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Abstract 

Using artificial neural-network machine learning (ANN-ML) to generate 

interatomic potentials has been demonstrated to be a promising approach to address the 

long-standing challenge of accuracy versus efficiency in molecular dynamics (MD) 

simulations. Here, taking the Fe-Si-O system as a prototype, we show that accurate and 

transferable ANN-ML potentials can be developed for reliable MD simulations of 

materials at high-pressure and high-temperature conditions of the Earth’s outer core. 

The ANN-ML potential for Fe-Si-O system is trained by fitting to the energies and 

forces of related binaries and ternary liquid structures at high pressures and 

temperatures obtained by first-principles calculations based on density functional 

theory (DFT). We show that the generated ANN-ML potential describes well the 

structure and dynamics of liquid phases of this complex system. In addition to binary 

systems (Fe189Si61, Fe189O61, and Si80O160) and ternary systems (Fe189Si38O23) whose 

snapshots are included in the training dataset, the reliability of ANN-ML potential are 

validated in other two ternary systems (Fe189Si23O38 and Fe158Si14O28), whose snapshots 

are not included in the training dataset. The efficient ANN-ML potential with DFT 

accuracy provides a promising scheme for accurate atomistic simulations of structures 

and dynamics of complex Fe-Si-O system in the Earth’s outer core.  

Keywords: machine learning; neural networks; molecular dynamics; Earth’s outer core; 

high pressure and high temperature  
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1. Introduction 

Molecular dynamics (MD) simulation has been demonstrated to be a very useful 

computational tool for investigating the structure and dynamics at an atomistic level of 

details for many systems in condensed matter physics, materials science, chemical and 

biological science, as well as earth science [1, 2]. However, to perform reliable MD 

simulations, accurate and efficient descriptions of interatomic forces are critical.  

Quantum mechanics calculations based on first-principles density functional 

theory (DFT) can provide an accurate description of interatomic forces and total 

energies for many materials, and ab initio MD (AIMD) simulations based on DFT have 

been successful in studying the structures and dynamics of many materials [3, 4]. 

However, due to the heavy computational workload, AIMD can usually be performed 

with a small simulation cell size (usually less than 500 atoms) and shorter time 

(typically less than 1 ns) even with advanced supercomputers.  

To overcome time length and system size limitations in MD simulations, 

considerable efforts in the past several decades have been devoted to developing 

empirical interatomic potentials for MD simulations of various classes of materials. 

Conventionally, such interatomic potentials are modeled by given mathematical 

functions with respect to atomic coordinates in the systems and contain some empirical 

parameters which to be fitted to the data from experimental measurement or first-

principles calculations. Prototype interatomic potentials include Lennard-Jones 

potentials for noble gas and colloidal systems [5, 6], Tersoff and Stillinger-Weber 

potentials [7, 8] for covalent systems such as silicon and carbon, and embedded-atom 
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method (EAM) potentials [9] for the metallic systems. Although these potentials have 

been widely used in MD simulations and have produced many useful results for better 

understanding the structures and properties of materials [10, 11], limitations for their 

application in more complex systems and/or under extreme environments have also 

been noticed. In many cases, reliable MD simulations for such complex systems are 

highly desirable when direct experimental studies become very difficult. For example, 

the Earth’s outer core of our earth is believed to be composed of a liquid iron alloy with 

up to 10% of light elements such as silicon, oxygen, sulfur, carbon, or hydrogen. 

Despite extensive studies, chemical compositions and structures of the Earth’s outer 

core are still elusive. Owing to the great pressures (135 – 363 GPa) and temperatures 

(3800 – 6500 K), experimental studies at core conditions are also limited. While MD 

simulations would provide useful insights into these problems, it is of great challenge 

to model interatomic potentials for such complex systems to ensure reliable MD 

simulations.    

Due to the high dimensionality and many-body character of the interatomic 

potentials, it would be very difficult to choose appropriate mathematical functions for 

interatomic potentials based on chemical and physical intuition to correctly and 

efficiently describe the complicated interactions in complex materials [12]. On the other 

hand, machine learning (ML) is well-known for its ability in learning complex and 

highly nonlinear functional dependence. Artificial neural networks (ANN) are universal 

continuous function approximators, which provide an efficient way of interpolating 

high-dimensional functions. Interatomic potential fitting can be well suited for ANN-
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ML method without assuming any mathematical functions. Within this spirit, 

considerable efforts in last several years have been devoted to the development of ML 

interatomic potentials for MD simulations of various materials [13-33]. Among various 

ML interatomic potentials schemes, deep learning based ANN first proposed by Behler 

and Parrinello [13] and further improved by Zhang et al. [29-32] has demonstrated to 

be very robust for reliable MD simulations of structures and behaviors many complex 

materials [34-40].  

In this paper, we develop an ANN-ML interatomic potential for Fe-Si-O system, 

aimed at enabling accurate MD simulation of materials containing these three elements 

at extreme conditions of high pressure and high temperature similar to that in the 

Earth’s outer core. We show that the developed ANN-ML interatomic potential 

describes well the structure and dynamics of the Fe-Si-O system at high pressures (> 

100 GPa) and high temperature (> 3000 K). The potential will enable accurate and 

efficient atomistic simulations of structures and dynamics of complex Fe-Si-O systems 

in the Earth’s outer core with a large number of atoms and longer simulation time. 

The paper is organized as follows. In section 2, we describe the datasets and the 

detailed process and parameters used in the ANN-ML training. The training and testing 

accuracies in comparison with the first-principles DFT results are also discussed. 

Application of the developed Fe-Si-O ANN-ML potential to MD simulation studies of 

the structures and dynamics of Fe-Si and Fe-O binaries and Fe-Si-O ternaries at high-

temperature liquid phases are presented in section 3 and section 4 respectively. 

Comparisons with available ab initio MD simulations are also discussed. Finally, a brief 
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summary is given in section 5.  

2. Development of ANN-ML potential for Fe-Si-O system 

An ANN contains three types of layers: an input layer, hidden layers, and an output 

layer. Each layer encompasses a set of artificial neurons termed as “node”, which 

linearly combines its inputs and then passes it through an activation function. To model 

the interatomic potential by the ANN, the input layer receives the data of atomistic 

structures and the output layer generates the atomistic energy 𝐸𝑖 on each atom. The 

total potential energy E of a atomistic structure is a sum of the atomistic energy, 𝐸 =

∑ 𝐸𝑖𝑖  . In the present work, we used the DeepPot-SE model as implemented in the 

DeePMD-kit package to develop the ANN-ML interatomic potential. It has been 

demonstrated that it is very robust in developing interatomic potentials for MD 

simulations studies of liquid and crystalline bulk structures and organic molecules.  

There are two steps to construct 𝐸𝑖. First, the relative Cartesian coordinates {𝑅𝑗} 

of the neighboring atom j within a cutoff radius rc with respect to atom i are transferred 

to the generalized coordination {𝑅̃𝑖} as 

{𝑅𝑖} = {𝑥𝑗𝑖 , 𝑦𝑗𝑖 , 𝑧𝑗𝑖} → {𝑅̃𝑖} = {𝑠(𝑟𝑗𝑖), 𝑥̂𝑗𝑖 , 𝑦̂𝑗𝑖 , 𝑧̂𝑗𝑖} 

where 𝑥̂𝑗𝑖 = 𝑠(𝑟𝑗𝑖)𝑥𝑗𝑖/𝑟𝑗𝑖, 𝑦̂𝑗𝑖 = 𝑠(𝑟𝑗𝑖)𝑦𝑗𝑖/𝑟𝑗𝑖, and 𝑧̂𝑗𝑖 = 𝑠(𝑟𝑗𝑖)𝑧𝑗𝑖/𝑟𝑗𝑖, have the angular 

information of the local environment. 𝑠(𝑟𝑗𝑖) contains the radial information, defined 

as: 

𝑠(𝑟𝑗𝑖) =

{
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where rcs is the smooth cutoff parameter. The radial information 𝑠(𝑟𝑗𝑖) is fed as an 

input to a local embedding neural network (called as filter NN). The output of the filter 

NN serving as weight coefficients to the generalized coordination {𝑅̃𝑖} will generate 

the local structure descriptor {𝐷𝑖} , which contains translational, rotational, and 

permutational symmetries of the environment. Second, the local structure descriptor 

{𝐷𝑖} is transferred to atomistic energy 𝐸𝑖 through a deep and forward neural network 

(called as fitting NN) which contains multiple hidden layers. The schematic illustration 

of constructing the ANN-ML interatomic potential is shown in Fig. 1.  

    The training process is a procedure of optimizing the parameters in filter and fitting 

NN using the Adam stochastic gradient decent method [41] with a family of loss 

functions[29] 

𝐿(𝑝𝜀 , 𝑝𝑓 , 𝑝𝜉) = 𝑝𝜀|∆𝜀|
2 +

𝑝𝑓

3𝑁
|∆𝐹𝑖|

2 +
𝑝𝜉

9
‖Δξ‖2 

where Δ denotes the difference between the ANN-ML predictions and the DFT results. 

N is the total number of atoms in the structure. 𝜀 is the energy per atom, 𝐹𝑖 is the 

force on the atom i, and ξ is the virial tensor divided by N. The prefactors 𝑝𝜀, 𝑝𝑓, and 

𝑝𝜉 are free to change during the training process. 
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Fig. 1 Schematic illustration of the deep learning method for generating ANN-ML 

interatomic potentials. 

The DeepPot-SE model in the DeePMD-kit package [29] is applied in the training 

process to develop the ANN-ML potential for Fe-Si-O system. The cutoff radius (rc) of 

the model is set to 6.5 Å and descriptors decay smoothly from 6.0 Å (rcs) to the cutoff 

radius of 6.5 Å. The size of the filter and fitting neural networks are (60, 120) and (240, 

240, 240), respectively. A skip connection is built (ResNet) between two neighboring 

fitting layers [42]. The hyperbolic tangent is used as the nonlinear activation function. 

The learning rate decreases exponentially with respect to the starting value of 0.001. 

The ANN is initialized with random numbers and the total number of training steps is 

3,000,000. The decay rate and decay step are set to 0.96 and 10000, respectively. In 

addition, the prefactors in the loss functions are pε
start = 0.1, pε

limit = 0.1, pf
start = 1000, 

pf
limit = 1, pξ

start = 0, pξ
limit = 0.  

The dataset used to train the ANN-ML interatomic potential for Fe-Si-O ternary 

system consists of high temperature and high pressure liquids of pure Fe and related 

binaries and ternary as listed in Table 1. These data are generated by AIMD simulations 

and are consists of potential energies for each structure and forces on every atom in the 

structures. The AIMD simulations are performed using Vienna Ab-Initio Simulation 

Package (VASP) [4, 43]. Projected-augmented-waves (PAW) with the Perdew-Burke-

Ernzerhof (PBE) form of exchange-correlation potentials are adopted [44, 45]. Only the 

point is utilized to sample the Brillouin zone and the default energy cutoffs of 400 eV 

are employed. The AIMD simulations are carried out using the NVT ensemble with 
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Nóse-Hoover thermostat under periodic boundary conditions. The time step of the 

AIMD simulations is 3 fs. A total 124455 snapshot structures with several different 

compositions from the AIMD have been collected for ML training, as can be seen from 

Table 1. The AIMD simulations for each Fe-Si-O system to collect the snapshots for 

ML are performed at 3800 K, 4000 K, 4300 K, and 4800 K respectively. At each 

temperature, the AIMD simulations for each system are performed at least with two 

different densities in the range specified in the Table 1. More details of training datasets 

are listed in Table S1 of the Supplemental Material [46]. 

 

Table 1. The training datasets used for the Fe-Si-O ANN-ML potential 

development. The RMSE of energy and force predicted by the ANN-ML model are the 

validation RMSE. 

System Total number 

of atom 

Total number 

of snapshot 

density 

(g/cm3) 

Energy RMSE 

(meV/atom) 

Force RMSE 

(eV/Å) 

Fe189Si38O23 250 23143 8.36 ~ 10.65 5.3 0.43 

Fe189Si61 250 29967 9.63 ~ 9.93 4.7 0.39 

Fe189O61 250 31906 8.79 ~ 10.49 6.0 0.47 

Si80O160 240 19283 4.98 ~ 6.19 5.4 0.31 

Fe 256 20156 10.26 ~ 11.28 4.5 0.42 

 

Fig. 2 shows the comparison of total potential energies and forces on each atom 

from the trained ANN-ML potential and ab initio calculated results for Fe189Si38O23 

liquid. The energies and forces predicted by the ANN-ML model and calculated by ab 

initio method are plotted in the same figure as vertical coordinate and horizontal 

coordinate, respectively. The root mean square error (RMSE) of energy is about 5.3 

meV/atom and the force RMSE is about 0.43 eV/Å for the validation data. The training 

accuracy for other systems listed in Table 1 is similar to the one shown in Fig. 2. In 
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comparison with the ab initio DFT calculation results, the relative error in energy and 

force from the ANN-ML potential prediction is about 1% and 4% respectively. 

 

 

Fig. 2 ANN-ML versus DFT energies and forces for the validation dataset of 

Fe189Si38O23. 

 

3. MD simulation of Fe-Si, Fe-O, and Si-O binary liquids 

With the interface of the DeePMD-kit to the LAMMPS code [47], MD simulations 

can be directly performed with the generated ANN-ML potential [29]. We first validate 

the reliability of the developed ANN-ML potential by compare the structures and 

dynamics of Fe189Si61, Fe189O61, and Si80O160 liquids obtained from the MD simulations 

using the developed ANN-ML potential with those from AIMD simulations. The MD 
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simulations by the ANN-ML potential are performed using a NVT ensemble and a 

Nóse-Hoover thermostat. Small and large simulation cells are used in the ANN-ML 

potential MD simulations. For the small simulation cell, the same box length as in the 

AIMD simulation is used. The large cell is a 2 × 2 × 2 supercell of the small one, thus 

the density of the small and large cells are same. Periodic boundary conditions are 

applied in the three directions and the time step of the simulations is 3 fs. According to 

the size of simulation cell, we refer to small simulation cell of 200 ~ 256 atoms as “S” 

and large simulation cell of 2000 ~ 5000 atoms as “L”. For example, AIMDS model of 

Fe189Si38O23 system contains 240 atoms, whereas ANN-MDL model of Fe189Si38O23 

system contains 2000 atoms. The same simulation conditions are applied, i.e., initial 

configurations, simulation steps, and NVT ensemble, on AIMDS and ANN-MDS 

models. The density of the studied Fe189Si61, Fe189O61, and Si80O160 liquid in this section 

are 9.78 g/cm3, 9.57 g/cm3, and 5.31 g/cm3 at 3800 K, respectively. The pressures 

obtained from the ANN-MDS and ANN-MDL models are almost same, but are about 

6.8% ~ 10.1% larger than that from the AIMDS model. The pressures of the Fe189Si61, 

Fe189O61, and Si80O160 liquid are 135 GPa (144 GPa), 134 GPa (147 GPa), and 133 GPa 

(143 GPa) from AIMDS (ANN-MDS) model at 3800 K, respectively.  
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Fig. 3 Total and partial pair correlation functions of liquid (a) Fe189Si61, (b) Fe189O61, 

and (c) Si80O160 at 3800K.  

 

The structures of the Fe189Si61, Fe189O61, and Si80O160 liquid at 3800 K are analyzed 

from the AIMDS, ANN-MDS, and ANN-MDL model. Pair correlation functions (PCF) 

are calculated to quantitatively describe the structure of liquids. PCF g(r) is a 

conditional probability density of finding a particle at distance r, given that there is a 

particle at the coordinate origin. Thus g(r) provides a measure of local spatial ordering 

in a liquid. Mathematically, partial PCF between the atom type α and β is given by 

𝑔𝛼𝛽(𝑟) = 𝜌𝛼𝛽
−2〈∑ ∑ 𝛿(𝑟𝑖𝛼)𝛿(𝑟𝑗𝛽 − 𝑟)𝑗≠𝑖𝑖 〉 , where 𝜌𝛼𝛽 = 𝜌0√𝑎𝛼𝑎𝛽  corresponding 

partial density with 𝜌0 being the atomic density of the liquid and 𝑎𝛼 and 𝑎𝛽 being 

the atomic concentration of the corresponding elements in the liquid [48]. The total and 

partial PCFs of the liquid from our simulations are shown in Fig. 3. The PCFs of binary 

Fe189Si61, Fe189O61, and Si80O160 liquids at 3800 K obtained by AIMD and ANN-MD 
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agree well with each other. For Fe189Si61 binary system, the position of the first peak of 

partial PCFs of Fe-Fe, Fe-Si, and Si-Si are approximately 2.2 Å, 2.1 Å, and 2.2 Å, 

respectively. These results indicate that the nearest neighbor distances between Fe and 

Si atoms and among the Fe or Si atoms themselves in Fe189Si61 binary liquid are very 

similar, which is a good agreement with previous works [49, 50]. For Fe189O61 binary 

system, the first PCF peak of O-O is 2.2 Å, which is significantly larger than the Fe-O 

(1.7 Å) and Fe-Fe (2.1 Å). This indicates that O atoms do not form the nearest neighbor 

bonds among themselves in liquid Fe-O system. The first PCF peak of O-O in Si80O160 

binary system is also 2.2 Å, which stands the medium of Si-Si (2.8 Å) and Si-O (1.6 Å). 

It is noteworthy that the bond length of O-O in Si80O160 system is same to that in 

Fe189O61 system, indicating that O atoms also do not form the nearest neighbor bonds 

among themselves in the liquid Si-O system. Besides the PCF, the partial angular 

distribution functions (ADFs) can provide more local structural information about the 

liquid samples. The ADFs obtained from AIMD and ANN-MD coincide with each other, 

as shown in the Supplemental Material, which further indicates the reliability of ANN-

ML potential. Excellent agreement of PCFs and ADFs is also observed for the AIMD 

with small (ANN-MDS) and large (ANN-MDL) simulations cells, therefore confirming 

the validation of ANN-ML potential for large systems. Thanks to the local 

decomposition and the near-neighbor dependence of the atomic energies, the ANN-ML 

potential trained on a relatively small system can be used to investigate bigger system, 

as discussed above. We compared the computational time per MD step in AIMD and 

the inference time per MD step in ANN-MD for the SiO2 liquid with different system 
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sizes, as shown in Fig. S1 of the Supplemental Material. The results show that the 

inference time of the ANN-MD scales linearly with the number of atoms and would be 

about 105 times faster than AIMD for a system with 5000 atoms, which is consistent 

with previous studies [30, 35]. 

 

Fig. 4 Mean square displacement of (a) Fe189Si61, (b) Fe189O61, and (c) Si80O160 liquid 

from ANN-MDL model at 3800 K. 

 

    To quantitatively study the dynamic properties, we calculated the self-diffusion 

constants D of every elements in the binary liquids. The mean-square displacement 

(MSD) as a function of time is given by [48, 51] 

〈𝑅𝛼
2(𝑡)〉 =

1

𝑁𝛼
〈∑ |𝑅𝑖𝛼(𝑡 + 𝜏) − 𝑅𝑖𝛼(𝜏)|

2𝑁𝛼
𝑖=1 〉, 

where 𝑁𝛼 is the total atomic number of α species, 𝑅𝑖𝛼 is the coordinates of the atom 

i, and τ is the arbitrary origin of time. The MSD of the liquids in the limit of long time 

should behave linearly with the time, and the slope of the line gives the self-diffusion 

constant D by the Einstein relationship, 

𝐷 = lim
𝑡→∞

〈𝑅𝑖𝛼
2 (𝑡)〉/6𝑡. 

The self-diffusion constant D of Fe189Si61, Fe189O61, and Si80O160 binary systems are 

calculated within 1.5 ns from the ANN-MDL models, as shown in Fig. 4. For Fe189Si61 
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binary system, Fe and Si have similar diffusing constant, i.e., DFe = 0.26 × 10−8 m2/s, 

and DSi = 0.20 × 10−8 m2/s. The diffusion constants of Fe and O in Fe189O61 binary 

system is DFe = 0.63 × 10−8 m2/s and DO = 1.20 × 10−8 m2/s, respectively, which means 

O atoms move faster than Fe atoms in Fe189O61 system. The diffusion constants of Si 

and O in Si80O160 binary system is DSi = 0.60 × 10−8 m2/s and DO = 0.73 × 10−8 m2/s, 

respectively. These data agree with those obtained from liquid Fe and Fe-O under 

Earth’s outer core conditions [50, 52-56]. 

 

4. MD simulation of Fe-Si-O ternary liquids 

4.1 Validation of ANN-ML potential for Fe189Si38O23 ternary liquid 

 

Fig. 5 (a)-(f) Partial pair correlation functions of liquid Fe189Si38O23 at 3800 K. (g) 

Snapshot of Fe189Si38O23 liquid from ANN-MDL model at 3800 K and 145 GPa at 3.0 

ns. 

 

    We performed MD simulation of Fe189Si38O23 ternary system with density of 9.91 

g/cm3 at 3800 K. The pressures of the Fe189Si38O23 liquid at 3800 K are 132 GPa, 145 
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GPa, and 145 GPa from AIMDS, ANN-MDS, and ANN-MDL model, respectively. The 

partial PCFs of Fe189Si38O23 ternary system at 3800 K from AIMDS, ANN-MDS, and 

ANN-MDL models are shown in Fig. 5. The partial PCFs distributions from AIMDS, 

ANN-MDS, and ANN-MDL models are similar, especially the peak positions. This 

further indicates the validation of ANN-ML potential for ternary systems. The first peak 

of O-O partial PCF is located at 2.2 Å, whereas the positions of the first peak of Fe-O 

and Si-O are both 1.7 Å. This indicates O atoms do not form nearest-neighbor bonds 

among themselves in the Fe-Si-O ternary system. The bond lengths of O-O, Fe-O, and 

Si-O in the Fe189Si38O23 ternary system are similar to those in Fe189O61 and Si80O160 

binary systems. The bond lengths of Fe-Fe, Si-Si, and Fe-Si in the Fe189Si38O23 ternary 

system are 2.2 Å, 2.2 Å, and 2.1 Å, respectively, which are similar to that in the Fe189Si61 

binary system. In addition, the potential energy fluctuates around a constant value with 

MD simulation time, indicating no phase transition or separation takes place at 3800 K, 

as shown in the Supplemental Material. Fig. 5(g) shows that Fe, Si, and O atoms are 

mixed well with each other. This indicates there is no phase separation in Fe-Si-O 

system and no immiscibility between Fe-Si and Fe-Si-O liquids at 3800 K, which is 

consistent with previous work [50]. 
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Fig. 6 Mean square displacement of liquid Fe189Si38O23 at 3800 K from ANN-MDL 

model. 

 

    The self-diffusion constant D of Fe189Si38O23 ternary system at 3800 K are 

calculated within 1.5 ns from the ANN-MDL model, as shown in Fig. 6. We find DFe = 

0.36 × 10−8 m2/s, DSi = 0.34 × 10−8 m2/s, and DO = 1.07 × 10−8 m2/s. The self-diffusion 

constants of Fe and Si in the Fe189Si38O23 ternary system are similar, which is also found 

in Fe189O61 binary system. DO is about three times of DFe or DSi, which is consistent with 

previous work [50]. 

 

4.2 Further test of ANN-ML potential for Fe189Si23O38 and Fe158Si14O28 ternary 

liquids 

    In addition to the Fe189Si38O23 ternary system at 3800 K whose AIMD snapshots 

have been used in the training data for the ANN-ML potential, we also performed MD 
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simulations for liquids Fe189Si23O38 and Fe158Si14O28 ternary systems (whose AIMD 

snapshots are not used in the ANN-ML training) to further test the accuracy and 

transferability of the obtained ANN-ML potential for Fe-Si-O systems with O richer 

than Si.  

    The density of Fe189Si23O38 liquid at 4800 K is 9.85 g/cm3 for the AIMDS, ANN-

MDS, and ANN-MDL models, whereas the pressures are 132 GPa, 143GPa, and 143 

GPa from the three models, respectively. The partial PCFs of the Fe189Si23O38 from 

ANN-MDS model (250 atoms) agrees well with that from AIMDS model (250 atoms), 

as shown in Fig. 7. From Fig. 7(g), we can see that Fe, Si, and O atoms mix well with 

each, which means no phase separation in Fe189Si23O38 ternary system. 

 

Fig. 7 (a)-(f) Partial pair correlation functions of Fe189Si23O38 liquid at 4800 K. (g) 

Snapshot of Fe189Si38O23 liquid from ANN-MDL at 4800 K and 145 GPa at 3.0 ns. The 

AIMD snapshots of Fe189Si38O23 liquid are not used in the ANN-ML training. 

 

The density of Fe158Si14O28 liquid at 4500 K is 10.16 g/cm3 for the AIMDS, ANN-
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MDS, and ANN-MDL models, whereas the pressures are 136 GPa, 148 GPa, and 148 

GPa from the three models, respectively. The partial PCFs of the Fe158Si14O28 from 

AIMDS model (200 atoms) agrees well with that from ANN-MDS and ANN-MDL 

models (5000 atoms), as shown in Fig. 8. The efficiency of the ANN-ML potential 

enables MD simulations with larger unit cell to compare with the results from the small 

(200 atoms) unit cell. From Fig. 8(g), we can see that Fe, Si, and O atoms mix well with 

each, which means no phase separation in Fe158Si14O28 ternary system. The reliability 

of ANN-ML potential are further tested on Fe158Si42 at 4500 K and pure Fe at 3500 K. 

We note that the structures of Fe158Si42 liquid are not included in the training dataset, 

while the AIMD snapshots of Fe are included in the training dataset. The PCFs of the 

two systems are shown in the Supplemental Material. The PCFs of Fe158Si42 and Fe 

from the AIMD and ANN-MD agree with each other. 

 

Fig. 8 (a)-(f) Partial pair correlation functions of Fe158Si14O28 liquid at 4500 K. (g) 

Snapshot of Fe158Si14O28 liquid from ANN-MDL at 4500 K and 148 GPa at 20 ps. The 

AIMD snapshots of Fe158Si14O28 liquid are not used in the ANN-ML training. 



 20 

 

5. Summary 

    In this paper, we have developed an ANN-ML potential for Fe-Si-O system at the 

high-pressure and high-temperature conditions of the Earth’s outer core using the 

DeePMD-kit and VASP software packages. The developed ANN-ML potential can be 

used in the LAMMPs package to perform MD simulations. The ANN-ML potential not 

only can well reproduce the AIMD results on structures of the binary and ternary liquids 

whose snapshot structures were included in the ANN-ML train dataset, but also provide 

consistent MD simulation results of ternary liquids (Fe189Si23O38 and Fe158Si14O28) 

whose snapshot structures were not included in the train dataset. The results show there 

is no phase separation and exsolution in our studied three ternary system (Fe189Si38O23, 

Fe189Si23O38, and Fe158Si14O28) around 136 GPa. More training data and larger neural 

network size would help to further improve the accuracy and transferability of the 

ANN-ML interatomic potential of Fe-Si-O system. Our results suggest the ANN-ML 

potential would be a promising avenue for MD simulation of complex Fe-Si-O systems 

under the Earth’s outer core conditions.  
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