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We derive and motivate a Laplacian-level, orbital-free meta-generalized-gradient approximation
(LL-MGGA) for the exchange-correlation energy, targeting accurate ground-state properties of sp
and sd metallic condensed matter, in which the density functional for the exchange-correlation
energy is only weakly nonlocal due to perfect long-range screening. Our model for the orbital-free
kinetic energy density restores the fourth-order gradient expansion for exchange to the r2SCAN
meta-GGA [Furness et al., J. Phys. Chem. Lett. 11, 8208 (2020)], yielding a LL-MGGA we
call OFR2. OFR2 matches the accuracy of SCAN for prediction of common lattice constants and
improves the equilibrium properties of alkali metals, transition metals, and intermetallics that were
degraded relative to the PBE GGA values by both SCAN and r2SCAN. We compare OFR2 to the
r2SCAN-L LL-MGGA [D. Mejia-Rodriguez and S.B. Trickey, Phys. Rev. B 102, 121109 (2020)]
and show that OFR2 tends to outperform r2SCAN-L for the equilibrium properties of solids, but
r2SCAN-L much better describes the atomization energies of molecules than OFR2 does. For best
accuracy in molecules and non-metallic condensed matter, we continue to recommend SCAN and
r2SCAN. Numerical performance is discussed in detail, and our work provides an outlook to machine
learning.

I. INTRODUCTION

Practical Kohn-Sham density functional theory (DFT)
[1] seeks an accurate and computationally efficient de-
scription of the ground state energy E[n↑, n↓] and spin-
densities (n↑, n↓) of any many-electron system. This
requires a density functional approximation (DFA) for
the exchange-correlation energy Exc. First-principles
DFAs are derived from purely theoretical considerations,
whereas empirical DFAs are fitted to data (especially
for bonded systems). Semi-empirical DFAs borrow from
both approaches. Empirical DFAs often cannot extrap-
olate well to systems unlike those used to parameterize
them [2]. Recent machine-learned, semi-empirical DFAs
[3, 4] which incorporate a greater number of exact con-
straints have overcome some of the limitations inher-
ent to empiricism. A semi-empirical, “human-learned”
non-local DFA using a small number of parameters has
been shown to rival highly-parametrized empirical DFAs’
descriptions of thermochemical reactions [5], supporting
this analysis. However, we will primarily discuss first-
principles DFAs.

The most widely-known first-principles DFAs at the
time of writing are the local spin density approxima-
tion (LSDA), and the Perdew-Burke-Ernzerhof general-
ized gradient approximation (PBE GGA or PBE) [6].
Both DFAs satisfy subsets of all known behaviors of the
exact Exc: the Exc of a uniform electron gas, spin-scaling
of Ex [7], the behaviors of Ex and Ec under uniform scal-
ing of the position vector r[8–10], among others.

LSDA and the gradient expansion approximation
(GEA) [1, 11–13] were the first two DFAs to be pro-
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posed (simultaneously). The LSDA gives the exact Exc

of a uniform electron gas, and is the zeroth-order ap-
proximation to the Exc of a slowly-varying electron gas.
The GEA of a given order describes the exact response
of a uniform electron gas to a static, long-wavelength
perturbation [14] (a slowly-varying electron gas). While
LSDA generally provides an accurate starting point for
describing simple systems, the ungeneralized GEA offers
no systematic correction to the LSDA [15–17].

To quantify “slowly-varying,” we define a few dimen-
sionless variables (in Hartree atomic units, e2 = me =
~ = 1, unless otherwise specified). The appropriate
length scale for the exchange energy is the Fermi wavevec-
tor

kF(n) =
[
3π2n(r)

]1/3
. (1)

Then let

p(n, |∇n|) =

[
|∇n(r)|

2kF(r)n(r)

]2

(2)

be a squared dimensionless gradient of the density, and

q(n,∇2n) =
∇2n(r)

4[kF(r)]2n(r)
(3)

be a dimensionless Laplacian of the density on this length
scale. For a uniform density, p = q = 0. Let the positive
definite kinetic energy density be

τσ =
1

2

∑
i

fiσ|∇φiσ(r)|2, (4)

with integer occupancies fiσ = 0, 1. We also define a
dimensionless kinetic energy variable

α(n, |∇n|, τ) =
τ(r)− τW(n, |∇n|)

τunif(n)
, (5)
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which depends upon the Weizsäcker kinetic energy den-
sity

τW(n, |∇n|) =
|∇n(r)|2

8n(r)
, (6)

and the uniform electron gas, or Thomas-Fermi, non-
interacting kinetic energy density

τunif(n) =
3

10
k2

F(n)n(r). (7)

α = 1 for a uniform density. Thus, a density is considered
slowly-varying when

p� 1 and |q| � 1 and |1− α| � 1. (8)

Approximating α using p and q will be the primary
topic of this work; thus we discuss a few rigorous prop-
erties of α. α → 0 when τ approaches its lower bound,
τW [18]. α = 0 uniquely identifies single-orbital densities
where τ = τW exactly. A single-orbital (or “iso-orbital”)
density has only one occupied spatial orbital, such as
a fully spin-polarized one electron density, or a spin-
unpolarized two-electron density. Density variables such
as α that uniquely recognize single-orbital regions are
often called iso-orbital indicators. For a slowly-varying
density, τ has a known gradient expansion like the GEA
[19]. These known limits are important, as they permit τ -
meta-GGAs (T-MGGAs) to be essentially exact for typ-
ical one- and two-electron densities and slowly-varying
ones [20]. Here, “typical” refers to compact, un-noded
[21] one-electron densities. Such a balanced description
between finite and extended systems is not possible when
using only p and q, as we shall demonstrate.

A meta-GGA that depends on α of Eq. 5 can mis-
takenly identify intershell regions in atoms as slowly-
varying [22]. The same behavior will be demonstrated
for a Laplacian-level meta-GGA (LL-MGGA). To make
an indicator like α that better distinguishes between fi-
nite and extended systems, one must consider the first
and second derivatives of τ , ∇τ and ∇2τ respectively, in
addition to those of n [22]. DFAs with all those ingre-
dients are not currently available and are challenging to
construct or use.

Most common LL-MGGAs are “de-orbitalizations” of
T-MGGAs. These orbital-free meta-GGAs replace the
analytic expression for τ with an approximate form
τ̃σ(nσ, |∇nσ|,∇2nσ) that may be constrained to recover
exact constraints.

The most popular correlation GGA in the quantum
chemistry community, due to Lee, Yang, and Parr (LYP)
[23], was originally cast as an empirical LL-MGGA.
Miehlich et al. [24] demonstrated that an integration by
parts, such as that used in Appendix B, could eliminate
the density-Laplacian in favor of the density-gradient,
yielding a conventional GGA. This latter GGA form is
generally called LYP, and the Laplacian-dependent vari-
ant is not commonly used. Other authors [25, 26] have

built upon LYP to derive Laplacian-dependent exchange
and correlation DFAs.

Similarly, the exchange density matrix expansion
(DME) of Negele and Vautherin [27], originally derived
in the context of nuclear Hartree-Fock theory, leads [28]
to an exchange energy density

eDME
x (n, p, q, α)

eLDA
x (n)

= 1 +
35

27
(q − p) +

7

9
(1− α), (9)

with eLDA
x = −3kFn/(4π) the local density approxima-

tion (LDA) for exchange. The DME was generalized and
the q-dependence removed to construct the Van Voorhis-
Scuseria (VS98) [29] and the M06-L [30] empirical meta-
GGAs. More recently, a similar q-independent general-
ization of the DME was used to construct the Tao-Mo
meta-GGA [31].

As will be discussed further, no single level of approx-
imation (GGA, meta-GGA, etc.) in practical DFT can
describe all systems with the same level of accuracy. This
has been demonstrated empirically, for example, in the
derivations of the PBEsol [32] and PBEmol [33] GGAs.
PBE, PBEsol, and PBEmol all use the same Becke 1986
[34] form for the exchange enhancement factor

Fx(p) ≡ ex(n, p)

eLDA
x (n)

= 1 + κ− κ

1 + µp/κ
(10)

and PBE-like correlation energy per electron (see Eqs. 7
and 8 of Ref. [6]). In all three variants, κ = 0.804 to
enforce an exact constraint [6]. The PBE GGA, which
sets µ = 0.21951, does not recover the correct second-
order GEA coefficient for exchange (10/81), but does
so for correlation (β ≈ 0.066725, as in Eq. 4 of Ref.
[6]). This choice is understood to improve PBE’s de-
scription of atomic and molecular properties at the ex-
pense of those of solids [32, 35]. By contrast, PBEsol
[32], which sets µ = 10/81 and β = 0.046, recov-
ers the second-order GEA coefficient for exchange, but
not correlation. PBEsol tends to describe solids well,
at the expense of atoms and molecules. PBEmol im-
proves slightly [33] upon PBE’s description of molecules
by setting µ = 0.27583 to recover the hydrogen atom ex-
change energy (and β = 0.08384 to satisfy the same linear
response constraint as PBE), thereby defining another
GGA extreme. PBE is a “middle-path” GGA, describing
finite and extended densities with reasonable accuracy,
but is not competitive with either extreme (PBEmol and
PBEsol, respectively) in either category.

Similar but less severe limitations also appear at the
meta-GGA level. For example, the strongly constrained
and appropriately normed (SCAN) [20] and regularized-
restored SCAN (r2SCAN) [36] T-MGGAs have achieved
remarkable successes, not only for molecules, but also
for semiconducting and insulating solids and liquids [37–
43], including strongly-correlated ones [44–47]. But these
T-MGGAs tend to predict unit cell magnetic moments
that are somewhat too large compared to GGA predic-
tions and experiment [48–50]. SCAN also tends to pre-
dict longer lattice constants and smaller cohesive energies



3

in alkali metals than PBE [51], thereby providing a less
correct description of simple metals. Curiously, Ref. [52]
found that SCAN predicts formation of a monovacancy
in Pt to be energetically favorable.

PBE also describes the formation energies ∆Ef of
many intermetallic alloys, such as HfOs, ScPt, and VPt2,
more accurately than SCAN [53], although the PBE
formation energies are substantially too large for these
solids. Kingsbury et al. [54] demonstrated that r2SCAN
makes modest improvements in ∆Hf of these three solids,
and generally improves SCAN’s description of formation
enthalpies for all solids tested. The random phase ap-
proximation (RPA, which depends upon the occupied
and unoccupied orbitals) predicts slightly more accurate
formation energies for HfOs and ScPt than SCAN [55].
For the convenience of the reader, we have compiled the
results of Refs. [53] and [54] in Sec. IV F.

A GGA is more nonlocal than the LSDA, because the
existence of a derivative is conditioned upon the continu-
ity of a function in the immediate neighborhood of a point
r. Likewise, both variants of meta-GGAs are more non-
local than GGAs, as these include higher-order deriva-
tives of the density or Kohn-Sham orbitals. However,
because the Kohn-Sham orbitals are highly-nonlocal, im-
plicit functionals of the density, a T-MGGA is more non-
local than an LL-MGGA. The exchange-correlation en-
ergy functional of a semi-local (SL) DFA (LSDA, GGA,
or meta-GGA) can be written as

ESL
xc [n↑, n↓] =

∫
exc(n↑, n↓, ...; r)d3r, (11)

where the exchange-correlation energy density exc(r) de-
pends explicitly only on local variables: nσ(r), ∇nσ(r),
∇2nσ(r), τσ(r), etc. A hybrid functional, which includes
some fraction of single-determinant exchange in its en-
ergy density exc

ehybrid
xc (r) = (1− a)eSL

xc (r) + eSL
c (r) (12)

− a

2

∑
σ

∫
|ρ1(rσ, r′σ)|2

|r − r′|
dr′,

is a non-local functional of the Kohn-Sham orbitals
φiσ(r) through the reduced one-body density matrix

ρ1(rσ, r′σ′) = δσ,σ′

∑
i

φ∗iσ(r)φiσ(r′)θ(εF − εiσ). (13)

δij = 1 if i = j and 0 if i 6= j is the Kronecker delta,
and θ(x < 0) = 0, θ(x > 0) = 1 is the step function.
Single-determinant exchange using Eq. 13 delivers the
exact exchange energy (a = 1 in Eq. 12).

Itinerant electron magnetism appears to be best de-
scribed by more local DFAs. As shown elsewhere [48–50]
and here, LSDA, non-empirical GGAs, and LL-MGGAs
tend to better predict transition metal magnetic prop-
erties than do T-MGGAs. Global hybrids, which use a
constant parameter a in Eq. 12, are much more nonlocal

and thus even less accurate than meta-GGAs for tran-
sition metal magnetism [56]. Range-separated hybrids,
generalizations of global hybrids that separate the short-
and long-range components of the Coulomb interaction,
also tend to predict markedly worse equilibrium proper-
ties (e.g., lattice constants and bulk moduli) for struc-
turally simple metals than they do for similarly simple
insulators [57]. To the best of our knowledge, no study
of extended systems using local hybrids, which use a func-
tion a(r) in Eq. 12 (and may also be range-separated),
has been undertaken. As meta-GGAs and global hybrids
are more non-local, it stands to reason that the exchange-
correlation holes of elemental transition metals may be
surprisingly local, with the gradient terms of GGAs and
LL-MGGAs offering meaningful corrections to LSDA.

Why does the exact density functional for the
exchange-correlation energy display a weaker nonlocal-
ity in metallic solids than in molecules and non-metallic
solids? A clue is provided by the exact expression [58, 59]

Exc =
1

2

∫
d3r n(r)

∫
d3r′

nxc(r′, r)

|r′ − r|
, (14)

where nxc(r′, r) is the density at r′ of the coupling-
constant-averaged exchange-correlation hole around an
electron at r. Starting from the exact exchange hole, cor-
relation makes the exchange-correlation hole more nega-
tive at r′ = r, with a faster decay to zero as |r′−r| → ∞.
At long range, the exchange hole density in a solid is
screened (divided) by a dielectric constant which is fi-
nite in non-metals but infinite in metals. In the uni-
form electron gas [60], for example, the exact exchange
hole density (averaged over oscillations) at long range de-
cays as |r′ − r|−4, while the exact exchange-correlation
hole density (averaged over oscillations) decays much
faster as |r′ − r|−8. As the exact exchange-correlation
hole becomes deeper and more localized around its elec-
tron, the exact exchange-correlation energy functional
becomes less non-local in the electron density. For ex-
ample [61], the optimum fraction a of exact exchange
in a global hybrid functional is the inverse of a long-
wavelength dielectric constant, and vanishes for a metal.
Thus, highly nonlocal information (e.g., the fundamental
energy gap, the dielectric constant, or the descriptors of
Ref. [22]) is required to determine the level of nonlocality
needed in an approximate density functional.

The search for a computationally efficient DFA that is
highly accurate for nearly all systems of interest has not
yet found an unequivocal choice. It has, however, shown
that inclusion of exact constraints is perhaps the single
most powerful aspect of DFA design [62]. In this work, we
derive an orbital-free LL-MGGA and determine its accu-
racy for a diverse set of common solid-state systems. Sec-
tion II reviews extant LL-MGGAs and motivates the new
model derived in Sec. III. Section IV applies this model
to real solids: their structural properties in Sec. IV B;
itinerant electron magnetism in Sec. IV C; bandgaps of
insulators in Sec. IV D; formation of a monovancancy
in Pt in Sec. IV E; intermetallic formation enthalpies in
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Sec. IV F; and alkali metals in Sec. IV G. Section IV H
presents a test of molecular atomization energies. A dis-
cussion of machine learning applications to LL-MGGAs
is given in Sec. V.

II. ORBITAL-FREE META-GGAS

Orbital-free variants of T-MGGAs may be the most
common LL-MGGAs to date. Finding a suitable re-
placement for τ in terms of the density and its spatial
derivatives alone permits, in principle, highly-accurate
and computationally-efficient calculations within stan-
dard Kohn-Sham theory. Early attempts, such as that
of Perdew and Constantin [63], proposed de-orbitalized
meta-GGAs but provided no self-consistent tests. Later
works [64, 65] in the context of subsystem DFT suc-
cessfully proposed semi-local, orbital-free approximations
of τ for use in calculating the meta-GGA embedding
potential. However, as noted in Ref. [65], a semi-
local model of τ in subsystem-DFT only needs to ac-
curately capture non-additive interactions between inde-
pendent subsystems, which primarily involve the valence
electrons. More recently, Mej́ıa-Rodŕıguez and Trickey
[66, 67] have pioneered a general-purpose, self-consistent
“de-orbitalization” procedure to replace the analytic τ
with an approximate expression. Their work is the inspi-
ration for ours.

This construction has two primary benefits: a more
localized exchange-correlation hole, and potential for
greater numerical efficiency [68]. We posit that the more
localized exchange-correlation holes of metals, includ-
ing “atypical metals”, are unexpectedly local, a sugges-
tion made long ago [69]. Thus meta-GGAs like SCAN
and r2SCAN tend to make their holes too non-local,
and more insulator-like. Indeed, Ref. [68] demonstrates
that orbital-free versions of SCAN and r2SCAN predict
smaller magnetic moments in ferromagnets (when eval-
uated at the same geometry), and that the orbital-free
variants tend to predict more accurate lattice constants of
simple metals. However, the orbital-free variants worsen
the cohesive energies of simple metals, presumably be-
cause these energy differences involve atoms as well as
metallic solids.

Mej́ıa-Rodŕıguez and Trickey have shown [68] that an
orbital-free version of r2SCAN, called r2SCAN-L, has
a computational cost similar to PBE in solids, but is
less accurate than r2SCAN for describing their equi-
librium properties. We construct a similarly-efficient
LL-MGGA that accurately describes solids (particularly
metals) by restoring the gradient expansion to an orbital-
free r2SCAN.

The Perdew-Constantin (PC) [63] model approximates
τ using an enhancement factor similar to that of semi-
local exchange energies,

τ̃(n, p, q) = τunif(n)FPC
s (p, q). (15)

We use the “s” subscript to indicate a single-electron

property, i.e., Fs is used to approximate the non-
interacting kinetic energy density of a spin-unpolarized
system. Such a description is useful because the kinetic
energy and exchange energy share the same spin-scaling
relationship [7]

Ts[n↑, n↓] =
1

2
(Ts[2n↑] + Ts[2n↓]) . (16)

For sufficiently slowly-varying densities,

lim
p�1
|q|�1

FPC
s (p, q)→ FSVL = 1+

5

27
p+

20

9
q+∆+O(|∇n|6),

(17)
where ∆ stands for generalized fourth-order gradient ex-
pansion terms. Because it employs only the variables
p and q, the Perdew-Constantin model recovers only the
second-order gradient expansion of τ and (via integration
by parts) the fourth-order gradient expansion of Ts.

For iso-orbital regions,

FPC
s (p, q)→ FW = 5p/3 = τW/τunif. (18)

To approximately recover the iso-orbital limit of τ , the
PC model interpolates between these limits

FPC
s (p, q) = FW + ∆PCfab(∆

PC) (19)

∆PC = FSVL − FW. (20)

From Eq. (5), ∆PCfab(∆
PC) approximates α. The PC

interpolation function is a smooth, non-analytic two-
parameter function

fab(z) =


0, z ≤ 0[

1+g1a(z)
g2a(z)+g1a(z)

]b
, 0 < z < a

1, z ≥ a
(21)

g1a(z) = exp

(
a

a− z

)
(22)

g2a(z) = exp
(a
z

)
. (23)

The parameters a = 0.5389 and b = 3 were determined
[63] by fitting to the kinetic energies of neutral atoms,
ions, and jellium clusters; we will discuss the lattermost
system further in this work. The PC model assumes
that ∆PC ≤ 0 indicates an iso-orbital density, and that
∆PC ≥ a indicates a sufficiently slowly-varying density.
For a uniform density, ∆PC = 1. Thus, a < 1 is needed
to recover both the uniform density limit of τ and its
low-order gradient expansion for weakly-inhomogeneous
densities.

If a < 1, as in the Perdew-Constantin work [63], then

fab(∆
PC)→ 1− 40p/27 + 20q/9 + ∆ +O(|∇n|6), (24)

because

dkfab
d(∆PC)k

∣∣∣∣
∆PC=1

= 0 (25)
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for all k ∈ N+. However, if a > 1, as in the Mej́ıa-
Rodŕıguez and Trickey re-parameterization (MRT or
PCopt) [66] of the PC functional, then fab no longer has
a correct Taylor series about ∆PC = 1,

fab(∆
PC) =fab(1) + f ′ab(1)(∆PC − 1) (26)

+O[(∆PC − 1)2].

The MRT parameters are a = 1.784720 and b = 0.258304;
then the coefficients in the Taylor series of fab(∆

PC) are

fab(1) =

{
1 + g1a(1)

g2a(1) + g1a(1)

}b
≈ 0.906485 (27)

f ′ab(1) = b

{
1 + g1a(1)

g2a(1) + g1a(1)

}b−1

×
{
g′1a(1)[g2a(1)− 1]− g′2a(1)[1 + g1a(1)]

[g1a(1) + g2a(1)]2

}
≈ 0.353363. (28)

For reference,

g′1a(z) =
a

(a− z)2
g1a(z) (29)

g′2a(z) = − a

z2
g2a(z). (30)

Note that ∆PC − 1 = O(|∇n|2), and (∆PC − 1)2 =
O(|∇n|4) to lowest order. As f ′ab(1) 6= 0 in the MRT
model, the gradient expansion of the MRT τ no longer
agrees with the known expansion, including the LSDA
(uniform density) term,

τMRT(n, p, q) = [0.906485 + 1.143167p

+0.785250q +O(|∇n|4)
]
τunif(n). (31)

Compare this to the exact expansion [19]

τGEA(n, p, q) = [1 + 0.185185p

+2.222222q +O(|∇n|4)
]
τunif(n). (32)

The incorrect zeroth-order term in τMRT was identified
in Ref. [66], but its relevance to the gradient expansion
of τ was not. Replacing the exact τ in SCAN or r2SCAN
by τMRT yields SCAN-L [66] or r2SCAN-L [68].

It has been shown, by the r2SCAN authors and by
many others [70–74] that the uniform density limit is
critical for describing solid-state properties, molecular at-
omization energies, and molecular formation enthalpies.
The gradient expansion is expected to be particularly rel-
evant to metals. The present work parallels the restora-
tion of the uniform density and gradient expansion con-
straints to the rSCAN T-MGGA [75] by r2SCAN [36].

The loss of the correct uniform density and gradi-
ent expansion constraints reduces the accuracy of an
orbital-free meta-GGA when applied to jellium proto-
types of solids. Table I compares the XC surface for-
mation energies calculated for the planar jellium sur-
face and clusters from two τ meta-GGAs, SCAN [20]

and r2SCAN [36], with their deorbitalized counterparts
SCAN-L [66, 67] and r2SCAN-L [68]. It is clear that
SCAN and r2SCAN provide reasonably accurate descrip-
tions of the jellium surface formation energies, while their
deorbitalized counterparts do not.

III. NEW MODEL OF THE KINETIC ENERGY
DENSITY

We now sketch the derivation of a simplified Laplacian-
level model of τ , which is reasonably smooth and numer-
ically stable. Previous works attempting to construct an
exchange enhancement factor with the density Laplacian
demonstrated [79] that the exchange-correlation poten-
tial

vxc(r) =
∂exc

∂n
−∇ ·

(
∂exc

∂∇n

)
+∇2

(
∂exc

∂∇2n

)
(33)

is easily destabilized when the “curvature” term, right-
most in Eq. (33), is not well-constrained. Note that exc

is the exchange-correlation energy density, the integrand
of the exchange-correlation energy functional. It is not
possible to eliminate all oscillations induced by this term
into the Kohn-Sham potential, but these can be miti-
gated.

The Perdew-Constantin expression for the kinetic en-
ergy density enhancement factor Fs interpolates between
the rigorous lower bound

FW =
5

3
p ≤ Fs (34)

and a regulated fourth-order gradient expansion for τ ,
whose asymptotic limit is 1 + 5p/3. The “asymptotic
limit” is defined by p, |q| → ∞ and typified by, e.g., a
density tail. Here, we will interpolate between the iso-
orbital or von Weizsäcker limit and the slowly-varying
or second-order gradient expansion limit. Other choices
are more suitable for atoms [80, 81], but solid and liquid
metals are the targets of our work.

A set of “appropriate norms” (see Sec. III A) could
provide information about how best to extrapolate be-
yond these two limits, in line with the construction of
SCAN and r2SCAN. However, an interpolation between
these two limits suffices for an accurate description of
solids. Section V presents a less numerically-stable model
for τ that extrapolates beyond these limits by fitting to
appropriate norms.

To recover the second-order gradient expansion for the
exchange and correlation energies in r2SCAN, and the
fourth-order gradient expansion for the exchange energy
in SCAN, an approximate τ̃ must recover the second-
order gradient expansion of τ . Therefore, we aim to re-
cover only the second-order gradient expansion of τ , and
not the fourth-order gradient expansion of Ts. However,
as shown in App. B, we restore the fourth-order gra-
dient expansion for the exchange energy to r2SCAN by
constraining the fourth-order terms in τ̃ .
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SCAN SCAN-L r2SCAN r2SCAN-L
Surface Cluster Surface Cluster Surface Cluster Surface Cluster

rs = 2 3448 3424 3173 3072 3288 3299 3245 2863
rs = 3 789 791 709 689 753 761 740 646
rs = 4 274 277 242 235 262 266 257 223
rs = 5 120 123 104 102 115 118 113 98
MAPE 2.51 3.35 8.39 10.96 2.79 2.62 3.60 15.97

TABLE I. Jellium surface formation energies σxc in erg/cm2 computed for two meta-GGAs, SCAN [20] and r2SCAN [36],
and their de-orbitalized counterparts SCAN-L [66, 67] and r2SCAN-L [68]. Surface formation energies are calculated from
LSDA reference densities for both the planar surface and the liquid drop model applied to spherical jellium clusters. The mean
absolute percentage errors (MAPEs) are computed with respect to RPA+ values [76, 77], as motivated in the text. As 1 hartree
≈ 27.211386 eV [78], 1 erg/cm2 ≈ 0.0624151 meV/Å2.

From Eq. (5),

α(r) = Fs −
5

3
p. (35)

0 ≤ α <∞ is positive semi-definite, therefore we make a
model of α with the same range as the true variable

α̃RPP(x) =

 0, x < 0
x4(A+Bx+ Cx2 +Dx3), 0 ≤ x ≤ x0

x, x > x0

(36)

x(p, q) = 1− 40

27
p+

20

9
q + c3p

2e−|c3|p (37)

+ x4(p, q) exp

[
−
(
p

c1

)2

−
(
q

c2

)2
]

x4(p, q) = bqqq
2 + bpqpq + (bpp − c3)p2 (38)

FRPP
s (p, q) =

5

3
p+ α̃RPP(x(p, q)) (39)

We call this model RPP for “r2SCAN piecewise-
polynomial”. Here, A, B, C are determined by requiring
that α̃(x) is continuous up to its third derivative in x at
x = x0,

A = 20/x3
0 (40)

B = −45/x4
0 (41)

C = 36/x5
0 (42)

D = −10/x6
0. (43)

0 < x0 < 1, c1, c2, and c3 are model parameters deter-
mined by minimizing the residuum errors of a set of ap-
propriate norms, described below. Their optimal values
are

x0 = 0.819411 (44)

c1 = 0.201352 (45)

c2 = 0.185020 (46)

c3 = 1.53804 (47)

By construction, α̃(x) is a C3 function for all x. While we
model α as α̃RPP, the actual quantity used to deorbitalize

0 1 2 3 4 5
p

0

2

4

6

8

F s
(p

,q
)

FW

q=-0.25

q=0

q=1

q=3

FIG. 1. The RPP kinetic energy density enhancement factor
of Eq. (39) compared to the Weizsäcker lower bound FW =
5p/3. For q . −0.25, FRPP

s (p, q) ≈ FW(p).

a meta-GGA is

τRPP(n, p, q) = τunif(n)FRPP
s (p, q), (48)

with FRPP
s given by Eq. 39. When τRPP is used to de-

orbitalize a T-MGGA, the resultant XC potential will
be continuous. bqq ≈ 1.801019, bpq ≈ −1.850497, and
bpp ≈ 0.974002 enforce the fourth-order gradient expan-
sion for the exchange energy (GEX4); exact expressions
are given in App. B. The Perdew-Constantin expression
is a “smooth non-analytic function,” a C∞ function that
has Taylor series with zero radius of convergence about
at least one point (z = 0, a in the Perdew-Constantin
model). The current model has a Taylor series of nonzero
convergence radius about x = 0, x0. Figure 1 plots the
enhancement factor over a range of p typical for atoms
and molecules (where the energetically important regions
have 0 ≤ p ≤ 9).
τRPP is intended for use in the r2SCAN meta-GGA.
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The numerical stability and general accuracy of r2SCAN
make it a good candidate for this kind of work, as noted in
Ref. [68]. As r2SCAN is still a relatively new meta-GGA,
we briefly review its construction here. The interested
reader is encouraged to review Refs. [36, 62] for a more
detailed presentation. SCAN, while broadly accurate,
tends to need dense numerical grids when performing self-
consistent calculations [38].

The rSCAN meta-GGA of Bartók and Yates [75] at-
tempted to remedy this issue by replacing the iso-orbital
indicator used in SCAN, α, with a regularized indicator
that tends to zero in density tails (where α diverges [82]),
and by replacing the switching functions in SCAN, Eq.
9 of Ref. [20], with a less-oscillatory function. These
modifications, while effective in improving the numerical
performance of SCAN, broke exact constraints underpin-
ning the construction of SCAN [62]. The ablation of
these constraints in rSCAN resulted in marked increases
in computed atomization energy errors [71], for example.

The r2SCAN meta-GGA [36] was constructed to main-
tain the numerical efficiency of rSCAN, but with accu-
racy comparable to SCAN. This was accomplished by
using an iso-orbital indicator,

α =
τ − τW

τunif + η τW
= α

[
1 +

5

3
ηp

]−1

, (49)

where η = 0.001. α decays to zero in s-like density
tails. Furthermore, the slowly-varying limit (see Eq. 8)
of rSCAN was modified to ensure recovery of the second-
order gradient expansion constraints [62].

The fourth-order terms in x(p, q) restore the GEX4
terms to r2SCAN. The damped x4(p, q) term is mod-
eled after the r4SCAN meta-GGA [62]. This meta-GGA
restores the GEX4 to r2SCAN using the exact τ , at
the price of some numerical stability and general accu-
racy. We noticed in our testing that the gradient ex-
pansion terms need exponential cutoffs, like those used
in r4SCAN. This is primarily due to the bqqq

2 and bpqpq
terms, which introduce numerical instabilities if they are
not strongly regulated. However, the c3p

2 term provides
more meaningful corrections at large p. For this rea-
son, the damped c3p

2 term has a much longer tail than
x4(p, q). We refer to the new orbital-free r2SCAN, in
which the exact τ is replaced by

τRPP(n, p, q) = τunif(n)[α̃RPP(p, q) + 5p/3], (50)

as “OFR2,” for orbital-free regularized-restored SCAN.
Equivalently, one could replace the exact α in the right-
most equality of Eq. 49 with α̃RPP; we make this dis-
tinction because r2SCAN depends on α instead of α. Of
course, the cluster of r2SCAN exact constraints associ-
ated with the iso-orbital limit τ = τW can be satisfied
only approximately by OFR2.

The second-order gradient expansion for τ is unexpect-
edly accurate in approximating the true τ in solids. Fig-
ure 2 plots the exact kinetic energy density of the jellium
surface, second-order gradient expansion for τ , the OFR2

model derived here (after fitting, described below), and
the Weizsäcker kinetic energy density for a bulk density
parameter rs = 2, 4. We see that OFR2 reasonably ap-
proximates τ in the jellium surface (even in its density
tail), despite predicting oscillations of too small magni-
tude and incorrect phase.

It is also worth noting that SCAN, r2SCAN, and the
orbital free variants SCAN-L, r2SCAN-L, and OFR2 are
among the first meta-GGAs to respect the conjectured
tight bound on the exchange energy of a spin-unpolarized
density [83],

Ex[n] ≥ 1.174ELDA
x [n] (51)

where n is an arbitrary density. GGAs like PBE and
PBEsol [32] respect a more conservative bound [84, 85]

Ex[n] ≥ 1.804ELDA
x [n]. (52)

A. Appropriate norms

Reference [20] described the process of selecting sys-
tems which a DFA tier can describe exactly or with high
accuracy. This idea had been used previously in, e.g.,
the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA
[86], which was constrained to yield the exact exchange
and correlation energies of the hydrogen atom when ap-
plied to its exact density. Such auxiliary conditions,
which may be satisfied by fitting to reference densities,
are necessary in the absence of a sufficient number of
known conditions on the exact exchange-correlation en-
ergy functional (exact constraints).

We distinguish first-principles DFAs, which build in all
possible exact constraints prior to determining free pa-
rameters with appropriate norms, from empirical func-
tionals. Empirical functionals need not build in ex-
act constraints first, however when the fit is done only
with appropriate norms (e.g., rare gas atoms at the
GGA level), they often emerge naturally [74, 87]. Semi-
empirical functionals, like the Becke 1988 exchange GGA
(B88) [88], build in some constraints prior to determining
free parameters by fitting to data sets.

At the LSDA level, the only appropriate norm avail-
able is the uniform electron gas, for which “The LSDA”
[1, 89] is exact (as opposed to empirical LSDAs [90]).
The GGA level can add density-gradient expansions,
or the lowest-order large-Z coefficients [74, 87] and the
exchange-correlation energies of closed-shell atoms.

LL-MGGAs cannot uniquely identify one-electron and
many-electron regions as T-MGGAs can. Some appro-
priate norms used to parameterize SCAN [20] (the com-
pressed Ar dimer; the hydrogen and helium atoms) are
not appropriate norms for an LL-MGGA, whereas oth-
ers (the noble gas atoms and jellium surface formation
energies) are still applicable.

Thus we select the surface formation energies of
planar jellium surfaces [91, 92], with rs values typi-
cal of metals (rs = 2, 3, 4, and 5), and spherical jel-
lium clusters [77] (with typical magic numbers N =
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FIG. 2. Plot of the exact τ (solid gray), second-order gradient expansion (GEA2, solid green), the RPP model (dashed blue),
and Weizsäcker (dash-dot orange) kinetic energy density for a jellium surface of bulk density parameter rs = 2, (left) and

4 (right). For a given density parameter rs, τUEG = (27/80)[3/(2π)]1/3[rs]
−5 and λF = 2(2π/3)2/3rs. The uniform positive

background fills the half-space x < 0.

2, 8, 18, 20, 34, 40, 58, 92, and 106) as LL-MGGA appro-
priate norms. From the spherical jellium clusters, we ex-
tract surface formation energies σxc(rs) and surface cur-
vature energies γxc(rs) via the liquid drop model [93]

Exc

N
=εUEG

xc (rs) + 4πr2
sσxc(rs)N

−1/3

+ 2πrsγxc(rs)N
−2/3. (53)

The surface formation energies extracted from the jel-
lium clusters will, in general, differ from those extracted
from the planar surface, although the N →∞ limit of a
spherical cluster is a planar surface. Density functionals
that are more sensitive to the shell structure of small-N
clusters, e.g., SCAN, predict less accurate σxc(rs) values
extracted from the clusters than the surfaces. Moreover,
to limit the effects of shell-structure oscillations, we al-
ways fit the difference (Eapprox

xc −ELSDA
xc )/N , as described

in Ref. 77.
Plots of the self-consistent LDA planar jellium surface

and jellium cluster densities for bulk background density-
parameter rs = 4 bohr can be found in Figs. 3 and 4,
respectively. These figures also plot the iso-orbital indica-
tor α computed self-consistently with the LDA, and com-
puted with the second-order gradient expansion (GE2)
approximation for α,

αGE2 = 1− 40

27
p+

20

9
q. (54)

In these figures, p and q are computed from self-consistent
LDA quantities. When the GE2 is a reasonable approxi-
mation to α, as for the planar surface in Fig. 3, a system

4 3 2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

rs = 4

n(x)/n
n + (x)

4 3 2 1 0 1 2
x/ F

1

2

3

4

5

(x
)

Exact
GE2

FIG. 3. Upper: plot of the self-consistent LDA planar jel-
lium surface density (blue, solid), scaled by the density of
the corresponding bulk jellium n = 3/(4πrs

3). Also shown
is the neutralizing positive background (gray, dotted), which
terminates at x = 0. Lower: plot of the self-consistent LDA
α = (τ−τW)/τunif (blue, solid) and the second-order gradient
expansion (GE2) approximation for αGE2 = 1−40p/27+20q/9
(orange, dot-dashed). Positions are scaled by the bulk Fermi

wavevector λF = 2π[4/(9π)]1/3rs, both plots are for rs = 4.
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Exact, N = 2
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FIG. 4. Upper: plot of the self-consistent LDA jellium clus-
ter density (blue, solid), scaled by the density of the cor-
responding bulk jellium n = 3/(4πrs

3), for a few values of
N = 2 (blue), 20 (orange), and 106 (green). Also shown
is the neutralizing positive background (gray, dotted), which

terminates at r = R = rsN
1/3. Lower: plot of the self-

consistent LDA α = (τ − τW)/τunif (solid curves) and the
second-order gradient expansion (GE2) approximation for
αGE2 = 1−40p/27+20q/9 (dotted curves). Both plots are for
rs = 4 bohr, as in Fig. 3. The GE2 only becomes relatively
accurate as N > 100.

can be considered slowly-varying, provided that p and |q|
are both small (which we confirmed, but did not plot for
reasons of clarity).

The jellium cluster densities for finite N much more
closely resemble the densities of atoms (see Fig. 6 in
Sec. IV) than the planar jellium surface. Indeed, the
GE2 approximation for α only becomes reasonable for
N > 100. For N = 2, where the exact α = 0 (iso-
orbital), the GE2 is wildly off the mark, unphysically
making α < 0 near the cluster’s surface. Thus the jellium
cluster densities are more characteristic of finite systems
than the planar jellium surface, helping to balance the
performance of OFR2.

The exchange-correlation energies of the noble gas
atoms Ne, Ar, Kr, and Xe were also used as appropri-
ate norms. In these rare-gas atoms, and especially in
their large-Z limit, the exact exchange-correlation hole
is reasonably short-ranged. These atoms are needed to
help RPP/OFR2 deal with nearly-iso-orbital regions like
those near nuclei. Furthermore, any error of the func-
tional in the low-density tails of these atoms will be en-
ergetically negligible. A Python library was written to
generate self-consistent reference LSDA densities for the
jellium appropriate norms, and to generate Roothaan-

-0.5 0.0 x0 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

(x
)

RPP
CR
PC
MRT

FIG. 5. Plot of the RPP model α̃(x) of Eq. (36) as a function
of an arbitrary measure of inhomogeneity x, which tends to
one for a uniform density. The Perdew and Constantin (PC)
[63], Cancio and Redd (CR) [80], and Mej́ıa-Rodŕıguez and
Trickey (MRT) [66] models of α̃(x) are also displayed.

Hartree-Fock atomic densities [94]. The library is made
available as a public code repository [95].

To determine the model parameters, the objective
function

δ =

√
MAPE2

RGA + MAPE2
JS + MAPE2

JC (55)

where “RGA” stands for the exchange-correlation energy
of the rare-gas atoms Ne, Ar, Kr, and Xe; “JS” (“JC”)
stands for the jellium surface (cluster) σxc. MAPE is the
mean absolute percentage error. For the planar jellium
surfaces, rs ∈ {2, 3, 4, 5} were used; for the jellium clus-
ters, rs ∈ {2, 3, 3.5, 4, 5} were used. The minimization
was done in two steps: a Nelder-Mead simplex search,
followed by a tiered grid search to (potentially) refine
the parameters. The fitting routine stopped when the
change in the lowest δ over a few iterations stagnated.

A plot of the α̃(x) function, compared with similar
models [63, 66, 80], is given in Fig. 5. While the PC,
MRT, and RPP models do not share a common inhomo-
geneity measure x, they assume that x = 1 indicates a
uniform density, x → ∞ a density-tail, and x → −∞
a core. Thus we can compare them using an arbitrary
inhomogeneity measure x. The Cancio-Redd model

α̃CR(zCR) = 1 + zCR{1− exp[−1/|z|a]}1/aΘ(−zCR)

+ zCRΘ(zCR) (56)

zCR = −40

27
p+

20

9
q (57)

Θ(z) =

{
1 z ≥ 0
0 z < 0

(58)

with a = 4, tends to its uniform density limit when its
inhomogeneity measure zCR tends to zero, unlike the PC,
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Atomic Norm Reference
(hartree)

OFR2
(hartree)

Percent
error

Ne -12.499 -12.229 -2.16%
Ar -30.913 -30.326 -1.90%
Kr -95.740 -94.308 -1.50%
Xe -182.202 -179.837 -1.30%

MAPE 1.71%
Jellium sur-
face rs (bohr)

Reference
(erg/cm2)

OFR2
(erg/cm2)

Percent
error

2 3413 3336 -2.25%
3 781 764 -2.16%
4 268 265 -1.19%
5 113 116 2.25%

MAPE 1.96%
Jellium clus-
ter rs (bohr)

Reference
(erg/cm2)

OFR2
(erg/cm2)

Percent
error

2 3413 3363 -1.47%
3 781 769 -1.57%
3.25 582 578 -0.84%
4 268 265 -1.05%
5 113 116 2.98%

MAPE 1.58%

TABLE II. Performance of the new orbital-free r2SCAN
(OFR2) for the appropriate norms. The reference atomic
exchange-correlation energies are taken from Refs. [70, 96],
respectively. Reference jellium surface exchange-correlation
formation energies are taken from the RPA+ values of Ref.
[76], and when needed, the fit to RPA+ data of Ref. [77].

MRT, and RPP models. Thus we plot α̃CR as a function
of x ≡ zCR + 1, where x→ 1 indicates a uniform density.
The RPP model recovers the fourth-order gradient ex-
pansion for exchange when combined with r2SCAN. The
RPP, PC, and CR models all recover the second-order
gradient expansion for τ by construction, whereas the
MRT model does not. This is seen in Fig. 5 by noting
that α̃(x ≈ 1) ≈ x.

Table II shows the appropriate norms errors used to
determine x0, c1, c2, and c3 (Eqs. 44–47). We use the
RPA+ [76], and the fit from Ref. [77] as needed, as refer-
ence values for σxc. The RPA alone accounts for 100% of
exact exchange and the long-range part of correlation in a
metal like the jellium surface. The RPA+ makes a GGA-
level correction to the RPA correlation energy at short
range. Thus the values of σxc found with the RPA+ are
comparable to higher-level methods like the Singwi-Tosi-
Land-Sjölander self-consistent spectral function method
[97], or careful quantum Monte Carlo (QMC) calculations
of finite jellium surfaces [98]. Reference atomic exchange
energies are taken from Ref. [70], and correlation energies
from Ref. [96].

IV. PERFORMANCE FOR REAL SYSTEMS

OFR2 is constructed to accurately describe metallic
densities. While this is a niche goal, T-MGGAs ade-

quately describe non-metallic densities, but exhibit too
much non-locality for simple metallic solids. This deficit
can be rectified by an LL-MGGA like OFR2.

Panels (a) and (b) of Fig. 6 plot p, q, and α in the Cr
atom for the up- and down-spin densities, respectively.
Note the similarity of p and q outside the 1s shell of
the atom. In the region 0.07 . r . 2 bohr, both p
and |q| are less than one, and there are numerous points
where α = 1. The density in this region would thus be
characterized as approximately slowly-varying or metallic
by a T-MGGA. We define the spin-dependent variables
as

pσ = p(2nσ) = 2−2/3 |∇nσ|2

4(3π2)2/3n
8/3
σ

(59)

qσ = q(2nσ) = 2−2/3 ∇2nσ

4(3π2)2/3n
5/3
σ

(60)

ασ = α(2nσ, 2τσ) = 2−2/3 τσ − |∇nσ|2/(8nσ)

3(3π2)2/3n
5/3
σ /10

, (61)

i.e., the density variables as seen by the exchange energy
using its spin-scaling relation [7].

Panels (c) and (d) of Fig. 6 plot the errors made in
approximating α with the MRT model [66] and the RPP
model, Eq. 39. Because p and |q| are small, the second-
order gradient expansion (GE2),

τσ =

(
1 +

20

9
qσ +

5

27
pσ

)
τunif(nσ) (62)

is a reasonable approximation to τ in the region 0.07 .
r . 2 bohr only. RPP closely follows the GE2 curve in
this region. These semi-local models of α better describe
this region than the 1s shell region, where they make
α vanish too abruptly, or the density tail, where they
make α diverge too quickly. For the Cr atom, the MRT
model better approximates ασ than the RPP model of
this work, except perhaps for the majority (↑) spin in
the valence region.

A. Numerical stability

The LL-MGGA exchange-correlation potential is very
sensitive to the dependence of exc on the density Lapla-
cian. Figure 7 demonstrates this for the hydrogen atom
(α↑ = 0) Kohn-Sham potential, using the exact density
n(r) = e−2r/π. vxc presents unusual oscillations that
could be misinterpreted as shell structure. Using this
density,

kF(r) = (3π)1/3e−2r/3 (63)

p(r) = k−2
F (64)

q(r) = (1− 1/r)k−2
F . (65)

Similar to the Cr atom in Fig. 6, there is a region near
r = 1 bohr that an LL-MGGA can mistakenly identify as
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FIG. 6. Upper: squared dimensionless density gradient p (blue, solid), dimensionless Laplacian q (orange, dashed), and
iso-orbital indicator α (green, dot-dashed) in the Cr atom for the (a) up-spin (↑) density, and (b) down-spin (↓) density. The
density, its derivatives, and kinetic energy density are spherically averaged after sampling 200 azimuthal points on a Gauss-
Legendre grid, using Roothaan-Hartree-Fock Slater-type orbitals from Ref. [99]. Lower: the percent error, 100

(αapprox

α
− 1
)
,

made by the model of α from Ref. [66] (MRT; blue, solid) and the present model, RPP (orange, dashed), for the (c) up-spin
density and (d) down-spin density. Also shown is the second order gradient expansion, GE2 (green, dot-dashed). When p� 1,
|q| � 1, and |1 − α| � 1, the density can be considered slowly-varying, and a semilocal model of τ can be approximately
accurate.

slowly-varying, because p . 1, and |q| ≈ 0. This induces
an artificial shell structure not seen in the semi-local part
of the r2SCAN Kohn-Sham potential [36]. A sixth-order
finite difference was used to evaluate ∇ · [∂exc/∂(∇nσ)]
and ∇2

[
∂exc/∂(∇2nσ)

]
. The derivatives of exc with re-

spect to n, ∇n and ∇2n were computed analytically.

Similarly, Fig. 8 plots the finite difference exchange
and correlation potentials in a jellium surface with rs = 2,
for OFR2 and and r2SCAN-L. As in the other calcu-
lations of the jellium surface, reference LSDA densities
were used. Both models manifest unphysical oscillations
in the exchange and correlation potentials, which can be
compared to the PBEsol potentials shown in Fig. 9 (us-
ing the same density). PBEsol is expected to yield rea-
sonable predictions of jellium surface properties by con-
struction. Despite the alarming appearance of Figs. 7
and 8, the method used by VASP to solve the general-
ized Kohn-Sham equations, summarized in Appendix A,
is numerically efficient and stable. It is clear, without
plotting the associated electrostatic potential, that the
oscillations in the LL-MGGA exchange-correlation po-

tentials will be significant.

B. Lattice constants

All solid-state calculations were performed in the Vi-
enna ab initio Simulation Package (VASP) [100–103],
version 6.1. We used a Γ-centered k-point mesh of spac-
ing 0.08 Å−1, with a plane-wave energy cutoff of 800 eV,
except for a few cases, which we discuss below. Energies
were converged below 10−6 eV, and calculated using the
Blöchl tetrahedron method [104]. For reasons of numer-
ical stability, ADDGRID was set to False. Equilibrium
structures were determined using the stabilized jellium
equation of state (SJEOS) [105, 106]. 12 single-point en-
ergy calculations in a range of (1± 0.1)Vexpt., with Vexpt.

the experimental (zero-point energy corrected) equilib-
rium volume were performed. To fit hcp structures (hcp
Co is discussed in Sec. IV C), we optimized the c/a pack-
ing ratio at fixed volume, and found the optimal c/a by
fitting to a reduced SJEOS. All input files can be found
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FIG. 7. OFR2 Kohn-Sham potential calculated used Eq.
(33) for the up-spin channel, evaluated on the exact density,
n(r) = n↑(r) = e−2r/π (v↓xc = 0 identically for this system).
A 6th order finite difference was used to calculate the requisite
divergence and Laplacian terms. Oscillations are primarily
due to inclusion of the density-Laplacian.

in the code repository.
Some of the standard VASP pseudopotentials cannot

accommodate higher plane-wave energy cutoffs. For ex-
ample, “PAW PBE Ba sv 06Sep2000” (“PAW PBE Pd
04Jan2005”) can accommodate a maximum energy cutoff
of about 600 eV (750 eV). Both settings were used here
instead of the 800 eV cutoff used for the other solids. The
LL-MGGAs exhibited a strong dependence on the num-
ber of bands used when the cutoff was exceeded, whereas
the GGAs and T-MGGAs did not appear to be similarly
affected.

Table III displays the relative error statistics in 20
cubic lattice constants (the LC20 set) [107] made by a
variety of common, first-principles functionals: PBEsol
[32] (a benchmark GGA for this property), r2SCAN [36],
r2SCAN-L [68] and OFR2. Tables XIII and XIV of Ap-
pendix D present errors in the lattice constants and bulk
moduli, respectively, for each solid in the LC20 set.

OFR2 exceeds the performance of r2SCAN and
r2SCAN-L overall, for both metals and insulators in
the set of lattice constants. There are unusual cases
where a LL-MGGA that is designed to mimic its par-
ent T-MGGA, as r2SCAN-L is, outperforms it: see the
SCAN and SCAN-L binding energy of hexagonal BN and
graphite out-of-plane lattice constant in Table VI of Ref.
[67]. As OFR2 is not designed to mimic r2SCAN, we
find its superior performance for solid-state geometries
less surprising. However, r2SCAN and PBEsol predict
more accurate bulk moduli than do either of the orbital-
free r2SCAN meta-GGAs.

The lattice-constant results show the bias inherent in
each meta-GGA’s construction. r2SCAN-L does not have
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FIG. 8. The exchange and correlation potential in an rs = 2
jellium surface, evaluated on the same LSDA densities used
previously. The present OFR2 (RPP) (top, 8a) and r2SCAN-
L (MRT) [66] (bottom,8b) LL-MGGA potentials are shown.
The same finite difference coefficients as in Fig. 7 were used
to generate these plots. As before, the edge of the uniform
positive background lies at x = 0, and x is scaled by the bulk
Fermi wavelength, λF = 2π/kF. The potential is scaled by the
corresponding LSDA potential evaluated at the bulk density.

the correct uniform density limit and gradient expansion
constraint that are critical to an accurate description of
metallic condensed matter (those systems most like an
electron gas with weak variations about a uniform den-
sity). One might argue that the 10% violation of the
uniform density limit (see Eq. 31) is small even in the
jellium surface exchange-correlation potential plot of Fig.
2b. However, it is clear that the loss of this limit is indeed
important for accurate solid-state geometries. The data
used to fit r2SCAN-L were biased toward finite systems
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FIG. 9. Same as Fig. 8, but plotting the PBEsol exchange
and correlation potentials evaluated on the LSDA density.

(the 18 lightest neutral atoms were used to fit the PCopt
model of τ [66]). OFR2 recovers the uniform density
limit constraint of r2SCAN, the second-order gradient
expansion for correlation, and the fourth-order gradient
expansion for exchange. While the rare gas atoms were
included in the training set of OFR2, this was done to
prevent overfitting to the jellium norms, and does not en-
sure that OFR2 accurately describes finite systems. This
biases the construction of OFR2 toward solid-state prop-
erties. Therefore, the r2SCAN-L results show stronger
performance for the lattice-constants of insulating solids
than for those of the metals. OFR2 is constructed in the
spirit of PBEsol, and shows a large gain in performance
over its parent functional r2SCAN.

However an obvious question remains: Why do PBEsol
and OFR2 describe the structures of insulators more ac-
curately than PBE (a GGA with a slight bias towards
molecules) and r2SCAN-L? Narrow-gap insulators (e.g.,
Si, Ge, GaAs), covalently bonded insulators (e.g. C and
SiC), and “strongly-correlated” monoxides (e.g., MgO)
have no classical turning surfaces in the Kohn-Sham po-
tentials near equilibrium, whereas “normally-correlated”
ionically-bound solids (e.g., LiF, LiCl, NaF, NaCl) do
[108]. The gradient expansions for the exchange and cor-
relation energies are semiclassical in nature, and thus can
only be valid inside a classical turning surface. The lack
of a turning surface permits these gradient expansions,
which are preserved in PBEsol and OFR2 but not PBE
and r2SCAN-L, to have some validity for non-metallic
solids. There are caveats which we will discuss further in
Sec. IV G.

We derive a symmetric expression for the Laplacian
contributions to the stress tensor in Appendix C. The to-
tal exchange-correlation stress tensor Σijxc, in a gauge ap-
propriate for a code with periodic boundary conditions,

(Å) PBEsol SCAN r2SCAN r2SCAN-L OFR2
Metals

ME -0.044 0.004 0.024 0.011 -0.020
MAE 0.044 0.021 0.033 0.044 0.021

Insulators
ME 0.024 0.004 0.017 0.016 0.005
MAE 0.025 0.008 0.017 0.016 0.014

Total
ME -0.010 0.004 0.020 0.013 -0.007
MAE 0.035 0.015 0.025 0.030 0.018

TABLE III. Mean error (ME) and mean absolute error (MAE)
statistics for 20 common cubic lattice constants (LC20) [107],
all in Å. Subsets of metals and insulators are also shown.
None of the OFR2 calculations failed to converge in the allot-
ted number of self-consistency iterations (200 for each single-
point calculation). Six (of the 240 total) r2SCAN-L calcu-
lations failed to converge to 10−6 eV in 200 self-consistency
steps. Troublesome convergence is a common issue for LL-
MGGAs, and has been observed previously [68]. Reference
experimental equilibrium lattice constants (with zero-point
corrections included) are taken from Ref. [109].

is given by Eq. C18, reprinted here

Σijxc =

∫ [
(exc − vxcn) δij −

1

|∇n|
∂n

∂ri

∂n

∂rj

∂exc

∂|∇n|
(66)

−2
∂exc

∂∇2n

∂2n

∂ri∂rj

]
d3r.

Here, r1 = x, r2 = y, and r3 = z, exc is the exchange-
correlation energy density such that Exc =

∫
excd

3r, and
vxc is the exchange-correlation potential, Eq. 33. To use
the stress tensor to minimize structures, we used a few
additional computational parameters, keeping the others
unchanged. The magnitudes of forces were converged
within 0.001 eV/Å.

By setting ISIF = 3, the ion positions, computational
cell shape, and computational cell volume were permit-
ted to relax; we verified that no change of symmetry oc-
curred during the force minimization. Generally, ISIF
controls which degrees of freedom are permitted to re-
lax, and if all elements or just the diagonal elements of
the stress tensor are computed. The minimization algo-
rithm is controlled by the IBRION setting; we used the
conjugate gradient algorithm, IBRION = 2. First or-
der Methfessel-Paxton smearing [110] (chosen by setting
ISIGMA = 1) with width 0.2 eV was used for the metals
(and Ge for PBEsol and r2SCAN-L), Gaussian smearing
of width 0.05 eV was used for the insulators. ISIGMA
selects a method for smearing electronic states near the
Fermi level. We refer the reader to the VASP manual
[111] for other options.

The mean deviations in the LC20 lattice constants
found by the equation of state fitting and by minimiza-
tion of the stress tensor in VASP are presented in Tables
IV and XV. These tables also present results for PBEsol
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PBEsol r2SCAN r2SCAN-L OFR2
MD 7.191× 10−4 7.499× 10−4 7.132× 10−3 3.598× 10−3

MAD 2.013× 10−3 1.729× 10−3 8.073× 10−3 4.656× 10−3

TABLE IV. Mean deviation (MD) and mean absolute devi-
ation (MAD) in the LC20 cubic lattice constants found by
equation of state (EOS) fitting to the SJEOS and by min-
imization of the stress tensor (ST). From the PBEsol and
r2SCAN values, these lattice constants should agree to better
than 10−2 Å on average, which is satisfied. The deviations
are aEOS

0 − aST0 .

and r2SCAN to benchmark how closely the lattice con-
stants found from both methods agree. The Laplacian-
dependent stress tensor appears to agree to the same level
of precision as the GGA and T-MGGA stress tensor.

C. Transition metal magnetism

As is well known by now [48–50], some of the most so-
phisticated T-MGGAs predict correct structures for tran-
sition metals, but too large magnetic moments. Previ-
ous works studied the simplest ferromagnetic materials:
body-centered cubic (bcc) Fe, face-centered cubic (Ni),
and hexagonal close-packed (hcp) Co.

Table V compares PBEsol, r2SCAN [36], r2SCAN-
L [68], and OFR2. Consistent with Ref. [50], OFR2
strikes a balance between the GGA and meta-GGA lev-
els by providing more accurate geometries than PBEsol,
and more accurate magnetic moments than r2SCAN.
r2SCAN-L and OFR2 are comparably accurate for these
solids.

D. Bandgaps

In a standard Kohn-Sham calculation, the exact
exchange-correlation functional would lead to an under-
estimation of the fundamental (charge) bandgap equal to
the “exchange-correlation derivative discontinuity” [113].
Even though GGAs like PBE may closely approximate
the exact Kohn-Sham bandgap [108], only functionals de-
fined within a generalized Kohn-Sham (GKS) theory with
nonzero derivative discontinuity can realistically estimate
the observed fundamental bandgap [114]. For this reason,
some T-MGGAs, which are orbital-dependent and thus
defined within a GKS theory, can provide surprisingly re-
liable estimates of the bandgap [115, 116]. Similarly, hy-
brid functionals reliably predict accurate bandgaps [117],
as single-determinant exchange is an explicit functional
of the Kohn-Sham orbitals.

As LL-MGGAs are standard Kohn-Sham DFAs lacking
a derivative discontinuity, we expect them to underesti-
mate the fundamental bandgap. This was shown in Ref.
[67] using SCAN-L. Table VI tabulates the bandgaps for
a subset of the LC20 set of solids. To compute the
bandgap, the equilibrium lattice constants from Table

Solid
(structure)

Functional a (Å) ms (µB/atom)

Fe (bcc)

PBEsol 2.783 2.094
r2SCAN 2.864 2.64
r2SCAN-L 2.827 2.20
OFR2 2.791 2.12
Expt. 2.855 1.98 – 2.13

Ni (fcc)

PBEsol 3.465 0.620
r2SCAN 3.478 0.74
r2SCAN-L 3.500 0.67
OFR2 3.463 0.66
Expt. 3.509 0.52 – 0.57

a (Å) c/a ms (µB/atom)

Co (hcp)

PBEsol 2.455 1.615 1.57
r2SCAN 2.471 1.623 1.74
r2SCAN-L 2.494 1.623 1.66
OFR2 2.468 1.623 1.63
Expt. 2.503 1.621 1.52 – 1.58

TABLE V. Comparison of structural and magnetic predic-
tions for itinerant electron ferromagnets. Total energies for
r2SCAN and OFR2 are converged to 10−6 eV. Total ener-
gies for r2SCAN-L are converged to 10−4 eV (the default for
VASP); this is done for reasons of numerical stability. The
experimental (expt.) equilibrium cubic lattice constants (a)
are taken from Ref. [109], and experimental zero-temperature
extrapolated lattice constants for hcp Co are taken from Ref.
[112]. The ranges of experimental magnetic moments (ms in
units of the Bohr magneton µB per atom) are taken from Ref.
[48].

XIII were used as input to a single-point total energy
calculation. From this, the Fermi energy was extracted,
and a new density of states (DOS) grid was defined cen-
tered at the Fermi energy, evenly spaced in intervals of
0.01 eV. The calculation was then repeated with the finer
DOS grid. A general-purpose functional should be able
to reliably predict lattice parameters and bandgaps, thus
we prefer to evaluate the bandgap using each DFA’s re-
laxed structure.

Interestingly, OFR2 and r2SCAN-L show no consis-
tent behavior with respect to gaps. Both LL-MGGAs
severely underestimate the fundamental gap, but often
approximate the r2SCAN bandgap well. In Ref. [67],
it was argued that the closeness of SCAN-L and SCAN
bandgaps indicated that SCAN-L accurately approxi-
mated the SCAN optimized effective potential (OEP).
Recall that the OEP [118] is a general procedure that
transforms a non-local Kohn-Sham potential operator
(such as that of a meta-GGA) into a local, multiplicative
potential. We lack a better explanation regarding the
relative closeness of the r2SCAN, r2SCAN-L, and OFR2
bandgaps. Moreover, we are unaware of OEP calcula-
tions of the r2SCAN potential in real systems. As was
reported in Table V of Ref. [67] for LiH computed using
SCAN and SCAN-L, there are unusual cases where the
orbital-free meta-GGA predicts a slightly larger bandgap
than the parent T-MGGA: r2SCAN-L appears to find a
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Solid PBEsol OFR2 r2SCAN-L r2SCAN Expt. (eV)
Ge 0.00 0.22 0.06 0.31 0.74
Si 0.48 0.70 0.83 0.79 1.17
GaAs 0.42 0.73 0.65 0.94 1.52
SiC 1.24 1.41 1.69 1.74 2.42
C 4.03 4.06 4.23 4.34 5.48
MgO 4.66 5.04 5.41 5.74 7.22
LiCl 6.36 6.93 7.18 7.46 9.40
LiF 9.03 9.57 10.01 10.59 13.60
ME -1.92 -1.61 -1.44 -1.20
MAE 1.92 1.61 1.44 1.20

TABLE VI. Comparison of bandgaps (eV), extracted from
the DOS in VASP. GKS DFAs, like r2SCAN, are expected
to predict more realistic bandgaps than standard Kohn-Sham
DFAs, like PBEsol, OFR2, and r2SCAN-L. DFAs are listed
in anticipated order of predicted bandgap accuracy. Experi-
mental (expt.) values are taken from Ref. [115]. Mean errors
(MEs) and mean absolute errors (MAEs) are also reported.

slightly larger gap for Si than r2SCAN.

E. Monovacancy in Platinum

Reference [52] found that SCAN predicts the forma-
tion of a monovacancy in Pt to be energetically favorable.
Here, we compute the equilibrium lattice constants and
vacancy formation energies of Pt using SCAN, r2SCAN,
r2SCAN-L, and OFR2. The initial equilibrium lattice
constants for face-centered cubic (fcc) Pt were found by
fitting to the SJEOS, using the same computational pa-
rameters as before. A 2 × 2 × 2 supercell containing 32
atoms was constructed using that lattice constant, and
the supercell was allowed to further relax (ISIF = 3, IB-
RION = 2), using first-order Methfessel-Paxton smearing
of width 0.2 eV, and forces converged within 0.001 eV/Å.
The total energy was determined from the relaxed super-
cell structure using the tetrahedron method (ISIGMA
= -5). An identical supercell, but with an ion nearest
the center of the cell removed, was used to model the
monovacancy, and the same procedure was repeated. An
11 × 11 × 11 k-point grid was used, as recommended in
Ref. [52].

Monovacancy formation (MVF) energies

EMVF = E(N − 1)− N − 1

N
E(N), (67)

where E(N) is the total energy of an N -atom supercell
(N = 32 here), are presented in Table VII. We found a
small positive monovacancy formation energy for SCAN,
unlike the negative value found in Ref. [52]. A nega-
tive monovacancy formation energy implies that a solid
is unstable. We find it unlikely that SCAN predicts Pt
to be unstable, as SCAN describes its other equilibrium
properties with experimental accuracy. OFR2 predicts a
slightly larger monovacancy formation energy than PBE.

DFA a0 (SJEOS, Å) EMVF (eV)
Expt. 3.913 1.32–1.7
PBE 3.971 0.676
PBEsol 3.919 0.886
SCAN 3.913 0.126
r2SCAN 3.943 0.593
r2SCAN-L 3.980 0.590
OFR2 3.928 0.684

TABLE VII. Monovacancy formation energy and equilibrium
geometry of fcc Pt. The experimental, zero-point corrected
lattice constant is taken from Ref. [109], and the experimen-
tal monovacancy formation energy range is taken from Ref.
[52]. Note that the SJEOS-determined lattice constant (sec-
ond column) was later permitted to relax in the Pt supercell.
For all DFAs shown, the supercell lattice constant after relax-
ation did not change to the stated precision, again verifying
our implementation of the Laplacian-dependent stress tensor.

PBEsol predicts the most accurate Pt monovacancy for-
mation energy, but still underestimates the lowest exper-
imental value.

F. Intermetallic formation energies

We follow the methodology of Ref. [53] to probe
whether r2SCAN-L and OFR2 improve the r2SCAN de-
scription of intermetallic formation energies. All initial
geometries were taken from the Open Quantum Materi-
als Database (OQMD) [119–121]. Following Ref. [53],
geometries were relaxed, with all ionic degrees of free-
dom permitted to change (ISIF = 3), and with first-order
Methfessel-Paxton smearing of width 0.2 eV. After relax-
ation, total energies were determined using the tetrahe-
dron method at fixed geometry. All ions were initialized
with a (ferromagnetic) magnetic moment of 3.5 µB. The
plane-wave cutoff was 600 eV, and the k-grid was deter-
mined as follows: for a fixed density of k-points κ (Å−3),
the spacing ∆k between adjacent k-points along each axis
(KSPACING tag) is

∆k =

( ∏3
i=1 |bi|

|a1 · (a2 × a3)|
1

κ

)1/3

, (68)

where ai and bi are the direct and reciprocal lattice
vectors, respectively, for the initial geometry. As in
Ref. [53], we used κ = 700 k-points/Å−3 and com-
puted ∆k from Eq. 68. For simplicity, we rounded ∆k
and iteratively decreased its value (if needed) to ensure
a uniformly-spaced grid with density of at least 700 k-
points/Å−3. For VPt2, we needed to manually determine
a grid with an equal number of k-points along each axis
to ensure that VASP produced a k-grid with the right
symmetry. Formation energies per atom ∆εf were com-
puted from total energies per primitive unit cell E as

follows: for compound Y =
∏M
i=1(Xi)xi

composed of M
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elements Xi with multiplicity xi as

∆εf =
1∑
i xi

[
E(Y )−

M∑
i=1

xi
Ni
E(Xi)

]
(69)

with Ni the number of ions in the unit cell for the pure
solid Xi. We have assumed one formula unit per primi-
tive cell for intermetallic compound Y .

Our results and those of Refs. [53, 54] are presented
in Table VIII. None of the DFAs considered here ac-
curately predict the formation energies of these solids,
however r2SCAN-L and OFR2 improve over SCAN and
r2SCAN. Although scalar relativistic effects are included
in the treatment of core electrons in the VASP pseudopo-
tentials, relativistic corrections (e.g., spin-orbit coupling)
for Hf, Os, and Pt may be needed here. Moreover, these
are uncommon alloys with little representation in the lit-
erature. Other experimental references for the forma-
tion enthalpies could benefit further analysis. A recent
QMC calculation [122] found the enthalpy of formation
for VPt2 to be −0.764± 0.050 eV/atom, in line with the
SCAN values here, but much larger than the experimen-
tal and OFR2 values. In that work, the spin-orbit effect
was found to reduce the magnitude of the formation en-
ergy of VPt2, by about 0.05 eV. We therefore find it likely
that the experimental reference values are unreliable.

While PBE and SCAN overestimate the magnitudes
of the intermetallic formation energies in comparison to
the experimental values in Table VIII, these DFAs under-
estimate this magnitude for Cu-Au intermetallics [126].
However, the Cu-Au formation energies have magnitudes
of 0.1 eV/atom at most, and SCAN underestimates them
only by about 0.03 eV/atom. Even better agreement
with experiment has been achieved by Ref. [126] in two
different ways: (1) by using standard hybrid functionals,
and (2) by using, for each element, a PBE GGA with its
gradient coefficients for exchange and correlation tuned
to the experimental lattice constant and bulk modulus
for that element. The latter approach is motivated by a
physical picture in which the correction to LSDA comes
mainly from the core-valence interaction, in agreement
with the analysis of Ref. [127].

The tests of intermetallic formation energies described
here and in Refs. [53, 54] test the ability of a DFA to pre-
dict the correct equilibrium structure, spin-densities, and
total energies for a solid and its constituents (or benefit
from a random cancellation of errors). Thus it is hard to
discern which aspect of this test a DFA fails. The subject
of density-driven and functional-driven errors [128] is a
useful framework for decomposing the various errors in
this kind of test. However, we cannot apply this metric
without having exact or nearly-exact spin-densities (and
geometries).

Systems with a strong sensitivity to perturbations in
the Kohn-Sham potential can exhibit density driven er-
rors [129]. Evaluating a semi-local DFA (GGA, meta-
GGA) on the Hartree-Fock density can often eliminate
density-driven errors in molecules, as has recently been

shown for SCAN applied to liquid water [43]. It is unclear
what an equivalent density-correction method would be
for solid-state calculations, as such a method would need
to produce a density with a realistic geometry. A mod-
ern periodic Hartree-Fock calculation of face-centered
cubic LiH [130] found an equilibrium lattice constant
a0 = 4.105 Å and bulk modulus B0 = 32.3 GPa, in
significant error of the zero-point corrected experimen-
tal values a0 = 3.979 Å and B0 = 40.1 GPa [131] (and
less accurate than the PBE, PBEsol, and SCAN values
reported in Ref. [131]). We are unaware of periodic
Hartree-Fock calculations for the equilibrium properties
of metallic solids.

G. Alkaline solids

As discussed in the Introduction, Ref. [51] demon-
strated that SCAN less accurately describes the equilib-
rium properties of the alkali metals Li, Na, K, Rb, and
Cs than PBE. It is therefore worth investigating if a LL-
MGGA remedies this behavior.

We note two interesting computational features of
LL-MGGAs. Reducing the plane-wave kinetic energy
cutoff can stabilize the calculations of isolated atoms.
Therefore, the calculations of cohesive energies reported
here use a cutoff of 600 eV for both the bulk sys-
tem and isolated atoms. The k-point density was un-
changed, and the energy convergence criteria were 10−6

eV for the bulk solid and 10−5 eV for the isolated
atom. The size of the computational cell for the iso-
lated atom was 14 × 14.1 × 14.2 Å3, and only the Γ
point was for k-space integrations. For atomic calcu-
lations, Gaussian smearing of the Fermi surface with
width 0.1 eV were used. Spin-symmetry was permit-
ted to break, and the energy was minimized directly
(ALGO=A, LSUBROT set to false). ALGO controls
the method used to minimize the total energy; ALGO
= A selects a preconditioned conjugate gradient algo-
rithm. The Hamiltonian is diagonalized in the occu-
pied and unoccupied subspaces using a perturbation-
theory-like method [102]; setting LSUBROT = False pre-
vents further optimization of the density matrix via uni-
tary transformations of the orbitals, as recommended
for semilocal DFAs. Convergence with a LL-MGGA is
generally more challenging for atomic systems, at least
within VASP at these higher computational settings.
Linear density mixing (AMIX=0.4, AMIX MAG=0.1,
BMIX=BMIX MAG=0.0001) was found to be helpful.
Beyond this, the input parameters remained the same
(ADDGRID set to false, etc.) as for the bulk solids.

The PBE pseudopotentials with s semi-core states
included in the valence pseudo-density (indicated with
a suffix “ sv”) appear to be less transferrable to LL-
MGGAs. Convergence for the isolated Li, Na, and Ba
atoms using s semi-core pseudopotentials was slow due to
charge sloshing. Thus, following the suggestion of Mej́ıa-
Rodŕıguez and Trickey [68], in this section, we have used
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∆εf
(eV/atom) Expt.

PBE,

Ref. [53]

SCAN,

Refs. [53, 54]

r2SCAN,

Ref. [54] LSDA PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2
HfOs −0.482± 0.052 -0.707 -0.874 -0.846 -0.724 -0.715 -0.708 -0.901 -0.847 -0.805 -0.743
ScPt −1.086± 0.056 -1.212 -1.473 -1.308 -1.233 -1.214 -1.204 -1.461 -1.301 -1.243 -1.193
VPt2 −0.386± 0.026 -0.555 -0.726 -0.601 -0.562 -0.548 -0.566 -0.712 -0.592 -0.524 -0.570

TABLE VIII. Formation enthalpies ∆εf, in eV/atom, of a few intermetallic elements. The DFT results are formation energies
and neglect the PV term in the enthalpy. The experimental formation enthalpy of HfOs is from Ref. [123]; experimental values
for ScPt and VPt2 are taken from Ref. [124]. Reference PBE values are taken from Ref. [53]. Reference SCAN values are
averages of those reported in Refs. [53] and [54]. Reference r2SCAN values are taken from Ref. [54]. The LSDA uses the
Perdew-Zunger parameterization [125] of the uniform electron gas correlation energy.

pseudopotentials without any suffix when possible. For a
few elements (K, Rb, Cs, Ca, Sr, and Ba), the s semi-core
pseudopotentials are the only ones available. However,
r2SCAN-L and OFR2 failed to converge within 10−5 eV
only for the Ba atom, with 500 self-consistency steps per-
mitted. As both converged to about 1×10−4 eV, we have
not excluded Ba from the test set.

Both r2SCAN-L and OFR2 found a double-minimum
in the energy per volume curve for Rb. We chose to
exclude data for the second, deeper minimum, which oc-
curred at a larger, unrealistic volume.

This section analyzes the “LC23” set, the LC20 set
augmented with three alkali metals, K, Rb, and Cs.
Moreover, given the reduced computational parameters,
this section is more likely to reflect real-world usage of
the DFAs than the benchmark calculations reported pre-
viously. Table IX reports error statistics in the equilib-
rium properties of the alkali metals. Tables XVI–XVIII
of Appendix E present the data for each individual solid
in the set.

From Table IX, OFR2 finds more accurate lattice
constants a0 and bulk moduli B0 for the alkalis than
SCAN, r2SCAN, or r2SCAN-L. The average errors of
the r2SCAN-L bulk moduli are 5 or 10 times larger than
those of the other DFAs in Table IX. However, all meta-
GGAs presented in Table IX yield similarly inaccurate
cohesive energies E0 for the alkalis. PBEsol appears to
be the best general choice for studies of alkali-containing
solids, however OFR2 should yield similar accuracy for
their structural properties.

Isolated atoms, which have negative chemical poten-
tials and thus turning surfaces in the Kohn-Sham poten-
tial, are thus poorly described by the gradient expan-
sions for exchange and correlation. Therefore, PBEsol
and OFR2, which likely predict realistic total energies
for the solids in LC23, do not predict realistic atomic
energies for those solids, and thus generally inaccurate
cohesive energies, as shown in Table XVIII of App. E.
Conversely, PBE and r2SCAN-L benefit from error can-
cellation between the total energies of the solids and their
atomic constituents, yielding generally more accurate co-
hesive energies. This observation excludes the cohesive
energies of insulators, where a cancellation of errors ben-
efits PBEsol and OFR2, but not PBE and r2SCAN-L.
Similar limitations do not apply to T-MGGAs like SCAN

and r2SCAN, except for the metallic systems emphasized
here.

H. Molecules

Within the quantum chemistry community, the AE6
set of six molecular atomization energies [132] is used
to rapidly estimate the performance of a DFA on a much
larger set of atomization energies. Geometries were taken
from the MGAE109 database [133]. Table X presents
the results of the AE6 set for r2SCAN, r2SCAN-L, and
OFR2.

These calculations were also performed in VASP. Each
atom or molecule was placed in an orthorhombic box of
dimensions 10 Å × 10.1 Å × 10.2 Å to sufficiently lower
the lattice symmetry and reduce interactions with image
cells. A plane-wave energy cutoff of 1000 eV was used.
Beyond this, all other computational parameters used for
the isolated atoms in Sec. IV G were unchanged.

From Table X, we see that r2SCAN-L broadly retains
the accuracy of r2SCAN for molecular systems. OFR2,
with a 11 kcal/mol mean absolute error (MAE) for AE6,
appears to be the “missing link” DFA between the GGA
level, with MAEs on the order of 20–40 kcal/mol, and the
T-MGGA level, with MAEs less than 10 kcal/mol. Con-
vergence with OFR2 for finite systems is generally more
challenging than with r2SCAN-L. Independent tests of
OFR2 [135] have confirmed our conclusions: r2SCAN-L is
faithful to the r2SCAN description of molecules, whereas
OFR2 is somewhat less accurate.

For an accurate description of solid state geometries
and magnetic properties, we recommend OFR2. To im-
prove its description of cohesive energies, which lie be-
tween those of PBEsol and r2SCAN-L in accuracy, one
might perform a non-self-consistent evaluation of the
r2SCAN or r2SCAN-L total energy using the (likely more
accurate) relaxed OFR2 geometry and density for a solid
as input. For an accurate description of finite systems,
we recommend r2SCAN-L at the LL-MGGA level. For
greater accuracy and general-purpose calculations of fi-
nite or extended systems, we recommend r2SCAN.
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PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

a0 ME (Å) 0.051 -0.017 0.084 0.111 -0.004 0.014
a0 MAE (Å) 0.061 0.019 0.095 0.114 0.055 0.039
B0 ME (GPa) -0.105 -0.056 -0.164 -0.329 2.481 0.008
B0 MAE (GPa) 0.446 0.340 0.467 0.360 3.639 0.760
E0 ME (eV/atom) -0.072 -0.005 -0.083 -0.092 -0.100 -0.099
E0 MAE (eV/atom) 0.072 0.022 0.083 0.092 0.100 0.099

TABLE IX. Error statistics in the equilibrium lattice constants a0, bulk moduli B0, and cohesive energies E0 for the alkali
metals Li, Na, K, Rb, and Cs. The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L
[68] and OFR2 LL-MGGAs are presented.

Molecule PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2
SiH4 313.64 322.92 328.54 322.07 321.43 320.35
SiO 195.93 204.09 191.06 186.81 188.03 186.46
S2 115.68 129.62 108.68 110.36 110.51 112.26
C3H4 727.09 751.97 703.40 702.50 700.24 686.80
C2H2O2 662.83 692.76 628.71 629.09 628.86 618.44
C4H8 1175.57 1221.27 1151.80 1147.71 1141.41 1126.86
ME LT03 14.57 36.55 1.48 -0.79 -2.14 -8.69
MAE LT03 17.49 36.55 3.83 3.69 5.08 12.22
ME HK12 15.21 37.19 2.12 -0.16 -1.50 -8.05
MAE HK12 18.86 37.75 3.80 3.65 3.93 11.06

TABLE X. Comparison of PBE [6], PBEsol [32], SCAN [20], r2SCAN [36], r2SCAN-L [68], and OFR2 atomization energies for
the AE6 set [132]. All values are in kcal/mol (1 eV ≈ 23.060548 kcal/mol). We report mean errors (MEs) and mean absolute
errors (MAEs) computed with respect to two sets of reference data: the original work of Ref. [132] (LT03), and the more recent
non-relativistic, frozen-core values from Table 4 of Ref. [134] (HK12). Given that the calculation in VASP is non-relativistic
with a frozen-core pseudopotential, these latter reference values appear to be most appropriate. Absolute total energies have
no physical meaning in a pseudopotential calculation, therefore we only report the energy differences here.

V. OUTLOOK: MACHINE LEARNING AND
KINETIC ENERGY DENSITY

Machine learning has already made leaps and bounds
in the construction of empirical DFAs. The work of Ref.
[3] suggests that the most sophisticated T-MGGAs have
essentially reached a fundamental limit of accuracy for
the meta-GGA level. The work of Ref. [4] built a local
hybrid-level DFA that approximately satisfies fractional
charge [113] and spin [136] exact constraints, heretofore
seldom satisfied.

Doubtless, machine learning techniques will be ap-
plied to the three-dimensional kinetic energy density. A
machine-learned model is important for practical pur-
poses, but excogitating the role of the parameters within
the model is nigh impossible. This section details a sim-
ple “human-learned” model (HLM) for the kinetic en-
ergy density, which can be instructive for future machine-
learning work. In particular, HLM shows how heavy
fitting can lead to wrong asymptotics and to numerical
instability.

As in our RPP model of τ (but without consideration
of the fourth-order gradient expansion), we will presume
that the exact (spin-unpolarized) τ can be represented as

an interpolation between exact limits,

τ(n, p, q) = τunif(n) [FW(p) + z(p, q)θ(z(p, q))] (70)

z(p, q) = FGE2(p, q)− FW(p) (71)

FW(p) =
5

3
p (72)

FGE2(p, q) = 1 +
20

9
q +

5

27
p (73)

We will model the function θ(z), which determines the
mixing between Weizsäcker and gradient expansion lim-
its. Moreover, θ(z) should permit extrapolation for arbi-
trary positive z, as suggested by Cancio and Redd [80].
Then for some of the appropriate norms considered here
– the neutral noble gas atoms Ne, Ar, Kr, and Xe, and
the jellium surfaces of bulk densities rs = 2, 3, 4, 5 – we
take a reference density and compute

θ(z) =
τ/τunif(n)− FW(p)

z(p, q)
. (74)

Since the right-hand side of Eq. 74 is not exactly a func-
tion of z, it is useful to bin the values of θ within a narrow
range of z.

The form selected for θ enforces three constraints: the
Weizsäcker lower bound, the uniform density limit, and
the second-order gradient expansion. A machine can
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FIG. 10. M -parameter mixing function θM (z) of Eq. 75
that determines the optimal mixing of Weizsäcker and second-
order gradient expansion kinetic energy densities. Acceptable
(pole-free and non-negative θ(z ≥ 0)) parameter sets M =
3, 4, 6,&11 are displayed. Solid points are the binned θ(z)
data taken from the appropriate norms: the neutral noble
gas atoms Ne, Ar, Kr, and Xe, and the jellium surfaces of
bulk densities rs = 2, 3, 4, 5.

learn these constraints approximately by penalizing their
violation, but cannot satisfy them by construction as a
human-designed model can. Because the “exact” θ(z) is
complicated, we need an expression which has sufficient
freedom for fitting. Consider the M -parameter HLM
model

θM (z) = z3 1 + b1z + b2z
2

1 +
∑M
i=1 ciz

i
Θ(z), (75)

where Θ(z ≥ 0) = 1 and Θ(z < 0) = 0, and the ci are fit
parameters. To recover the uniform density limit requires
θM (1) = 1; to recover the second-order gradient expan-
sion of τ requires θ′M (1) = 0. Enforcing these constraints
fixes the values of the bi

b1 = 3 +

M∑
i=1

(5− i)ci (76)

b2 =

M∑
i=1

ci − b1. (77)

It appears that θM (z � 1) ∼ b− a log z, for constants a
and b, however this model can approximately recover that
behavior. The minimum power of z in the numerator is
chosen to allow for sufficient smoothness of the exchange-
correlation potential for z ≈ 0.

We considered 2 ≤ M ≤ 20; for M ≥ 5, θM can be
bounded as z → ∞. A non-linear least-squares fit was
used to determine the ci. We discarded parameter sets
for which the denominator of θM had positive polyno-
mial roots or for which θM (z > 0) < 0. The possible
acceptable parameters found were for M = 3, 4, 6,&11,

r2SCAN SCAN
M RGA JS JC RGA JS JC

3 0.73 9.20 11.48 0.95 6.71 10.39
4 0.91 2.82 1.15 1.01 2.87 3.74
6 0.53 3.60 2.61 0.55 1.51 2.11

11 0.48 3.73 2.72 0.49 1.53 1.88
Exact τ 0.14 2.80 2.38 0.08 2.51 3.15

TABLE XI. Orbital free r2SCAN and SCAN appropriate
norm performance using the highly-parameterized mixing
function θ(FW − FGE2) of Eq. 75, compared to the orbital-
dependent variants (bottom row). Increasing the number
of parameters M generally improves the fidelity of the ap-
proximate τ , at the cost of more rapid oscillations. The
mean absolute percentage errors of the rare gas atom (RGA)
exchange-correlation energies, jellium surface (JS) exchange-
correlation surface formation energies, and jellium cluster
exchange-correlation surface formation energies are shown.

as shown in Fig. 10. Clearly, M = 3 or 4 do not rep-
resent reliable extrapolations for z → ∞. θ6 appears
to represent the most realistic, long-tailed extrapolation
for z → ∞, however θ11 more accurately captures the
apparent oscillations in θ(z).

Thus we emphasize the need for human decision in
highly-empirical DFA design. Both θ6 and θ11 deliver
similar performance for the appropriate norms, as shown
in Table XI, however θ6 is much smoother and is thus
likely more numerically stable. It is purely for reasons
of numeric stability that the HLM models have been de-
ferred to this section. While we do not present plots of
the r2SCAN + HL6 or HL11 Kohn-Sham potential for
the simple systems considered here, we have computed
them and determined they are wholly unrealistic.

VI. CONCLUSIONS

We developed a model Laplacian-level meta-GGA (LL-
MGGA) OFR2 that is an orbital-free or “deorbitalized”
variant of r2SCAN [36], in the tradition of Refs. [66–
68], but recovering the fourth-order gradient expansion
for exchange and the second-order gradient expansion for
correlation. Only α has been modified, although the rest
of r2SCAN could be re-optimized in future work. We ex-
tensively tested OFR2 against an existing deorbitaliza-
tion of r2SCAN, r2SCAN-L [68], which breaks the uni-
form density limit of r2SCAN.

OFR2 appears to improve upon r2SCAN for the lattice
constants of solids, matching or exceeding the accuracy
of SCAN. r2SCAN-L and OFR2 more accurately describe
transition-metal magnetism than r2SCAN, which pre-
dicts substantially larger magnetic moments than found
by experiment. OFR2 better describes the structural
properties of alkali metals than r2SCAN and r2SCAN-L,
but not their cohesive energies. We therefore recommend
OFR2 for an orbital-free description of solids and liquids
only, and particularly sp or sd metals. For best accuracy
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in molecules and non-metallic condensed matter, we con-
tinue to recommend SCAN and r2SCAN.

For an orbital-free description of molecules, we recom-
mend r2SCAN-L, which retains the accuracy of r2SCAN
for the AE6 set [132] of atomization energies. This con-
clusion was independently confirmed for a different set
of molecules [135]. OFR2, which targets properties of
metallic solids, bridges the gap between PBE GGA er-
rors (MAE ∼ 19 kcal/mol) and r2SCAN T-MGGA errors
(MAE ∼ 4 kcal/mol).

Like the SCAN [20] and TPSS [86] T-MGGAs, and
unlike r2SCAN, OFR2 recovers the fourth-order gradi-
ent expansion for the exchange energy. Thus OFR2 has
a correctly LSDA-like static linear density-response for
the uniform electron gas, which, along with its correct
description of slowly-varying densities and especially the
weaker nonlocality of OFR2, should bolster its accuracy
for metals.

Unlike chemistry, condensed matter physics must rely
on experimental reference values whose uncertainties can
be large or difficult to quantify. The smallest experi-
mental relative errors are probably those of lattice con-
stants from X-ray diffraction. Thus the high accuracy of
OFR2 lattice constants for metals is encouraging. Struc-
tural phase transitions are more challenging to DFAs
than lattice constants are [41], but good results have
been obtained [41] for semiconductors from SCAN. OFR2
might improve the critical pressures for transitions be-
tween metallic phases, especially for transition metals.

Obtaining highly-converged results with an LL-MGGA
is generally more challenging than with other semi-local
approximations. Some PBE pseudopotentials also ap-
pear to be less transferrable to LL-MGGAs than τ -meta-
GGAs (T-MGGAs). Mej́ıa-Rodŕıguez and Trickey [68]
found that GW potentials were less transferrable to LL-
MGGAs. LL-MGGAs might have a particular niche for
exploratory purposes: if benchmark-quality results are
not desired, these can often match or surpass the accu-
racy of their T-MGGA counterparts. Thus for computa-
tionally intensive tasks, such as mapping the phase dia-
gram of transition metals, an LL-MGGA could be used
to rapidly obtain a good starting guess for more sophis-

ticated approximations.
The new OFR2 “deorbitalizes” the r2SCAN meta-

GGA while preserving and even enhancing the r2SCAN
exact constraints on the slowly-varying limit (α ≈ 1,
p � 1, |q| � 1). Thus a comparison of OFR2 and
r2SCAN results for metals could reflect mainly the differ-
ence between the fully (if modestly) nonlocal argument
τ(r) and the semilocal argument ∇2n(r) in the approx-
imated exchange-correlation energy functional. Weak-
ening the nonlocality of r2SCAN seems to improve (in
comparison to experiment) the magnetic moments of the
transition metals, the monovacancy formation energy of
solid Pt, and the formation energies of intermetallics,
producing results that are not very different (in the cases
studied here) from those of the much less-sophisticated
PBEsol [32]. However, for molecules and insulating ma-
terials, accuracy should improve from PBEsol to OFR2
to r2SCAN.
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CODE AND DATA AVAILABILITY

The Python 3 and Fortran code used to fit the orbital
free r2SCAN is made freely available at the code repos-
itory [95]. Data files needed to run this code, general
purpose Fortran subroutines, and VASP subroutines are
included there as well. All data is hosted publicly (with-
out access restrictions) at Zenodo [137].
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Appendix A: Implementing the Laplacian in VASP

White and Bird [138] suggested a non-standard way to
compute the exchange-correlation potential on a grid of
M finite points R (minimum fast Fourier transform grid).
This robust method is used in many standard plane wave
codes, including VASP, and was used in our VASP cal-
culations. We outline the method below.

Their analysis was tailored to the specific case of peri-
odic boundary conditions, thus we define the reciprocal
lattice vectors G. Using Fourier series, we can write the
density variables as

n(r) =
∑
G

n(G)eiG·r (A1)

n(G) =
1

M

∑
R

n(R)e−iG·R (A2)

∇n(r) = i
∑
G

Gn(G)eiG·r (A3)

=
i

M

∑
G,R

Gn(R)eiG·(r−R)

∇2n(r) = −
∑
G

G2n(G)eiG·r (A4)

=
−1

M

∑
G,R

G2n(R)eiG·(r−R).

Now let the discrete Exc within a cell volume Ω be

Ẽxc =
Ω

M

∑
R

exc(n(R),∇n(R),∇2n(R)), (A5)

with exc = εxc n(R). One can approximate the variations

in Ẽxc using

δẼxc =
Ω

M

∑
R

dẼxc

dn(R)
δn(R) ≡

∑
R

ṽxc(R)δn(R), (A6)

then the discrete potential ṽxc is represented as

ṽxc(R) =
∂exc

∂n(R)
+
∑
R′

{
∂exc

∂∇n(R′)
· d(∇n(R′))

dn(R)
(A7)

+
∂exc

∂∇2n(R′)

d(∇2n(R′))

dn(R)

}
.

It’s now trivial to insert the Fourier series representations
of the total derivatives on the RHS of the last equation.
Note that the density gradient vector is never used in
PBE-like GGAs, thus we can replace the derivatives with
respect to ∇n by

∂

∂(∇n)
=
∇n
|∇n|

∂

∂|∇n|
. (A8)

The discrete potential then becomes

ṽxc(R) =
∂exc

∂n(R)
+

1

M

∑
G,R′

{
iG · ∇n(R′)

|∇n(R′)|
∂exc

∂|∇n(R′)|

−G2 ∂exc

∂∇2n(R′)

}
eiG·(R

′−R). (A9)

Supplemental Tables S7, S8, and S9 of Ref. [68] present
lattice constants, bulk moduli, and cohesive energies for
a variety of solids, computed with r2SCAN and r2SCAN-
L. As these tables include every solid in the LC23 set,
we can roughly validate our implementation of r2SCAN-
L. We use “roughly” here because not all computational
parameters are available for that work. Table XII shows
that the results of this work and Ref. [68] agree to
about 0.001 Å (r2SCAN) and 0.01 Å (r2SCAN-L) for
the lattice constants; to about 0.3 GPa (r2SCAN) and
1.4 GPa (r2SCAN-L) for the bulk moduli; and to about
0.06 eV/atom (r2SCAN) and 0.03 eV/atom (r2SCAN-L)
for the cohesive energies. This is reasonable agreement.
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Present work Ref. [68]
r2SCAN r2SCAN-L r2SCAN r2SCAN-L

a0 (Å)

ME 0.037 0.010 0.037 0.019
MAE 0.049 0.040 0.048 0.045
MD 0.000 -0.009
MAD 0.001 0.013

B0 (GPa)

ME 0.843 -3.284 0.692 -3.731
MAE 3.522 7.074 3.512 6.510
MD 0.151 0.447
MAD 0.258 1.403

E0

(eV/atom)

ME 0.032 -0.134 -0.022 -0.162
MAE 0.109 0.150 0.102 0.172
MD 0.053 0.028
MAD 0.057 0.032

TABLE XII. Comparison of the r2SCAN and r2SCAN-L LC23
equilibrium lattice constants a0 (Å), bulk moduli B0 (GPa),
and cohesive energies E0 (eV/atom) from this work and Ref.
[68]. Mean deviations (MDs) and mean absolute deviations
(MADs) between r2SCAN(-L) in this work and Ref. [68] are
also included.
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Appendix B: Restoring the fourth-order gradient expansion for exchange to r2SCAN

This section builds upon the derivation of r2SCAN presented in Ref. [62]. By construction, r2SCAN recovers the
exact second-order gradient expansion for exchange, but not the fourth-order terms. It will be shown in a forthcoming
work that r2SCAN severely overestimates the magnitude of the fourth-order gradient expansion coefficients. The exact
exchange enhancement factor has a fourth-order gradient expansion in p and q [11]

Fx = 1 +
10

81
p+

146

2025
q2 − 73

405
pq +O(|∇n|6). (B1)

Note that the coefficient of pq is known within some uncertainty, as is the coefficient of p2. We take the best estimates
from Ref. [11].

However, an orbital-free r2SCAN can be made to recover the right fourth-order gradient expansion for exchange.
This is accomplished by using different fourth-order terms in the gradient expansion of the approximate τ(p, q) than
those that appear in the gradient expansion of the exact τ [19]. To maintain the second-order gradient expansion
constraint of r2SCAN, we retain the correct second-order gradient expansion of τ ,

τ(p, q)

τ0
= 1 +

5

27
p+

20

9
q + bqqq

2 + bpqpq + bppp
2 +O(|∇n|6), (B2)

with fourth-order coefficients bqq, bpq, and bpp to be determined below. The iso-orbital indicator used in r2SCAN is
the numerically-stable

α =
τ − τW
τ0 + ητW

(B3)

where η = 0.001 [36]. It can be seen that the gradient expansion of the approximate α(p, q) is

α(p, q) = 1− 5(8 + 9η)

27
p+

20

9
q + bqqq

2 +

(
bpq −

100η

27

)
pq +

(
bpp +

200η

81
+

25η2

9

)
p2 +O(|∇n|6). (B4)

Note that the gradient expansion [19] of α using the exact τ cannot be expressed in terms of a polynomial in p and q.

We turn our attention to the enhancement factor F r2SCAN
x ,

F r2SCAN
x = {h1

x(p) + fx(α)[h0
x − h1

x]}gx(p). (B5)

In r2SCAN, gx(p) is a non-analytic smooth function, with Taylor series 1 + O(|∇n|∞). Therefore, gx(p) does not
contribute to the gradient expansion of the enhancement factor beyond order zero. Note that h0

x = 1 + k0, where
k0 = 0.174. As is done in Ref. [62] to construct the model r4SCAN functional, we seek a Taylor expansion of Fx in p
and α− 1, which approximately define the slowly-varying limit,

F r2SCAN
x =1 + h′x(0)p+

h′′x(0)

2
p2 +

[
f ′x(1)(α− 1) +

f ′′x (1)

2
(α− 1)2

] [
1 + k0 − 1− h′x(0)p− h′′x(0)

2
p2

]
(B6)

+O(|∇n|6).

Here, h′x(0) = dh1
x/dp(0), etc. Now, (α − 1) contains terms of both second- and fourth-order, whereas (α − 1)2 and

(α− 1)p contain terms of fourth- and sixth-order,

(α− 1)2 =
400

81
q2 − 200(8 + 9η)

243
pq +

25(8 + 9η)2

729
p2 +O(|∇n|6) (B7)

(α− 1)p =
20

9
pq − 5(8 + 9η)

27
p2 +O(|∇n|6). (B8)

The Taylor series of the enhancement factor can be simplified as

F r2SCAN
x = 1 + h′x(0)p+ k0f

′
x(1)(α− 1) +

h′′x(0)

2
p2 − h′x(0)f ′x(1)(α− 1)p+

k0

2
f ′′x (1)(α− 1)2 +O(|∇n|6). (B9)
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After inserting Eq. B4 for the gradient expansion of the approximate α, Eq. B7 for (α−1)2, and Eq. B8 for (α−1)p,
we find the OFR2 enhancement factor,

FOFR2
x = 1 +

[
h′x(0)− 5(8 + 9η)

27
k0f
′
x(1)

]
p+

20

9
k0f
′
x(1)q +

[
200

81
f ′′x (1) + f ′x(1)bqq

]
k0q

2 (B10)

−
[(

100η

27
− bpq

)
k0f
′
x(1) +

20

9
h′x(0)f ′x(1) +

100(8 + 9η)

243
k0f
′′
x (1)

]
pq

+

[
h′′x(0)

2
+

(
bpp +

200η

81
+

25η2

9

)
k0f
′
x(1) +

5(8 + 9η)

27
h′x(0)f ′x(1) +

25(8 + 9η)2

1458
k0f
′′
x (1)

]
p2 +O(|∇n|6).

As was shown in Ref. [62], the divergence theorem may be used to eliminate the term linear in q in favor of a term

linear in p plus a gauge function. Suppose an enhancement factor can separated as Fx = F̃x + n−4/3∇ ·Gx. Under
integration over a volume Ω with bounding surface bdy Ω, the exchange energy is

Ex[n] =

∫
Ω

Fxε
LDA
x d3r = Ax

∫
Ω

Fxn
4/3d3r = Ax

∫
Ω

F̃xn
4/3d3r +Ax

∫
bdy Ω

Gx · dS. (B11)

Provided that the integral of Gx vanishes at the bounding surface, Fx and the “integrated-by-parts” F̃x will yield the
same exchange energy and potential, but different exchange energy densities. Note that Ax = −3(3π2)1/3/(4π). As
is easily seen,

qn4/3 =
p

3
n4/3 +∇ ·

[
∇n

4(3π2)2/3n1/3

]
, (B12)

therefore the overall gauge function is n−4/3∇ · [n−1/3∇n]/[4(3π2)2/3]. Then the integrated-by-parts enhancement
factor is

F̃OFR2
x = 1 +

[
h′x(0)− 5(4 + 9η)

27
k0f
′
x(1)

]
p+

[
200

81
f ′′x (1) + f ′x(1)bqq

]
k0q

2 (B13)

−
[(

100η

27
− bpq

)
k0f
′
x(1) + h′x(0)f ′x(1)

20

9
+

100(8 + 9η)

243
k0f
′′
x (1)

]
pq

+

[
h′′x(0)

2
+

(
bpp +

200η

81
+

25η2

9

)
k0f
′
x(1) +

5(8 + 9η)

27
h′x(0)f ′x(1) +

25(8 + 9η)2

1458
k0f
′′
x (1)

]
p2 +O(|∇n|6).

Now equate the terms in Eq. B13 with the terms of matching order in Eq. B1 to constrain F̃OFR2
x to have the

correct fourth-order gradient expansion,

h′x(0)− 5(4 + 9η)

27
k0f
′
x(1) =

10

81
(B14)[

200

81
f ′′x (1) + f ′x(1)bqq

]
k0 =

146

2025
(B15)(

100η

27
− bpq

)
k0f
′
x(1) +

20

9
h′x(0)f ′x(1) +

100(8 + 9η)

243
k0f
′′
x (1) =

73

405
(B16)

h′′x(0)

2
+

(
bpp +

200η

81
+

25η2

9

)
k0f
′
x(1) +

5(8 + 9η)

27
h′x(0)f ′x(1) +

25(8 + 9η)2

1458
k0f
′′
x (1) = 0. (B17)

By construction, in r2SCAN, h′x(0) is constrained to satisfy Eq. B14. Therefore we need only solve for the bi,

bqq =

[
146

2025k0
− 200

81
f ′′x (1)

]
1

f ′x(1)
≈ 1.8010191875490722 (B18)

bpq =
1

k0f ′x(1)

[
h′x(0)f ′x(1)

20

9
+

100(8 + 9η)

243
k0f
′′
x (1)− 73

405

]
+

100η

27
≈ −1.850497151349339 (B19)

bpp = − 1

k0f ′x(1)

[
h′′x(0)

2
+

5(8 + 9η)

27
h′x(0)f ′x(1) +

25(8 + 9η)2

1458
k0f
′′
x (1)

]
− 200η

81
− 25η2

9
≈ 0.974002499350257. (B20)
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In r2SCAN [36], the interpolation function fx is a piecewise function, but is a polynomial for 0 ≤ α ≤ 2.5,

fx(0 ≤ α ≤ 2.5) =

7∑
i=0

cxiα
i (B21)

f ′x(1) =

7∑
i=1

icxi ≈ −0.9353000875519996 (B22)

f ′′x (1) =

7∑
i=2

i(i− 1)cxi ≈ 0.8500359204920018, (B23)

with the coefficients cxi taken from rSCAN [75]. The h1
x function is unique to r2SCAN,

h1
x(p) = 1 + k1 − k1[1 + x(p)/k1]−1 (B24)

x(p) =

{
5(4 + 9η)

27
k0f
′
x(1) exp[−p2/d4

p2] +
10

81

}
p, (B25)

therefore

h′x(0) =
5(4 + 9η)

27
k0f
′
x(1) +

10

81
≈ 0.0026357640358089796 (B26)

h′′x(0) = −2h′x(0)2

k1
≈ −0.00021376160161427815. (B27)

It should be noted that the fourth-order terms in τ(p, q) are positive semi-definite, as they can be written in the
form

bqqq
2 + bpqpq + bppp

2 =

(√
bqqq +

bpq

2
√
bqq

p

)2

+

(
bpp −

b2pq
4bqq

)
p2,

and bpp − b2pq/(4bqq) > 0.

Appendix C: Laplacian-dependent stress tensor

For practical calculations, the exchange-correlation stress tensor, Σijxc, defined as [139]

Σijxc =

∫
Ω

n(r)rj
∂vxc

∂ri
d3r, (C1)

is greatly useful. Here, the system volume is Ω. We take r1 = x, r2 = y, and r3 = z. Thus the exchange-correlation
stress density,

σijxc = n(r)rj
∂vxc

∂ri
, (C2)

is only defined up to a certain gauge, like the exchange-correlation energy density exc. The gauge can be chosen up to
the curl of a tensor, as the divergence of this tensor must yield the force on the system due to the exchange-correlation
potential [140]. An overall choice of sign corresponds to consideration of internal or external stresses (for example,
VASP appears to use the opposite sign convention as Eq. C2). Moreover, the stress tensor and its density should be
symmetric.

While Eq. C1 is well-defined in a finite system, the term linear in rj makes this intractable in an extended system.
Following Ref. [139], we therefore take the system volume Ω to be finite, and seek an expression for σijxc that is
independent of the boundary conditions. The latter expression will be well-defined as the thermodynamic average in
an extended system. Consider that

σijxc =
∂

∂ri
(nrjvxc)− vxcnδij − vxcrj

∂n

∂ri
, (C3)
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where δij = 1 if i = j and 0 if i 6= j is the Kronecker delta. In a finite system, the integral of the total derivative
will vanish, as it can be evaluated on a bounding surface at infinity. Thus we will collect all terms that involve total
derivatives and use those as a choice of gauge.

Suppose that an exchange-correlation functional depends upon n, |∇n|, and ∇2n, and further that exc and vxc are
the exchange-correlation energy density and potential, respectively,

Exc =

∫
exc(n, |∇n|,∇2n)d3r (C4)

vxc =
∂exc

∂n
− ∂

∂rk

[
∂exc

∂(∂kn)

]
+

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
. (C5)

We use the Einstein or summation convention, wherein repeated indices imply summation,

∂

∂rk

∂exc

∂(∂kn)
≡

3∑
k=1

∂

∂rk

∂exc

∂(∂kn)
,

and the shorthand ∂kn ≡ ∂n/∂rk. Then

σijxc = −vxcnδij −
[
∂exc

∂n
− ∂

∂rk

[
∂exc

∂(∂kn)

]
+

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)]
rj
∂n

∂ri
+

∂

∂ri
(nrjvxc) . (C6)

We can express the gradient of exc as

∂exc

∂ri
=
∂exc

∂n

∂n

∂ri
+

∂exc

∂(∂kn)

∂2n

∂rk∂ri
+

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
, (C7)

and thus replace

σijxc = −vxcnδij − rj
∂exc

∂ri
+ rj

∂exc

∂(∂kn)

∂2n

∂rk∂ri
+ rj

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
+ rj

∂n

∂ri

∂

∂rk

[
∂exc

∂(∂kn)

]
− rj

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
+

∂

∂ri
(nrjvxc)

= (exc − vxcn) δij + rj
∂exc

∂(∂kn)

∂2n

∂rk∂ri
+ rj

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
+ rj

∂n

∂ri

∂

∂rk

[
∂exc

∂(∂kn)

]
− rj

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
+

∂

∂ri
(nrjvxc − rjexc) . (C8)

Rearranging the term

rj
∂exc

∂(∂kn)

∂2n

∂rk∂ri
=

∂

∂rk

[
rj
∂n

∂ri

∂exc

∂(∂kn)

]
− δik

∂n

∂ri

∂exc

∂(∂kn)
− rj

∂n

∂ri

∂

∂rk

[
∂exc

∂(∂kn)

]
(C9)

shows that it partly cancels with another term in Eq. C8,

σijxc = (exc − vxcn) δij −
∂n

∂ri

∂exc

∂(∂jn)
+ rj

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri

− rj
∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
+

∂

∂ri
(nrjvxc − rjexc) +

∂

∂rk

[
rj

∂exc

∂(∂kn)

∂n

∂ri

]
. (C10)

Now, assuming that ∂n/∂rk has equal mixed partials,

∂3n

∂rk∂rk∂ri
=

∂3n

∂rk∂ri∂rk
,
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we rearrange

rj
∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
=

∂

∂rk

[
rj
∂exc

∂∇2n

∂2n

∂rk∂ri

]
− δjk

∂exc

∂∇2n

∂2n

∂rk∂ri
− rj

∂2n

∂rk∂ri

∂

∂rk

(
∂exc

∂∇2n

)
=

∂

∂rk

[
rj
∂exc

∂∇2n

∂2n

∂rk∂ri

]
− ∂exc

∂∇2n

∂2n

∂ri∂rj
− ∂

∂rk

[
rj
∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
+ δjk

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)
+ rj

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
=

∂

∂rk

[
rj
∂exc

∂∇2n

∂2n

∂rk∂ri
− rj

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
+

∂

∂rj

[
∂n

∂ri

∂exc

∂∇2n

]
− 2

∂exc

∂∇2n

∂2n

∂ri∂rj

+ rj
∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
. (C11)

Inserting this latter equality into Eq. C10 shows further cancellation

σijxc = (exc − vxcn) δij −
∂exc

∂(∂jn)

∂n

∂ri
− 2

∂exc

∂∇2n

∂2n

∂ri∂rj
+

∂

∂rj

[
∂n

∂ri

∂exc

∂∇2n

]
+

∂

∂ri
(nrjvxc − rjexc) +

∂

∂rk

[
rj
∂n

∂ri

∂exc

∂(∂kn)

]
+

∂

∂rk

[
rj
∂exc

∂∇2n

∂2n

∂rk∂ri
− rj

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
. (C12)

Let

σijxc = σ̃ijxc + Gijxc (C13)

σ̃ijxc = (exc − vxcn) δij −
∂n

∂ri

∂exc

∂(∂jn)
− 2

∂exc

∂∇2n

∂2n

∂ri∂rj
(C14)

Gijxc =
∂

∂rj

[
∂n

∂ri

∂exc

∂∇2n

]
+

∂

∂ri
(nrjvxc − rjexc) +

∂

∂rk

[
rj

∂exc

∂(∂kn)

∂n

∂ri

]
+

∂

∂rk

[
rj
∂exc

∂∇2n

∂2n

∂rk∂ri
− rj

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
. (C15)

The total stress due to the volume integral of σijxc and its integrated-by-parts counterpart σ̃ijxc will be the same provided∫
Ω

Gijxcd
3r = 0, (C16)

again in a finite system. Looking term by term, this requires that the factors multiplying ri in Gijxc vanish faster than
1/r. As the density decays exponentially as r →∞ [141], we can safely assume that the integral of Gijxc vanishes in a
finite system.

As a final note of simplification, modern DFAs tend not to depend upon the direction of the density gradient, only
its magnitude,

∂exc

∂(∂jn)
=

∂exc

∂|∇n|
∂

∂(∂jn)
[(∂kn)(∂kn)]

1/2
=

1

|∇n|
∂n

∂rj

∂exc

∂|∇n|
, (C17)

and thus the stress tensor density σ̃ijxc appropriate for extended systems is

σ̃ijxc = (exc − vxcn) δij −
1

|∇n|
∂n

∂ri

∂n

∂rj

∂exc

∂|∇n|
− 2

∂exc

∂∇2n

∂2n

∂ri∂rj
, (C18)

and the stress tensor is Σijxc =
∫
σ̃ijxcd

3r.
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Appendix D: Full LC20 data

Solid
(structure)

Reference

(Å)

PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 3.451 -0.018 -0.022 0.024 -0.039 -0.012
Na (bcc) 4.207 -0.036 -0.012 0.007 -0.039 -0.056
Ca (fcc) 5.555 -0.095 -0.003 0.023 -0.044 -0.046
Sr (fcc) 6.042 -0.129 0.041 0.061 0.015 -0.023
Ba (bcc) 5.004 -0.110 0.046 0.073 0.069 -0.006
Al (fcc) 4.019 -0.004 -0.014 -0.032 -0.046 -0.029
Cu (fcc) 3.595 -0.026 -0.029 -0.013 0.017 -0.028
Rh (fcc) 3.793 -0.013 -0.006 0.012 0.037 -0.006
Pd (fcc) 3.876 -0.003 0.018 0.037 0.062 0.006
Ag (fcc) 4.063 -0.011 0.021 0.044 0.076 0.002
C (ds) 3.555 0.001 -0.000 0.007 0.014 0.023
SiC (zb) 4.348 0.011 0.004 0.007 0.008 0.022
Si (ds) 5.422 0.014 0.006 0.018 0.001 0.009
Ge (ds) 5.644 0.031 0.022 0.035 0.057 0.014
GaAs (zb) 5.641 0.023 0.019 0.028 0.048 0.003
LiF (rs) 3.974 0.035 -0.005 0.010 0.004 0.002
LiCl (rs) 5.072 -0.008 0.009 0.016 -0.002 -0.021
NaF (rs) 4.57 0.066 -0.015 0.011 0.016 0.020
NaCl (rs) 5.565 0.041 -0.002 0.026 0.005 -0.022
MgO (rs) 4.188 0.023 -0.002 0.008 0.004 0.003
ME (metals) -0.044 0.004 0.024 0.011 -0.020
MAE (metals) 0.044 0.021 0.033 0.044 0.021
ME (insulators) 0.024 0.004 0.017 0.016 0.005
MAE (insulators) 0.025 0.008 0.017 0.016 0.014
ME (total) -0.010 0.004 0.020 0.013 -0.007
MAE (total) 0.035 0.015 0.025 0.030 0.018

TABLE XIII. Relative errors (aapprox0 − aref.0 ) for the LC20 test set [107] of 20 cubic lattice constants, all in Å. Reference
experimental lattice constants (with zero-point vibration effects removed) are taken from Ref. [109]. We include mean absolute
(MAE) and mean errors (ME). The structures considered are face-centered cubic (fcc), body-centered cubic (bcc), cubic diamond
structure (ds), rock-salt (rs), and zinc-blende (zb). OFR2 exceeds the accuracy of the parent meta-GGA r2SCAN overall and
for the metallic and insulating subsets of LC20.
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Solid
(structure)

Reference
(GPa)

PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 13.1 0.619 -1.471 -4.659 -4.143 -1.461
Na (bcc) 7.9 0.021 0.683 0.254 1.546 -0.480
Ca (fcc) 15.9 2.084 2.141 1.959 3.237 3.190
Sr (fcc) 12.0 0.397 -0.739 -0.627 0.019 0.269
Ba (bcc) 10.6 -1.161 -2.062 -2.051 -1.001 -1.265
Al (fcc) 77.1 4.995 1.611 15.956 20.322 14.243
Cu (fcc) 144.3 20.498 24.233 15.450 -0.281 24.019
Rh (fcc) 277.1 19.283 15.178 4.888 -20.918 14.439
Pd (fcc) 187.2 17.506 8.133 -0.978 -19.524 11.245
Ag (fcc) 105.7 12.824 4.225 -2.764 -12.636 6.744
C (ds) 454.7 -5.144 3.611 -5.483 -21.214 -28.634
SiC (zb) 229.1 -8.101 -3.061 -2.166 -9.657 -11.991
Si (ds) 101.3 -7.744 -1.713 -4.034 -5.194 -6.490
Ge (ds) 79.4 -11.809 -8.053 -8.147 -17.672 -8.620
GaAs (zb) 76.7 -7.721 -4.294 -4.104 -30.596 -3.777
LiF (rs) 76.3 -2.860 7.068 3.965 4.592 5.766
LiCl (rs) 38.7 -3.517 1.040 -0.413 -3.648 -3.061
NaF (rs) 53.1 -4.571 7.039 2.988 2.640 3.033
NaCl (rs) 27.6 -1.714 0.763 -0.103 0.791 2.324
MgO (rs) 169.8 -9.361 2.552 0.801 0.774 -0.966
ME (metals) 7.707 5.193 2.743 -3.338 7.094
MAE (metals) 7.939 6.048 4.959 8.363 7.735
ME (insulators) -6.254 0.495 -1.669 -7.918 -5.241
MAE (insulators) 6.254 3.919 3.220 9.678 7.466
ME (total) 0.726 2.844 0.537 -5.628 0.926
MAE (total) 7.096 4.983 4.090 9.020 7.601

TABLE XIV. Relative errors (Bapprox
0 − Bref.

0 ) for the LC20 test set [107] of bulk moduli for 20 cubic solids, all in GPa (1
eV/Å3 ≈ 160.2176634 GPa). Reference experimental bulk moduli (with zero-point vibration effects removed) are taken from
Ref. [131]. It should be noted that the r2SCAN and r2SCAN-L values presented here and in Ref. [68] agree to within a few
GPa for each solid, generally. In a few cases, like Ge and GaAs for r2SCAN-L or NaCl for r2SCAN and r2SCAN-L, agreement
is quite poor. We attribute this to the different pseudopotentials used: Ref. [68] used “no-suffix” pseudopotentials, whereas we
used the recommended pseudopotentials from VASP. In these cases, the Ge d (which treats d-semicore states as valence states),
Ga d, and Na pv (which treats p-semicore states as valence states) pseudopotentials might give very different behaviors than
their no-suffix counterparts (which treat fewer electrons as valence electrons).
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Solid (struc) PBEsol r2SCAN r2SCAN-L OFR2
Li (bcc) 3.9698× 10−3 9.1842× 10−3 1.5553× 10−2 −9.6238× 10−3

Na (bcc) 9.8549× 10−4 7.0530× 10−4 4.1485× 10−3 1.1015× 10−2

Ca (fcc) 2.5486× 10−3 2.9326× 10−3 1.5698× 10−2 1.6111× 10−2

Sr (fcc) −1.2412× 10−2 1.2689× 10−3 2.5362× 10−2 6.6702× 10−3

Ba (bcc) 2.5548× 10−4 1.0728× 10−3 5.9928× 10−2 1.4873× 10−2

Al (fcc) 6.1313× 10−6 −7.9749× 10−4 2.6118× 10−3 3.0966× 10−3

Cu (fcc) 3.0698× 10−4 9.6047× 10−4 3.5296× 10−3 1.4137× 10−3

Rh (fcc) 2.9099× 10−4 3.6044× 10−5 3.8564× 10−4 3.7767× 10−4

Pd (fcc) −3.3150× 10−4 −6.9784× 10−4 −7.5960× 10−4 −3.4265× 10−4

Ag (fcc) 5.6017× 10−4 1.2080× 10−4 1.2583× 10−4 5.0807× 10−4

C (ds) 7.3743× 10−4 9.5259× 10−4 8.4424× 10−4 2.6446× 10−3

SiC (zb) 6.5009× 10−4 6.9223× 10−4 1.5169× 10−3 2.2265× 10−3

Si (ds) 1.5047× 10−4 1.8607× 10−4 −9.5398× 10−4 3.3177× 10−3

Ge (ds) 4.8177× 10−4 1.7996× 10−3 1.9719× 10−3 3.7134× 10−3

GaAs (zb) −1.9404× 10−4 −3.2999× 10−4 1.0211× 10−2 3.0868× 10−3

LiF (rs) 5.7602× 10−3 2.0001× 10−3 −2.7121× 10−3 7.1041× 10−4

LiCl (rs) 1.6706× 10−3 −1.0409× 10−3 −4.9830× 10−3 −6.1942× 10−4

NaF (rs) 6.0002× 10−3 1.7042× 10−3 3.5240× 10−3 8.9884× 10−3

NaCl (rs) 1.6417× 10−3 −6.9238× 10−3 6.5536× 10−3 1.8502× 10−3

MgO (rs) 1.3037× 10−3 1.1726× 10−3 7.7154× 10−5 1.9402× 10−3

MD 7.1911× 10−4 7.4993× 10−4 7.1316× 10−3 3.5979× 10−3

MAD 2.0129× 10−3 1.7289× 10−3 8.0725× 10−3 4.6564× 10−3

TABLE XV. Comparison of the LC20 cubic lattice-constant differences found by fitting (EOS) to the SJEOS and by mini-
mization of the stress tensor (ST) using Eq. C18. The deviations are aEOS

0 − aST0 ; mean deviations (MDs) and mean absolute
deviations (MADs) are also presented, in Å.
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Appendix E: Full LC23 data

Solid (structure) Reference

(Å)

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 3.451 -0.012 -0.008 0.018 0.029 -0.021 0.010
Na (bcc) 4.207 -0.014 -0.038 -0.026 -0.007 -0.083 -0.057
K (bcc) 5.211 0.072 0.004 0.111 0.139 -0.042 -0.006
Rb (bcc) 5.58 0.088 -0.012 0.132 0.166 0.025 0.054
Cs (bcc) 6.043 0.119 -0.032 0.186 0.228 0.103 0.069
Ca (fcc) 5.555 -0.024 -0.095 -0.005 0.024 -0.049 -0.046
Sr (fcc) 6.042 -0.020 -0.129 0.042 0.062 0.007 -0.018
Ba (bcc) 5.004 0.026 -0.110 0.045 0.073 0.055 0.000
Al (fcc) 4.019 0.021 -0.004 -0.014 -0.032 -0.046 -0.029
Cu (fcc) 3.595 0.040 -0.026 -0.027 -0.013 0.014 -0.028
Rh (fcc) 3.793 0.031 -0.018 -0.014 0.011 0.031 -0.010
Pd (fcc) 3.876 0.064 -0.003 0.018 0.037 0.062 0.005
Ag (fcc) 4.063 0.084 -0.011 0.021 0.044 0.076 0.002
C (ds) 3.555 0.018 0.002 0.001 0.008 0.015 0.024
SiC (zb) 4.348 0.032 0.011 0.004 0.007 0.008 0.023
Si (ds) 5.422 0.047 0.014 0.005 0.018 0.004 0.005
Ge (ds) 5.644 0.138 0.057 0.040 0.037 0.061 0.039
GaAs (zb) 5.641 0.121 0.043 0.024 0.031 0.056 0.024
LiF (rs) 3.974 0.099 0.042 0.005 0.022 0.039 0.043
LiCl (rs) 5.072 0.081 -0.002 0.021 0.039 0.006 -0.003
NaF (rs) 4.57 0.062 -0.014 -0.091 -0.067 -0.056 -0.042
NaCl (rs) 5.565 0.090 -0.005 -0.047 -0.019 -0.047 -0.058
MgO (rs) 4.188 0.060 0.023 -0.002 0.008 0.009 0.006
ME (metals) 0.037 -0.037 0.037 0.058 0.010 -0.004
MAE (metals) 0.047 0.038 0.051 0.066 0.047 0.026
ME (alkalis) 0.051 -0.017 0.084 0.111 -0.004 0.014
MAE (alkalis) 0.061 0.019 0.095 0.114 0.055 0.039
ME (insulators) 0.075 0.017 -0.004 0.008 0.009 0.006
MAE (insulators) 0.075 0.021 0.024 0.026 0.030 0.027
ME (total) 0.053 -0.013 0.019 0.037 0.010 0.000
MAE (total) 0.059 0.031 0.039 0.049 0.040 0.026
ME (LC20) 0.047 -0.014 0.001 0.016 0.007 -0.005
MAE (LC20) 0.054 0.033 0.024 0.029 0.037 0.024

TABLE XVI. Relative errors in the equilibrium lattice constants a0 (in Å) for the LC23 set (LC20 augmented with K, Rb, and
Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs
are presented. Reference experimental lattice constants (with zero-point vibration effects removed) are taken from Ref. [109],
except for Rb, which is taken from [131]. LC20 error statistics are also reported to demonstrate the level of convergence with
respect to the benchmark results presented in Table XIII.
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Solid (structure) Reference
(GPa)

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 13.1 0.839 0.583 0.596 0.013 1.239 0.045
Na (bcc) 7.9 0.014 0.125 0.163 0.065 -2.894 -0.671
K (bcc) 3.8 -0.207 -0.077 -0.349 -0.360 11.257 1.370
Rb (bcc) 3.6 -0.821 -0.648 -0.905 -0.963 2.295 -1.210
Cs (bcc) 2.3 -0.348 -0.265 -0.324 -0.400 0.509 0.506
Ca (fcc) 15.9 1.327 2.084 2.100 1.879 3.302 3.089
Sr (fcc) 12.0 -0.689 0.399 -0.745 -0.615 -0.108 0.038
Ba (bcc) 10.6 -1.761 -1.162 -2.070 -2.055 -3.387 -1.543
Al (fcc) 77.1 0.260 4.965 1.574 15.934 13.496 11.678
Cu (fcc) 144.3 -6.910 20.643 17.327 16.028 3.719 23.695
Rh (fcc) 277.1 -18.422 21.063 17.606 4.758 -20.703 14.192
Pd (fcc) 187.2 -18.081 17.501 8.447 -0.768 -18.533 11.649
Ag (fcc) 105.7 -16.360 12.857 3.767 -2.716 -14.355 6.616
C (ds) 454.7 -19.906 -3.552 3.901 -3.551 -19.449 -24.790
SiC (zb) 229.1 -16.873 -8.254 -2.853 -2.359 -10.102 -13.234
Si (ds) 101.3 -12.494 -7.742 -1.521 -4.008 -6.276 -6.069
Ge (ds) 79.4 -20.223 -11.949 -7.579 -6.319 -11.531 -8.730
GaAs (zb) 76.7 -14.665 -6.497 -1.881 -2.929 -8.244 -3.676
LiF (rs) 76.3 -8.886 -3.567 3.680 2.138 -0.878 -7.408
LiCl (rs) 38.7 -6.865 -3.591 -2.399 -3.768 -1.930 -1.460
NaF (rs) 53.1 -5.934 -0.959 9.802 6.859 5.564 5.555
NaCl (rs) 27.6 -3.345 -0.746 2.736 1.551 2.196 3.204
MgO (rs) 169.8 -17.938 -9.140 2.450 0.967 -0.729 -0.859
ME (metals) -4.704 6.005 3.630 2.369 -1.859 5.343
MAE (metals) 5.080 6.336 4.306 3.581 7.369 5.869
ME (alkalis) -0.105 -0.056 -0.164 -0.329 2.481 0.008
MAE (alkalis) 0.446 0.340 0.467 0.360 3.639 0.760
ME (insulators) -12.713 -5.600 0.634 -1.142 -5.138 -5.747
MAE (insulators) 12.713 5.600 3.880 3.445 6.690 7.498
ME (total) -8.186 0.960 2.327 0.843 -3.284 0.521
MAE (total) 8.399 6.016 4.121 3.522 7.074 6.578
ME (LC20) -9.346 1.153 2.755 1.055 -4.480 0.566
MAE (LC20) 9.590 6.869 4.660 3.964 7.432 7.410

TABLE XVII. Relative errors in the equilibrium bulk moduli B0 (in GPa) for the LC23 set (LC20 augmented with K, Rb, and
Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs
are presented. Reference experimental bulk moduli (with zero-point vibration effects removed) are taken from Ref. [131]. LC20
error statistics are also reported to demonstrate the level of convergence with respect to the benchmark results presented in
Table XIV.



35

Solid (structure) Reference
(eV/atom)

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 1.67 -0.065 0.005 -0.105 -0.096 -0.060 -0.102
Na (bcc) 1.12 -0.033 0.038 -0.018 -0.031 -0.056 -0.050
K (bcc) 0.94 -0.073 -0.011 -0.074 -0.089 -0.100 -0.090
Rb (bcc) 0.86 -0.088 -0.025 -0.097 -0.111 -0.131 -0.101
Cs (bcc) 0.81 -0.099 -0.032 -0.121 -0.131 -0.154 -0.149
Ca (fcc) 1.87 0.032 0.233 0.206 0.201 0.181 0.174
Sr (fcc) 1.73 -0.122 0.077 0.078 0.060 0.001 0.078
Ba (bcc) 1.91 -0.035 0.203 0.117 0.077 -0.006 0.079
Al (fcc) 3.43 0.080 0.432 0.170 0.172 -0.006 0.016
Cu (fcc) 3.51 -0.025 0.522 0.375 0.350 -0.018 0.385
Rh (fcc) 5.78 -0.021 0.933 0.072 0.052 -0.335 0.462
Pd (fcc) 3.93 -0.189 0.541 0.437 0.236 -0.244 0.363
Ag (fcc) 2.96 -0.441 0.118 -0.075 -0.082 -0.450 -0.037
C (ds) 7.55 0.264 0.763 -0.051 -0.090 -0.196 -0.186
SiC (zb) 6.48 -0.012 0.411 -0.037 0.046 -0.203 -0.218
Si (ds) 4.68 -0.100 0.246 0.029 0.190 -0.084 -0.092
Ge (ds) 3.89 -0.180 0.211 0.246 0.133 -0.314 0.042
GaAs (zb) 3.34 -0.158 0.233 0.029 -0.016 -0.284 0.013
LiF (rs) 4.46 -0.023 0.085 -0.066 -0.065 -0.171 -0.271
LiCl (rs) 3.59 -0.189 -0.056 -0.102 -0.121 -0.179 -0.246
NaF (rs) 3.97 0.027 0.128 0.041 0.044 -0.074 -0.169
NaCl (rs) 3.34 -0.181 -0.071 -0.041 -0.056 -0.136 -0.205
MgO (rs) 5.2 -0.196 0.134 0.062 0.055 -0.060 -0.182
ME (metals) -0.083 0.233 0.074 0.047 -0.106 0.079
MAE (metals) 0.100 0.244 0.150 0.130 0.134 0.160
ME (alkalis) -0.072 -0.005 -0.083 -0.092 -0.100 -0.099
MAE (alkalis) 0.072 0.022 0.083 0.092 0.100 0.099
ME (insulators) -0.075 0.208 0.011 0.012 -0.170 -0.152
MAE (insulators) 0.133 0.234 0.070 0.082 0.170 0.163
ME (total) -0.079 0.222 0.047 0.032 -0.134 -0.021
MAE (total) 0.115 0.239 0.115 0.109 0.150 0.161
ME (LC20) -0.078 0.259 0.068 0.053 -0.135 -0.007
MAE (LC20) 0.119 0.272 0.118 0.109 0.153 0.169

TABLE XVIII. Relative errors in the equilibrium cohesive energies E0 (in eV/atom) for the LC23 set (LC20 augmented with
K, Rb, and Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2
LL-MGGAs are presented. Reference experimental cohesive energies (with zero-point vibration effects removed) are taken from
Ref. [131]. LC20 error statistics are also reported.
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