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Accurate prediction of vacancy migration energy barriers, ∆Ea, in multi-component alloys is
extremely challenging yet critical for the development of diffusional transformation kinetics needed
to model alloy behavior in many technological applications. In this paper, results from ∆Ea and
the energy driving force ∆E of many (>1000) vacancy migration events calculated using density
functional theory and nudged elastic band method show large changes (∼ 1 eV) of ∆Ea in different
local chemical environments of the model face-centered cubic (FCC) Al-Mg-Zn alloys. Due to
local lattice distortion effects induced by solute atoms (such as Mg) with different sizes than the
matrix element (Al), the changes of ∆Ea for one type of migrating atoms originate primarily from
fluctuations of ∆ea ≡ ∆Ea − 1

2
∆E (instead of 1

2
∆E according to the widely used Kinetic Ising

model). To understand these fluctuations, a quartic function of the reaction coordinate is shown
to accurately describe the energy landscape of the minimum energy path (MEP) for each vacancy
migration event studied in this paper. Analyses of the quartic function show that ∆ea can be
approximated with ∆ea ≈ αkfD

2, where α ∼ 0.022 is a constant value of all types of migrating
atoms in the Al lattice. Here D is the distance of a migrating atom between two adjacent equilibrium
positions and kf is the average vibration spring constant of this atom at these two equilibrium
positions. kf and D quantitatively describe the lattice distortion effects on the curvatures and
locations of the MEP at its initial and final states in different local chemical environments. We also
used the local lattice occupations as inputs to train surrogate models to predict the coefficients of
the quartic function, which accurately and efficiently output both ∆Ea and ∆E as the necessary
inputs for the mesoscale studies of diffusional transformation in Al-Mg-Zn alloys.

I. INTRODUCTION

Diffusion kinetics in metallic alloys and associated ma-
terial mechanisms (e.g., aging), which control properties
such as strength and ductility, are critically dependent
upon vacancy-mediated migration of matrix atoms and
substitutional solutes[1, 2]. A migrating species in an
alloy encounters complex and varying local chemical en-
vironments, especially in multicomponent alloys, which
in turn change the energy barrier ∆Ea of a vacancy
migration event between two adjacent lattice sites[3–7].
Accurate descriptions of such local chemical effects on
∆Ea are necessary to construct the kinetic master equa-
tions in mesoscale methods, such as kinetic Monte Carlo
(kMC)[8–11], phase-field crystal (PFC)[12, 13], and diffu-
sive molecular dynamics (DMD) simulations[14], to study
diffusion and precipitation. However, potentially large
variations of local chemical environments present signifi-
cant challenges which have yet to be overcome.

A typical strategy to predict ∆Ea in different local
chemical environments is the Kinetic Ising Model de-
tailed by two vacancy migration events with the same
migrating atom in Fig. 1 (a) and (b)[10] (Path 1 and
2). Path 1 occurs in a dilute local environment with
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zero energetic driving force ∆E and its ∆Ea is easily ob-
tainable using first-principles calculations[15, 16]. Path
2 represents a general vacancy migration case with non-
zero ∆E. Fig. 1 (b) describes the energy landscape of
the minimum energy path (MEP) for each of these two
events based on two assumptions. First, the MEP curves
are approximated as linear functions of the reaction co-
ordinate with almost the same slope (θ1 = θ2) away from
both the initial and final states; second, the only changes
from Path 1 to 2 are that the MEP curves near the final
state shift rigidly along the energy coordinate (Y-axis) by
∆E of Path 2. Therefore, it is easy to demonstrate that
∆Ea of Path 2 is equal to one-half of its ∆E plus ∆Ea of
Path 1. In practice, ∆E of Path 2 can be predicted by
the bond counting model[17] or cluster expansion (CE)
methods[18, 19], which use the local lattice occupations
as inputs with parameters fitted based on first-principles
calculations. This strategy to predict ∆Ea as a linear
function of ∆E for a general vacancy migration event
was used to model many metallic alloys[9–11, 17, 20, 21].

The above two assumptions on MEPs can be incor-
rect. Fig. 1 (c) illustrates the detailed MEP plot of Path
2 without the two assumptions: the distance between the
initial and final states along the reaction coordinate, de-
fined as DMEP in Fig. 1 (c), can vary due to the lattice
distortion induced by changes of local chemical composi-
tions; in addition, the MEP curves near the initial states
can have different shapes (such as local curvatures) com-
pared with those at the final states. These variations
change the position of the transition state along the re-
action coordinate and its energy. Thus, a robust model of
∆Ea should provide accurate descriptions of MEPs and
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FIG. 1. Models of energy barrier ∆Ea and driving force ∆E
of vacancy migrations in Al alloys. (a): Two vacancy (open
circle) migration events between adjacent lattice sites in Al
alloys. Colored solid circles indicate the chemical elements on
occupied sites. (b): Simplified energy landscape plots of the
minimum energy paths (MEPs) for two events in (a) based
on the two assumptions described in the text. (c): An energy
landscape plot of the MEP for Path 2 in (b) without the two
assumptions.

the corresponding transition states[8, 22–24]. One strat-
egy is to investigate ∆ea defined as the transition-state
energy (Et) relative to the average of the initial-state (Ei)
and final-state (Ef) energies:

∆ea ≡ Et −
1

2
(Ei + Ef) = ∆Ea −

1

2
∆E (1)

∆ea is a variable and a function of local lattice occupa-
tions. This function of ∆ea can be fit using a local cluster
expansion method[19, 25, 26]. ∆Ea is then obtained by
the summation of ∆ea and 1

2∆E. Note that the Kinetic
Ising Model is recovered if ∆ea is a fixed value as ∆Ea

in Path 1 of Fig. 1 (a). This method requires sufficient
samples of transition states to construct the training data
set for fitting ∆ea. The quantitative understanding of the
mechanisms that determine ∆ea and ∆Ea can benefit the
selections of the representative vacancy migration cases
for fitting and verifying the functions of ∆ea and ∆Ea

in different local chemical environments, which are criti-
cal for the investigations of diffusion kinetics in multiple
precipitation stages of advanced alloys.

To clarify the mechanisms that determine ∆Ea and
∆ea, we applied high-throughput first-principles calcu-
lations to study vacancy migrations in model Al-Mg-Zn
systems. As the 7XXX series of aerospace grade Al al-
loys, they achieve high strengths (∼700 MPa) after ap-
propriate heat treatments[27], but applications outside

of aerospace are limited since solute clustering during
natural aging limits formability[28–31]. This issue exists
in several types of Al alloys, and it can be mitigated if
vacancy-mediated diffusion can be understood and ma-
nipulated [2, 32–34] since this controls solute clustering.

We performed density functional theory (DFT) calcu-
lations for many (> 1000) model Al-Mg-Zn alloys. MEPs
and ∆Ea of vacancy migrations were computed via DFT
plus the climbing image nudged elastic band (CI-NEB)
method[35, 36]. Details of DFT+CI-NEB methods are
described in Sec. II A. Our results in Sec. III A show that
large fluctuations (∼ 1 eV) of ∆Ea under different local
chemical environments originate primarily from changes
in ∆ea rather than the commonly assumed variations of
∆E, which are typically small (mostly ± ∼ 0.2 eV). A
quartic function of the reaction coordinate (x in Fig. 1
(c)) is proposed in Sec. III B to accurately describe and
analyze the MEPs of all investigated vacancy migration
events. Analyses in Sec. III C reveal that ∆ea is lin-
early correlated to kfD

2: D is the Cartesian distance of
a migrating atom between two adjacent equilibrium po-
sitions illustrated by the double-headed arrows in Fig. 1
(a), and kf is the average vibration spring constant of
this atom at these two equilibrium positions. D and kf
are parameters that quantify the local lattice distortion
effects on, respectively, the locations and shapes of the
MEP at local energy minimum states. Specifically, D is
correlated with DMEP in Fig. 1 (c) and kf is related to
the second derivatives of the MEP curves at the local
energy minimum states in Fig. 1 (c). Both D and kf
can be calculated relatively easily without accurate de-
scriptions of MEPs obtained from the DFT + CI-NEB
method. Details of the calculation methods for D and kf
are described in Sec. II B.

In Sec. III D, based on our DFT+CI-NEB calculations,
surrogate models using local lattice occupations as in-
puts are proposed to predict the coefficients of the quar-
tic function of the vacancy migration MEP in Al-Mg-
Zn alloys. This leads to a new approach to accurately
and efficiently predict the MEPs and the corresponding
∆Ea and ∆E as functions of local chemical compositions.
With this new method to estimate ∆Ea and ∆E, more
accurate mesoscale studies, such as kMC, can be con-
ducted. Finally, discussion of the major developments in
the paper and conclusions are provided in Sec. IV.

II. METHODS

A. Transition-State Calculations

To compute migration energy barriers and the mini-
mum energy paths (MEP) of vacancy migrations, we per-
formed high-throughput density functional theory (DFT)
calculations for model Al-Mg binary alloys, Al-Zn bi-
nary alloys, and Al-Mg-Zn ternary alloys. The ener-
gies of the atomic configurations at the initial and the
final states (Ei and Ef) were first calculated with the
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Vienna Ab-Initio Simulation Package (VASP) [37, 38],
with all-electron projector-augmented wave potentials
(PAW) method with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional[39, 40]. All calculations
used 4 × 4 × 4 supercells, constructed from the FCC Al
unit cell, with 255 atoms and 1 vacancy. All supercells
used to calculate the vacancy migration barriers can be
divided into three categories. The configurations in the
first category, as shown in Fig. 2 (a), are randomly gen-
erated solid solution structures with different local con-
centrations of solute atoms (Mg and Zn) around the va-
cancy site and the migrating atom (Al, Mg, or Zn). These
structures simulate vacancy diffusion in the solid-solution
state. For the configurations in the second category, as
shown in Fig. 2 (b), either 2× 2× 2 or 2× 2× 4 ordered
cluster structures are embedded in the 4× 4× 4 pure Al
matrix. The data from these configurations are designed
to describe the vacancy moving inside the precipitates or
along the boundary between the ordered precipitates and
the solid-solution Al matrix. These ordered structures
were chosen from proposed GuinierPreston (GP) zone
precipitates [41] and ordered (L10, L12, L1∗0, W2, CH,
and Z1) intermetallic structures on an FCC lattice[42].
The third category, as shown in Fig. 2 (c), consists of su-
percells with a single solute atom (Mg or Zn) embedded
in the lattice of neighboring sites (including 1st, 2nd, and
3rd nearest neighbors) of the vacancy and the migrating
atom in the 4 × 4 × 4 pure Al matrix. These configu-
rations address the effect of a single solute atom on the
vacancy migration barrier.

FIG. 2. Schematic diagrams of the model Al alloys supercells
used to calculate vacancy migration barriers. Blue, orange,
and green spheres represent Al, Zn, and Mg atoms, respec-
tively. Yellow spheres represent vacancy sites. (a): A typical
4 × 4 × 4 FCC supercell with random distributions of solute
(Mg and Zn) atoms. (b): A typical 4 × 4 × 4 FCC supercell
with a 2 × 2 × 2 ordered cluster structure embedded on Al
matrix. (c): A typical 4 × 4 × 4 FCC supercell with a single
solute atom (Zn) embedded on a neighboring site around the
vacancy and the migrating atom (Mg).

For all DFT calculations, the total energies for super-
cells of the initial and final states were converged to 10−6

eV/cell for the ionic relaxation loop and 10−7 eV for the
electronic self-consistency loop using a plane-wave cut-
off energy of 450.0 eV and MethfesselPaxton smearing of
0.4 eV. A 2 × 2 × 2 k-point grid was applied for all su-
percells. Each grid was generated using the Monkhorst-
Pack scheme [43]. See Supplemental Material at ?? for

the results of K-Points convergence tests. The supercell
sizes in all vacancy migration investigations were always
fixed as four times that of the FCC lattice constant of
the model 7XXX series Al alloy. Hence. a supercell of
4× 4× 4 conventional FCC cells with 256 atoms (based
upon the FCC unit cell) was used to calculate the lat-
tice constant. The supercell consisted of 244 Al atoms,
7 Mg atoms, and 5 Zn atoms, which were within the
range of compositions of 7075 Al alloys. Lattice occupa-
tions inside this supercell were optimized by the special
quasi-random structures (SQS) method using the Alloy
Theoretic Automated Toolkit (ATAT)[44]. The lattice
constant of this SQS-optimized supercell was 4.046 Å af-
ter DFT relaxation of nuclear coordinates and the cell
volume. This value is close to the lattice constant of a
pure Al crystal at 0K (4.041 Å from DFT calculations
with the same setups described in this section). See Sup-
plemental Material at ?? for the effects of lattice constant
variations on vacancy migration barriers.

For each vacancy migration event, the energy of the
transition state (Et) and the energy barrier (∆Ea ≡
Et − Ei) were gathered by utilizing the climbing image
nudged elastic band (CI-NEB) method after evaluating
the energy difference (∆E) by using Ef minus Ei. This
was accomplished with VASP and the Transition States
Tools (VTST) package [35, 36]. Five images between
the relaxed initial and final images were set. The ar-
tificial spring constant was set to 5 eV/Å2. The elec-
tronic self consistency-loop breaking criteria was set to
10−4 eV and the force convergence criteria for all mod-
els was set to be less than 0.05 eV/Å. The force-based
quick-min optimizer provided by VTST was used for the
CI-NEB calculations[45]. See Supplemental Material at
?? for the verifications of the transition state via phonon
calculations[46, 47]. Finally, 2500 ∆E and ∆Ea pairs
were obtained from 1250 CI-NEB calculations by consid-
ering both forward and backward vacancy migrations.

B. Calculations of Migration Distances and
Vibration Spring Constants

As mentioned in Sec. I and discussed in Sec. III C, the
migration distances D and vibration spring constants kf
of the migrating atoms are critical to describe the lo-
cal lattice distortion effects on the vacancy migration
MEPs and their ∆Ea. In this subsection, the detailed
methods to calculate them and the related parameters
are presented. First, the relative distance between the
initial and final states along the MEP, DMEP, as indi-
cated in Fig. 1 (c), can be obtained from the outputs of
the CI-NEB calculations. Here we set N as the num-
ber of intermediate images inserted between the initial
and final states, and Ij represents the configuration of
the jth intermediate image in the CI-NEB calculations.
Specifically, I0 = Ii and IN+1 = If denote the initial
and final configurations, respectively. DRHD(Ia, Ib) is a
function that returns the magnitude of the relative high-
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dimensional distance between Ia and Ib[35, 36]:

DRHD(Ia, Ib) =

√√√√Natom∑
k=1

(
(xxxb,k − xxxa,k)

T
(xxxb,k − xxxa,k)

)
(2)

Here, xxxj,k is a three-dimensional vector representing the
Cartesian positions of the kth atom in the jth image, and
Natom is the total number of atoms in each configura-
tion. Since only 5 intermediate images were chosen be-
tween the relaxed initial and final images for all CI-NEB
calculations in this study, DMEP reduces to:

DMEP =

N=5∑
i=0

DRHD(Ij , Ij+1) (3)

Alternatively, the migration distance D of a migrating
atom between two adjacent equilibrium positions (its
Cartesian positions in initial and final states) can be di-
rectly calculated as:

D =

√
(xxxf − xxxi)T (xxxf − xxxi) (4)

Here xxxi and xxxf denote the Cartesian position of the mi-
grating atom in the equilibrium initial and final states,
respectively. Because most atoms are almost stationary
during the vacancy migration process, there are strong
correlations between DMEP and D, so the value of D is
utilized to quantify the lattice distortion effects on the
MEP and the corresponding ∆ea/∆Ea for each vacancy
migration case in Sec. III C. See Supplemental Material
at ?? for additional discussions of the correlations be-
tween DMEP and D.

The vibration spring constants kf of migrating atoms
are calculated based on the Hessian matrix HHH, which is
the matrix of the second derivatives of the energy with
respect to the atomic positions, obtained using the finite
difference method implemented in VASP. HHH should be a
3Natom dimensional matrix if all Natom atoms can be dis-
placed in the supercell. In principle, kf at the initial and
final states can be acquired by finding the eigenvalues
of HHH, of which the corresponding eigenvectors describe
the motions of atoms along the MEP of the vacancy mi-
gration. Using the Harmonic approximation, the energy
landscape, V , of the MEP at the initial and final states
can be expressed as V = 1

2kfx
2. Here x is the displace-

ment along the MEP.
However, it is expensive to calculateHHH for all the inves-

tigated cases in this study if all 255 atoms in a supercell
are displaced. Since most atoms are nearly stationary
during the vacancy migration process, we can approxi-
mate the value of kf by fixing the positions of atoms far
away from the vacancy during the calculation of HHH. In
this study, only the migrating atom is displaced during
the calculation of HHH for the initial and final states, but
all other atoms are fixed. The calculated vibration spring
constant values under this fixed-atom condition were ob-
tained for both the initial and final states, and the av-
erage value was used in Sec. III C to estimate the lattice

distortion effect on the MEP and the corresponding ∆ea
and ∆Ea for each vacancy migration case. More accurate
kf can be obtained if more atoms in the supercells were
displaced during the calculation of HHH. See Supplemental
Material at ?? for detailed discussions of kf calculation.

III. RESULTS

A. DFT Calculations of ∆Ea and ∆E

Correlations of ∆Ea (Y-axis) and ∆E (X-axis) from
our computational results are plotted in Fig. 3 (a) to
(c) for different types of migrating atoms. In the Al-Zn
binary system (Fig. 3 (a)), ∆Ea and ∆E data are scat-
tered; however, the data still follows (approximately) lin-
ear relationships for both the migrating Al and Zn atoms,
respectively. Simple linear regressions suggest that the
slope of each fitted straight line is close to 1

2 , so ∆ea is
approximately a constant according to Eq. (1) and the
Kinetic Ising Model is still approximately valid for va-
cancy migrations in the Al-Zn binary system. However,
as seen in Fig. 3 (b) and (c), the ∆Ea and ∆E data
become significantly scattered, and a linear relationship
does not apply when Mg is added as a solute element for
all types of migrating atoms (Al, Zn and Mg) in both
binary Al-Mg and ternary Ag-Mg-Zn systems. In these
cases, ∆E values are still distributed in a similar range
as those in the Al-Zn system in Fig. 3 (a), mostly from
∼ −0.2 eV to ∼ 0.2 eV. However, Ea values are scat-
tered in much wider ranges from almost 0 eV up to ∼ 1
eV. This indicates that the fluctuations of ∆Ea in dif-
ferent local chemical environments are mostly dependent
upon changes in ∆ea rather than the small variations of
∆E according to Eq. (1). These deviations demonstrate
that even simple vacancy migrations in alloys with close-
packed lattices are complex; hence the assumptions be-
hind Fig. 1 (b) are incorrect and the Kinetic Ising Model
is not broadly applicable.

One problem in Fig. 1 (b) is the neglect of changes in
MEP along the reaction coordinate axis. Here, we define
the distance between the initial and final states along the
reaction coordinate as DMEP as indicated in Fig. 1 (c).
The reaction coordinate x and DMEP for all investigated
cases result from DFT + CI-NEB calculations[35, 36].
Fig. 3 (d), (e), and (f) show the kernel density estima-
tions [48], which indicate smoothed probability distribu-
tions, of DMEP for different types of migrating atoms
(Al, Mg and Zn) in all migration events. In the Al-Zn
binary system (Fig. 3 (d)), DMEP values are centered-
distributed with negligible standard deviation σDMEP

for
both migrating Al atoms (σDMEP

=0.035 Å) and migrat-
ing Zn atoms (σDMEP

=0.018 Å). These distributions in-
dicate occupations of Zn atoms near vacancy sites in-
duce small lattice distortions. However, in both Al-Mg
systems (Fig. 3 (e)) and Al-Mg-Zn systems (Fig. 3 (f)),
σDMEP

is much larger for all migrating Al, Mg, and Zn
atoms (σDMEP

=∼ 0.2 Å in all cases). These distribu-



5

FIG. 3. Correlations between ∆Ea and ∆E for vacancy mi-
gration events in Al alloys. (a)-(c): Correlations between
∆Ea and ∆E for vacancy migration events from DFT + CI-
NEB calculations. Migrating atoms are Al (blue dots), Zn
(orange dots), and Mg (green dots) in binary Al-Zn (d), Al-
Mg (e), and ternary Al-Mg-Zn (f) systems, respectively. The
scattering distributions in (e) and (f) indicate the variations
of ∆Ea do not only depend on the variations of ∆E as sug-
gested in Fig. 1 (b). (g)-(i): Kernel density estimations [48]
of DMEP, the distance between the initial and final states de-
fined in Fig. 1 (c), are plotted for migrating Al (blue), Zn
(orange), and Mg (green) atoms in Al-Zn (g), Al-Mg (h), and
Al-Mg-Zn (i) systems, respectively. Large variations of DMEP

in (h) and (i) suggest strong lattice distortion effects in dif-
ferent local chemical environments. The color coding applies
to subsequent figures.

tions indicate occupations of Mg atoms near vacancy sites
induce relatively large lattice distortions. These lattice
distortions are understandable because of the atomic size
differences and large fluctuations of local Mg/Zn concen-
trations for all investigated supercells. The size of Mg
atoms is much larger than those of Zn and Al atoms (the
radii of Mg and Zn and Al atoms are 1.50, 1.35, and
1.25 Å[49], respectively), so the lattice distortion effects
due to Mg atoms in the Al matrix are much stronger
than those due to Zn atoms. The large fluctuations of
local Mg/Zn concentrations originate from the multiple
types of supercells used in our calculations as shown in
Fig. 2, which correspond to different precipitation stages
of Al alloys. A key question is how to construct accurate
MEP models illustrated in Fig. 1 (c) to accommodate
the lattice distortion effects if we want to understand the
physical mechanisms behind ∆ea and ∆Ea variations.

B. Quartic Functions of the MEP

An accurate and quantitative model to describe the
MEP in Fig. 1 (c) has to satisfy several physical condi-
tions, including zero first derivative at initial (xi), transi-
tion (xt) and final (xf) states. Thus, we propose that the
energy landscape of a general vacancy migration MEP,
as a function of the reaction coordinate x with a single
local energy maximum, is described by a simple quartic

function, EMEP(x):

EMEP(x) = ax4 + bx3 + cx2 (5)

Here, the coefficients (a, b, and c) are assumed to
depend on the local lattice occupations near a va-
cancy/adjacent migrating atom pair. Values of xi, xt,
and xf are determined by the zero-first-derivative require-
ments mentioned above. The first derivative of Eq. (5)
is E′MEP(x) = 4ax3 + 3bx2 + 2cx, which roots x0 = 0,

x1 = −3b−
√
9b2−32ac
8a , and x2 = −3b+

√
9b2−32ac
8a . When

a > 0 and c < 0, Eq. (5) has two local minima and one
local maximum, which corresponds to the shape of the
energy landscape along the MEP in Fig. 1 (c). As plotted
in Fig. 4 (a), we can shift the energy landscape to make
the transition state at the origin point by denoting the
position of the transition state at xt = 0 and denoting its
energy on the MEP EMEP(xt = 0) = 0. Then we make
the positions of the initial state and final state at two lo-
cal minima as xi = x1 and xf = x2. If Eq. (5) is accurate
enough to describe the MEP for each migration event
and its coefficients (a, b, and c) can be predicated, ∆Ea,
∆E, and DMEP of the corresponding migration event can
be predicted as suggested in Fig. 4 (a) (then its ∆ea is
from Eq. (1)).

FIG. 4. The quartic function in Eq. (5) is used to fit va-
cancy migration MEPs from DFT + CI-NEB calculations.
(a) Schematic plot of EMEP(x) of Eq. (5) showing ∆E, DMEP,
and ∆Ea. (b) A specific example where Eq. (5) is used to fit
an MEP curve from a DFT + CI-NEB calculation. (c)-(e):
Comparisons of ∆E (c), DMEP (d), and ∆Ea (e) from DFT
+ CI-NEB calculations and those predicted from the fitted
Eq. (5) for all Al (blue), Zn (orange), and Mg (green) mi-
grating atoms in all investigated supercells. The root-mean-
square error (RMSE) is denoted at the upper left, and the
number at the bottom-right corner shows the coefficient of de-
termination R2 (close to 100% means high accuracy). Small
RMSE and large R2 values in (c)-(e) demonstrate that Eq. (5)
is accurate to describe vacancy migration MEPs. The same
RMSE and R2 symbols are used in Fig. 6 and Fig. 8.

Thus, by assuming Eq. (5) is accurate to describe all
the MEPs from our DFT+CI-NEB calculations, we ap-
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plied a least-squares fitting method with a weight ma-
trix to fit the coefficients a, b, and c for each migra-
tion event. Since CI-NEB methods use a series of images
along the reaction path to calculate MEPs, we can not
only collect the energetics of the initial, final, and transi-
tion states, but also those of other intermediate images,
which are at certain coordinates along MEPs. The fol-
lowing conditions are included in the quartic equation
fitting: the energies of initial and final states predicted
by the quartic function equal those from DFT calcula-
tions, EMEP(xi) = Ei and EMEP(xf) = Ef; the energies
of the other intermediate images equal to those from the
DFT+CI-NEB calculations, EMEP(xj) = Ej ; the first
derivatives at initial and final states zero, E′MEP(xi) = 0
and E′MEP(xf) = 0. Thus, the following equation can be
obtained: 

x4i x3i x2i
...

...
...

x4j x3j x2j
...

...
...

x4f x3f x2f
4x3i 3x2i 2xi
4x3f 3x2f 2xf



ab
c

 =



Ei

...
Ej
...
Ef

0
0


(6)

Here xj is the location of the jth intermediate image
along the reaction coordinate and Ej is its energy relative
to the transition state (since xt = 0 and EMEP(xt) = 0
according to Eq. (5)). All values of xj and Ej are di-
rectly from DFT + CI-NEB calculations. We denote the
left matrix as XXX, the quartic coefficients vector as βββ, and
the right vector as yyy for Eq. (6), which can be re-written
as XXXβββ = yyy. To find the best description of each MEP,
the weighted linear regression is applied, which is a gen-
eralization of ordinary least squares:(

XXXTWWWXXX
)
β̂̂β̂β = XXXTWWWyyy (7)

Here, WWW is a diagonal matrix, with each of its ele-
ments representing a weighting coefficient used for each
data point. The estimated quartic coefficients vector is

β̂̂β̂β =
(
XXXTWWWXXX

)−1
XXXTWWWyyy. To emphasize the accuracy of

the computed energy terms ∆E and ∆Ea, we increase the
weight elements of the first condition mentioned above
to large finite numbers and retain other weight elements
equal to 1. Each MEP curve of all DFT-CI-NEB calcu-
lations was fitted by Eq. (7).

Fig. 4 (b) shows an MEP curve from the DFT + CI-
NEB calculation is accurately described by both the stan-
dard spline fitting and our quartic fitting curve based on
Eq. (5). Overall, Fig. 4 (c), (d), and (e) depict close
matches between ∆E, DMEP, and ∆Ea from direct DFT
+ CI-NEB calculations (Y-axis) and those from the quar-
tic function EMEP(x) with fitted coefficients (X-axis),
respectively. Low values of the root-mean-square error
(RMSE) (close to 0) and high values of the coefficient of
determination R2 (close to 100%) confirm that Eq. (5) is

accurate and robust enough to describe the MEP of va-
cancy migrations in Al-Mg-Zn alloys while incorporating
the requisite physics associated with the vacancy migra-
tion MEPs.

Fig. 5 shows the kernel density estimations of the fitted
coefficients of Eq. (5) for all vacancy migration cases in
different alloy systems (Fig. 5 (a)-(c) in Al-Zn binary sys-
tems, Fig. 5 (d)-(f) in Al-Mg binary systems, and Fig. 5
(g)-(i) in Al-Mg-Zn ternary systems). The results show
the distributions of a and c vary significantly for differ-
ent types of migrating atoms in three alloy systems. The
wide ranges in a and c indicate the shapes of the MEPs in
Fig. 1 (c) and Fig. 4 (a) can change significantly because
both a and c determine the coordinates and curvatures
of MEPs at local energy minimum states (as discussed
in Sec. III C, the ratio of a to c is also important to de-
termine the MEPs and the values of ∆E/DMEP/∆ea, so
these distributions of a and c can not be used to explain
the differences between Al-Zn alloys and Al-Mg/Al-Mg-
Zn alloys in Fig. 3). Alternatively, the distributions of b
for all types of migrating atoms in all alloy systems are
always in narrow ranges close to zero, which is consistent
with the small variations of ∆E in Fig. 1 (d) (∆E = 0 if
b = 0). This special feature of b provides us a relatively
easy and accurate way to predict ∆ea based on lattice
distortion effects as follows.

C. Estimations of ∆ea based on Lattice Distortion
Effects

As indicated by Fig. 5, we can assume b ≈ 0 giving

EMEP(x) ≈ ax4 + cx2 (8)

This is the same free energy formalism of second-order
phase transitions in Landau theory[50]. Thus, xi ≈
−
√
−c
2a , xt = 0, and xf ≈

√
−c
2a , respectively. Accord-

ingly, DMEP = xf−xi ≈
√
−2c
a and ∆ea ≈ −ax4i − cx2i ≈

c2

4a . We can also estimate ∆E ≈ 2bx3f ≈
√
2
2 (−ca )

3
2 b based

on Eq. (5). These approximate relations are confirmed in
Fig. 6 (a)-(c) by the linear correlations between the DFT
+ CI-NEB results (∆E, DMEP, and ∆ea on the Y-axis)
and their estimations based on Eq. (5) and Eq. (8) (the
X-axis), respectively.

In addition, the second derivative of the MEP at the
local-minimum states E′′MEP(xi) ≈ E′′MEP(xf) ≈ −4c ac-
cording to Eq. (8). Thus, we can get an approximate

relation as ∆ea ≈ E′′
MEP(xi)D

2
MEP

32 . Accurate E′′MEP and
DMEP are obtained from the MEP curves produced by
the DFT + CI-NEB calculations. However, because the
migrating atom moves a distance (> ∼2 Å in the Al
lattice) much larger than the other atoms for a general
migration event, the motion of the migrating atom is
the most important factor for the reaction coordinate x.
Therefore, we assume E′′MEP is proportional to the aver-
age vibration spring constant kf of the migrating atom at
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FIG. 5. Kernel density estimations of fitted coefficients (a,
b, and c) of Eq. (5) for all Al (blue), Zn (orange), and Mg
(green) migrating atoms in all investigated supercells. (a)-(c):
Probability densities of a, b, and c in Al-Zn systems. (d)-(f):
Probability densities of a, b, and c in Al-Mg systems. (g)-(i):
Probability densities of a, b, and c in Al-Mg-Zn systems. The
narrow probability densities variations of b in all investigated
supercells is consistent with the small variations of ∆E in
Fig. 3 (a)-(c).

the initial and final states, and we also assume DMEP is
proportional to the distance D of the same atom at these
two states as illustrated in Fig. 1 (a). These assumptions
give:

∆ea ≈ αkfD2 (9)

where α is a unitless constant. Because the migrating
atom moves a distance much larger than all other atoms,
the variations of kf and D can be used to approximate
the local lattice distortion effects on the shape and loca-
tions of local-minimum states along a MEP. These two
parameters are obtained from DFT calculations ofHHH and
the coordinate of the migrating atom in fully relaxed
structures as described in Sec. II B. The validity of Eq. (9)
is confirmed by comparing ∆ea from DFT + CI-NEB cal-
culations (Y-axis) and αkfD

2 (X-axis) for all migrating
atoms in all investigated supercells in Fig. 6 (d). This
shows that Eq. (9) with the same α value (≈ 0.022 fit-
ted by Fig. 6 (d)) works for all Al, Mg, Zn migrating
atoms in these Al alloys. Eq. (9) therefore provides an
efficient way to estimate ∆ea and ∆Ea using standard
DFT calculations without the CI-NEB method.

To further verify the generality and accuracy of Eq. (9),
we compute kf and D of specific examples of vacancy

FIG. 6. Methods to estimate ∆E (a), DMEP (b), and ∆ea

(c) of vacancy migration MEPs. (a)-(c) Comparisons between
DFT+CI-NEB calculated ∆E (a), DMEP (b), and ∆ea (c) and
those estimated based on Eq. (5) and Eq. (8). (d) Correlations
between DFT+CI-NEB calculated ∆ea and kfD

2 to verify
Eq. (9).

migration with different types of migrating atoms in a
dilute Al alloy in Table I. In these cases, except for the
migrating atom, there is no solute atom in the supercell
so that the initial and final states are equivalent since the
MEP is symmetric on two sides of the transition state.
Thus, the migration energetic driving force ∆E = 0 and
∆ea ≡ ∆Ea − 1

2∆E = ∆Ea according to Eq. (1). We
also present these results of ∆Ea = ∆ea from DFT+CI-
NEB calculations in Table I. These results show that,
for all types of migrating atoms (Al, Mg, and Zn) in a
dilute Al matrix, the ratio of ∆ea to kfD

2 is almost a
constant value close to the α value (0.022) fitted from
all migration cases with different values of ∆E, thereby
further supporting the generality and validity of Eq. (9).

D. Surrogate Models to Predict the MEP

Although Eq. (9) can be helpful to estimate ∆ea and
∆Ea without using the computationally expensive CI-
NEB method for Al-Mg-Zn and potentially other mul-
ticomponent FCC alloys, it still requires DFT calcula-
tions that need considerable computational resources. To
study diffusion and precipitation in mesoscale methods
such as kMC simulations[8, 9], we still need to accu-
rately and efficiently predict ∆Ea and ∆E in different
local chemical environments. A practical approach is to
construct surrogate models that can predict the coeffi-
cients (a, b and c) of Eq. (5) with respect to the local lat-
tice occupations, then the properties of the MEP (∆Ea,
∆E, and DMEP) can be automatically obtained based
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TABLE I. Results of vacancy migrations in a dilute Al matrix (at most one solute atom in a supercell) are listed as the migration
barrier ∆Ea = ∆ea, the average vibration spring constant kf of the migrating atom at the initial and final states calculated
under this fixed-atom condition described in Sec. II B, the high dimensional distance along the minimum energy path between
the initial and final states DMEP defined in Eq. (3), the Cartesian distance of the migrating atom between initial and final
states D defined in Eq. (4), the values of kfD

2, and the coefficient α ≡ ∆ea
kfD2 of selected migrating atoms. As a reference, the

value of α in Eq. (9) fitted from the whole database of vacancy migrations is 0.0220 as shown in Fig. 6 (d).

Migrating atom ∆Ea = ∆ea (eV) kf (eV/Å2) DMEP (Å) D (Å) kfD
2 (eV) α ≡ ∆ea

kfD2

Al 0.58 3.60 3.00 2.75 27.28 0.0213
Mg 0.47 3.39 2.78 2.58 22.62 0.0207
Zn 0.34 2.02 2.80 2.69 14.66 0.0233

on Eq. (5) and Fig. 4 (a). The general strategy to con-
struct these surrogate models and train them based on
DFT+CI-NEB results is described as follows.

To train the surrogate models for coefficients of Eq. (5),
2000 training data points of ∆E and ∆Ea pairs (plus the
corresponding supercell configurations of the initial and
final states) were chosen randomly from the total 2500
data points generated from the DFT+CI-NEB calcula-
tions. The remaining 500 data points were utilized as
testing data to evaluate the predictive accuracy of the
surrogate models. All of the data were divided into three
different groups based on the chemical type of the migrat-
ing atom (Al, Mg or Zn)[51, 52]. The input information
was chosen to be the type of the migrating atom and the
type of all atoms on the 1st, 2nd, and 3rd nearest-neighbor
lattice sites relative to the vacancy site before and after
the migration event, as shown Fig. 7 (a). This difference
between the even-order-term coefficients of Eq. (5) (a
and c) and the odd-order-term coefficient (b) suggests we
should use different symmetry constraints to construct
the inputs of the surrogate models for coefficients. Thus,
the input information (only 1st nearest-neighbor lattice
sites are shown) for surrogate models of a and c is con-
structed based on the symmetry operations of the mmm
point group shown in Fig. 7 (b), and input for the sur-
rogate model of b is constructed based on the symmetry
operations of the mm2 point group shown in Fig. 7 (c).

In both Fig. 7 (b) and (c), the vacancy (black color)
and the migration atom (yellow color) are aligned along
the 〈110〉 direction (x-axis). For the mmm point group
illustrated in Fig. 7 (b), there is a mirror symmetry plane
perpendicular to the 〈1̄10〉 (y-axis), a mirror symmetry
plane perpendicular to the 〈001〉 (z-axis), and a mirror
symmetry plane perpendicular to the 〈110〉 direction (x-
axis). For the mm2 point group illustrated in Fig. 7 (c),
there is a mirror symmetry plane perpendicular to the
〈1̄10〉 (y-axis), a mirror plane perpendicular to the 〈001〉
(z-axis), a 2-fold rotation axis along the 〈110〉 direction
(x-axis). Thus, the neighboring sites can be divided into
different sets based on their symmetry relative to the va-
cancy and the migrating atom. As shown in Fig. 7 (b)
and (c), themmm point group sorts the 1st nearest neigh-
bor sites into 4 sets; the mm2 point group sorts the 1st

nearest neighbor sites into 7 sets; each set of lattice sites

is plotted in the same color. The same strategy is applied
to 2nd, and 3rd nearest neighbors and 2-atom clusters
(atoms at two lattice sites not apart than 3rd-nearest-
neighbor distance (4.955 Å)) as well. Atoms and clusters
that are symmetrically equivalent should have the same
contribution to the inputs of the surrogate models for
coefficients of Eq. (5).

Besides the symmetry effect, the encoding strategy of
the lattice occupations has a significant impact on the
surrogate model. In this work, we applied the one-hot
encoding method [53, 54] to construct feature vectors to
describe types of single atoms and 2-atom clusters. The
advantage of using the one-hot encoding for categorical
data is that since it represents each type of the variable
by a unique digit, there is no quantitative relationship
between the values of variables. Hence, one-hot encod-
ing without introducing any fictional ordinal relationship
can be more accurate. The symmetry properties related
to vacancy migrations in the FCC lattice illustrated in
Fig. 7 are applied to construct these feature vectors. Be-
cause a and c of Eq. (5) are the coefficients of fourth-
order and second-order terms, respectively, each should
have the same values for the forward and backward mi-
gration processes in a vacancy migration case. However,
b of Eq. (5) is the coefficient of a third-order term, so it
should have the opposite values in forward and backward
migration processes. Consequently, the feature vectors
for the surrogate models of a and c are constructed based
on the symmetry operations of the mmm point group as
illustrated in Fig. 7 (b), and the feature vectors for the
surrogate model of b are constructed based on the sym-
metry operations of the mm2 point group as illustrated
in Fig. 7 (c). In both Fig. 7 (b) and (c), the symmet-
rically equivalent lattice sites are of the same color, so
the contributions of chemical elements on these symmet-
rically equivalent sites to the feature vectors should be
averaged.

Examples of feature vectors and the symmetry con-
straints on feature vectors are described as follows. We
used a feature vector vvv ∈ R3 to represent the chemical
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FIG. 7. Illustrations of local lattice sites related to the va-
cancy migration and their symmetry properties considered in
the surrogate models of coefficients of Eq. (5). (a): The plot
of the 1st, 2nd, and 3rd nearest neighboring sites of the va-
cancy (black) and the migrating atom (yellow) aligned along
the 〈110〉 direction (x-axis). The vacancy and the migrating
atom are plotted in the same way in (b) and (c). (b) and (c):
Effects of mmm and mm2 point group symmetry applied on
the 1st neighboring lattice sites, respectively. Atoms with the
same color are at the symmetrically equivalent lattice sites,
so their contributions to the inputs of the surrogate models
are averaged together. Here the mmm point group shown in
(b) has a mirror symmetry plane perpendicular to the 〈1̄10〉
(y-axis), a mirror symmetry plane perpendicular to 〈001〉 (z-
axis), and a mirror symmetry plane perpendicular to 〈110〉
direction (x-axis). The mm2 point group shown in (c) has a
mirror symmetry plane perpendicular to the 〈1̄10〉 (y-axis), a
mirror symmetry plane perpendicular to 〈001〉 (z-axis), and
2-fold symmetry along 〈110〉 direction (x-axis).

type of a single atom:

vvvAl =
(
1, 0, 0

)
vvvMg =

(
0, 1, 0

)
vvvZn =

(
0, 0, 1

) (10)

For 2-atom clusters, if both of two lattice sites are from
the same symmetry-equivalent sets (two sites with the
same color in Fig. 7 (b) or (c)), such as the cluster of
atom 8 and atom 9 shown in Fig. 7 (b) or (c), then their
orientation and order relative to the vacancy site and the

migrating atom can be neglected. Therefore, there are 6
combinations in total to put different types of chemical
elements in these two sites. We used a feature vector
vvv ∈ R6 to represent each type:

vvvAl-Al =
(
1, 0, 0, 0, 0, 0

)
vvvAl-Mg =

(
0, 1, 0, 0, 0, 0

)
vvvAl-Zn =

(
0, 0, 1, 0, 0, 0

)
vvvMg-Mg =

(
0, 0, 0, 1, 0, 0

)
vvvMg-Zn =

(
0, 0, 0, 0, 1, 0

)
vvvZn-Zn =

(
0, 0, 0, 0, 0, 1

)
(11)

However, if two lattice sites are from different symmetry
sets, for instance, the cluster of atom 3 and atom 9 shown
in Fig. 7 (b) or (c), then their orientations and order can
affect the vacancy migration energetics. Therefore, there
are 9 combinations to put different types of chemical el-
ements in these two sites. This required use of a feature
vector vvv ∈ R9 to represent each type:

vvvAl-Al =
(
1, 0, 0, 0, 0, 0, 0, 0, 0

)
vvvAl-Mg =

(
0, 1, 0, 0, 0, 0, 0, 0, 0

)
vvvAl-Zn =

(
0, 0, 1, 0, 0, 0, 0, 0, 0

)
vvvMg-Al =

(
0, 0, 0, 1, 0, 0, 0, 0, 0

)
vvvMg-Mg =

(
0, 0, 0, 0, 1, 0, 0, 0, 0

)
vvvMg-Zn =

(
0, 0, 0, 0, 0, 1, 0, 0, 0

)
vvvZn-Al =

(
0, 0, 0, 0, 0, 0, 1, 0, 0

)
vvvZn-Mg =

(
0, 0, 0, 0, 0, 0, 0, 1, 0

)
vvvZn-Zn =

(
0, 0, 0, 0, 0, 0, 0, 0, 1

)

(12)

After using feature vectors to label single atoms and
2-atom clusters on the local lattice occupations near the
vacancy and the migrating atom, we can average the one-
hot feature encoding vectors from the clusters that share
the same symmetry. A feature vector that represents the
averaged information can be obtained. For example, if
the 18 first-nearest-neighboring sites shown in Fig. 7 (b)
have the following lattice occupations (σi, where i is the
site index plotted in Fig. 7 (b)): σ1 = Al, σ2 = Mg, σ3 =
Al, σ4 = Al, σ5 = Zn, σ6 = Mg, σ7 = Al, σ8 = Al, σ9 =
Zn, σ10 = Mg, σ11 = Zn, σ12 = Al, σ13 = Al, σ14 = Al,
σ15 = Al, σ16 = Mg, σ17 = Zn and σ18 = Al, respectively,
then four feature vectors can be obtained for the single-
atom occupations in 4 sets of 1st nearest neighbor sites
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by considering the mmm point group:

v̂vv1 =
1

2
vvvAl +

1

2
vvvAl

=
(
1, 0, 0

)
v̂vv2 =

1

8
vvvMg +

1

8
vvvAl +

1

8
vvvAl +

1

8
vvvZn

+
1

8
vvvAl +

1

8
vvvAl +

1

8
vvvMg +

1

8
vvvZn

=
(
0.5, 0.25, 0.25

)
v̂vv3 =

1

4
vvvMg +

1

4
vvvAl +

1

4
vvvAl +

1

4
vvvAl

=
(
0.75, 0.25, 0

)
v̂vv4 =

1

4
vvvAl +

1

4
vvvZn +

1

4
vvvMg +

1

4
vvvZn

=
(
0.25, 0.25, 0.5

)

(13)

Here, each R3 feature vector of a single atom is mul-
tiplied by a weighting factor 1

ns
, where ns is the num-

ber of symmetry-equivalent sites in each of these 4 sets.
Concatenating these feature vectors together, we can ob-
tain a combined feature vector v̂vv =

(
v̂vv1, v̂vv1, v̂vv1, v̂vv4

)
∈

R12. When we extended this method to 2-atoms clusters
within 3rd nearest neighboring distance among all lat-
tice sites shown in Fig. 7 (a), we obtained the combined
feature vectors that describe the local environment of a
vacancy migration event.

The dimensionalities of the combined feature vectors
of lattice occupations in lattice sites of Fig. 7 (a) were
1401 based on the mm2 point group symmetry opera-
tions and 711 based on the mmm point group symme-
try operations. These large dimensionalities were at the
same scale as the size of our three training datasets (for
three different elements of migrating atoms), which re-
flect a typical downside of one-hot encoding: it tends to
create multicollinearity among individual variables be-
cause it creates multiple new variables. However, we
can apply principal component analysis (PCA) to reduce
the dimensionality of the feature vectors. Overall, using
one-hot encoding and the PCA method together, we can
eliminate potential quantitative relationships and multi-
collinearity between the individual variables at the same
time, which significantly increases the accuracy and ro-
bustness of the surrogate model. See Supplemental Ma-
terial at ?? and ?? for more details regarding the dimen-
sionality and PCA methods.

After the dimensionality reduction, the ridge regres-
sion (linear least squares with the L2 regularization) was
applied to the training data. It can be described in the
form of least squares as:

X̂̂X̂Xβ̂̂β̂βridge = yyy (14)

where, the estimated parameters β̂̂β̂βridge minimizes the ob-
jective function:

min
βββ

{
| yyy − X̂̂X̂Xβββ‖22 + λ|βββ‖22

}
(15)

Here, X̂̂X̂X is the dimension-reduced feature space. Each

row in X̂̂X̂X represents a dimension-reduced feature vector,
and it has m rows in total, where m is the size of the
training dataset. yyy is a vector that contains the results
of the targeted coefficients a, b or c. Since there are two
constraints (a > 0 and c < 0) to make sure that Eq. (5)
represents the MEP in Fig. 1 (c), elements in yyy can be
log(a), b or log(−c) for each data point. The scalar λ is a
user-defined regularization parameter, which was set to 1
in our calculations. Based on Eq. (15), the estimated pa-

rameters vector is β̂̂β̂βridge =
(
XXXTXXX + λIII

)−1
XXXTyyy, where

III is an identity matrix.

FIG. 8. Performances of surrogate models to predict vacancy
migration energetics based on Eq. (5). (a)-(c): Comparisons
between directly fitted results and predictions from our surro-
gate models for EMEP(x) coefficients (a, b, and c in Eq. (5)).
(d)-(f): Comparisons between DFT+CI-NEB calculated re-
sults and predictions based on our surrogate-model-predicted
EMEP(x) for ∆E (d), DMEP (e), and ∆Ea (f).

After training the surrogate models to output the co-
efficients a, b and c based on the local lattice occu-
pations, we can calculate the properties of the MEP
(∆Ea, ∆E, and DMEP) from Eq. (5) as follows: ∆E =

EMEP(xf) − EMEP(xi) = b2(x3f − x3i ) =
b(9b2−32ac)

3/2

256a3 ,

DMEP = xf − xi =
√
9b2−32ac

4a , and ∆Ea = −EMEP(xi).
See Supplemental Material at ?? for details of the train-
ing performance of surrogate models.

Fig. 8 (a)-(c) show how predictions of the coefficients
of Eq. (5) from our surrogate models (X-axis) match
with the coefficients of Eq. (5) directly fitted based on
DFT+CI-NEB results (Y-axis) for 500 test cases cho-
sen randomly from the total 2500 DFT+CI-NEB calcu-
lations. With the predicted coefficients, the values of
∆E, DMEP, and ∆Ea can then be calculated based on
Eq. (5) and Fig. 4 (a). Fig. 8 (d)-(f) compare these
predicated values from surrogate models (X-axis) with
∆E, DMEP, and ∆Ea directly from DFT+CI-NEB cal-
culations (Y-axis). All plots in Fig. 8 indicate accurate
matches between the surrogate model predictions and
DFT+CI-NEB calculations, with low RMSE and high
R2 values (close or larger than 90%). Particularly, the
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RMSE values of both ∆E and ∆Ea values are less than
0.04 eV, indicating our surrogate models can give precise
descriptions of both the energetic driving force and en-
ergy barrier of vacancy migrations in complex local chem-
ical environments. Using the one-hot encoding methods
to describe the local lattice occupations as the inputs,
these surrogate models can be easily implemented into
kMC simulations for studies of early-stage precipitation
kinetics in Al-Mg-Zn alloys.

IV. DISCUSSION AND CONCLUSIONS

Several previous studies support the generality of our
studies of lattice distortion effects on vacancy migration
barriers. For example, Eq. (9) is similar to the general
linear correlation between ∆Ea and a3lB0 (al is the lattice
constant and B0 is the bulk modulus) for many pure met-
als with stable (such as Al, Ni, Cu, and Pt) or metastable
(such as Fe and Ti) FCC structures[55, 56]. Both kf
and B0 are related to second derivatives of the energy
landscape at local-minimum states. As another example,
correlations between site distortions and Li-ion migration
barriers and correlations between Li-ion vibrational fre-
quencies and Li-ion migration barriers were found sepa-
rately in superionic conductors with antiperovskite struc-
tures (related to FCC lattice)[57]. Yet another example is
that an equation similar to Eq. (9) was proposed to esti-
mate the local free energy barriers in glass materials[58].
These results suggest Eq. (5) and Eq. (9) can be applied
to atomic migrations in many other materials with FCC
and similar crystal structures if each migration MEP only
has one local energy maximum as plotted in Fig. 1 (c).
Thus, not only are these equations (Eq. (5) and Eq. (9))
and the related surrogate models suitable for describing
the energetics of vacancy migrations in multicomponent
Al alloys, but they can also be applied in other multicom-
ponent alloys such as high entropy alloys (HEAs) and the
related concept of complex concentrated alloys (CCAs),
where there can be strong lattice distortion effects on
diffusion kinetics due to fluctuations in local chemical
compositions[5–7, 59, 60]. However, the validity and the
detailed forms of these equations in the ionic compounds
need further investigations due to the different charac-
teristics of interatomic bonds compared with the metallic
alloys studied here.

The surrogate models to predict coefficients of Eq. (5)
can be further improved from different aspects. First,
only the feature vectors related to 2-atom clusters have
been considered. We have confirmed that the accuracy of
the surrogate models can increase if the feature vectors
related to 3-atom clusters are considered (the R2 values
of the predictions of ∆E can be more than 90% in these
cases). Second, high-order methods other than the lin-
ear ridge regression can be applied to train the surrogate
models. However, since these surrogate models will be
implemented into kMC simulations, these improvement
strategies may increase the computational cost signifi-

cantly and impede the ability of the kMC simulations to
study the relatively long-time and large-scale diffusion
and precipitation kinetics. Thus, the trade-off between
accuracy and efficiency should be carefully considered for
the construction of these surrogate models. These deci-
sions can be made if kMC simulations are performed and
compared with experimental validations, which will be
the subject of future research.

In addition, physical mechanisms (including the sym-
metry properties discussed in Sec. III C and Sec. III D)
will be applied to discover more efficient approaches to
construct the DFT+CI-NEB data set to train the surro-
gate models. For example, Eq. (9) provides a criterion to
select the representative data with appropriate distribu-
tions of ∆ea and ∆Ea as the training data set. Last but
not least, the generality of our surrogate models based
on Eq. (5) for different alloy compositions should also be
verified. We have performed the DFT+CI-NEB calcula-
tions and analyses of quaternary Al-Mg-Zn-X alloy sys-
tems, where X is the alloying element possibly affecting
the vacancy migration kinetics. Our preliminary results
show that surrogate models based on Eq. (5) can also ac-
curately describe the MEPs and the related ∆Ea/∆E in
these quaternary alloy systems, which will be discussed
in our future work.

In summary, the major conclusions of this study are

1. DFT+CI-NEB calculations provide energy barriers
∆Ea and driving forces ∆E of many (> 1000) va-
cancy migration events in different local chemical
environments within the face-centered cubic (FCC)
lattices of Al-Mg-Zn alloys.

2. The widely applied Kinetic Ising model [10], which
states ∆Ea = ∆ea + 1

2∆E and ∆ea is a constant
value for one type of migrating atom in different
local chemical environments inside a lattice, is not
broadly applicable to FCC alloys, such as multi-
component Al alloys (Al-Mg system and Al-Mg-Zn
system). This is because of the local lattice dis-
tortion effects resulting from changes in the chemi-
cal environment experienced by a migrating atom.
Only Zn atoms near vacancy cites in Al lattices in-
duce small lattice distortions due to the relatively
small size difference between Al and Zn atoms[49].
Alternatively, large fluctuations (∼ 1 eV) of ∆Ea

in Al-Mg and Al-Mg-Zn alloys originate primar-
ily from changes in ∆ea = ∆Ea − 1

2∆E due to
local lattice distortion effects because of the rel-
atively large size of Mg atoms compared with Al
and Zn atoms[49]. Here ∆ea can be regarded as
the transition-state energy (Et) relative to the av-
erage of the initial-state (Ei) and final-state (Ef)
energies [25].

3. Based upon comparisons with DFT+CI-NEB re-
sults, a quartic function of the reaction coordinate
x, EMEP(x) = ax4 +bx3 +cx2, accurately describes
the energy landscape of the minimum energy path
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(MEP) for each vacancy migration event in the
FCC lattice, where EMEP(x) of a vacancy migra-
tion event only has a single maximum at the tran-
sition state.

4. The quartic functions of the MEPs in Al-Mg-Zn
alloys suggest that ∆ea of all types of migrating
atoms in the FCC lattice of Al can be approximated
with ∆ea ≈ αkfD

2, where α ∼ 0.022 is a constant
value. Here D is the distance of a migrating atom
between two adjacent equilibrium positions and kf
is the average vibration spring constant of this atom
at these two equilibrium positions. This relation
provide a a significant speedup in estimating ∆Ea

without computational costly CI-NEB calculations
since kf is calculated rapidly by displacing only the
migrating atom from its equilibrium positions.

5. Surrogate models using local lattice occupations
as inputs were trained to predict the coefficients
of the quartic function. The quartic function can

then predict both ∆Ea and ∆E with the ab-initio
accuracy but without additional DFT or CI-NEB
calculations. The efficient and accurate predic-
tions of ∆Ea and ∆E using these surrogate mod-
els will facilitate mesoscale studies, such as kinetic
Monte Carlo simulations, of diffusional transforma-
tions that are critical for the processing and appli-
cations of Al-Mg-Zn-based and other FCC alloys,
such as the solute clustering and early-stage precip-
itations during the natural aging of 7XXX series of
Al alloys[28–31].
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