3), we obtain 

the following stress condition: 

                                      𝜎𝑖𝑗 =
𝜕ℎ

𝜕𝜀𝑖𝑗
=

𝜕ℎ𝑒𝑙𝑎𝑠

𝜕𝜀𝑖𝑗
= 𝑐𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − 𝜀𝑘𝑙

0 ) = 0,                 (12) 

where 𝜎𝑖𝑗  is stress tensor. Eq. (12) illustrates the reason why some researchers use the 

terminology stress-free Pockels tensor as “unclamped” Pockels tensor [60]. Eq. (12) also 

shows that due to the stress-free condition, the elastic energy is zero and the BTO lattice 

vectors are allowed to change. Consequently, in our calculations, if we set ℎ0 = ℎ𝑏𝑢𝑙𝑘 

(ℎ𝑒𝑙𝑎𝑠 = 0), we include the converse piezoelectric response and the Pockels coefficients 

include both ionic and piezoelectric contributions. Alternatively, if we use ℎ0 = ℎ𝑏𝑢𝑙𝑘 +

ℎ𝑒𝑙𝑎𝑠 , and fix the strain 𝜀𝑖𝑗  value in Eq. (3) determined by the strain from domain 

morphology calculations, the Pockels tensor corresponds to clamped conditions. Nonzero 

ℎ𝑒𝑙𝑎𝑠 term means that the stress-free condition is not satisfied (Eq. (12)). And the fixed 

strain means no change of the lattice vectors. Based on Refs. [62, 63], the unclamped 

Pockels coefficients are approximately double of the clamped coefficients. As will be 

shown later, in our simulations, ℎ𝑒𝑙𝑎𝑠 has negative contribution to the value of Pockels 

coefficients, in agreement with Refs [62, 63].  

To obtain the Pockels tensor morphology for the entire BTO thin film, we use Eq. (11) to 

calculate the nodal Pockels tensor, where 𝜀𝑖𝑗 and 𝑃𝑖  are the nodal values from the domain 

morphology calculations. As a demonstration of Eq. (11), we calculate an unclamped 

Pockels tensor with the bulk P4mm BTO polarization value of 𝑃 = (0,0,0.24) 𝐶/𝑚2 

under the simulation temperature (338 K) and get 𝑟13 = 17.44 𝑝𝑚/𝑉,  𝑟33 = 264.35 𝑝𝑚/

𝑉 and 𝑟42 = 139.99 𝑝𝑚/𝑉, compared with experimental values 𝑟13 = 19.5 𝑝𝑚/𝑉,  𝑟33 =

97 𝑝𝑚/𝑉 and 𝑟42 = 1300 𝑝𝑚/𝑉 [21, 58, 64, 65]. Taking the temperature dependence of 

the Pockels tensor [62] into consideration, our 𝑟13 and 𝑟33 agree well with first principles 

predictions under the simulation temperature but 𝑟42 is underestimated significantly, which 

will be discussed later.  

We will use the domain morphology results from Fig. 4 and Fig. 6 to calculate the Pockels 

coefficient (𝑟13,  𝑟33 and 𝑟42) morphologies in thin films and the results are displayed in 
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Fig. 8 and Fig. 9, corresponding to unclamped and clamped conditions, respectively. For 

simplicity, we only plot results for three simulation cell sizes because the rests are similar. 

In Fig. 8, 9 (a) and (d) panels, we only simulate the electric field along the y direction 

because the x and y directions are equivalent in these cases. For Fig. 8, 9 (b) and (c) panels, 

because we have charge control conditions along the y direction, we simulate the electric 

field along both the x and y directions. It is worth mentioning the notation used for the 

Pockels tensor. Compared with bulk BTO, BTO thin films with multidomain structure have 

different orientations of the long axis in different regions. Hence, instead of simply using 

𝑟42, 𝑟33 and 𝑟13 defined in bulk BTO, the accurate notation should be 𝑟𝑦𝑥𝑦 (𝑟𝑥𝑦𝑥), 𝑟𝑦𝑦𝑦 (𝑟𝑥𝑥𝑥) 

and 𝑟𝑥𝑥𝑦 (𝑟𝑦𝑦𝑥), depending on the direction of the applied electric field, indicated in Fig. 8 

and 9. We find that the Pockels coefficient distributions agree well with crystallographic 

and polarization distributions, as we can clearly distinguish the domain wall area and bulk-

like region. The values of 𝑟yxy (𝑟xyx) and 𝑟yyy (𝑟xxx) in the bulk-like region agree well with 

our bulk P4mm BTO results, while the values of 𝑟𝑥𝑥𝑦 (𝑟𝑦𝑦𝑥) do not. We attribute this to the 

fact that the variation of the Pockels coefficient is larger than its magnitude (𝑟13 =

17.44 𝑝𝑚/𝑉 ). We also notice that the Pockels coefficients in the domain wall area 

fluctuate significantly and are higher than those in the bulk-like region on average in Fig. 

8 and Fig. 9. Furthermore, based on Fig. 4 and 6, BTO thin films have a1/a2 domain, 

corresponding to long axis along the x/y direction respectively. For a specific Pockels 

tensor element (e.g. 𝑟𝑦𝑥𝑦), applying the electric field along either the x or the y direction 

only activates half of the thin film Pockels response, while the other half remains inactive 

(zero Pockels coefficient). This phenomenon is shown in Fig. 8 and 9. Comparing Fig. 8 

and Fig. 9, we observe that the unclamped Pockels coefficients are approximately twice 

larger than those under the clamped condition, which agrees qualitatively with the 

experimental and DFT results [63-65].  

IV.B Numerical fitting of the effective Pockels tensor for the entire thin film  

The approach in Sec. IV.A is analytical and does not require applying the actual electric 

field in the simulations. The Pockels coefficients are the local nodal values. We believe an 

alternative approach to simulate the experimental measurement and obtain the average 

Pockels coefficients of the entire film is insightful. As a complement to Sec. IV.A, the 

average scheme models the actual response of the BTO film to the electric field and 

includes all possible crystal and polarization changes.  

We consider the simulation cell from Fig. 4 (b) (no charge control conditions) as a 

demonstration. In this configuration, because the x and y directions are equivalent, we only 

test the case with the electric field 𝐸𝑦 along the y direction. To simulate the Pockels effect, 

a fine grid is needed in order to capture the polarization variation as the film responds to 

the external electric field. Consider for example, the simulation shown Fig. 4 (b); we double 

and quadruple the original mesh grid (29 × 29 × 3 elements) to 58 ×58 × 6 elements and 
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116 × 116 × 12 elements, respectively (the schematic is shown in Fig. 10 (a)). As shown 

in Fig. 10 (a), because we are simulating the same film volume, the characteristic length is 

decreased by half and quarter accordingly and the total volume is kept the same. It is 

different from what is shown in Fig. 4 (c) that simulates a larger volume of BTO than that 

in Fig. 4 (b). Details of the mesh size convergence test can be found in the Supplemental 

Material Sec. II [59]. In conclusion, the domain morphology is not very sensitive to the 

fineness of the mesh grid, while the Pockels coefficients are very sensitive to it. The values 

of the Pockels coefficients change significantly from the 29×29×3-element mesh to 

58×58×6-element one but converge for the finer mesh. Thus, we believe that the 58×58×6-

elements grid is sufficient to capture the Pockels response of the BTO film shown in Fig. 

4 (b). The simulation result for the 58×58×6-element mesh is shown in Fig. 10. The metal 

contact is placed along the y direction. A small probe electric field 𝐸𝑝𝑟𝑜𝑏𝑒 is added to the 

𝐸𝑦. The probe field can induce the polarization vector change, and the dielectric tensor 𝜀𝑥𝑥, 

𝜀𝑥𝑦 and 𝜀𝑦𝑦 can then be obtained based on the change of polarization. In experiments [12, 

19], similar setup is used to measure the effective Pockels coefficient. Figs. 10 (c)-(e) 

display the computed inverse of the dielectric tensor under different values of the external 

electric field 𝐸𝑦. Based on Eq. (10), we use the linear fitting, and the slopes are the Pockels 

tensor elements. From our results, the effective 𝑟𝑥𝑥𝑦 and 𝑟𝑦𝑦𝑦, corresponding to 𝑟13 and 𝑟33 

in bulk BTO, respectively, and are approximately a half of the bulk values. The effective 

𝑟𝑦𝑥𝑦 , corresponding to 𝑟42  in bulk BTO, is still underestimated compared to the 

experimental and theoretical results, and is also smaller than the analytical value in our 

model. Intuitively, for a specific Pockels tensor element (e.g. 𝑟𝑦𝑦𝑦) and under a specific 

direction of electric field, only half of the local Pockels element is nonzero, based on Figs. 

8 and 9. Consequently, the average Pockels coefficient is a half of the bulk value. However, 

based on our results, not all the components are reduced by a factor of two. We believe that 

the domain wall has a significant contribution to the average Pockels tensor. And the 

impact of the domain wall on the Pockels tensor depends on which Pockels component we 

consider.  

We also apply the electric field and calculate the average polarization change for the cases 

with charge control conditions (Fig. 6). However, we notice the strong negative capacitance 

effect [66, 67] along with the 180-degree domain wall movement. This result needs more 

consideration and is beyond the scope of this paper. Consequently, we include our 

observation in the Supplemental Material [59] (Sec. III) but do not include the Pockels 

calculation for these boundary conditions.  

IV.C Discussion of the thin film electro-optic response  

It is worth discussing that whether the large external electric field may influence the BTO 

thin film domain morphology and induce the domain wall movement. If the domain wall 

moves significantly or the whole film evolves to a monodomain structure after we applied 
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the external electric field, then our analysis in Sec. IV.A is somewhat problematic. Here, 

we mainly focus on the BTO thin film epitaxially constrained by the Si substrate. The 

domain wall can be pinned by strain from the substrate. To address this question, we 

analyze the domain wall position and confirm that the domain wall movement is ignorable 

compared with the simulation scale, even under quite a large critical electric field. Details 

are included in the Supplemental Material [59] (Sec. IV). This phenomenon was also 

studied experimentally by Nordlander et al. [31], who came to a similar conclusion.   

After we map the Pockels tensor across the films, there are still several questions left to be 

discussed. Firstly, to correct the substantial underestimation of 𝑟42, we believe that some 

modifications to the free energy model are necessary. The original free energy model 

coefficients are used to describe BTO phase transition and fitted based on the polarization 

and crystallographic phase of BTO and double well energy profile from experiments and 

first principles calculations, excluding the EO data. The Pockels effect is a nonlinear optical 

effect, which requires a very accurate free energy model and any small inaccuracy in the 

BTO free energy model can induce significant errors. To illustrate this point, we test the 

free energy model [68] (details of this free energy model test calculations are included in 

the Supplemental Materials Sec. V [59]), whose coefficients of ℎ𝑏𝑢𝑙𝑘 polynomial and the 

strain polarization coupling term (elastic energy ℎ𝑒𝑙𝑎𝑠) are slightly different with the model 

[30] used in our phase field simulations in previous sections. As shown in the Supplemental 

Material Sec. V [59], appropriate tunning of free energy model formalism and coefficients 

can yield better Pockels coefficient value (unclamped 𝑟42  increased to ~1300 pm/V, 

agreeing well with experimental value), while the crystallographic and polarization 

properties stay the same. Secondly, more research on the Pockels tensor in the domain wall 

area needs to be done. Based on our results, the domain wall area behaves as a pseudo-O-

phase for polarization and crystallographic structure. Additionally, the impact of the 

domain wall on the average Pockels coefficient is anisotropic and depends on the 

component of the Pockels tensor. In reality, the BTO domain wall is anisotropic and may 

contain defects, which makes it more complicated than the simplified description in our 

model (Eq. (2)). 

V. Conclusions 

Using a finite element implementation of the phase field model, we simulated the near-

surface portion of a BTO thin film integrated on an STO/Si substrate, as used in hybrid EO 

modulators. Our simulation results show a mosaic of orthogonal a-oriented domains with 

only an in-plane component of polarization, in agreement with the experimental 

observations [12, 34, 49]. We study the domain morphologies of BTO thin films and 

analyze the polar and crystallographic structure variation. Despite the film being in the 

tetragonal phase, a quasi-orthorhombic phase is found in the transition regions between 

domains of different orientation. Then using the established domain morphology, we 
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simulate the Pockels effect and find that the Pockels coefficient morphology of the film 

follows the same pattern as the crystallographic and polarization distributions. As pointed 

out in the introduction, the strength of the EO modulation is quantified by the effective 

Pockels coefficient. With the electric field applied in-plane along either the x or y directions, 

a specific Pockels tensor element is only active in a part of the film. Our results suggest 

that the effective Pockels coefficient of Si-integrated BTO films used in EO modulators 

may be sensitive to the details of the domain morphology as well as to the domain wall 

distribution. And the impact of domain wall on the effective Pockels effect is anisotropic. 

The reduction of the effective Pockels coefficient, observed experimentally in thin films, 

is probably caused by the complex domain morphology, existence of the domain walls and 

possibly by the c- to a-domain transition with the film thickness. We believe that the details 

of the relationship between the polarization and crystallographic variations, and the 

Pockels effect in thin films can provide guidance for further optimization these devices. 
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Figures 

 
Fig. 1 (a) STEM image of BTO/STO/SiO2/Si stack. (b) Schematic representation of the domain 

structure of the heterostructure. (c) Lattice parameter profiles as a function of the distance d 
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from the interface between the amorphous interfacial layer and the crystalline STO layer. It is 

calculated by averaging data of a specific area of the BTO film. The red line separates the c-

domain region to the left and a-domain region to the right. (a)-(c) are from Ref. [34]. 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Finite element method simulation cell. 𝑪𝑖 is the center of each plane (i=1-6). 𝒏𝑖 is the 

normal vector of each plane. 𝒓𝑖 is the displacement vector of each node on plane i, where 𝒓1 =
𝒓2 = (0, 𝑦, 𝑧), 𝒓3 = 𝒓4 = (𝑥, 0, 𝑧) and 𝒓5 = 𝒓6 = (𝑥, 𝑦, 0). Every nodal coordinate on plane i 

can be represented as 𝒙 = 𝑪𝒊 + 𝒓𝒊.  
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Fig. 3 (a) Schematic picture of the simulation cell. Each sub-region with a white arrow 

represents an a-domain of BTO and its polarization direction. Note that the specific domain 

structure is only for demonstration and is not the actual domain morphology. The gray plane is 

the virtual data scanning plane, which can be moved along the directions of the gray arrows. 

The red line is the second grid plane in the cell, which is used to demonstrate the sample data 

scanning process. (b) The values of shear strain 𝜀𝑥𝑧 and 𝜀𝑦𝑧 of all nodes in 20 × 20 × 4 (1600 

nodes), 30 × 30 × 4 (3600 nodes), and 40 × 40 × 4 (6400 nodes) simulation sizes, respectively. 

The average values of the whole cell are 𝜀𝑥𝑧 = 𝜀𝑧𝑥 = 0.0 and 𝜀𝑦𝑧 = 𝜀𝑧𝑦 = 0.0 for all three 

sizes. (c) Data for strain tensor elements, (d) polarization vectors and (e) polarization 

magnitude square of the second grid plane in the 20 × 20 × 4 simulation. The lattice constant 

values are calculated based on the strain tensor. The virtual scanning plane size is 20l0 along x 

and 4l0 along z. We plot the data along the x direction, while the z direction variation is 

depicted by the error bar. 𝑃0 = 0.1811 𝐶/𝑚2 is the spontaneous polarization that is used to 

normalize the polarization vector. In panel (e), we plot polarization square for better 

clarification because based on the definition of spontaneous strain, 𝜀 ∝ |𝑃|2. 
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Fig. 4 20l0 × 20l0 × 4l0 , 30l0 × 30l0 × 4l0, and 40l0 × 40l0 × 4l0 phase field simulations in (a), (b), 

and (c), respectively. The top row of panels of (a) to (c) are polarization domain structures, 

where dark blue regions are Py domains, orange and yellow are Px domains, and cyan is the 

transition area. The polarization directions are depicted by white arrows. The middle row of 

panels is crystallographic domain structure, where red and green are a-domains along x and y 

directions, respectively, and blue represents the transition area. The bottom row of panels is the 

magnification of the red boxes in the middle row, where white arrows represent polarization 

vectors.  
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Fig. 5 (a) The values of shear strain 𝜀𝑥𝑧 and 𝜀𝑦𝑧 of all nodes in size I (6400 nodes), size II 

(9600 nodes), size III and IV (12800 nodes) simulations, respectively. The average values of 

the whole cell are 𝜀𝑥𝑧 = 𝜀𝑧𝑥 = 0.0 and 𝜀𝑦𝑧 = 𝜀𝑧𝑦 = 0.0 in all three sizes. (b) Data of strain 

tensor elements (𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑥𝑦 and 𝜀𝑧𝑧), polarization vectors and polarization magnitude square 

of the second grid plane in size I. The virtual scanning plane size is 40l0 along x and 8l0 along 

z. We plot the data along x direction, while the z direction variation is depicted by the error 

bar. The color scheme follows Fig. 3(c). 
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Fig. 6 Size I to IV from (a) to (d), respectively. The top panels of (a) to (d) are polarization 

distributions, where dark blue and black are Py domains, orange and yellow are Px domains, 

and cyan is the transition area. The polarization directions are depicted by white arrows. The 

bottom panels are crystallographic distributions. Color meanings follow Fig. 4.  
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Fig. 7 The polarization vectors and their magnitudes in the scanning plane indicated by the red 

line from the 40l0 × 30l0 × 8l0 simulation cell. The polarization vector rotations are all in-plane 

because the Pz component is always zero in our results.  
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Fig. 8 Unclamped Pockels coefficient (𝑟13,  𝑟33 and 𝑟42) morphologies. (a) Morphology 

corresponding to domain morphology from Fig. 4(b). (b)-(c) Morphology corresponding to 

domain morphologies from Fig. 6(b). (d) Morphology corresponding to domain morphologies 

from Fig. 6(c). The black dashed lines are used to highlight the DWs in the PFSs. The white 

arrows indicate the orientation of the domains. The black arrows are applied electric field 

direction.  
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Fig. 9 Clamped Pockels coefficient (𝑟13,  𝑟33 and 𝑟42) morphologies. Simulation cells from (a) 

to (d) are the same as Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

 

 
Fig. 10 (a) Schematic of the doubling of the fineness of the mesh. The total area (or volume in 

three dimensions) is kept the same. The black lines is the original grid, while the red lines 

correspond to that of the grid twice as fine. (b) Schematic of the setup to compute the Pockels 

tensor numerically. Two black rectangles represent metal contacts. The black arrow is the 

external electric field induced by the contacts, which is the field in the  𝑟𝑦(𝐸) term. The red 

arrows are the small perturbation field (𝐸𝑝𝑟𝑜𝑏𝑒 = 0.01𝐸𝑛𝑜𝑟𝑚 ≪ 𝐸𝑦), used to detect the 

dielectric tensor under the external electric field. (c)-(e) are linear fits of each dielectric tensor 

element and the slopes are the Pockels coefficients. And 𝐸𝑛𝑜𝑟𝑚 = 3.2 × 104(𝑉/𝑚). 
 

 


