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We demonstrate the gradual shift from scale-free intermittent 

microplasticity to a scale-dependent behavior via the introduction of a variety 

of microstructural features within the Al-Cu binary alloy system. As long as 

the obstacles to dislocation motion remain shearable, the statistics of 

intermittent microplasticity has fat-tailed contributions. First the introduction 

of incoherent precipitates leads to a complete transition from scale-free 

power-law scaling to an exponential and scale-dependent distribution. These 

results demonstrate how non-Gaussian interactions survive across different 

microstructures and suggest further that characteristic microstructural length 

scales and obstacle pinning strengths are of secondary importance for the 

intermittency statistics as long as dislocations can shear their local 

environment.  
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I. Introduction 

 

That plastic flow of crystals can proceed both smoothly and intermittently is a long-known 

realization in materials science and materials physics. Almost hundred years ago, when the 

foundations for today’s crystal plasticity were laid by Orowan, Becker, Valouch, Schmid, and 

many others, it was already recognized that pure single crystals can, under certain conditions, 

exhibit an overall flow response that was composed of smooth continuous stress-strain segments, 

intermixed with abrupt stochastic strain jumps [1-3]. This bimodal mechanical response 

originates from strain localization where, in addition to homogeneous flow, large plastic events 

intermittently occur and lead to discrete plastic strain events. Despite the coexistence of smooth 

and intermittent plasticity in one and the same materials, approaches that homogenize plastic 

flow were successfully developed and are still used today. A prominent and simple example is 

the Orowan equation, �̇� = 𝑏𝜌�̅�, where �̅� and 𝜌 are related to average quantities that implicitly 

assume some Gaussian statistics over a large representative volume element, or simply the tested 

material. Exceptions to the norm of homogenous plastic (or viscous flow [4]), of pure metals 

have sporadically been reported in the literature, where either remarkable instrumentation with 

very high strain-resolution was used [5], or sensitive acoustic emission methods [6] revealed a 

fundamentally intermittent dislocation process that must underly the stochastic strain increments 

or pulse-energy excursions.  

 

Today, the spatiotemporal nature of intermittent plastic flow is an established concept and in 

fact seen in a variety of bulk-scale experiments [7-9], and essentially the norm in small-scale 

mechanical testing [10-14]. Progress in understanding the intermittent rearrangement of the 

mediating dislocation network was mainly made via a statistical assessment of either acoustic 

emission pulses [15] or stress-strain increments [16], revealing non-Gaussian behavior in the 

form of perfect power-laws, 𝑃~𝑆−𝜏 [17] or exponentially truncated power-laws, 𝑃~𝑆−𝜏𝑒−
𝐿
𝑆⁄  

[18,19], where 𝑆 is the event size, 𝑃 the probability of the event occurring, and 𝐿 a material-

specific length-scale. Such statistical signatures of the occurring events 𝑆 represent a paradigm 

shift away from classical homogenization schemes [20] and indicate divergent length-scales over 

which the rearranging dislocation network couples and collectively responds to relax internal 

stresses. Both mean-field modelling of avalanches near the depinning transition in the presence 
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of a static pinning field [21] and dislocation dynamics simulations interpreting the stochastic 

evolution of a line-defect population as a jamming-unjamming [22,23] transition have given 

analytical insights into the scale-free statistics of intermittent plasticity.  

 

Intriguingly, statistical divergence in the form of power-law scaling can persist for 

microstructures with internal length-scales [3], across grain boundaries [7], but it has also been 

shown that the introduction of deformation sub-structures can decrease 𝑆, which truncates 𝑃(𝑆) 

without affecting 𝜏 [19], or that both the truncation and the scaling exponents are affected by 

obstacles [24,25] or grain boundaries [26]. Very recent work on 𝑃(𝑆) further demonstrated how 

power-law truncation of micron-sized crystals is not linked to a finite size-effect, but rather to the 

degree of how collective dislocation activity localizes spatially [27]. In other words, 𝐿/𝑆 is 

linked to an internal length scale instead of the finite crystal dimension. Similarly, the scaling 

exponent 𝜏 can be sensitive to the presence of strong obstacles, as revealed with discrete 

dislocation dynamics, where the strength and distribution of static pinning fields [22,28] or the 

ratio of average precipitate size to sample diameter can be varied [25,29]. Being convoluted with 

a variety of other effects, such as external size-variation, strain-rate effects, and different 

microstructural obstacles, direct comparisons are difficult. These scattered and partially 

inconsistent observations therefore prompt the question what relationship there may be between 

an internal microstructural length-scale on one side, and the scaling exponent or the truncation 

length scale on the other side.  

 

To shed more light onto this question, we probe here intermittent plasticity of pure Al and a 

binary Al-Cu alloy, which serve as model materials, where the alloy offers a tunable 

microstructure depending on its annealing history, spanning from a solid solution to a population 

of un-shearable 𝜃′/𝜃-precipitates. From a materials physics perspective, this choice of crystals 

encompasses a structure admitting jamming-unjamming transitions in the case of pure Al and a 

variety of microstructures in which pinning-depinning dynamics is expected due to the different 

populations of shearable and unshearable obstacles in the binary alloy. Across the different 

microstructures but identical deformation rates and external sample sizes, a gradual truncation of 

the avalanche statistics from a truncated power-law to a finite valued distribution is revealed 

when transitioning from pure Al to a 𝜃′/𝜃-precipitate-containing structure. The introduction of a 
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solid solution causes a pronounced increase of small avalanches, but the avalanche statistics 

continues to have a power-law like tail, albeit of lower probability than for the pure Al crystal. 

Quantifiable length-scales of the sampled microstructures do not yield any immediate rationale 

for the changes in intermittency statistics, and the loss of the extreme-value tail emerges due to 

the formation of un-shearable 𝜃′/𝜃-precipitates.  

 

II. Experimental Methods 

 

Microcrystals were produced from a pure bulk Al polycrystal (99.995%, provided by Teck 

Products) and from a bulk polycrystalline Al-4.85wt%Cu alloy produced by Goodfellow. 

Hereafter we will refer to AlCu samples for simplicity instead of Al-4.85wt%Cu. All samples 

were mechanically polished to a mirror finish prior to microcrystal extraction. To ensure full 

dissolution of Cu in the Al matrix, the binary alloy was homogenized for 90 h at 813 K. 

Subsequent to homogenization, different bulk pieces of the AlCu underwent specific heat 

treatments to generate precipitation microstructures, as summarized in Table I. 

 

 

All microstructures (including pure Al) were characterized via EBSD in a JEOL 7000M 

scanning-electron microscope (SEM). Grains were found to be equiaxed and randomly oriented, 

with average diameters ranging between 50 − 500 𝜇𝑚. For each microstructure, a grain oriented 

as close as possible to the [001] direction (with misorientations ≤ 5° and accounted for when 

calculating Schmid factors) was selected for transmission-electron microscope (TEM) analysis 

and microcrystal preparation. TEM lamellae were extracted either in a FEI Helios 600i Dual 

Beam SEM/FIB or a Thermo Scios2 Dual-Beam SEM/FIB. The lamellae were analyzed in a 

JEOL 2010 LAB6 TEM to study dislocation and precipitate structures. Additional lamellae were 

 

Table 1: Heat treatments applied to each sample to obtain the desired microstructure. These microstructures were all 

confirmed via TEM analysis. 
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extracted ad hoc and subsequently analyzed to ensure statistical significance when determining 

precipitate size and spacing, as well as dislocation density. 

 

Microcrystals of cylindrical shape, with a height of 6 𝜇𝑚 and a diameter of 2 𝜇𝑚, were carved 

into the identified grains via FIB milling. The final tapering angle along the length of each 

microcrystal was evaluated to less than 1°. A crater-like zone, 35 𝜇𝑚 in diameter, was left 

around each microcrystal to allow mechanical loading of the microcrystal without contacting the 

bulk of the crystal. The microcrystals were mechanically stressed under uniaxial compression 

with the use of a 11 𝜇𝑚 flat punch indentation tip affixed to a TI-950 Bruker-Hysitron 

nanoindenter. The compression experiments were displacement controlled at a constant rate of 

0.6 𝑛𝑚. 𝑠−1 over a total displacement per experiment of 150 𝑛𝑚, which corresponds to a strain 

rate of 10−4𝑠−1. The total compression displacement for each microcrystal was set as 1500 𝑛𝑚, 

i.e., ten individual loading experiments per microcrystal. The data acquisition rate was limited by 

the indenter’s internal memory but was at least 800 𝐻𝑧 for all experiments. 

 

The data output of the experiments are simple arrays containing time, depth, load, and 

corresponding voltages. All data files were processed via a series of Matlab routines. First, the 

slope of depth over time is output as an approximation for the quasistatic deformation response, 

where intermittent plastic events are detected by an abrupt increase of the moving slope. Second, 

selected event segments are manually reviewed and either kept as intermittent plasticity events or 

discarded as noise, the definition of which will be addressed later. Third, each event is bound in 

time and its depth/force trace is denoised by Wiener filtering. Once filtered, the peak velocity of 

the event is established, and new time bounds are set up where the momentary deformation 

velocity reaches 10% of the peak velocity on each side of the peak. The resulting events have a 

filtered depth, timespan, and velocity profile, and are statistically analyzed using the Python 

maximum likelihood estimation (MLE) method that is part of the powerlaw package 

developed by Jeff Alstott [30]. 

 

Given the relatively small magnitude of some of the resulting intermittent plasticity events 

(less than 0.5 𝑛𝑚, see Fig. 5), particular care went into establishing a noise threshold. To this 

end, the AlCu𝜃′/𝜃 sample was placed in the TI-950 under a load of 200 𝜇𝑁 (well within the 



6 

 

elastic domain of the sample) for a duration of 5 𝑚𝑖𝑛, so as to obtain recordings of the 

background noise during experimentation. The background noise was found to follow a normal 

distribution with 𝜇 = 2 × 10−5 𝑛𝑚 (which can be approximated as zero) and a standard 

deviation 𝜎 = 0.23 𝑛𝑚. However, this distribution returns the absolute displacement between 

two consecutive points, which is not necessarily applicable to intermittent plastic behavior, 

which is expected to consist in a sustained increase in depth over several data points, as 

highlighted in Figure 1. Here, the data points before and after the event have been separated, 

their respective noise distributions were calculated, and a data “envelope” corresponding to a 

distance of ±2𝜎 from the data mean was determined. If the envelopes before and after the event 

show a shift of at least half their width, it is considered that a plastic event has occurred beyond a 

reasonable doubt. Following this approach, the detection threshold for events was determined to 

0.17 𝑛𝑚. Consequently, only events whose size 𝑆 exceeds the threshold have been considered in 

the following. 

 

 

 

Figure 1: An example of a real data trace of an event for AlCu𝜃′/𝜃. An envelope of two standard 

deviations indicates the data distribution on both sides of the event. Since the change in the data 

distribution overall shifts to higher depth by more than half of the enveloped standard deviations, the 

event is detected as real. Here the example event as a final magnitude of ca. 0.6 nm. 
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III. Results & Discussion 

 

 

Figure 2: The top row (a-e) displays representative TEM micrographs of all probed microstructures and 

the bottom row (f-j) schematically visualizes the structures. 

 

Figure 2a-e shows the TEM micrographs of the actual microstructures, while Fig. 2f-j shows a 

schematic of the expected idealized microstructures of each structural state. The microstructures 

are described as follows: a,f) pure and well annealed aluminum with a dislocation density of ca. 

5 × 1012 𝑚−2. No precipitates or dislocation braids could be identified. b,g) AlCuSS, a 

substitutional solid-solution of copper in an aluminum matrix. The nominal composition of the 

alloy is 4.85 wt%Cu, which is below the maximum solubility of Cu into Al near the eutectic 

temperature (821.4 𝐾), but results in a supersaturated solid solution once quenched to room 

temperature. In order to avoid room temperature aging, all sample of this microstructure were 

stored after quenching at a temperature of 273-278 K. c,h) AlCuGP containing Guinier-Preston 

(GP) zones in an AlCu matrix. GP zones are a well-known transitional structure encountered 

during precipitate growth in AlCu samples at room temperature. They consist of local 

concentrations of copper atoms that segregate into energetically favorable configurations 

following random diffusion. These configurations are AlCu𝜃′′, small discs aligned on {001}-

planes with a diameter approx. 1 − 10 𝑛𝑚, and a thickness of up to a few atomic layers. Seen 

edge-on as is the case in Fig 1c), they appear as thin line contrasts only visible once atomic 

resolution is reached. d,i) a structure of 𝜃′′-precipitates that correspond to the next precipitation 

stage in AlCu alloys. 𝜃′′-precipitates (also known as GP II) are fully coherent with the matrix; 

literature shows that they are formed by Cu substitution on the FCC lattice sites at a distance of 
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three atomic planes and create a tetragonal structure [31]. They are the continuation of the Cu 

agglomeration process initiated with GP zones and are discs with a diameter of 10 − 100 𝑛𝑚, a 

thickness of 5 − 10 𝑛𝑚, and again visible viewed edge on, although circular regions of darker 

contrast could also be identified in the structure as the 𝜃′′-phase seen from their face side. e,j) 

AlCu𝜃′/𝜃 is a structure containing the final stages of precipitation in AlCu alloys, namely 𝜃′- 

and 𝜃-precipitates. Unlike 𝜃′′-precipitates which grow directly out of GP zones, 𝜃′ precipitation 

can occur not only on GP/𝜃′′ structures, but also on defects like dislocations and low-angle grain 

boundaries. 𝜃′-precipitates are metastable and associated with a loss of coherency. The 

precipitates are still disc-shaped on the {001}-planes, with diameters ranging between 100 −

500 𝜇𝑚 and having a thickness of 15 − 40 𝑛𝑚. 𝜃-precipitates are seen once the aging results in 

primarily incoherent precipitates that departs from the previous disc shape. Their size may also 

exceed that of the 𝜃′-phase. While previous structures contribute to strengthening via shear 

mechanisms, the presence of 𝜃′/𝜃 induces a change from precipitate-shearing to Orowan 

looping. These precipitates have been extensively described in the literature [32-35], but their 

description of a relatively continuous growth process as separate categories brings some 

ambiguity when considering transition structures that don’t fall squarely into one category. It 

should be noted that the precipitates are not expected to entirely exhaust the supply of Cu of the 

system, leaving dissolved copper in the Al matrix in all the AlCu-microstructures. 

 

Key to the here aimed quantification of how internal length-scale may affect the statistical 

signature of plastic fluctuations, is a careful initial determination of both precipitate dimensions 

and spacing. To this end, a series of TEM lamellas were extracted from the GP, 𝜃′′, and 𝜃′/𝜃-

microstructure and evaluated.  
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Figure 3: a) Schematic describing the relationship between the measured quantities on {001}-planes and 

the quantities as seen on the {111}-slip plane family relevant for dislocation-precipitate interaction. b) 

Histogram of precipitate size 𝑑𝑟 for AlCu𝜃′′. c) Histogram of precipitate spacing 𝐿𝑝 for AlCu𝜃′′ as defined 

in 3a. For both distributions, the best fit is given by the gamma distribution and allows us to output a mean 

value. 

 

Before any quantitative analysis of the length-scales derived with TEM, it is imperative to realize 

that they originate from a 2D-projection. Figure 3a shows the real shape and distribution of the 

precipitates, as well as their center-to-center (𝐿𝑝) and edge-to-edge (𝜆) spacings, which are 

relevant when discussing dislocation motion on the {111}-plane. The translation of measured 

dimensions into real length-scales of the 3D microstructure has been established before by Nie 

[36,37], and proven accurate [38-40]. Following Ref. [25], the real average diameter of the 

precipitates 𝑑𝑟 is given by 

 

𝑑𝑟 =
2

𝜋
(𝑑𝑚 − 𝑡𝑓 +√(𝑑𝑚 − 𝑡𝑓)

2
+ 𝜋𝑑𝑚𝑡𝑓),      (1) 
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where 𝑑𝑚 is the average measured diameter, and 𝑡𝑓 the TEM foil thickness. Determining the 

precipitate thickness is straightforward since the TEM micrographs are obtained using a [001] 

zone axis. The real thickness 𝑡𝑟 can be shown to be 𝑡𝑟 = 𝑡𝑚 × sin 54.74°, with 𝑡𝑚 the mean 

measured thickness and the 54.74° angle corresponding to the angle between the {001}- and the 

{111}-planes. Finally, we determine the average distance between precipitates that dislocations 

would encounter on the {111}-planes, being 𝐿𝑝 and 𝜆. As per the calculations detailed in Refs. 

[25,36], both distances can be related to precipitate size according to 

 

𝜆 = 𝐿𝑝 −
𝑑𝑚

2
−
√3

2
𝑡𝑚 =

1.030

√𝑁𝑣𝑑𝑟
−
𝜋𝑑𝑟

8
−

√3

2 sin54.74°
𝑡𝑑,     (2) 

 

with 𝑁𝑣 the precipitate density. The results for 𝑑𝑟, 𝑡𝑟, 𝐿𝑝 and 𝜆 were compiled in histograms if 

applicable for the studied microstructures. For all histograms, the best fit to the data was found to 

be a gamma distribution (example fits are displayed in Figs. 3b and 3c), whose probability 

distribution function is of the form: 𝑓𝑥 =
𝑥𝑘−1 𝑒

−
𝑥
Θ

Θ𝑘Γ(𝑘)
 with 𝑘 and Θ being fitting parameters. The 

mean values, 𝑥𝑚 = 𝑘Θ, for the quantified length-scales are listed in Table 2. In the case of 

AlCuSS, 𝜆 and 𝐿𝑝 are replaced by the average spacing between nearest-neighbor copper atoms 

based on the assumption of a homogeneous distribution of the atoms within the matrix. The 

values of Table 2 are consistent with similar studies [32,38,41], with roughly one order of 

magnitude difference in precipitate size and spacing between AlCuGP, AlCu𝜃′′ and AlCu𝜃′/𝜃. 

 

 

Table 2: Real precipitates dimensions based on measured values during TEM analysis, as well as pinning 

strength 𝜏𝑝𝑖𝑛 and corresponding characteristic length 𝑙 as defined in Ref. [24] 



11 

 

 

An engineering stress-strain curve of each microstructure type is shown Fig. 4a. The strong 

variation in initial loading slope is a convolution of alignment imperfections and drift rates and 

should not be used for modulus estimations [42]. However, the flow regime is a robust plastic 

response of the material. Each flow curve exhibits stress-strain instabilities of different degrees 

that are separated by smooth deformation-curve segments. The abrupt strain increments are 

caused by collective dislocation rearrangements or dislocation avalanches, which are known to 

be dominated by the activation of single-armed dislocation sources that lead to the formation of 

visible slip offsets (inset in Fig. 4a) [43]. Qualitatively, the stress-strain curves reveal a gradual 

reduction of intermittency as the precipitate size increases. Such a change in intermittency has 

experimentally been discussed in the context of microcrystal size [44] and precipitate-

microcrystal size ratio [25], whereas the effect of a varying disorder strength of a static pinning 

field – here represented by the microstructural deviations away from pure Al – has so far been 

limited to two-dimensional dislocation dynamics simulations [45]. Before quantifying the change 

in intermittency due to different types of internal pinning sites and characteristic length-scales, 

we turn our attention to the strength variation across microstructures, which is summarized and 

compared to corresponding bulk experiments [38] in Fig. 4b. 
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Figure 4: a) Measured engineering-stress strain curves for each sample microstructure. The addition of 

Cu results in a noticeable increase in flow stress. Inset: SEM micrographs of a pure Al microcrystal before 

and after microcompression. The sharp slip trace is the expected behavior for an FCC structure. b) 

Critical resolve shear stress, 𝜏𝐶𝑅𝑆𝑆, for each different microstructure, measured on microcrystals of 

diameter 2 μm and 5 μm. Unlike the tendency observed in the bulk in literature, the highest 𝜏𝐶𝑅𝑆𝑆 are 



13 

 

measured for the AlCuSS structure. The bulk theoretical and experimental values of Ref. [38] are 

included for comparison purposes. 

 

Given the typically large scatter in strength at the micron-scale, the measured critical resolved 

shear stress, 𝜏𝐶𝑅𝑆𝑆, during the flow regime of more than ten microcrystals has been averaged for 

each alloy. Figure 4b displays both data points for individual microcrystals and their average 

values for both 2 m and 5 m diameter samples. The reason for also testing larger microcrystals 

will be addressed later. As expected, the pure Al crystals exhibit the well-known finite sample-

size effect due to dislocation sampling statistics, source hardening and exhaustion hardening 

[46,47]. Introducing Cu to Al, a substantial jump in 𝜏𝐶𝑅𝑆𝑆 is seen for all AlCu-microstructures, 

but within the spread of individual measurements, no justifiable difference in strength between 

them can be derived. Irrespective of AlCu-microstructure, the average shear flow stress attains a 

level of 130-150 MPa with a spread of around 50 MPa indicating no gradual increase in strength 

as known for the bulk microstructures that continuously become stronger towards the AlCu𝜃′/𝜃 

and weaken with the dominance of 𝜃 due to increasing Orowan looping. This classically known 

behavior of peak-aging [35,48,49] is captured by the bulk data contained in Fig. 4b for an 

AlCu4.2% binary.  

 

To better compare the strength difference between the microcrystals and the expected bulk 

values, we use the same theoretical strength model underlying the bulk data in Fig. 4b [38]. This 

model relies on summing the different strengthening contributions of each microstructural 

feature to a base strength of pure Al. For the solid solution, the strengthening contribution is 

given by 𝜏𝑠𝑠 = 𝐻𝑋𝐶𝑢
𝑛 , with 𝑋𝐶𝑢 being the weight fraction of Cu dissolved as a solid solution in 

the Al (here 4.85 𝑤𝑡%), and 𝐻 and 𝑛 constants found to be 22 𝑀𝑃𝑎 and 1 respectively for Al-

Cu binary systems [50]. The contribution of precipitates is a bit more complex and depends 

largely on their geometry, orientation and shearability. GP zones, in particular, have proven hard 

to be modelled and instead rely on a simplification, where GP zones are assumed to be spheres of 

diameter 𝑑, according to 

 

𝜏𝐺𝑃 =
1

𝑏
√
3𝑓

2𝜋
(0.72𝐺𝑏2) (

2

𝑑𝑐
)
1.5

(
𝑑

2
)
0.5

,       (3) 
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where 𝑑𝑐 = 20 𝑛𝑚 and 𝑓 =
𝑑𝑟
2𝑁𝑣𝜋

4
𝑡𝑑 [37]. The above model is only valid if the GP zones’ 

diameter 𝑑 < 𝑑𝑐, which as per Fig. 2 is the case. 𝜃′′-precipitates are treated as circular plates on 

{001}-planes and we expect them to be weak enough to be sheared on the {111}-planes, in 

which case the corresponding strengthening contribution has been described by [51]: 

 

𝜏𝜃′′ =
0.908𝑑𝑟

𝑡𝑑
2 
 

(

 
 2𝜋𝑏𝑓

𝐺𝑏2 𝑙 𝑛√
𝑑𝑟
2

2𝑏2𝑓

)

 
 

0.5

 𝛾1.5.       (4) 

 

Here, 𝛾 is the interfacial energy between the matrix and precipitates, evaluated to be 

154 𝑚𝐽.𝑚−2 [38]. Finally, 𝜃′ and 𝜃 precipitates are too large and incoherent to allow shearing; 

instead, dislocations interact with them through Orowan bowing. The resulting strength increase 

is modelled as [36]: 

 

𝜏𝜃′ =
2

𝜆
 (

𝐺𝑏

4𝜋√1−𝜈
) ln (

1.225𝑡𝑑

𝑏
).        (5) 

 

Using this approach, the tested microstructures can thus be given an estimated bulk strength of 

value 𝜏𝐶𝑅𝑆𝑆 = 𝜏𝐶𝑅𝑆𝑆,𝐴𝑙 + 𝜏𝑆𝑆 + 𝜏𝐺𝑃 + 𝜏𝜃′′ + 𝜏𝜃′, where pure Al, the dominant obstacle type, and 

the remaining solid-solution contribution is used. The thereby obtained values are included in 

Fig. 4b and show good agreement with the experimental data for all but the AlCu𝜃′/𝜃 

microstructure. We understand this discrepancy by the fact that the sampled volume is not 

sufficiently large to truly represent an average strengthening due to a 𝜃′/𝜃 precipitate structure. 

Now much of the deforming volume has a free surface instead of being confined by non-

shearable obstacles.  

 

With these bulk values at hands, it becomes evident, that the characteristic length-scales listed in 

Table 2 are sufficiently averaged over in the case of the AlCuSS, the AlCuGP, and the AlCu𝜃′′ 

microstructures as to be in a size-independent regime. In other words, the here tested AlCu-

microcrystals are small volumes which’s flow response is representative of bulk plasticity. To 
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test this idea further, we conducted a test series of 5 m diameter crystals of each microstructure 

and the averaged data is also shown in Fig. 4b. Only in the case of pure Al, a clear size-

dependent reduction in the average flow shear stress is observed, whereas the binary 

microstructures exhibit identical flow stresses for both sample dimensions, supporting the view 

that we probe a size-independent flow behavior. 

 

Returning our attention to the pronounced strain excursions seen in Fig. 4a. These abrupt strain 

increments are in addition to the finite-size strengthening the second size-effect at this sample 

scale [52]. We now construct the size statistics of all extracted dislocation avalanches from each 

microstructure and all stresses. To this end, we rely on the stress-integrated Complementary 

Cumulative Distribution Function (CCDF), which is defined as 𝐶(𝑆) = 𝑃(𝑆 ≥ 𝑆𝑠𝑒𝑡) =

𝐷 ∫ 𝑃(𝑆)𝑑𝑆
∞

𝑠
, or in other words the probability of a recorded event size 𝑆 to be larger or equal in 

magnitude to a given size 𝑆𝑠𝑒𝑡, with 𝐷 being a normalization prefactor. The CCDF is preferred 

over the PDF because it is defined for every value and does not require any binning of discrete 

data that can have subtle but important effects on subsequently performed distribution fitting. 

The here collected data is known to follow a power-law or truncated power-law (TPL), 𝑃(𝑆) ∝

𝑆−𝛼𝑒−𝛿𝑆, where 𝛼 is the scaling exponent of the power-law and 𝑒−𝛿𝑆 an exponential cutoff 

function described by the parameter 𝛿. The corresponding CCDF follows mathematically the 

same trend, being 𝐶(𝑆) ∝ 𝑆−𝜏𝑒−𝜇𝑆, with 𝜏 = 𝛼 − 1 and 𝜇 is yet a different non-universal 

parameter that describes the cutoff. Figure 5 summarizes the CCDF of the experimental data.  
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Figure 5: CCDF of event sizes 𝑆 for all considered structures. The evolution of event size distribution is 

non-trivial and except for pure Al, they cannot be captured robustly with a given statistical function. Inset: 

Statistical moments (skewness, kurtosis) for all considered structures. 

 

A strong variation of event-size statistics can be seen, admitting a TPL distribution for the case 

of pure Al and an exponential distribution describes the data for the AlCu𝜃′/𝜃-microstructure. 

Roughly, a gradual suppression of long-range correlated and scale-free like dislocation activity is 

observed in order from pure Al, AlCuSS, AlCuGP, AlCu𝜃′′, to AlCu𝜃′/𝜃. Whilst the scaling 

exponent 𝜏 ≈ 0.5 (or 𝛼 ≈ 1.5) would be in agreement with mean-field depinning [53], we 

emphasize here that this must be more a coincidence than anything else, as both experiments [39] 

and modelling [54] have demonstrated the large variety of scaling exponents in the range of 

approximately 1 < 𝛼 < 2. This range seems to be a result of a variety of boundary conditions, as 

well as the dynamical internal dislocation network evolution, and is more compatible with the 

jamming-unjamming framework [23]. Introducing a population of Cu atoms into the Al matrix 

clearly causes a significant drop of 𝐶(𝑆) for 𝑆 > 1 nm. In other words, a substantial number of 

resolvable dislocation avalanches are now suppressed to the part of the distribution containing 

the smallest displacement magnitudes. Similarly, the largest events reduce their scale to ca. 100 

nm, which is about an order of magnitude smaller than the truncation length-scale for pure Al. 

This observation remains somewhat qualitative due to the inability of a meaningful fitting of the 
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distribution. Attempts of fitting the overall data set for AlCuSS with a weighted exponential and 

TPL-distribution for the different size regimes did not yield robust results, which is due to the 

insufficient total range of 𝑆. This decrease of the truncation length scale is much less than 

reported for cluster formation in an Al0.3wt%Sc-alloy with a majority of clusters in the size of 2-

20 nm (𝐿𝑝 ≈ 20), for which the event-size distribution truncates below 10 nm [24]. The 

contribution of the exponential shoulder at low value of 𝑆 increases for AlCuGP and AlCu𝜃′′, 

but the fat-tail avalanche part at large 𝑆 remains statistically indistinguishable for both cases. We 

note that the tail for these two microstructures approximates to a slop of unity that would be an 

exponent of 2 in the case of the PDF, which indeed is in good agreement with a prediction by 

Brown [55]. With the emergence of the 𝜃′/𝜃-precipitates, all correlated-long range interaction 

that would emerge via a strong PL or TPL contribution is lost, and avalanches now follow scale-

dependent statistics best described by an exponential distribution. Essentially, the here seen 

transition in statistical behavior is much like a so-called mild-to-wild transition discussed earlier 

[56]. We note that the underlying dislocation activity for the 𝜃′/𝜃-microstructure still is weakly 

correlated, since the avalanche statistics does not transition to a pure Gaussian form [57,58]. A 

moment analysis for the different distributions captures this change from scale-free to scale-

dependent statistics clearly via a marked change in both kurtosis (4th normalized moment) and 

skewness (3rd normalized moment) once fully coherent precipitates are present (inset in Fig. 5). 

This trend is qualitatively compatible with earlier work focusing on the finite-sample size 

variation across an AlCu𝜃′-microstructure with 2.5wt% (𝐿𝑝 ≈ 1000 nm) and 4.0wt% Cu (𝐿𝑝 ≈

700 nm) and therefore significantly larger 𝐿𝑝-values [25] that are approaching the sample 

dimension. In Ref. [25] the tail structure of the distributions was approximated with a PL, of 

which the scaling exponent increased strongly with decreasing 𝐿𝑝 for this particular precipitate 

type.  

 

How can this transition to a finite avalanche size scale be understood? Long-range correlated 

collective dislocation dynamics with scale-free avalanche statistics in pure metallic systems is 

now an established phenomenon in this type of microplasticity [3]. A specific microstructural 

length-scale correlating with either the scaling exponent or the truncation length-scale has so far 

not been identified for pure metallic systems that only contain an evolutionary dislocation 

network. This is also agreeing with work proposing a model that links the fraction of 
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intermittently admitted strain to the scaling exponent for a variety of AlSc- and AlCu-alloys 

[24,25]. Without the presence of quenched disorder (static pinning sites), it continues to remain 

unclear what property of the existing and evolving microstructure determines 𝛼 or the truncation 

term 𝜇𝑆. Indeed, TEM investigations yield a typical picture of a well-established dislocation 

network for the deformed microcrystals, as displayed in Fig. 6a. Estimating the dislocation 

density for the undeformed and deformed Al yields ca. 5 × 1012 𝑚−2 (equivalent to a mean 

spacing of 445 nm) and ca. 8 × 1013𝑚−2 (mean spacing of 110 nm), respectively.  

 

The introduction of quenched disorder via the solution of Cu does alter this behavior, but clearly 

long-range coupling and avalanching over length scales orders of magnitude larger than the 

solute spacing still remains a strong part of the network evolution. Now TEM micrographs reveal 

the expected pinned dislocation lines in the deformed microcrystals (Fig. 6b). Those events 

underlying the emerging shoulder at low 𝑆 for AlCuSS are just above the resolution limit and 

admit slip equivalent to 0.4 − 0.8 nm in net magnitude; a length scale that in fact is in good 

agreement with the average spacing of the introduced Cu solutes. Depleting the matrix of Cu and 

forming AlCuGP and AlCu𝜃′′ introduces microstructural length scales of very different 

magnitude (Table 2). Despite the order of magnitude larger precipitates and their distances, both 

microstructures exhibit the same avalanche-size distribution 𝐶(𝑆) in Fig. 5. Post-mortem TEM 

micrographs (Figs. 6c and 6d) reveal dislocation lines crossing the GP- and 𝜃′′-precipitate 

structure and no particular change of 𝐶(𝑆) is observed. Both the size and the distances of the 𝜃′′ 

structure are at or beyond the truncation of the distribution. In both AlCuGP and AlCu𝜃′′, 

however the shoulder at low 𝑆 remains, which is understandable as sufficient Cu remains solved 

in the matrix. Given this similar avalanche distribution, one may ask if the AlCu𝜃′′ still contains 

a population of GP-zones, which could be the dominant obstacle population controlling 𝐶(𝑆). To 

verify this, TEM micrographs from both initial microstructures are examined, paying attention to 

any possible signature of GP-zones in the AlCu𝜃′′-alloy. Figures 6e and 6f demonstrate that the 

tested AlCu𝜃′′-alloy was sufficiently aged as to dissolve all GP-zones. This leads to the 

conclusion that 𝐶(𝑆) is experimentally indistinguishable for both microstructures due to the 

shearability of their precipitates. In view of the result by Sun and co-workers [24,25], where the 

fraction of plasticity due to intermittent events is linked to the ratio between the sample diameter 

and a length scale 𝑙 = 𝐺𝑏/𝜏𝑝𝑖𝑛, with 𝐺 being the shear modulus, 𝑏 the Burgers vector and 𝜏𝑝𝑖𝑛 
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the effective pinning strength of the obstacles, 𝐶(𝑆) for AlCuGP and AlCu𝜃′′ would be expected 

to differ due to different 𝜏𝑝𝑖𝑛 (Table 2 lists both 𝜏𝑝𝑖𝑛 and l for the here investigated alloys). This 

is not the case, which however may be drowned out in the large scatter of the data underlying the 

proposed model.  

 

 

Figure 6: TEM micrographs of dislocation behavior in each sample microstructure. a) Dislocation density 

in pure Al after deformation (seen here in DF). b) Dislocations in AlCuSS, where some amount of pinning 

is observed. c) Dislocation lines being pinned at some GP zones. d) Dislocations interacting with 

shearable 𝜃′′ precipitates in AlCu𝜃′′. e) Micrograph of AlCuGP structure showing the presence of GP 

zones throughout the entire sample. f) High-resolution micrograph of AlCu𝜃′′ featuring the edge of a 

precipitate but no GP zones are observed. g) Dislocation-precipitate interaction in AlCu𝜃′/𝜃. Impenetrable 

precipitates cause pockets of high dislocation densities and pile up, suppressing correlated long-range 

interaction. 

 

Once incoherent, the precipitates in AlCu𝜃′/𝜃 can no longer be sheared anymore and significant 

pile-up can be observed in the inter-precipitate regions. This leads to confined regions of 
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significant plastic activity, whereas other inter-precipitate regions show no dislocation 

accumulation in post-mortem TEM micrographs (Fig. 6g). With a center-to-center distance still 

being smaller than the microcrystal diameter, selected sample sub-volumes accommodate the far-

field stress via intense dislocation activity without being able to develop sufficient collective 

behavior as to admit large instantaneous slip events. We note that the fraction of strain (or 

displacement) admitted by resolvable discrete plastic events is still between 10-20%, even 

though such discrete events have no scale-free like statistics. As such, the gradual reduction in 

truncation length and the change for scale-free to scale-dependent avalanche statistics seen in 

Fig. 5 seems to be dictated by the nature of the microstructural obstacles (pinning strength, 

shearable vs. not shearable), whereas their introduced length-scale matters little. 

 

IV. Conclusion 

 

How microstructural length-scales and specific obstacle types affect the correlated-collective 

dislocation motion that underlies intermittent plastic events in form of dislocation avalanches 

continues to remain unclear. Here we observe a systematic transition from a correlated scale-free 

like to a still correlated but scale-dependent statistical signature of intermittency when probing 

the microplastic response of Al and a variety of microstructures produced via controlled 

annealing of an Al-4.85wt%Cu binary alloy. The simplest deviation from pure Al is the addition 

of Cu as a supersaturated solid solution, for which the avalanche distribution continues to have a 

strong power-law like tail admitting avalanche sizes orders of magnitude beyond the 

characteristic length scale of the solid solution. In co-existence with this continued long-range 

correlated-collective dislocation activity, a marked contribution of short-range interactions 

emerges in the size distribution. In this case, being an ideal model of a static-pinning field, the 

strong signature of small avalanche sizes manifests itself at the same length-scale as 

characteristic for the solid solution. For all other microstructures that contain different types of 

precipitates and characteristic length scales, such a correspondence cannot be observed. Instead, 

a continued suppression of the high-value tail (power-law signature) seems to be governed by the 

shearability of the microstructural obstacles rather than their related length scales or pinning 

strength. This is in qualitative agreement with dislocation dynamics simulations, in which only 

the introduction of a sufficiently high pinning strength eventually suppresses the critical (scale-
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free) dynamics [59]. Whilst the present work cannot precisely account for the pinning strength 

distribution of the complex microstructures, in which a combination of a solid solution and a 

precipitate type always prevails, we conclude that scale-free dislocation avalanche dynamics in 

similar fcc systems with clear microstructural length-scales occurs simultaneously with weakly 

correlated and scale-dependent non-Gaussian activity as long as penetrable interfaces (lattice 

coherency) exist. The same must apply to hexagonal closed packed polycrystalline metals 

containing a boundary network, for which signatures of intermittent avalanche activity still can 

be revealed [7,26]. These collected experimental observations add to reports demonstrating 

changes from scale-free to scale-dependent intermittency due to the stress state [12], as well as a 

temperature-dependent suppression of critical avalanche dynamics due to an increasing 

dominance of the lattice friction in bcc metals [60], all of which reinforce the notion of intricate 

non-universal and microstructural-specific avalanche dynamics. Overall, it becomes increasingly 

clear that Gaussian and non-Gaussian dislocation activity co-exists, and that the latter includes 

the extreme dislocation events that may be rare but that can trigger significant local stress 

singularities. Even though dislocation self-organization and patterning can suppress the non-

Gaussian correlated activity during deformation, it emerges again prior to failure, giving strong 

indications for its critical role in triggering failure [61,62]. These recent insights and the here 

observed statistical transition due to the microstructure in complex engineering alloys urge for 

continued fundamental efforts that take into account the co-existence of Gaussian and non-

Gaussian defect behavior such that metallurgical failure prediction eventually embraces both 

statistical components. 
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