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Void swelling can develop in materials under persistent irradiation when non-equilibrium vacancy and self-
interstitial populations migrate under sufficiently asymmetric interaction biases. In conventional metals, the
propensity is determined to first approximation by comparing point-defect relaxation strains. We thus present
DFT-based calculations of structures and formation energies and volumes of point defects in the α and the δ-
phases of plutonium. We discuss pros and cons of various levels of electronic structure theory: spin polarization,
spin-orbit coupling, and orbital polarization. Our results show that lattice defects in δ-Pu, in contrast to most fcc
metals, have surprisingly small formation volumes. Equally unexpected are the large defect formation volumes
found in the low-symmetry α-Pu phase. Both these unusual properties can be satisfactorily explained from
defect-induced spin/orbital moment formation and destruction in the Pu phases. Surprisingly, the point defects
in α-Pu are found to induce far larger transformation of the local electronic structure than in δ-Pu. When we
use the calculated defect properties to estimate the classic void swelling bias in each of the phases, we find it to
be unusually small in δ-Pu, but likely much larger in α-Pu. Hence, swelling rates and mechanisms can diverge
dramatically between the different phases of Pu. Especially in the transient regime before formation of large
defect clusters, the swelling rate of α-Pu can reliably be expected to be much larger than δ-Pu. However, accu-
rate forecasts over longer times will require the conventional void-swelling theory to be modified to handle the
complexities presented by the different Pu phases. As a case in point, we show possible anomalous temperature
dependence of vacancy properties in δ-Pu, caused by entropic contributions from defect-induced spin-lattice
fluctuations. Such complications may affect defect-defect interactions and thus alter the void swelling bias.

I. INTRODUCTION

Pu-based materials are inherently subject to radiation dam-
age that can adversely affect their properties over time. Spon-
taneous α-decay deposits both U and He impurities and dis-
places host atoms from their lattice sites in collision cascades.
It leaves behind a non-equilibrium population of point de-
fects and clusters that feed compositional, microstructural,
and macroscopic changes over the long term. Given sufficient
time, the defect populations and microstructure co-evolve via
biased defect diffusion as well as defect collisions and reac-
tions at defect sinks in the lattice. For Pu metal in particular,
these long term radiation aging effects may encompass: (i) He
bubble formation[1–17],(ii) metastability and possible phase
transformation [18–23], and (iii) void swelling [24–26]. The
possibility of void swelling caused by self-irradiation is the
focus of this paper.

Swelling behavior has been observed and studied in depth
in reactor materials. It arises from incomplete mutual annihi-
lation of the relict, post-collision-cascade lattice defects and
their subsequent net segregation to pre-existing sinks in the
microstructure. In the conventional theory of void swelling in
metals, the long-range interaction that drives segregation orig-
inates from coupling of the (mobile) point defect relaxation
strains with the local elastic stress field. That stress field is
primarily induced by dislocations [25], and as a consequence
the diffusing defects preferentially drift towards the disloca-
tions. The relaxation strain is also commonly much larger for
self-interstitials (SI) than for vacancies (V) and so in turn the
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SI diffusion bias is stronger. Hence, even if V and SI are gen-
erated at the same rate by the collision cascades, the SI are
absorbed by the dislocations at higher rate, resulting in climb.
This in turn leads to an imbalance in the populations of the
free V and SI. Void swelling comes about by accumulation of
the excess residual vacancies into cavities, typically via inho-
mogeneous nucleation at helium bubbles.[27–34]

In conventional metals, the phase diagrams are dominated
by one or two simple crystal structures such as fcc, bcc or hcp;
their metallic bonding is well-described by Hohenberg-Kohn-
Sham density functional approximations. The relevant defect
formation energies and relaxation volumes can thus readily
be obtained from ab initio total energy calculations within the
density-functional theory (DFT). Plutonium metal, however,
is far from conventional and it was long not obvious how to
best model its electronic structure in order to predict its com-
plex phase diagram with reasonable accuracy from first prin-
ciples. The 5f electrons in Pu are on the knife’s edge be-
tween localized and delocalized character; indeed, the mate-
rial is often suspected of lying near a quantum critical point.
Crystalline plutonium undergoes six structural transforma-
tions as a function of temperature, which involve large volume
changes. Only two of these solid phases are of interest here:
the mechanically brittle low-symmetry monoclinic ground-
state α phase, and the ductile high-symmetry face-centered
cubic δ phase, which becomes thermodynamically stable be-
tween 592-724 K. The specific volume of the δ-Pu phase is
25% larger than α-Pu. The inclusion of just a few atomic
percent of Ga stabilizes the δ-Pu structure down to room tem-
perature. Due to slow kinetics, it took decades before it was
proven that Ga-stabilized δ-Pu phase is only metastable. The
true equilibrium consists of the two-phase coexistence of α-Pu
phase and the Pu3Ga line compound [35, 36]. Questions in-
evitably remain whether spontaneous self-irradiation in the α-
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and δ-Pu phases may influence the kinetics towards equilib-
rium. This calls for a comparative study of radiation-induced
defects and possible swelling behaviors of these two phases.

In order to justify the approach to modeling the electronic
structure of plutonium that is undertaken in this paper, we
briefly review the history of modeling and explain our current
understanding of this extraordinary material. The first realistic
total-energy calculations for plutonium [37] assumed delocal-
ized 5f electrons in the electronic structure i.e., the electrons
are considered fully bonding itinerant (Bloch states) and anal-
ogous to the d electrons in the d-transition metals. The bond-
ing electrons are identified by the parabolic decrease of the
atomic volume proceeding half-way through the d-transition
metal series and the following parabolic increase due to the
gradual filling of anti-bonding d states [38]. The early part of
the actinide series shows the same behavior with a parabolic
volume contraction up until plutonium. The ground-state α-
Pu phase only deviates slightly from the parabolic trend. Yet
at slightly elevated temperatures, the δ phase has almost 25%
larger volume, which appears completely inconsistent with
the bonding (delocalized) 5f -electron picture. Early on it was
thus concluded that the α-phase can be modeled adequately
within DFT, while the δ-phase cannot. In this initial approach,
the latter phase was predicted to have much too small atomic
volume and much too high energy.[37]

As a contemporary solution to this dilemma, the concept of
partial localization of the 5f electrons was introduced in var-
ious ways [39–42]. The idea behind partial localization is that
the manifold of 5f states in δ plutonium is divided into local-
ized and delocalized parts. These models could adequately re-
produce the δ volume and even in one case produce electronic
density of states consistent with experimental photoelectron
spectroscopy [40]. The most widespread approaches to
modeling strong f -electron correlations/localization in δ-Pu
have been via Hubbard Hamiltonian for the f -electrons with
strong intra-atomic screened Coulomb repulsions on the order
U ∼ 4 eV. These are combined with DFT in self-consistent
schemes either through the static DFT+U approach[43] or the
more advanced Dynamical Mean Field Theory (DMFT) ap-
proach [44]. Nonetheless, an important drawback of all these
approaches is their reliance on an external parameterU , which
in the partial-localization picture must vary between the dif-
ferent phases of Pu, because they may involve very different
fractions of localized 5f electrons.

Concurrently, an alternative based on itinerant 5f electrons
was proposed that could deal with both the α and δ phases in
a unified manner [45]. This approach consists of a straight-
forward application of spin-density functional theory, while
in addition, the electrons are allowed to couple through spin-
orbit interaction and atomic Hund’s second rule coupling (ab-
sent in conventional DFT) leading to formation of spin and
orbital moments. Within this approach, atomic volumes, en-
ergies, and even simulated photoemission spectra [46] for δ-
plutonium have been accurately reproduced. While these re-
sults suggested a viable pathway to ab-initio modeling of the
materials properties of Pu, their prediction of static magnetic
moments in Pu [45] was criticized [47] because of their ap-
parent disagreement with experimental data at the time. How-

ever, the existence of magnetic moments in plutonium, albeit
fluctuating, has since been verified in neutron-scattering ex-
periments [48]. The measured magnetic form factor from
these experiments is rather well reproduced by the accom-
panying [48] DMFT calculations that assume strong electron
correlations (Hubbard U∼ 4 eV). On the other hand, the mag-
netic form factor was also correctly predicted years earlier
within the spin/orbital-DFT approach [49, 50]. Therefore, the
measured magnetism can be explained within two rather dif-
ferent models.

At present, the validity of the partial-localization picture
and the exact nature of f -electron correlations in different
plutonium phases remain unsettled. Note that in heavy ac-
tinide metals, where localization-delocalization transitions of
5f electrons do undeniably occur, they are associated with
large energy changes, induced by enormous (Mbar) pressures
[51, 52]. In contrast, the α- and the δ-Pu phases must be very
close in energy because their equilibria are only separated by a
modest temperature at ambient pressure. Hence, there is clear
distinction between the behavior of the 5f electrons in pluto-
nium metal and in the heavier actinide metals. Along these
lines in recent years, DMFT calculations with small Hubbard
U (less than 1 eV) [53], have shown significant success in ac-
counting for quantum fluctuations in the Pu system.

The DMFT approach attempts to take into account local
onsite quantum fluctuations by constructing effective Hub-
bard Hamiltonians for the 5f -electron subspace through pro-
jections onto each atomic site and solving approximately by
mapping each site onto an Anderson impurity problem. This
is computationally very demanding. In comparison, the spin-
density functional theory amended with orbital polarization,
the approach taken in this paper, is computationally far more
expedient. Even at this level of approximation, achieving
well-converged calculations for point defect properties, which
require periodic supercells containing more than 100 Pu atoms
is quite daunting, It is therefore currently the only technique
that is computationally feasible and at the same time reason-
ably accurate for the comprehensive study that is undertaken
in the present work.

Nevertheless, this approach remains a static mean-field ap-
proximation to a more complete theory that can account for
quantum fluctuating moments. Existing DFT approximations
cannot account for this possibility. Hence a closer look at the
sources of error that can arise when applied to the different
phase of Pu metal is warranted. The most obvious discrep-
ancy is in the static ground-state magnetic configuration of
the δ-Pu phase. In the collinear spin/orbital-polarized limit, it
is found to be a layered antiferromagnetic (AF) configuration
consisting of ferromagnetic fcc-(001) layers, with adjacent
layers having opposite spin orientations, so-called L10 pat-
tern. It has tetragonal symmetry, and thus breaks the fcc-cubic
symmetry of the δ-Pu phase and favors a face-centered tetrag-
onal (fct) crystal structure. The effect is weak: at the equi-
librium lattice constant, the calculated c/a for the fct structure
is 0.99 in SP+SO+OP-GGA, very close to cubic. This poses
no difficulty for the description of the high-temperature δ-Pu
phase, where thermal fluctuations could stabilize the high-
symmetry phase. However, the discrepancy becomes conspic-
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uous for the Ga-stabilized δ-Pu, which is presumably cubic
down to very low temperatures (although a small tetragonal
distortion has been inferred from neutron powder diffraction
experiments).[54, 55] This calculated 1% effect may reflect
the neglect of quantum spin and orbital fluctuations. Later in
this paper, we conduct a careful analysis of the anisotropy of
structural relaxations around the point defects in δ-Pu. This
helps to quantify the effect of this artifact on the point defect
properties, showing it to be finite but small. Regardless of the
bulk results, the point defect properties in both phases of Pu
in this study are found to be quite anomalous. Our analysis of
the origins of these anomalies, discussed below, suggest that
incorporation of quantum fluctuations will likely not qualita-
tively change the conclusions reached in this paper.

To summarize, our preferred plutonium treatment, due to
its accuracy and relative computational efficiency, is that of
a spin-polarized DFT electronic structure perturbed by (for
plutonium) rather significant spin-orbit coupling (SO) and or-
bital polarization (OP). The generalized gradient approxima-
tion (GGA) is made for the DFT electron exchange and corre-
lation; it is known to be the best choice to date for actinide
metals, and especially plutonium metal (see discussions in
Ref. 56). Addition of SO and OP corrections consistently en-
hance the predictive capability of SP-GGA for the energet-
ics of all phases of Pu metal. As a matter fact, it has been
demonstrated that the SP+SO+OP-GGA functional can repro-
duce the energy ordering and structural properties of all the
experimentally observed Pu polymorphs in the phase diagram
quantitatively [57]. Similarly good agreement has been found
for phonon properties [50, 58].

It should be noted that even without spin-orbit and orbital
polarization, relativistic spin-polarized DFT (SP-GGA) is able
to predict fairly reasonable structural energetics for Pu metal,
with a prediction for the equilibrium lattice constant of δ-
Pu within 2.5% of experiment[56]. This is reasonably good
and constitutes a significant improvement upon non-magnetic
DFT. Of course, the predicted spin moments are nearly 5 µB
and anti-ferromagnetically ordered. The advantage of this ap-
proximation is in its computational expediency,

Accordingly in this paper, we compare three different ap-
proaches to the calculation of formation energies and volumes
of intrinsic defects in α and δ-Pu: (i) collinear SP-GGA within
the generalized gradient approximation at the theoretical equi-
librium density, (ii) SP-GGA with an applied hydrostatic ten-
sion to approximate the experimental bulk density, and (iii)
non-collinear SP+SO+OP-GGA at the theoretical density. We
consider SP+SO+OP-GGA to be the benchmark of the three
approximations considered here.

While inclusion of SO and OP greatly improves accuracy,
they dramatically increase the computational cost (still far less
than a corresponding DMFT calculation). Therefore, we char-
acterize the corrections obtained from SO and OP and explore
less expensive ways to obtain reliable point defect proper-
ties. We argue that a rough correction to the bulk SP-GGA
overbinding is simply to add a uniform external stress (in ef-
fect a PV correction to the functional), thereby dilating the
system to the approximate experimental density. We find that
this approximation works well so long as the lattice defects do

not cause changes in the local magnetic ordering.
In Section IV, we examine point defects in α- and δ-Pu,

and compare formation energies and volumes to those in reg-
ular transition metals. The most important finding is the stark
contrast in defect properties in α- and δ-Pu. Our results show
opposite to α-Pu as well as most close-packed metals: (i) the
equilibrium concentration of vacancies in δ-Pu is smaller than
that of self-interstitials, and (ii) the magnitude of the lattice
strain caused by the vacancies is nearly equal to that of self-
interstitials. As a result, we estimate in Sect. V, a small void
swelling bias in δ-Pu according to the conventional theory. In
contrast, α-Pu is argued to exhibit a swelling bias comparable
to normal transition metals.

At first glance, δ-Pu appears characteristically as the outlier
with unusual point defect properties, while they seem normal
in α-Pu. However, α-Pu is a low-symmetry phase with many
inequivalent sites, not unlike metallic glasses. Why then do
its point defects have relaxation volumes so similar to e.g.
close-packed copper? It turns out that point defects in Pu
crystals induce changes in sizes of the spin/orbital moments
of nearby lattice sites. The magnitudes of these induced mo-
ments strongly correlate with the defect formation volumes.
Hence, the large formation volumes in α-Pu stem from defect-
induced increases in sizes of the spin/orbital moments of the
neighboring lattice sites, while introduction of point defects
in δ-Pu reduces spin-polarization in their vicinity, which in
turn strengthens the effective interatomic bonding and causes
vanishing defect formation volumes. Quantitative analyses of
the effect of point defects on the local electronic structure of
α- and δ-Pu phases are conducted throughout Sect. IV, using
a novel thermodynamic variable, the so-called formation spin
moment, introduced in Sect. III.

We should emphasize in particular the value of this new
analysis. The newly introduced formation spin measure high-
lights the changes to the local electronic structure (at this
level of DFT) that correlate with defect-induced lattice strains.
The spatial distribution of the latter can be quantified and
categorized as elastic or beyond by studying changes in the
Voronoi volumes of the nearby atoms. Note that changes in
local electronic structure offer low energy pathways to alter-
ing the effective atomic bonding and in turn the defect for-
mation volumes. Simplifying the situation by introducing a
hypothetical electronic excitation cost, ∆E, an associated vol-
ume change ∆V , and a local pressure, P , such accommoda-
tions are favored if −P∆V/∆E > 1. The accommodation
is not symmetric - local moments in δ-Pu are near the max-
imum achievable, while they are among the lowest possible
in α-Pu. This asymmetry can account for the strikingly dif-
ferent defect properties in the two phases. There are likely
to be additional electronic degrees of freedom that contribute,
e.g. changes in the local spin order from antiferromagnetic to
ferromagnetic can affect the local atomic volumes and thereby
defect-induced lattice strains. Nevertheless, the two Pu phases
are in some sense at opposite extremes, and that basic differ-
ence is what underpins their distinct point defect properties.
This suggests that successive levels of DFT (e.g. static SP,
SP+SO+OP, up to and including full quantum fluctuations)
should broadly agree as to these defect properties for the two
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phases.
To reiterate, our ab initio results suggest that the classic

void-swelling bias is far larger in α-Pu than in δ-Pu [59, 60],
thus swelling is more likely in the α-Pu phase. This illustrates
a broader lesson: different crystal phases of the same material
can behave very different under irradiation. However, con-
ventional void swelling theory may not be reliable for pre-
dicting plutonium aging over long times. In δ-Pu, defect in-
teractions likely have magnetic contributions with anomalous
dependences on temperature and internal stress-field, result-
ing from significant entropic contributions due to magnetic
fluctuations. A few examples of low-lying magnetic excita-
tions of the vacancy in δ-Pu are discussed in Sect. IV B 2.
In α-Pu, the low symmetry and the quasi-two-dimensional
diffusion of point defects in this system pose challenges to
the classic mean-field theory of void swelling. The strongly
anisotropic diffusion of point defects in α-Pu is discussed in
Sect. IV B 4, where the distribution of defect formation ener-
gies among the eight different crystallographic sites are stud-
ied. The lowest-energy sites are arranged in two-dimensional
layers, separated by energetically unfavorable regions. This
anisotropy/inhomogeneity could also have implications for
vacancy-mediated transport of substitutional He and Ga and
thus bubble formation and phase metastability.

Nevertheless, in the short-time transient regime, our ab-
initio predictions of the density changes of α-Pu being much
larger than δ-Pu should be reliable and observable in experi-
ments.

The paper is organized as follows. In Sect. II, we out-
line the details of our calculations, as well as a variational
formulation of the orbital polarization method within non-
collinear spin-density functional theory, implemented in the
framework of the projector augmented wave (PAW) method.
It allows for accurate and efficient computations of atomic
forces and stresses, with application to structural relaxations
induced by point defects in Pu lattices. In Sect. III, we review
defect thermodynamics and introduce novel thermodynamic
variables for analyzing defect-induced electronic transitions
in Pu phases. In Sect. IV, we present extensive calculations
and analyses of α- and δ-Pu phases as well as a thorough
study of point defect structures and energies in these phases.
In Sect. V the classic void swelling theory is recapitulated,
whereupon the swelling biases for the two Pu phases are dis-
cussed.

II. METHODOLOGY

The aim of this paper is to study from first principles the
structures and energies of point defects in α- and δ-phases of
Pu. The present work relies on static mean-field treatment
of magnetism in Pu through two exchange-correlation func-
tionals: SP-GGA and SP+SO+OP-GGA. The latter requires
an order-of-magnitude more computational resources than the
former. In this study, SP-GGA calculations are carried out for
point defects in both α and δ-Pu phases, while SP+SO+OP-
GGA is only applied to point defects in δ-Pu. The PBE[61]
parametrization of the GGA exchange-correlation functional

is used throughout this work.

The defect calculations presented in the following are per-
formed using periodic supercells containing 128 atoms for α-
Pu and 108 atoms for δ-Pu. For accurate representation of
the Fermi surfaces, the Brillouin zones of the 108/128-atom
supercells are sampled with 27/8 k-points. The Kohn-Sham
wave functions are represented in a projector-augmented wave
(PAW) basis, as implemented in the Vienna Ab-initio Simula-
tion Package (VASP)[62]. A planewave cutoff of 450 eV is
employed. The relativistic effects are taken into account by
addition of a spin-orbit (SO) coupling term to the Hamilto-
nian. Structural relaxations induced by point defects are ex-
tensively studied following atomic forces derived within the
PAW scheme.

The treatments of spin-orbit coupling and orbital polar-
ization in this paper are unconventional and need explana-
tion. First, let us discuss our treatment of spin-orbit cou-
pling in Pu. A comparative study of standard PAW[63]
and all-electron Full-Potential Linear Muffin-Tin Orbital
(FPLMTO)[64] methods for calculations of equilibrium struc-
tural properties of the light actinide metals (Th-Pu)[65] found
that while for collinear spin-polarized calculations, the two
techniques are in good agreement, the results differ when SO
coupling is included in the calculations. It was found that due
to the incompleteness of the scalar-relativistic PAW basis used
in e.g. the VASP code, the p1/2-orbital is not explicitly in-
corporated into the calculations, which can lead to inaccurate
treatment of the SO coupling. This situation can be mitigated
in actinides by discarding the coupling of the spin degrees of
freedom to the p-angular momentum [65]. In all calculations
presented below, we follow this strategy for incorporation of
the SO coupling.

Next, we discuss the implementation of the LDA+U
method and the orbital polarization technique within the PAW
scheme in VASP. As a result of the relatively strong corre-
lations in Pu metal, atomic orbital degeneracies in the f -
electron subspace may be broken, This cannot be accounted
for within standard spin-density functional theory derived
from the homogeneous electron gas. However, DFT can be
generalized to treat orbital ordering in strongly correlated sys-
tems by incorporating on-site screened Coloumb interactions.
The LDA+U formalism[66–69] is the simplest realization of
this idea. It is a static mean-field approach that leads to ad-
dition of renormalized Hartree-Fock-like terms to the DFT
Hamiltonian. The two main disadvantages of the LDA+U the-
ory are (i) the results are sensitive to parametrization of the
screened local Coloumb interactions, and (ii) it is difficult to
exactly account for double-counting of interactions.

For treatment of orbital magnetism in itinerant systems,
Brooks and coworkers[70] proposed a simplified theory,
which in the presence of spin-orbit coupling accounts for or-
bital ordering originating from atomic Hund’s second rule
coupling, They proposed to augment the standard spin-density
functional theory (SP-DFT) total-energy functional with a
quadratic term, which in the context of collinear magnetism
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and f -electron orbital ordering can be written as

ESP+SO+OP = ESP+SO −
1

2

∑
I

E3
I

[〈
LfI,z

〉]2
, (1)

where
〈
LfI

〉
is the expectation value of the total orbital mo-

ment of the f -electrons at site I . It can be formally written
as 〈

L̂
f
〉

= Tr(L̂n̂f ), (2)

where L̂ is the angular-momentum operator and n̂f is the site-
diagonal single-particle density matrix, expressed in the basis
|3,m, s〉 of atomic f -orbitals

n̂f =
∑

m,s,m′,s′

nfms,m′s′ |3,m
′, s′〉 〈3,m, s| (3)

nfms,m′s′=< 3,m′, s′|n(r, r′)|3,m, s > .

Additionally, E3
I in Eq. 1 is the so-called Racah parame-

ter, which in the case of f -orbitals can be expressed as a lin-
ear combination of the F2, F4 and F6 Slater integrals of the
f -orbitals within the atomic sphere around the Ith nucleus.
Equation 1 was originally designed for collinear magnetic sys-
tems treated within the second variation method [71]. In this
formulation E3

I can be calculated self-consistently, but that
leads to complications in a fully variational treatment for cal-
culations of the atomic forces, see below.

The advantage of the SP+SO+OP-DFT formalism is that
the Racah parameter E3 is quite insensitive to environment
and does not change significantly between the atom and the
solid. Hence it can be calculated once and treated as a con-
stant. In this way, a major drawback of the LDA+U formal-
ism is resolved. However, the problem with this amendment
of the SP-DFT functional is that in nearly all systems, it is
too weak to have any significant effect on structural energies.
It has received most attention for its application to ab-initio
calculations of magneto-crystalline anisotropies[72]. In a re-
cent study of the structural enegies of light actinides[65], it
was found that the addition of OP to the SP+SO-GGA func-
tional has a small effect on the structural energies of all the
light actinide elements except for Pu. In this system, addition
of OP remarkably improves upon the SP+SO-GGA predic-
tions of the equilibrium volumes of both the α-Pu as well as
the δ-Pu phases, while yielding correct energy ordering of the
phases. In the same paper, a comparative study with the pop-
ular GGA+U scheme devised by Dudarev and coworkers[73]
was conducted for the α- and the δ-Pu phases allowing for
spin polarization. It led to the conclusion that for the α-Pu
phase to remain the ground state phase of Pu metal, the U
parameter may not exceed 0.2 eV, whereupon it underesti-
mates the equilibrium volumes of the α- and the δ-Pu phases
by 3-4%, compared to 1% within the SP+SO+OP-GGA for-
malism. It should be mentioned that if calculations are con-
strained to be non-magnetic, then GGA+U with larger U val-
ues (U = 1.2 eV) has been found to generate satisfactory
structural energetics for different phases of Pu. [74]

The SP+SO+OP functional, Eq. 1 can be easily imple-
mented within the PAW formalism following Bengone et
al.[75]. However, in order for the Hellmann-Feynman theo-
rem to be applicable to derivation of the atomic forces in the
presence of SO and OP, a fully variational implementation us-
ing spinor wave functions and non-collinear magnetism[76]
is required. Furthermore the Racah parameter E3 must be
treated as a constant. Such a formulation has been devel-
oped and tested in a previous paper[65]. In this scheme, the
quadratic term in Eq. 1 is generalized for arbitrary spin orien-
tations, leading to the following total-energy expression:

ESP+SO+OP = ESP+SO −
1

2

∑
I

E3

(〈
L̂
f

I

〉
·
〈
Ŝ
f

I

〉)2

〈
Ŝ
f

I

〉
·
〈
Ŝ
f

I

〉 , (4)

where
〈
L̂
f

I

〉
and

〈
Ŝ
f

I

〉
are site-projected spin and orbital mo-

ments calculated following Eq. 2. Details of implementation
within the PAW method can be found in Ref. 65.

In this paper, we use the variational total-energy functional
Eq. 4 implemented within the PAW scheme in the VASP code
for SP+SO+OP-GGA calculations of Pu. The calculations are
parametrized by the value E3 = 0.0621 eV, obtained as an
average of spin-decomposed Slater integrals of site-projected
f -electron wave functions in δ-Pu at equilibrium lattice con-
stant, using the all-electron Full-Potential Linear Muffin-Tin
Orbital (FPLMTO) technique [64]. This parameter is kept
fixed throughout the calculations in this paper.

Below, we further validate the PAW approach to the
SP+SO+OP-GGA functional, by comparing its predictions for
properties of δ-Pu with all-electron calculations within the
FPLMTO scheme[64], using the second variation method [71]
to SO and OP. The details of these calculations are quite sim-
ilar to those applied previously to investigations of the Pu
phase-diagram[57]. The present FPLMTO implementation
does not make any assumptions beyond the GGA. Basis func-
tions, electron densities, and potentials are calculated with-
out any geometrical approximation, and these are expanded in
spherical harmonics inside non-overlapping (muffin-tin, MT)
spheres surrounding each atom and in Fourier series in the
region between these muffin-tin spheres. One has to define
an MT sphere with a radius, sMT , and here it is chosen so
that sMT /sWS ∼ 0.8, where sWS is the Wigner-Seitz (atomic
sphere) radius. The radial parts of the basis functions inside
the MT spheres are calculated from a wave equation for the
L = 0 component of the potential that includes all relativistic
corrections including spin-orbit coupling for d and f states,
but not for the p states, which has been previously shown to
be an appropriate and accurate procedure [65].

Finally, it has been found in the past GGA+U studies of ac-
tinide compounds such as UO2[77] and Pu2O3[78] that these
systems contain multitude of metastable local energy minima
corresponding to different f -shell occupancies for the same
atomic coordinates. In these compounds, the f -orbitals are
localized and are either fully occupied or completely empty.
This is quite different from the Pu metal phases with partially
occupied narrow f -bands that form through f -electron hy-
bridization. While convergence to electronic self-consistency



6

is clearly more difficult when SO and OP are included, we
believe we have been able to converge our calculations with
respect to orbital occupancies. One hallmark of metastable
occupancies is that addition of point defects into such a lat-
tice can drive the f -orbital configuration of the actinide ions
far away from the point defect to lower-energy occupancies,
causing unacceptably large errors in the calculated formation
energies, which consequently can even have the wrong sign
[77]. As is discussed and analyzed in detail in Sect. IV below,
we find no such inconsistencies in our point defect calcula-
tions within SP+SO+OP-GGA in Pu. In fact, it is found that
for the point defects in δ-Pu, results are quite consistent with
SP-GGA calculations in appropriately expanded lattice.

III. POINT DEFECT THERMODYNAMICS

A. Formation enthalpy and volume

The most basic thermodynamic property of a point defect
in a crystal at pressure P is its Gibbs free-energy of formation
∆GF (P, T ). It is the free energy change of the crystalline
solid per every point defect introduced in it. The equilibrium
concentration of point defects at finite temperatures can thus
be easily derived to be

ceq(P, T ) ∝ exp

(
−∆GF (P, T )

kBT

)
, (5)

with the Gibbs free energy defined in terms of formation en-
thalpy ∆HF and formation entropy ∆SF as

∆GF (P, T ) = ∆HF (P, T )− T∆S(P, T ). (6)

In what follows, we will be deriving expressions for me-
chanical properties of point defects in lattices at uniform equi-
librium temperature. Hence, temperature only appears as a pa-
rameter in the equations. In this paper, we are only concerned
with ab initio ground state calculations. Generalization to fi-
nite temperatures is straightforward, but here we specialize to
T = 0 and drop the formation entropy term in Eq. 6.

The ab initio calculations of point defect properties in α-
and δ-Pu presented below are performed using the standard
periodic supercell technique. Hence, consider an N -atom su-
percell of the perfect crystal lattice at pressure P , with super-
cell volume VL(P ) and enthalpy HL(P ). A vacancy (inter-
stitial) can be introduced by removing (adding) an atom from
(to) this system. Denote by ND the number of atoms in the
defect supercell with N = ND ± 1 (vacancy and interstitial,
respectively). Similarly, denote by VD(P ) the defect supercell
volume and by HD(P ) its enthalpy. The formation enthalpy
of the point defect can be written as

∆HF (P ) = HD(P )−ND
HL(P )

N
. (7)

= HD(P )−HL(P ) + (N −ND)
HL(P )

N
. (8)

The significance of reordering of terms to obtain Eq. 8 is
that if a generalized specific enthalpy H̃(P, c) as a function

of both pressure P and defect concentration c is defined such
that H̃(P, 0) = HL(P )/N and H̃(P, 1/N) = HD(P )/N ,
then in the limit N →∞, we have

∆HF (P ) =
∂H̃(P, 0)

∂c
± H̃(P, 0). (9)

for vacancy and interstitial, respectively.
This transformation allows for a more transparent definition

of the formation enthalpy and thereby a simpler derivation of
other thermomechanical properties of point defects. As an ex-
ample, let us consider the first pressure-derivative of the for-
mation enthalpy. Using the thermodynamic relation ∂H

∂P = V ,
we obtain an expression for the formation volume

∆VF (P ) =
∂2H̃

∂P∂c
=
∂Ṽ (P, 0)

∂c
± Ṽ (P, 0), (10)

where Ṽ (P, c) is a generalized specific volume that is defined
in such a way as Ṽ (P, 0) = VL(P )/N and Ṽ (P, 1/N) =
VD(P )/N . Of course, in practice, the partial derivative is re-
placed by the finite difference formula

∆VR(P ) ≡ ∂Ṽ (P, 0)

∂c
= VD(P )− VL(P ). (11)

Above we have defined the relaxation volume ∆VR(P ),
which is obviously related to the formation volume ∆VF , but
is more relevant to materials mechanics and is not directly
observable in macroscopic experiments. The formation vol-
ume on the other hand can be measured experimentally via
e.g. dilatometry. It quantifies the change in size of a solid
when point defects are incorporated in it through damage ac-
cumulation. Of course, point-defect induced volume changes
are most relevant at the earliest stages of damage before any
substantial defect clustering, such as e.g. void nucleation has
occurred.

B. Elasticity of point defects

The formation volume provides a measure for how well
a crystal lattice can macroscopically accommodate point de-
fects. When ∆VF ≈ 0, the host crystal is maximally ac-
commodative, and thus does not show any macroscopic size
change upon damage accumulation. However, the macro-
scopic accommodation is accompanied by internal micro-
scopic strain fields in the solid. This is because, e.g. a
vacancy/interstitial with zero formation volume, induces in-
ward/outward displacements of the nearest neighbor shell,
which propagates through the lattice as a long-range compres-
sive/tensile strain field. This long-range displacement field
is responsible for the elastic interaction with other lattice de-
fects, e.g. other point defects, dislocations and grain bound-
aries. The strength of the strain field induced by a point defect
is quantified by the relaxation volume ∆VR. The latter is large
in magnitude whenever |∆VF | is small.

In order to rigorously model a point defect or impurity in
a lattice as an elastic inclusion, its effective size and elastic



7

properties must be able to be uniquely specified from atom-
istic first principles. As an example of the effective elastic
properties of the point defect, we discuss here the effective
point-defect compressibility, which we define as

∆β = − 1

ΩL

∂∆VR(P )

∂P
= −∂∆VR/ΩL

∂P
+

∆VR
ΩL

1

KL
, (12)

where ΩL = Ṽ (P, 0) is the atomic volume, andKL is the bulk
modulus of the perfect crystal. The right-hand side expands
∆β into two terms. This is useful, since the relaxation volume
is most conveniently expressed in units of atomic volume. In
practice, the two contributions to the compressibility can be
calculated in finite periodic supercells as follows:

∆β = ∆β0 + ∆βL, (13)

∆β0 =

(
∆VR
ΩL

+N

)(
1

KD
− 1

KL

)
, (14)

∆βL =
∆VR
ΩL

1

KL
, (15)

where N is the number of lattice sites in defect supercells,
i.e. the inverse of the defect concentration, and KD is the
bulk modulus of the supercell containing one point defect.
It is worth noting that β0 represents the contribution to the
compressibility of point defects derived from their effect on
the lattice stiffness, i.e. ∆β0 vanishes whenever KD = KL,
while ∆βL remains non-zero so long as ∆VR 6= 0.

C. Formation spin moments

The unusual electronic structure of Pu metal is responsi-
ble for its polymorphic phase diagram, as well as a slew of
other anomalous thermophysical properties. In particular, the
α- and the δ-Pu phases distinguish themselves from each other
by having low crystal symmetry/high density, and high crystal
symmetry/low density, respectively. The structural chemistry
within our DFT approach is largely determined by a competi-
tion of two symmetry-breaking mechanisms enabled because
the delocalized or itinerant 5f -electron density of states is (i)
very narrow and (ii) positioned close to the Fermi level. On
the one hand, degenerate energy states can be lifted due to
a Jahn-Teller or Peierls like crystal distortion that lowers the
total energy for lower-symmetry crystal structures [79]. On
the other hand, the high-energy degenerate states can spin po-
larize and form magnetic moments. The exchange interaction
shifts states away from the Fermi level to a lower energy while
occupying orbitals with greater anti-bonding characteristics
leading to volume expansion.[80] The former mechanism fa-
vors the α phase while the latter favors the δ phase. In the
real material both these effects, with contributions from spin-
orbit coupling and orbital polarization, favor one phase over
another in a delicate shifting balance (plutonium has six am-
bient phases with varying degrees of crystal symmetry, atomic
density, and magnetic moments).

This competition between crystal distortion and magnetic-
moment formation can be quantified in the different Pu phases
as well as at different atomic sites.[57] The magnitudes of

site-projected spin moments, calculated within spin/orbital-
polarized DFT, offers one such measure. Of course, the static
spin/orbital-polarized DFT potential is derived for weakly-
interacting itinerant electrons, and thus fails to capture any
physical properties that may involve multi-configuration cor-
related electronic states. Nevertheless, it has been quite suc-
cessful in describing the structural chemistry of plutonium
[57], by allowing for formation of static spin moments.

Accordingly here, we define the average magnitude of spin
moments per atom in a system with N Pu sites

Σ =
1

N

N∑
i=1

∣∣∣< Ŝi >
∣∣∣ , (16)

where < Si > are site-projected spin moments at each site
i, obtained from projection of the spin-density matrix onto
the respective muffin-tin sphere. Si are scalar quantities
for collinear SP-GGA, and they become 3-vectors for non-
collinear SP+SO-GGA as well as SP+SO+OP-GGA schemes.
It can also be defined within more elaborate and realistic ap-
proximations beyond DFT.

We will discuss in the next section the values of Σ in α-
and δ-Pu within different levels of theory. It turns out that
it is e.g. more than twice larger in δ-Pu (Σδ = 4.4) than in
α-Pu (Σα = 2.1), when calculated within the SP+SO+OP-
GGA. This then naturally explains why the δ phase has far
larger atomic volume than the α phase. Significantly, it also
implies that α-Pu is far from a simple metal with meaningful
f -electron correlation, although less than δ-Pu.

Later in this paper we show the power of Σ to provide un-
derstanding of the electronic structure as well as the thermo-
dynamic properties of point defects in α- and δ-Pu. For this
purpose, we consider the same N -atom supercell as above
representing a perfect crystal lattice of Pu metal at pressure
P , with average moment per site ΣL(P ). Introducing a point
defect in this supercell results in ND Pu atoms and an aver-
age moment per site of ΣD(P ). The formation moment of the
point defect ∆ΣF can now be written as

∆ΣF = ND(ΣD(P )− ΣL(P )). (17)

It will be shown below that ∆ΣF can be a powerful measure
of the effect of point defects on f -electron hybridization in
different phases of Pu. Furthermore, it will become clear that
this contribution is of crucial importance to the point defect
properties in both α- and δ-Pu, and consequently to their re-
sistance to self-irradiation-induced swelling.

IV. RESULTS

A. Pure Pu

Before embarking on a discussion of point defects in Pu, we
first compare the situation for the two bulk phases of interest.
By now, there is considerable experience with first principles
results on these phases [45, 57, 65, 74, 81–84]. They are quite
close in energy at ambient pressure despite very different crys-
tal structure and density.



8

Nonmagnetic (NM) scalar-relativistic DFT calculations ob-
tain an equilibrium volume of 16.5 Å3 for the δ-Pu phase,
which is a drastic underestimation of the experimental value
∼ 25 Å3. The situation is better for the α-phase, for which
NM-GGA predicts an equilibrium volume of 17.6 Å3. This
still corresponds to an overbinding of ∼ 10% as compared
with the measured value at low temperatures ∼ 19.3 Å3.

The inclusion of spin polarization and magnetism in the SP-
GGA calculations corrects to a large extent the equilibrium
volume of the δ-Pu phase (to 23.0 Å3) and also brings the
calculated α-Pu volume to 18.2 Å3, in closer agreement with
experiments. However, very large spin moments (∼ 5µB) are
predicted to form on each Pu atom in δ-Pu. Surprisingly, even
in α-Pu, several Pu sites have large spin moments ∼ 3.5µB ,
and all Pu atoms possess some spin polarization. Hence, mo-
ment formation is ubiquitous in all phases of Pu within DFT.

Incorporation of SOC generally reduces the calculated spin
moments by a small amount, e.g. in δ-Pu, they are reduced to
∼ 4.4µB . Furthermore, SOC induces orbital moments oppo-
site to the spin moments on each Pu site, which further reduces
the total magnetic moment per Pu site in δ-Pu to ∼ 2.3µB .

Finally, inclusion of OP in the Hamiltonian increases the
magnitude of the orbital moment per Pu site and consequently
reduces the total magnetization of each δ-Pu atom to 0.74,
in excellent agreement with recent DMFT calculations[48].
Furthermore, predicted densities are in good agreement with
experiment at 24.7 and 19.25 Å3 for δ and α, respectively.

In the following, we separately discuss calculations and
measurements of some common physical properties of (pure)
α-Pu and δ-Pu at ambient conditions. We include analyses at
both theoretical and experimental ambient conditions for SP-
GGA since the two limits differ greatly.

1. δ-Pu

The properties of δ-Pu phase as calculated within different
levels of theory are listed in Table I and are compared with
experiments. The drastic underestimation of the equilibrium
volume by the NM-GGA theory, largely corrected by inclu-
sion of spin and orbital polarization is clearly documented.

The SP-GGA calculations are constrained to have collinear
spins. This limitation is relaxed upon the inclusion of rela-
tivistic effects via non-collinear SO-coupling, but even then
the local spin moments do not appreciably deviate from
collinear AF ordering. This implies that this spin configura-
tion is near a local minimum of the potential-energy landscape
when generalized to non-collinear magnetism.

Since the SO-treatment implemented within the VASP
code does not explicitly account for the p1/2-states, a non-
negligible error is introduced, which can be mostly eliminated
by simply removing the spin-orbit (L ·S) matrix elements cor-
responding to the L = 1 angular momentum.[65] A compar-
ison between results obtained with and without the p-channel
SO-coupling is shown in Table II. Hence, proper inclusion
of SO expands the lattice by ∼ 3%, in better agreement with
experiments, but still about ∼ 6% too small.

Following established literature, we represent in this paper

the magnetic structure of the δ-Pu phase by the collinear anti-
ferromagnetic L10 order, known to be the lowest energy bulk
magnetic order in the SP-GGA approximation. The layered
structure breaks the cubic symmetry of δ-Pu and results in a
tetragonal distortion of the fcc lattice. Figure 1 shows that
the degree of tetragonality, as quantified by c/a ratio of the
resulting face-centered tetragonal lattice, is strongly density
dependent. The distortion is substantial (∼ 6%) at the SP-
GGA equ ilibrium volume of 23 Å3, whence as atomic volume
is increased, so does also the c/a ratio almost proportionally
and approaches unity (cubic symmetry) near the experimental
equilibrium volume of 25 Å3.

Spin-orbit coupling introduces additionally a spin quanti-
zation axis, which causes the energy to also depend on the
direction of spin polarization; this is inherited by the OP ap-
proximation as well. This magnetic anisotropy is expected
to have a small effect on structural chemistry. However, as
shown in Fig. 1, it does noticeably change the volume depen-
dence of the degree of tetragonality. It can be seen that the c/a
ratios for (110)-polarization, calculated within both SP+SO-
GGA and SP+SO+OP-GGa, are about 1% shifted away from
cubic symmetry compared to SP-GGA values for the same
Pu density. However, the effect of the (001)-polarization on
the c/a ratios is a bit more complicated. When calculated
within the SP+SO-GGA approximation, this polarization in-
duces quite similar c/a ratios to the SP-GGA calculations. In
contrast, when the OP is included, the c/a ratios become nearly
insensitive to the Pu density, and vary within a narrow inter-
val (0.99,1). This emphasizes the role of orbital polarization
in determining the structural energetics of Pu metal.

To understand the observed behavior in Fig. 1, one needs to
note that spin-orbit coupling at a site with a finite spin moment
induces an orbital polarization opposite in direction. Addition
of explict OP in the Hamiltonian Eq. 4, increases the mag-
nitude of the orbital polarization. Hence, when AF ordering
is along (001) but spin/orbital polarization is along (110), the
degree of symmetry breaking resulting from the AF symmetry
is maximal and insensitive to the magnitude of E3 in Eq. 4.
In contrast when the spin/orbital polarization is parallel to the
AF stacking along the (001) direction, the density-dependence
of the degree of tetragonality is reduced with increasing E3.
This implies a subtle but very real and important interplay
between spin ordering and orbital polarization. At current
level of theory, the static (001) spin/orbital polarization par-
allel to the AF stacking, in spite of its slightly higher energy
(≈ 18 meV/atom) compared to the perpendicular (110) polar-
ization, should be considered the better representative for the
real spin-fluctuating system, as it stabilizes the crystal struc-
ture that comes closest to the high-symmetry cubic δ-phase.

In contrast to the degree of tetragonality, the effect of SO
and SO+OP corrections on equilibrium volume of the δ-Pu
phase is quite insensitive to the polarization direction, as seen
in Tab. I. Addition of SO alone, only slightly expands the SP-
GGA equilibrium volume towards the experiment. However,
a much more substantial correction is obtained upon incor-
poration of OP, which approaches the equilibrium volume of
δ-Pu to within 2%. It is easy to suppose that proper inclusion
of magnetic fluctuations can restore full cubic symmetry.[56]
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Table I. Properties of pure δ-Pu using VASP PAW: SP denotes collinear spin polarized calculations with AF order; the -3 GPa external pressure
approximates the experimental volume. SO refers to inclusion of spin-orbit coupling in a non-collinear spinor representation, while neglecting
the contribution from the p-orbitals, and OP to the addition of orbital polarization correction.

Property NM SP SP SP+SO SP+SO+OP SP+SO+OP experiment
(0 GPa) (-3 GPa) (001) polarization (110) polarization

Eq. volume (Å3) 16.5 23.0 24.75 23.6 24.8 24.7 25.2[85]
Bulk modulus (GPA) 208 44.7 36.0 45.0 44.6 39.1 30-35 [86]
c/a 0.706 0.942 0.991 0.963 0.993 0.982 1.0
spin mom. (µB) - 4.78 4.95 4.39 4.4 4.4 -
magnetic mom. (µB) - - - 2.34 0.78 0.74 -

Table II. Properties of pure δ-Pu calculated by FPLMTO. SOall de-
notes SO-coupling including all angular momentum channels, and
SOnop refers to SO-coupling excluding the p-channel.

Method Eq. volume Bulk modulus c/a
(Å3) GPa

SP+SOall 22.9 40. 0.92
SP+SOno p 23.7 42 0.96

SP+SOall+OP 24.6 45 0.992
SP+SOno p+OP 24.8 45 0.993

Table III. Properties of pure α-Pu calculated by PAW.

Method Eq. volume Bulk modulus b/a c/a θ
(Å3) GPa

NM 17.6 187.5 1.85 0.754 102.2
SP 18.2 103.6 1.83 0.757 101.7

SP+SO 18.35 141.6 1.82 0.76 101.9
SP+SO+OP 19.25 57.4 1.79 0.75 101.5

experiment (0 K) 19.5 70.9 [87] 1.77 0.755 101.8

2. α-Pu

The α-Pu phase is a monoclinic crystal of P21/m symme-
try [88] with a primitive cell containing 16 atoms. The space
group includes inversion symmetry, which reduces the num-
ber of crystallographically inequivalent sites in the primitive
cell to 8. Four parameters are necessary to specify the Bravais
lattice: the length of the lattice vectors, denoted below by a,
b, c, and the monoclinic angle θ.

The experimental atomic volume of α-Pu is 20.0 Å3 at 21
C[89]. However, α-Pu exhibits an unusually large thermal ex-
pansion at low temperatures, and it is estimated to have an
equilibrium volume at 0 K of about 19.5 Å3[65]. Neverthe-
less, the SP-GGA approximation still overbinds this phase by
about ∼ 7%. The equilibrium properties of α-Pu, as cal-
culated within different levels of theory compared to exper-
iments are listed in Tab. III. It is observed that the addition
of OP expands the equilibrium volume to within ∼ 1% of the
experimental value.

An important property of the α-Pu phase, relevant to its
alloying as well as lattice defect properties,[18] is the signifi-
cant difference in atomic volume and electronic properties of

23 23.5 24 24.5 25

Volume (Å
3
/atom)

0.950

0.975

1.000

c/
a 
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at

io

SP-DFT
SO-DFT (001)

OP-DFT (001)

OP-DFT (110)

Figure 1. Predicted c/a ratios versus volume for bulk δ-Pu in SP-
GGA (open black circles), SO-GGA (open red diamonds), and OP-
GGA (open blue squares for spin polarized on (001) and filled
green circles for (110) polarization). The arrows mark the theoret-
ical equilibrium volume for the four cases (SP-GGA in solid black,
SP+SO-GGA in dashed red, (110)-polarized SP+SO+OP-GGA in
solid green, and (001)-polarized SP+SO+OP-GGA in downward-
pointing, dashed blue).

Figure 2. An image of α-Pu structure with its eight inequivalent sites.
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Table IV. The table lists the percentage deviations of Voronoi vol-
umes of all inequivalent sites of the α-Pu phase from the average
atomic volume. Comparison is made between room temperature ex-
perimental structure and equilibrium structures obtained from differ-
ent levels of zero-temperature theory with static magnetism.

Site Experiment (room temp.) SP SP+SO SP+SO+OP

1 -7.21% -6.35% -5.98% -7.80%
2 -0.61% -1.49% -1.23% -0.87%
3 -2.25% -2.13% -1.79% -1.89%
4 -1.87% -3.47% -3.34% -3.33%
5 -0.66% -1.83% -1.76% -0.67%
6 0.67% 2.19% 1.66% 1.68%
7 0.32% 1.92% 1.53% 0.99%
8 11.63% 11.16% 10.91% 11.89%

Table V. The table lists the magnitudes of the local spin moments
(|Si|), as well as the local magnetic moments (|Si + Li| at each
inequivalent site of the α− Pu phase, with i-index enumerating the
8 inequivalent sites. The calculations have been performed within the
SP+SO and SP+SO+OP approximations at the equilibrium structure
and density of α-Pu within SP+SO+OP.

Site SP+SO SP+SO+OP
i |Si| |Si + Li| |Si| |Si + Li|

(µB) (µB) (µB) (µB)

1 0.47 0.35 0.55 0.14
2 1.3 0.73 2.0 0.18
3 1.3 0.7 2.0 0.19
4 1.4 0.76 1.9 0.31
5 1.3 0.59 2.1 0.41
6 1.9 0.94 2.5 0.31
7 2.3 1.2 2.6 0.03
8 3.5 1.6 3.4 0.03

the eight inequivalent sites of this lattice. Table IV details the
variation in the sizes of the Voronoi volumes of these eight
sites, which are enumerated in accord with past literature.[89]
It is found that the smallest site (1) is nearly 20% smaller than
the largest site (8). It is noteworthy that the local electronic
structure does also vary strongly between the different sites.
Table V lists the magnitudes of the local spin, as well as the
magnetic moment at each of the eight sites. The dramatic dif-
ference between sites 1 and 8 is evident. The site-projected
electronic densities-of-states for these sites have also been
shown to be very different.[56] While site 1 has the highest
density (smallest Voronoi volume) and minimal spin polariza-
tion, site 8 is δ-like with low density and large local spin mo-
ment. This heterogeneity plays an important role for the ener-
gies and volumes of point defects introduced into this phase.

In summary, in contrast to the wide-spread expectation that
ordinary non-magnetic DFT should be quite reasonable for
describing the energetics of α-Pu, it was found many years
ago that quite sizeable spin and orbital moments form on sev-
eral atoms in α-Pu [18, 82]. Accordingly, quite large errors
arise in predictions of the equilibrium volume of the α-Pu
phase, when neglecting spin and orbital polarization as well
as spin-orbit coupling.

While the SO and OP approximations allow for non-
collinear spins, we find that the lowest energy collinear config-
urations constitute local potential-energy minima. Our search
for the lowest-energy collinear magnetic configuration in α-
Pu has led us to the ferrimagnetic order, with sites 1, 3, 4, 7
antiparallel to 2, 5, 6, and 8, and the magnitudes of the lo-
cal spin and orbital moments listed in Tab. V. Because of the
complexity of the α-Pu structure and the diversity of possible
point defect configurations in this phase, we have limited the
scope of this work to comprehensive point defect calculations
in 128-atom α-Pu supercells using the SP-GGA approxima-
tion only. Encouraged by the reasonable success of SP-GGA
for the swelling parameters in δ-Pu, we perform these calcu-
lations at negative stress of -5 GPa, corresponding to an equi-
librium volume near the experimental value. In this way, we
correct for the overbinding of this approximation,

B. Point defects in Pu lattices

In this section, we explore the energetics and the structures
of the intrinsic point defects in the δ- and α-Pu phases. The
quasi-cubic high-symmetry of the δ-phase greatly simplifies
the search for favorable defect geometries, while monoclinic
α-Pu offers a multitude of crystallographically-distinct de-
fect sites each with low-symmetry local environments to re-
lax. Accordingly, the defect study for the δ-phase is more
comprehensive, including for the first time a limited survey
of changes in local magnetic order. As with the bulk calcu-
lations described above, we explore different levels of DFT
approximation to examine defect properties in δ-Pu, includ-
ing SP-GGA at the theoretical equilibrium, strained-SP-GGA
under hydrostatic stress to approach the experimental density,
and SP+SO+OP-GGA.

When strained-SP-GGA and SP+SO+OP-GGA calcula-
tions of point defects in δ-Pu are initialized with the same
magnetic order, their formation energies and volumes are
found to be in reasonable quantitative agreement notwith-
standing subtle differences in predicted defect structures.
However, a sampling of magnetic structures in δ-Pu reveals
further complexity that will be discussed in detail in the next
subsection,

Because the (inexpensive) strained-SP-GGA approxima-
tion seems adequate for a first look at swelling behavior in
δ-Pu, we use only this method to study intrinsic point defects
in α-Pu. No comparison with SP+SO+OP-GGA is made for
defects in α-Pu at this time, and more detailed studies are left
for future work. Instead, we focus below on exploring the
energetics and structures of the multitude of point defect con-
figurations that are made possible by the low symmetry of the
α-Pu phase.

Based on the strained-SP-GGA results for α- and δ-Pu, the
point defect properties of the two phases stand in stark con-
trast to one another. The vacancy in δ-Pu has a relatively high
formation enthalpy and a large negative relaxation volume,
but the vacancy in α-Pu is energetically much more favored
with a small relaxation volume there. The opposite is the case
for the self-interstitial defects, i.e. formation energies and vol-
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umes are smaller in the δ-Pu phase than in α-Pu.
Point defects in both phases have quite unexpected proper-

ties and cannot easily be placed in categories with known ma-
terials of similar crystal structures. In the case of δ-Pu, com-
parison with close-packed transition metals such as e.g. Cu,
reveals sharp contrast. Cu has a small negative vacancy relax-
ation volume ∆V Cu

R ≈ −0.3 at. vol., and a relatively large
and positive self-interstitial relaxation volume ∆V Cu

R ≈ 1.9
at. vol. Quite surprisingly, these properties resemble those
of the point defects in the far-from close-packed α-Pu phase.
Consequently, the α-Pu phase is expected to have a relatively
high swelling bias within the conventional theory, compara-
ble to that of Cu or Al, while δ-Pu is predicted to have a
greatly reduced swelling bias. We will discuss the prospect
of radiation-induced aging in more detail in Sect. V.

These properties can be rationalized within the spin/orbital
DFT picture by the degree the f -electron manifold is influ-
enced by bonding or anti-bonding states. We use the concept
of formation spin moments Eq. 17, introduced in Sect. III, to
quantify the role of f -electron character in determining the
unusual point defect properties found in α- and δ-Pu. It will
be shown in the following sections that point defects in δ-
Pu reduce the magnitude of spin/orbital polarization in their
vicinity. Hence in contrast to regular close-packed metals, the
vacancy and the interstitial in this Pu phase can be accommo-
dated with very small formation volumes. In contrast, point
defects in α-Pu are found to strongly increase the magnitudes
of spin/orbital moments in their neighborhoods, which leads
to large formation volumes.

1. Modified SP-GGA for improved predictions of defect properties

Before embarking on a detailed discussion of point defect
properties in α- and δ-Pu, we make a brief digression in this
section on how collinear SP-GGA calculations can be im-
proved upon to better reproduce the SP+SO+OP-GGA results.
This is important because accurate predictions of point defect
energies and structures require relatively large supercells con-
taining more than 100 atoms, and non-collinear SP+SO+OP-
GGA calculations can become computationally challenging
to converge to the levels needed for adequate determination
of relaxation volumes. In contrast, collinear SP-GGA calcu-
lations are computationally expedient and straightforward to
converge to high accuracy using state-of-the art computer re-
sources and algorithms. However, SP-GGA underestimates
the equilibrium volume by nearly 8% for the α as well as the
δ-Pu phases. While this is not an unreasonably large error,
one should bear in mind that bonding in Pu metal is quite sen-
sitive to atomic density, as it undergoes six structural phase
transformations involving large volume changes within a tem-
perature range of no more than 900 K. More importantly, as
discussed in Sect. IV A 1, collinear spin-polarized calculations
predict a layered antiferromagnetic order with tetragonal sym-
metry to be the lowest-energy spin configuration for δ-Pu.
This breaks the cubic symmetry of the fcc phase. Coinciden-
tally, at the SP+SO+OP-GGA equilibrium volume, which is
within 1% of experiment, the degree of tetragonality is quite

small, less than 1%. It increases with increasing density, so
that at the SP-GGA zero-pressure volume, it becomes as large
as ≈ 6%, whereupon non-negligible errors are observed in
predictions of defect structures and energies, as will be dis-
cussed in Sect. IV B 2.

Hence one may expect that the predictions made by SP-
GGA for the formation energies/volumes of point defects
in e.g. δ-Pu can be brought to reasonable agreement with
SP+SO+OP-GGA if they are performed at the SP+SO+OP-
GGA equilibrium density. In practice, it turns out that the best
way to conduct these modified SP-GGA calculations is to per-
form them at negative hydrostatic pressure P . This amounts
to augmenting the SP-GGA exchange-correlation functional
with a PV term, where V is the supercell volume that is al-
lowed to relax variationally. This term can be thought of as
mimicking the increased anti-bonding character of the occu-
pied states due to additional symmetry breaking by spin-orbit
coupling and orbital polarization. Of course, it is only a homo-
geneous term, and cannot account for local interactions that
explicitly originate from orbital ordering. These interactions
lead to the minor differences found in the predictions of the
structural energetics of δ-Pu predicted by the (001) and (110)
spin/orbital polarizations, see Tab. I. The external pressure P
is expected to depend (weakly) on the overall structure. It is
found to be P = −3 GPa in the δ-Pu phase, and P = −5 GPa
in α-Pu. These pressures are obtained within SP-GGA for the
α- and δ-Pu structures at their respective SP+SO+OP-GGA
equilibrium densities, with the spin and orbital moment vec-
tors pointing in the (001) direction.

To our knowledge, the modified SP-GGA method discussed
above has not been generally used to handle the relatively
large tetragonal distortion predicted by SP-GGA at the the-
oretical equilibrium. The most commonly adopted way to
handle this problem has been through imposition of a cubic
shape constraint on the defect supercells [90–92]. It is shown
in the Appendix that in the dilute limit, such defect calcula-
tions yield identical results to supercell calculations, in which
a non-hydrostatic (tetragonal) external stress is imposed. The
magnitude of the stress σ is chosen such that the perfect
bulk fcc-Pu lattice becomes a stable equilibrium configura-
tion. This amounts to augmenting the SP-GGA exchange-
correlation functional with a ση term, where η is the degree of
tetragonality (e.g. c/a-ratio of an fct lattice), and is allowed
to relax variationally. The generality of such a correction to
the exchange-correlation functional is questionable, since it
is directly dependent on the particular antiferromagnetic spin
order chosen for the calculations. It does not have any direct
relation with the SO and OP contributions that are missing in
the SP-GGA calculations.

Finally, it should be noted that structural relaxations in-
duced by point defects in lattices can contain substantial long-
range components, which can lead to spurious interactions be-
tween periodic images. They can lead to slow convergence of
calculated defect properties with supercell size. In Appendix,
we show that finite supercell-size errors can be reduced when
the supercell calculations are conducted in an external stress
field, i.e. the free-energy functional is augmented with a PV
or a ση term. This gain in accuracy is relative to defect calcu-
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lations in which supercell volumes or shapes are kept fix.

2. Vacancies in δ-Pu

Vacancy formation enthalpies and compressibilities as well
as relaxation volumes in δ-Pu are given for SP-GGA and
SP+SO+OP-GGA approximations in Tab. VI. All calcula-
tions were performed in 108-atom supercells with a 3× 3× 3
K-point grid. All SP-GGA calculations are considered con-
verged when atomic forces are reduced to < 0.002 eV/Å
and elements of the stress tensor are converged to within
0.01-0.02 kBar. The corresponding convergence criteria for
SP+SO+OP-GGA is typically 0.004 eV/Å and 0.04 kBar.
Structural parameters (including cell shapes) are always re-
laxed without constraint using the standard VASP procedure.
For comparison, point defect properties in fcc Cu were also
calculated in 108-site supercells and are listed in Tab. VI. The
VASP-PAW scheme and the PBE exchange-correlation func-
tional with a plane-wave energy cutoff of 600 eV and a K-
point grid of 4x4x4 have been used for these calculations.

As was mentioned in Sect. II, a variational formulation of
SP+SO+OP-GGA is necessary for accurate calculations of
atomic forces, and requires non-collinear magnetism derived
from spinor wave functions. To our knowledge, fully vari-
ational SP+SO+OP-GGA calculations have in the past been
only applied to perfect crystalline phases of Pu. No issues
have arisen, because these systems stay collinear when ini-
tialized in a collinear state. This is not necessarily true for
point defects, which may induce explicit non-collinearities in
their local neighborhoods. In the present work, we choose to
limit the scope to collinear spin configurations, while the cal-
culations are fully variational using spinor wave functions. In
order to maintain collinearity a quadratic penalty functional is
added to the total-energy functional, which constrains the spin
orientations along prescribed directions. In this way, vacancy
energies, structures and compressibilities are studied in δ-Pu
with collinear AF-L10 spin order, polarized in two different
spatial directions: (001) and (110). Certainly, much remains
to be studied regarding coupling of non-collinear magnetic or-
der to structural relaxations, which we defer to future works.

In the past, most reported calculations of the vacancy in δ-
Pu were performed using collinear SP-GGA theory, with the
spin density initialized in a layered L10 AF spin order, and
the atomic density constrained to the theoretical zero-pressure
equilibrium. Under these conditions, SP-GGA predicts large
static moments on each Pu site, which in turn induces the bulk
δ-Pu to have substantial tetragonal distortion, see Tab. I. In
order to correct for this error, cubic shape constraints were
then imposed on the defect supercells. The most elaborate cal-
culations have been conducted by Hernandez et al.[93], who
found the lowest-energy vacancy to have a distorted mono-
clinic structure, which we denote by “vac mono” in Tab. VI.
The calculations that we report in this paper however, differ
from that previous work [93] in that they do include full relax-
ations of supercell shapes. This reduces finite supercell-size
errors on the calculated properties, but does not include any
correction for the erroneous tetragonal distortion predicted by

Table VI. Formation energies, relaxation volumes, and the two con-
tributions to formation compressibility (see Eqs. 13-15) of point de-
fects, in 108-site supercells of δ-Pu, calculated within different levels
of theory. In each of the examples, the magnetic order is initialized
in the usual L10 layered AF configuration and allowed to relax dur-
ing the approach to electronic self-consistency as well as ionic re-
laxation. The final spin order in each case is found to be largely
unchanged, in particular beyond and in the immediate vicinity of the
point defects, and thus the AF-L10 can be considered metastable.
Note that the monoclinic vacancy is not stable in dilated (-3 GPa)
SP-GGA calculations. For comparison, the table also contains de-
fect formation energies, relaxation volumes and compressibilities of
the vacancy and the (001)-dumbbell self-interestitial in fcc copper at
0 GPa, calculated within PBE-GGA in 108-site supercells.

SP-GGA Formation Relaxation vol ∆β0 ∆βL
(0 GPa) energy (eV) /atomic vol. (GPa)−1 (GPa)−1

vac mono 1.24 -2.33 0.14 -0.052
vac tetr 1.42 -1.32 0.022 -0.03
int oct 0.6 1.00 0.4 0.022

SP-GGA
(-3 GPa)

vac tetr 1.47 -0.85 0.25 -0.024
int (111) 1.35 1.32 - -
int oct 0.50 1.32 0.11 0.037

SP+SO+OP+GGA
(001)-polarization

vac tetr 1.5 -0.94 0.11 -0.022
int oct 0.67 0.85 0.046 0.02
SP+SO+OP-GGA
(110)-polarization

vac tetr 1.56 -1.0 0.19 -0.026
int oct 0.98 1.2 -0.034 0.03

fcc-Cu
GGA (0 GPa)

vac 1.1 -0.33 -0.006 -0.0024
int (001)-dumbbell 3.0 1.87 0.007 0.0014

Table VII. Formation spin moments of intrinsic point defects in 108-
site supercells of δ-Pu, initialized in the L10-AF spin configuration,
and calculated within different levels of theory. The formation mo-
ments are listed in fractions of spin-moment-per-atom in the perfect
lattice.

SP SP+SO+OP SP+SO+OP
-3 GPa (001)-polarization (110)-polarization

vac tetr -0.17 -0.22 -0.36
int oct -0.65 -1.15 -0.83

SP-GGA. Nevertheless, the “vac mono” remains the ground-
state vacancy structure at the theoretical equilibrium density
even when full supercell shape relaxations are employed. Ta-
ble VI records the resulting thermodynamic properties of “vac
mono” defect. We find a very large relaxation volume, cor-
responding to a lattice contraction of more than two atomic
volumes per vacant site. However, this vacancy configuration
becomes energetically less favorable relative to other vacancy
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Figure 3. Cumulative formation volume ∆V C
F (d) as a function of

distance d from a vacant site in Cu (green dashed-dotted line) and
in δ-Pu calculated within SP-GGA (black solid line), SP+SO+OP-
GGA polarized along (001) (dashed red line), and SP+SO+OP-GGA
polarized along (110) (blue dashed-dotted line). The plots depict
the accumulated volume change as a function of distance from the
vacancy in the defect supercells. The cumulative formation volumes
are given in units of per-atom equilibrium volume of the respective
perfect crystal,
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Figure 4. Cumulative formation spin moment ∆ΣC
F (d) as a func-

tion of distance d from a vacant site in δ-Pu. It is the accumulated
induced spin moment within a distance d from the vacant site. It is
given in the units of the average magnitude of per-atom spin moments
(AMSM) in δ-Pu, calculated within SP-GGA in black, SP+SO+OP-
GGA polarized along (001) in dashed red, and SP+SO+OP-GGA po-
larized along (110) in dashed-dotted blue.

species as the lattice is expanded, see Fig. 5. It is dynami-
cally unstable near the experimental ambient-pressure density.
Therefore, it cannot exist at these densities. Instead, a differ-
ent vacancy configuration denoted by “vac tetr” in Tab. VI, be-
comes the ground-state vacancy structure in δ-Pu, see Fig. 5.
It can be obtained by simply removing an atom from a 108-
atom supercell of perfect bulk δ-Pu, with the spin density ini-
tialized in the L10-AF spin configuration, whereupon elec-
tronic degrees of freedom are brought to self-consistency, fol-

lowed by relaxations of the ionic degrees of freedom as well
as the supercell shape. The resulting formation energies and
relaxation volumes within both SP- and SP+SO+OP-GGA
are listed in Tab. VI. As has been argued earlier in this pa-
per, we expect the most reliable collinear theory for point de-
fect properties in δ-Pu to be the (001)-polarized SP+SO+OP-
GGA, which comes at a relatively high computational cost.
Nevertheless, the overall agreement with the simpler SP-GGA
strained to −3 GPa is reasonable. Furthermore, for bulk δ-Pu,
both theories predict rather small tetragonal distortions, less
than 1%, in contrast to SP-GGA at theoretical zero-pressure
density, which predicts 6 times larger distortion, see Tab. I.

The relaxation volumes recorded in Tab. VI for “vac tetr”
reveal that even this vacancy induces a large contraction in
the δ-Pu lattice on the order of one bulk-Pu atomic volume.
This is several times larger than vacancy relaxation volumes in
typical close-packed transition metals, such as fcc-Cu, where
each vacancy contracts the lattice by no more than 1/3 of an
atomic volume. Likewise, the vacancy formation enthalpy is
substantially larger≈ 1.5 eV in δ-Pu as compared to 1.1 eV in
fcc-Cu, calculated within GGA. This implies a much smaller
equilibrium vacancy concentration in δ-Pu than in a typical
fcc metal.

It should be noted that in spite of the relatively small tetrag-
onality error of the dilated SP-GGA as well as SP+SO+OP-
GGA theories for bulk δ-Pu, the predicted structural relax-
ations about the vacancy contain non-negligible anisotropy.
This is a result of the symmetry of the underlying static L10
AF spin order, which consists of ferromagnetic (001) layers,
with adjacent planes having opposite spin directions. As a re-
sult, in the fcc lattice, each Pu atom is surrounded by 8 nearest
neighbors (NN) with antiparallel spin orientations, and four
NN-sites with parallel spins. When a Pu atom is removed
from a lattice site, both (001)-polarized SP+SP+OP-GGA and
SP-GGA predict the eight NNs with antiparallel spins to re-
lax inward by about 4%, while (110)-polarized SP+SO+OP-
GGA predicts a larger inward relaxation of 6.2%. On the other
hand, the four parallel-spin NNs relax inward within (001)-
polarized SP+SO+OP-GGA by 1.8%, do not relax measur-
ably within SP-GGA, and relax outward by more than 1.5%
according to (110)-polarized SP+SO+OP-GGA. This should
be compared with the vacancy relaxation pattern in fcc Cu,
where all 12 NNs move inward by about 1.4%. It is evident
that the (001)-polarized SP+SO+OP-GGA exhibits the least
relaxation anisotropy, followed by SP-GGA. This is quite ex-
pected when comparing the predicted anisotropies by the dif-
ferent theories for the perfect δ-Pu lattice, see Tab. I. In partic-
ular, it can be seen that the (110)-polarized SP+SO+OP-GGA
exhibits twice the anisotropy for the perfect δ-Pu lattice com-
pared to the other two approximations, resulting in similarly
larger anisotropy of the local relaxations around the vacancy.

Further examination of local relaxations around the va-
cancy reveals a fundamental and novel feature of interactions
in plutonium metal. In crystalline solids, lattice defects cause
structural relaxations that within the so-called core regions
around the defects depend on the detail of atomic positions
and interatomic interactions, while outside can be described
by continuum elasticity in order to account for the response of
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Figure 5. Vacancy formation energies in δ-Pu versus volume for dif-
ferent spin configurations, as described in the text and Table VIII.
A quadratic least squares fit to all configurations versus volume has
been subtracted to highlight the differences between the curves. The
curves all terminate at their lower ends near zero pressure (theoret-
ical equilibrium) and at -30 kbar at the upper end (the stress condi-
tions that match the experimental bulk volume), the two limits where
DFT results are commonly reported for Pu. The character of bond-
ing, structural relaxation, and magnetic order of the defect changes
significantly over the different densities.

the host lattice to the deformation from the core regions. The
former are often expected to be confined to a few neighbor
shells around the defects, while generating long-range elastic
strain fields in the solid. The assumption that the non-linear
core region can be contained to within several tens of atoms
underlies the supercell technique for calculation of energies
and structures of lattice defects from first principles.

In order to understand the nature of volume relaxations
and the extent of the non-linear core region around the va-
cancy in δ-Pu, we examine the spatial distribution of its di-
latational strain field. This can be done by Voronoi decom-
position of the defect supercells. The Cumulative formation
volume ∆V CF (d) as a function of distance d from the vacancy
in a defect supercell containing (N − 1) atoms can be defined
as

∆V CF (d) =

N−1∑
i=1

(
ωdi − ΩL

)
H(d− di), (18)

where ωdi is the Voronoi volume of atom i in the defect super-
cell, ΩL is the atomic volume in the perfect lattice, and H(x)
is the Heavyside function, with H(x) = 0 for x < 0, and oth-
erwiseH(x) = 1. Hence ∆V CF (d) represents the contribution
to the formation volume from a spherical region of radius d
around the vacancy. At large distances, the cumulative forma-
tion volume ∆V CF approaches the thermodynamic formation
volume, ∆VF , defined in Eq. 10. The radial extent dc of the
non-linear core region can thus be defined as the distance, be-
yond which

∣∣∆V CF (dc)−∆VF
∣∣ < ε, with ε << 1. This

is because in an isotropic continuum linear elastic medium,

the dilatational strain field due to a misfit inclusion can be
shown to be a harmonic function, decaying with distance as
1/d2; thus the cumulative volume change in a region around
the defect approaches a constant as d → ∞. As a result,
reasonably well-converged estimations of formation volumes
require only supercell sizes in which the nearest point-defect
images are only about 2dc apart.

Assuming that the core regions are contained within a few
neighbor shells of the point defects, supercells containing on
the order of 100 atoms should be adequate for calculation of
their properties. Figure 3 shows the distribution of ∆V CF (d)
as a function of distance d from the vacancy, for the three lev-
els of theory studied here. The reader should be reminded here
that Fig. 3 depicts formation volumes ∆VF , while Tab. VI lists
relaxations volumes ∆VR. For the vacancy, ∆VR = ∆VF−1,
see Eqs. 10 and 11. It is thus apparent from Fig. 3 that if the
volume relaxations were confined to the first-neighbor shell,
as they usually are around the vacancy in standard metallic
systems, the relaxation volume in δ-Pu would be no less than
-0.5. However, volume relaxations beyond the first neighbor
shell nearly double the magnitude of ∆VR. The three theories
applied to δ-Pu vacancy agree on the extent of the non-linear
core region being larger than can be comfortably contained
within 107-atom supercells used in this study. For compari-
son, we also show in Fig. 3. the distribution of ∆V CF (d) for
the vacancy in fcc Cu. It is apparent that in this system, the
non-linear core region can be considered confined to within a
few neighbor shells of the vacancy, and the 107-atom super-
cell is thus expected to make an adequate representation of the
volume relaxations in this system. On the other hand, for the
δ-Pu vacancy, it is reasonable to expect based on the nearly
monotonous drop in ∆V CF at large distances in Fig. 3, that
vacancy calculations in larger supercells will yield further in-
crease in the magnitudes of the calculated relaxation volumes.

The origin of the unusual properties of the vacancy in δ-Pu
can be traced to the bonding characteristics of the f -electrons
in this phase. In the simplest band picture, such as non-
magnetic DFT, there is a high density of narrow f -electron
bands at the Fermi level for high-symmetry phases such as
δ-Pu. Broken-symmetry phases (e.g., structural ones like α-
Pu) can lift this degeneracy and lower the overall energy of
the system. When instead allowing for symmetry-breaking
spin/orbital polarization, sizeable spin/orbital moments form
in e.g. δ-Pu, that are largely concentrated within the atomic
spheres due to increased occupation of anti-bonding states.
They split the degenerate bands at the Fermi level and thereby
lower the total-energy of the high-symmetry phases and stabi-
lize them at expanded volumes.

In order to conduct a more quantitative study of this mecha-
nism, we introduced in Sect. III a measure of f -electron bond-
ing in Pu in terms of average magnitude of spin moments per
atom (AMSM), see Eq. 16. For example, the AMSM in δ-
Pu at zero pressure, calculated within SP+SO+OP-GGA is
4.4 µB . Furthermore, for point defects in lattices, the for-
mation spin moment (FSM) defined in Eq. 17 can provide
a quantitative measure of the effect of lattice defects on f -
electron bonding in their neighborhoods. The FSM for vacan-
cies in δ-Pu in units of AMSM of δ-Pu are listed in Tab. VII.
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We see that introduction of a vacant site in the δ-Pu lattice
reduces the spin moment magnitudes of the surrounding f -
electrons. While this effect is not very large, it can be shown
that in combination with the weak bonding in δ-Pu, it is the
leading cause of the large and negative relaxation volume of
the vacancy in δ-Pu, see Tab. VI. It is also responsible for the
unusual structural relaxations around the vacancy in δ-Pu with
a wide non-linear core region, discussed above in conjunction
with Fig. 3.

In order to study the coupling of vacancy-induced spin po-
larization to the structural relaxations around the defect, we
define in analogy with ∆V CF (d) above. see Eq. 18, the cu-
mulative FSM ∆ΣCF (d) as a function of distance d from the
vacancy

∆ΣCF (d) =

N−1∑
i=1

(
σdi − ΣL

)
H(d− di). (19)

Above σdi is the local spin moment magnitude of the ith atom
in the defect supercell, and ΣL is the AMSM of the perfect
lattice, and H(x) is the Heavyside function. Note that at large
distances, ∆ΣCF approaches the thermodynamic FSM value.
Figure 4 shows the spatial distribution of ∆ΣCF (d) for the
three levels of theory in this study. It can be seen that the
Pu atoms in the first neighbor shell of the vacancy slightly
increase their spin polarization, leading to a positive ∆ΣCF at
small distances. This is reasonable considering that f -electron
spin/orbital polarization is already saturated in δ-Pu. How-
ever, the relatively weak bonding in δ-Pu allows the atoms
in the first neighbor shell around the vacancy to move sub-
stantially closer, whereupon the increased atomic disorder re-
duces the overall spin/orbital polarization leading to increased
bonding and further contraction. As a result, beyond the
first neighbor shell, ∆ΣFC(d) turns negative and drops nearly
monotonously away from the vacancy, see Fig. 4. The similar-
ity of the ∆ΣCF (d) and ∆V CF (d) distributions is apparent by
inspection of Figs. 3 and 4. Hence, the combination of weak
bonding in δ-Pu and negative FSM values causes an anoma-
lously large negative relaxation volume ∆VR for the vacancy
in δ-Pu. In other words, the formation volume ∆VF of the va-
cancy in δ-Pu (note: ∆VF = ∆VR + 1) is nearly zero, which
means injection of vacancies into a δ-Pu metal bar leads to
little measurable change of its dimensions.

Table VI also records the formation compressibilities of va-
cancies calculated within different levels of theory, as defined
in Sect. III B. The total compressibility ∆β of the vacancy is
composed of two contributions: (i) ∆β0, see Eq. 14, which
except for the outlier “vac tetr” calculated within SP-GGA
at theoretical equilibrium, attains quite large values ranging
from 0.11 to 0.25 (GPa)−1, and measures the explicit effect of
lattice softening by the vacancy, and (ii) ∆βL, see Eq. 15,
which is about 5 to 10 times smaller than ∆β0 and mea-
sures the vacancy compressibility in the absence of any defect-
induced change in the crystal’s elasticity. It should be noted
that these calculations are numerically quite difficult to con-
verge, in particular in the presence of spin/orbital polarization.
Nevertheless, we find the different theories to be consistent
with strong lattice softening caused by the vacancies in δ-Pu

Table VIII. Effect of low-energy spin flips in the vicinity of the va-
cancy in δ-Pu on its properties. Calculations are performed in 108-
site supercells of δ-Pu, within SP-GGA. In each of the examples,
the magnetic order is initialized in the L10-AF configuration with
additional spin flips imposed on the Pu atoms neighboring the va-
cancy. Each case is found to be metastable during the iteration to self-
consistency. The symmetry-related magnetic degeneracy is given for
each case along with defect volume and energy. Details of the initial
spin orders are given in the text. The reference, undefected bulk state
is the usual L10 layered antiferromagnet. The associated SP-GGA
bulk modulus in the perfect crystal is 44.7 GPa at zero pressure and
36.0 GPa at -3 GPa.

0 GPa Degen. Formation Relaxation vol
SP-GGA energy (eV) /atomic vol.

vac one in 4 1.57 - 0.95
vac one out 8 1.42 - 2.00
vac two in 2 1.70 -0.44
vac two out 4 1.72 - 1.56

-3 GPa Degen. Formation Relaxation vol
SP-GGA energy (eV) /atomic vol.

vac one in 4 1.44 - 0.57
vac one out 8 1.60 - 0.73
vac two in 2 1.41 - 0.19
vac two out 4 1.74 - 0.52

leading to relatively large compressibility of this defect.
It is instructive to study the defect formation compressibili-

ties in a typical transition metal in order to provide context for
the calculations presented above for δ-Pu. For this purpose,
we have conducted detailed calculations of β0 and βL for the
point defects in fcc Cu, listed in Tab. VI. It can be seen that
the vacancy formation compressibilities in Cu are more than
an order of magnitude smaller than in δ-Pu. This is partly due
to the much stiffer lattice as reflected in the calculated bulk
modulus of 136.4 GPa for Cu, which is more than three times
larger than the value for δ-Pu. Nevertheless, the largest con-
tribution does clearly originate from vacancy-induced changes
to the local f -electron correlations and bonding causing soft-
ening of the δ-Pu lattice bulk modulus.

We conclude this section by a discussion of alternate spin
arrangements and their effect on the properties of the vacancy
in δ-Pu. To our knowledge, all studies of point defects in δ-
Pu in the past have assumed that the spin configuration of the
defect lattice does resemble the perfect lattice and therefore
is initialized with the usual L10 layered AF order. Above,
we have denoted this particular vacancy state by “vac tetr”.
In addition to this default spin order, we also have examined
SP-GGA calculations initialized with four other spin config-
urations, where the spin order in the neighborhood of the va-
cant site is altered. They are: (i) the ”one in” case, which
reverses a single, in-plane nearest neighbor spin moment in
the same (001) plane as the vacancy; (ii) the ”two in” case,
which reverses a pair of in-plane moments lying on opposite
sides of the vacancy; (iii) the ”one out” case, which reverses
a single, out-of-plane nearest neighbor moment in an adjacent
(001) plane to the vacancy; (iv) the ”two out” case reverses
the moments of two neighbor spins on different (001) planes
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on opposite sides of the vacancy. In practice, subsequent iter-
ations to full self-consistency preserve these magnetic struc-
tures, indicating metastability. The resulting vacancy ener-
gies are given in Tab. VIII and their relative order displayed
in Fig. 5 at a range of volumes. It can be seen that at -3 GPa
tension, SP-GGA predicts both “vac one in” and “vac two in”
vacancies to be slightly lower in energy than “vac tetr”. The
magnitudes of their relaxation volumes, in particular that of
“vac two in”, are significantly smaller than “vac tetr”, i.e. they
lead to much less contraction of the surrounding lattice. This
difference can be understood by noting that the spin flips that
constitute the excited vacancy configurations “vac one in” and
“vac two in” increase the local ferromagnetic order around the
vacant site, i.e. the number of nearest neighbors with parallel
instead of antiparallel spins. The ferromagnetic order expands
the lattice relative to the AF order, but it is energetically less
favorable in bulk δ-Pu.

We thus conclude that low-energy variations in the local
magnetic order around the vacancy within SP-GGA can re-
duce the defect relaxation volumes substantially. However,
while spin flip excitations such as in “vac one in” and “vac two
in” actually lower the vacancy energy in SP-GGA relative to
the default L10 configuration “vac tetr”, they are energetically
unfavorable in SP+SO+OP-GGA. This is observed in compar-
ative SP-GGA and SP+SO+OP-GGA calculations in smaller
31-atom supercells containing a vacancy, where the spin re-
versals that lower the total energy within SP-GGA, raise the
total energy according to SP+SO+OP-GGA. This discrepancy
can be attributed to increased magnetic exchange coupling
within the SP+SO+OP-GGA, which raises the energy of spin-
parallel nearest neighbors relative to spin-anti-parallel ones.
Thus the evidence at this time is that the lowest energy va-
cancy configuration within SP+SO+OP-GGA retains the un-
altered L10-AF structure from the perfect bulk crystal.

The above discussion suggests the importance of spin fluc-
tuations in determining finite-temperature properties of point
defects in δ-Pu, potentially leading to non-Arrhenius behavior.
In fact, electronic excitations are known to cause the anoma-
lous Invar-like effect observed in bulk δ-Pu.[94, 95] They may
also alter the kinetics of void swelling by affecting the point
defect interactions. This occurs when spin fluctuations adjust
the relaxation volumes, as described above for spin-excited
vacancies, and thereby change the associated strain energies.
As a proof of principle, in Sect. V, we model the possible ef-
fects of spin fluctuations on radiation aging behavior, albeit
somewhat crudely, by computing the thermal equilibrium for-
mation energy and volume of the vacancy in δ-Pu in SP-GGA
under -3 GPa pressure. For this purpose, we recognize that
by symmetry, there are multiple equivalent sites for each of
the spin flips described above, which results in degeneracies
listed in Tab. VIII.

In summary, the vacancy in δ-Pu differs markedly in its
structure and energy from standard close-packed metals. Its
equilibrium concentration is anomalously low, and it induces
strong lattice contraction in its neighborhood. This is a result
of the weak bonding in δ-Pu combined with the vacancy hav-
ing an overall negative influence on the f -electron spin/orbital
polarization in the δ-Pu lattice. Consequently, large local
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Figure 6. Cumulative formation volume ∆V C
F (d) as a function

of distance d from a self-interstitial center in Cu (green dashed-
dotted line) and in δ-Pu calculated within SP-GGA (black solid
line), SP+SO+OP-GGA polarized along (001) (dashed red line), and
SP+SO+OP-GGA polarized along (110) (blue dashed-dotted line).
The plots depict the accumulated volume change as a function of dis-
tance from the center of the self-interstitial in the defect supercells.
The cumulative formation volumes are given in units of per-atom
equilibrium volume of the respective perfect crystal, Note that the
interstitial center in δ-Pu is the octahedral site, while in fcc-Cu it is
at the midpoint of the 001-dumbbell.

contraction around the vacancy can occur at relatively low
energy cost. In the final analysis, it is found that the di-
lated SP-GGA approximation can produce results in qualita-
tive agreement with the SP+SO+OP-GGA calculations. How-
ever, when studying more subtle issues, such as the precise
relative order of low-energy spin excitation, the two approxi-
mations can differ significantly. Nevertheless, it is shown that
low-energy localized moment excitations can cause anoma-
lous temperature-dependent properties of point defects in Pu.
At this point, our knowledge of the nature of these fluctua-
tions is wanting, and most research and development in this
direction still remains to be done.

3. Self-interstitials in δ-Pu

Typical fcc materials have distinct interstitial defect con-
figurations commonly known as split dumbbell and the octa-
hedral site defects. In the split dumbbell configuration, the
interstitial atom forms a dimer with a lattice atom. The dimer
bond is usually directed along either (111) or (001) directions.
In δ-Pu, the (111)-dumbbell is high energy, while the (001)-
dumbbell is unstable within both SP-GGA and SP+SO+OP-
GGA, and relaxes into the octahedral configuration. The inter-
stitial energies in δ-Pu, calculated using 109-atom supercells
using a 3× 3× 3 K-point grid are reported in Tab. VI.[92, 96]
The octahedral interstitial is an extra atom in the fcc lattice re-
siding half-way along a cube side between two next nearest-
neighbor sites. It has six nearest neighbors. In the AF-L10
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Figure 7. Cumulative formation spin moment ∆ΣC
F (d) as a function

of distance d from the octahedral self-interstitial in δ-Pu. It is the
accumulated induced spin moment within a distance d from the oc-
tahedral interstitial site. It is given in units of the average magnitude
of per-atom spin moments (AMSM) in δ-Pu, calculated within SP-
GGA in black, SP+SO+OP-GGA polarized along (001) in dashed
red, and SP+SO+OP-GGA polarized along (110) in dashed-dotted
blue.

spin configuration, the cubic symmetry of the perfect δ-Pu lat-
tice is broken, and the six degenerate NN distances break up
into two groups of four and two. Within dilated (-3 GPa) SP-
GGA as well as 001-polarized SP+SO+OP-GGA, the empty
octahedral site in the perfect δ-Pu lattice is surrounded by four
NNs at d1 = 2.30 Å, and two NNs at d2 = 2.32 Å dis-
tance, while within (110)-polarized SP+SO+OP-GGA d1 =
2.29 Å and d2 = 2.33 Å. Upon incorporation of an inter-
stitial atom in the octahedral site, the nearest neighbor sites
move outwards with d1(d2) = 2.46(2.61) Å within dilated
SP-GGA, d1(d2) = 2.48(2.58) Å within (001)-polarized
SP+SO+OP-GGA and d1(d2) = 2.48(2.59) Å within (110)-
polarized SP+SO+OP-GGA. Hence the nearest-neighbor re-
laxations around the octahedral self-interstitial in δ-Pu are
predicted to be very similar within the different levels of the-
ory, with moderate signature of anisotropy inherited from the
L10-AF spin configuration.

In typical closed-packed metals, such as Cu, the self-
interstitial is a very high-energy defect. We have calculated
the properties of the (001)-dumbbell self-interstitial in Cu, us-
ing 109-site supercells and a 4×4×4 K-point grid. The results
are listed in Tab. VI. The self-interstitial formation enthalpy
is indeed very high ∼ 3.0 eV, and the relaxation volume of
1.9 atomic volumes is quite sizable. The story is quite the
opposite for δ-Pu. Table VI reports the formation enthalpies
and the relaxation volumes of the octahedral self-interstitial
in δ-Pu, calculated within SP-GGA as well as SP+SO+OP-
GGA. These approximations predict a surprisingly low for-
mation energy, clearly less than 1 eV, and a formation volume
that is close to only 1 atomic volume. More precisely, the for-
mation volume calculated within dilated SP-GGA is 1.32, and
reduces to 0.94 when SO+OP corrections are included in the
(001)-polarization.

It is interesting to compare the cumulative formation vol-
umes ∆V CF (d), see Eq. 18, for the octahedral interstitial in
δ-Pu and the (001)-dumbbell interstitial in fcc Cu. Figure 6
shows the dependence of ∆V CF on distance away from the re-
spective self-interstitial centers in Cu and in δ-Pu calculated
within three levels of theory. It should be noted that for the
octahedral site in δ-Pu, the interstitial center is the octahedral
site itself, while for the dumbbell interstitial in fcc Cu, it is the
midpoint of the dumbbell. Furthermore, the reader should be
reminded that Tab. VI reports relaxation volumes ∆VR, while
the asymptotic value of ∆V CF (d >> 1) is the formation vol-
ume ∆VF . For interstitials ∆VF = ∆VR − 1, see Eqs. 10
and 11. Inspection of the ∆V CF distributions in Fig. 6 reveals
that in Cu, the two interstitial atoms are compressed by about
10% each. It can thus be argued that the dumbbell generates
a deformation corresponding to addition of 0.8 fraction of a
Cu atom in the lattice. In response, the neighboring shells ex-
pand since they cannot pack as efficiently as in the pristine fcc
lattice. The non-linear tensile strain field emanating from the
dumbbell is quite long-range and as a result, the non-linear
structural relaxations induced by the self-interstitial in Cu are
not fully contained within a 109-atom supercell, see Fig. 6.
This can be deduced because, as explained in Sect. IV B 2,
in the far-field linear-elastic relaxation regime, the integrals
of the displacement field from a point defect over spherical
shells are independent of the sphere radii. In other words, in
the linear-elastic regime, ∆V CF (d) becomes independent of
distance d. In contrast to Cu, not only the octahedral inter-
stitial but also its six nearest neighbors become compressed,
which sums up to a total of 50% compression. Hence the
octahedral interstitial and its six nearest neighbors generate a
deformation corresponding to addition of half a Pu atom in the
δ-Pu lattice. It can thus be observed in Fig. 6 that the struc-
tural relaxations induced by the self-interstitial in δ-Pu are
clearly more short-range and better contained within a 109-
atom supercell than is the case for the (001)-dumbbell inter-
stitial in Cu. Note that the three theories completely agree on
the size of the octahedral interstitial atom. The deviation in
the calculated interstitial relaxation volume within SP-GGA
(∆VR = 1.32) from e.g. (001)-polarized SP+SO+OP-GGA
(∆VR = 0.94) is manifestly due to lattice relaxations away
from the octahedral site. Below, we will relate this discrep-
ancy to the differential predictions of the different theories for
the distribution of f -electron correlations induced by the oc-
tahedral interstitial in δ-Pu lattice,

The high formation energy of self-interstitials in Cu implies
extremely low equilibrium concentrations, and the large relax-
ation volume implies very strong coupling to the stress field
from vacancies, dislocations and other defects. This imposes
a persistent driving force towards recombination or absorp-
tion at sinks. As a result, when modeling radiation bombard-
ment of close-packed metals, it suffices to neglect the ther-
mal equilibrium bulk self-interstitial concentration. There are
effectively no interstitials present in the absence of irradia-
tion. Similarly, dislocations in Cu will absorb any intersti-
tials irreversibly and climb strongly. In contrast, the low self-
interstitial formation enthalpies and volumes for δ-Pu imply
that the bulk equilibrium concentration of self-interstitials in
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δ-Pu is by far larger than vacancies, and furthermore, the fairly
weak strain fields induced by interstitial-induced relaxation
volumes interact no more strongly than the vacancies with
sinks like dislocations and grain boundaries. Here, as com-
pared to standard fcc metals, the self-interstitials are not pref-
erentially absorbed (versus vacancies) at dislocations, there
is little to no net dislocation climb expected, and excess in-
terstitials will remain to efficiently annihilate excess vacan-
cies. Hence, excess vacancies and voids generated as a result
of radiation damage recombine much more effectively with
self-interstitials in δ-Pu than typically occurs in close-packed
metals. This implies that swelling rates in δ-Pu are signifi-
cantly lower and incubation times much longer than expected
for standard metals.

The calculations for self-interstitial formation enthalpies
and volumes in δ-Pu discussed hitherto, see Tab. VI, assume
static SP- and SP+SO+OP-GGA approximations. They may
change when allowing for spin fluctuations. Nevertheless, the
self-interstitial remains most likely a far more favorable lat-
tice defect in δ-Pu than the vacancy. This can be rationalized
by noting that the δ-Pu phase, while close-packed in structure
and symmetry, is in fact low-density relative to α-Pu. Con-
sequently, considering self-interstitials as local densifications
in the lattice, it is not surprising that they may induce α-like
regions that are energetically more accessible than removal of
an atom from the lattice.

As a matter of fact, the electronic structure of the self-
interstitial in δ-Pu is quite reminiscent of the α-Pu phase
in that it induces large variations in spin polarization in its
neighborhood. For the octahedral interstitial specie, the self-
interstitial atom itself does possess a rather small spin moment
of only 1.4 µB within SP-GGA, and even a lower value of
1 µB within SP+SO+OP-GGA . Its nearest-neighbor Pu atoms
snap back to being δ-like with large spin/orbital moments
albeit with slightly reduced magnitudes. As was shown in
Tab. V, large variations in magnitudes of localized spin/orbital
moments between neighboring sites is a hallmark of the elec-
tronic structure of the α-Pu phase.

Hence the interstitial atom increases f -electron bonding in
its immediate neighborhood in δ-Pu. The spin polarization of
the f-shell, which increases the occupation of the anti-bonding
f -orbitals can be quantified by the FSM measure ∆ΣF , de-
fined in Eq. 17. For the self-interstitial, ∆ΣIF = 0, if it were to
have NO effect on the f -electron bonding character of the host
lattice. However, as is shown in Tab. VII, ∆ΣIF are signifi-
cantly less than 0, which is indicative of the increased bonding
induced by the self-interstitial in δ-Pu. They range from -1.15
calculated within (001)-polarized-SP+SO+OP-GGA to -0.65
within SP-GGA. These values correlated well with the self-
interstitial relaxation volumes ranging from 0.85 within (001)-
polarized SP+SO+OP-GGA to 1.32 within SP-GGA. Examin-
ing the cumulative FSM distributions ∆ΣCF (d), see Eq. 19, as
exhibited in Fig. 7 reveals that the three theories fully agree on
the induced spin moment on the octahedral interstitial atom,
but that the SP+SO+OP-GGA approximations relative to SP-
GGA predict larger reductions of the spin moments on the
first-neighbor shell but yield smaller effect on f -electron cor-
relations beyond. Further comparison of Fig. 7 with the cumu-

lative formation volume distribution ∆V CF in Fig. 6 unravels
a strong similarity between the two distributions, as also was
found in the case of the vacancy in Sect. IV B 2, We thus con-
clude that self-interstitials in δ-Pu do cause local changes in
f -electron bonding, which strongly couple to the lattice defor-
mations and result in much better accommodation of the inter-
stitial defect in the δ-Pu lattice compared to standard metallic
systems such as Cu.

Finally we discuss the formation compressibilities of the
octahedral self-interstitial in δ-Pu, as well as the (001)-
dumbbell in fcc Cu. It can be seen that for the self-interstitials
in δ-Pu the two contributions to the formation compressibili-
ties β0 defined in Eq. 14, and βL defined in Eq. 15 are compa-
rable in size. This is in contrast to the case of the vacancy in
δ-Pu, in which β0 >> βL. As a result, the self-interstitial in
δ-Pu is much less compressible than the vacancy. Neverthe-
less, β0 and βL for the (001)-dumbbell self-interstitial in Cu
are much smaller in magnitude than the corresponding values
for the octahedral interstitial in δ-Pu. This is mostly due to the
Cu bulk modulus being more than three times larger than that
of δ-Pu.

4. Vacancies in α-Pu

There are 8 crystallographically distinct lattice sites for va-
cancy and interstitial defects in α-Pu. Table IX gives the
vacancy formation enthalpies and relaxation volumes versus
crystallographic site. These calculations were conducted in
127-atom supercells with 2 × 2 × 2 K-point grid, and full
structural as well as supercell-shape relaxations were pursued.
Furthermore, a correction for the 7% overbinding error of the
SP-GGA approximation is employed by applying an external
mechanical tension at -5 GPa. The Bravais lattice vectors of
the supercell aSi are obtained from the primitive 16-atom α-
Pu Bravais lattice vectors aPi as follows

aS1 = aP1 + 2aP2 ,

aS2 = aP1 + 2aP3 , (20)
aS3 = aP1 − 2aP3 .

In Tab. IX, the vacancy formation enthalpies vary strongly
between values as low as 0.31 eV (site 4) to as high as 1.33
eV (site 8). This is a typical feature of the α-Pu structure,
with its different inequivalent sites having vastly different
Voronoi volumes, see Tab. IV, as well as different degrees of
f -electron correlation represented by formation of localized
spin/orbital moments, see Tab. V. It has been shown in the
past [18] that Ga impurities in α-Pu prefer to substitute the
Pu atom on site 8, which was shown to have important ramifi-
cations for the kinetics of δ-to-α martensitic transformations
in Pu. Note that site 8 has the largest Voronoi volume, see
Tab. IV, and within SP-GGA is energetically the least favored
site for the vacancy, see Tab. IX.

Based on said variations in the local atomic volumes of
α-Pu, one might have guessed that site 1, with the smallest
Voronoi volume would be the most preferable vacancy site in
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this phase. However, as can be seen in Tab. IX, sites 4 and 5
are by far the most favorable energetically. This implies that
there are other interactions in α-Pu than purely steric ones.
For instance, using the FSM measure introduced in Eq. 17,
it can be shown that vacancies induce increased spin polar-
ization in α-Pu. Table IX reports the FSM values for each
inequivalent vacancy in α-Pu. It is noteworthy that except for
site 8, all other vacancies possess FSM values that are positive
and that are an order of magnitude larger than in δ-Pu. Hence
introduction of vacancies in α-Pu induces spin polarization in
this system, which in turn expands the lattice and thus com-
pensates for the contraction that is conventionally expected to
be induced by the vacant site. As a result, the relaxation vol-
umes of all but the site-8 vacancy are nearly zero in α-Pu. The
anomalous behavior of this vacancy can be understood by not-
ing the strongly negative FSM value of -3.3 associated with
removal of an atom from site 8, which in turn indicates in-
creased occupation of bonding orbitals, leading to contraction
and thus a relaxation volume of -0.63. It is worth reminding
the reader that this result should have been expected based on
the large size of the Voronoi volume associated with site 8 in
pure α-Pu, which not surprisingly leads to formation of a large
localized spin moment there, see Tabs. IV and V.

It is interesting to examine the cumulative FSM distribu-
tions ∆ΣCF (d) for the different vacant sites in α-Pu. Due to
the presence of eight inequivalent sites in this lattice, we have
adopted the following definition for all distances d > 0

∆ΣCF (d) =

N−1∑
i=1

(
σdi − Σ

κ(i)
L

)
H(d− di). (21)

Above σdi is the local spin moment magnitude of the ith atom
in the defect supercell, and Σ

κ(i)
L is the spin moment of site

κ(i) in the perfect lattice, andH(x) is the Heavyside function.
Hence κ(i) is a mapping of atom i in the defect supercell to
site κ(i) in the perfect lattice. This is a reasonable definition
for studying defect-induced spin moments in α-Pu since the
different sites in the perfect lattice are so dramatically differ-
ent from each other. In order for ∆ΣCF (d) in Eq. 21 to asymp-
totically approach the thermodynamic FSM value ΣF at large
distances d, we need to define

∆ΣCF (0) = Σ̄L − ΣvL, (22)

where Σ̄L is the average magnitude of the per-atom spin mo-
ments (AMSM) in α-Pu, and ΣvL is the magnitude of the spin
moment of the vacant site in defect-free α-Pu. Figure 8 shows
the spatial distributions of ∆ΣCF (d) for all the eight inequiva-
lent vacancies within SP-GGA. It can be seen that except for
the eighth site, the Pu atoms within a 5 Å shell around the va-
cancy increase their spin moment sizes, leading to a positive
∆ΣCF at d < 5 Å. All FSM values, including that of the eighth
site converge within 7.5 Å. This is quite different from the va-
cancy in δ-Pu. see Fig. 4, which exhibits a long-range distri-
bution of volume as well as spin moment relaxations. We thus
conclude that in α-Pu, coupling of the defect-induced changes
to the f -electron correlations are quite short range. In order to
clearly illustrate the relation between the formation spin mo-
ments and volume relaxations, we calculate the properties of

the point defects in α-Pu within non-magnetic GGA at 0 GPa,
which corresponds to an average atomic volume of 17.6 Å3.
The results are listed in in Tab. XI. It is clear that in the ab-
sence of spin polarization the relaxation volumes are reduced
and range from -0.2 to -0.5 atomic volumes.

One source of concern about the accuracy of the dilated (-
5 GPa) SP-GGA approximation that is used here to calculate
properties of point defects in α-Pu is the very low formation
enthalpy found for the site-4 vacancy in Tab. IX. If correct,
it implies a very high thermal equilibrium vacancy concentra-
tion. While equilibrium point defect concentrations do not en-
ter calculations of void swelling bias within the classic theory
of damage-induced void growth in materials, it is quite likely
to significantly delay the incubation times for void nucleation.
However, it is not inconceivable that dilated SP-GGA may
appreciably underestimate vacancy formation enthalpies for
several of the sites in α-Pu. The reason for this assessment
mainly falls back on the strong heterogeneous nature of the α-
Pu structure. It is hard to see that the effect of SO+OP in this
system can be simply replaced by a homogenous PV term, as
described in Sect. IV B 1, which has been quite successfully
applied to the study of point defects in δ-Pu earlier in this pa-
per. It is in fact quite easy to argue that -5 GPa tension can
cause large reduction of the vacancy energies in α-Pu with-
out much effect on the formation volumes. The reason for
this is that the vanishing vacancy relaxation volumes in α-Pu
imply ∆VF ∼ 1 atomic volume, and the latter is the pressure-
derivative of the formation enthalpy, see Eq. 10. which im-
plies that vacancy formation enthalpies should be about 0.6
eV higher, if calculated at 0 GPa. This argument is supported
by the non-magnetic GGA defect results in Tab. XI, showing
formation enthalpies ranging from 1.2 eV 2.1 eV. It is inter-
esting to note that at the non-magnetic equilibrium volume
of 17.6 Å3, site 8 and site 1 are the lowest energy vacancy
sites. Curiously, site 8 is the least energetically favored site
for the vacancy at 19.3 Å3. see Tab. IX. However, it has by
far the smallest formation volume, which leads to its relative
stabilization compared to the other vacancy species as pres-
sure is increased from -5 GPa to 0 GPa. On the other hand,
pressure-derivative of the relaxation volume measured in units
of atomic volume is determined by β0, see Eq. 14. Due to the
relatively stiff α-Pu lattice, compared to δ-Pu, one may rea-
sonably expect that β0 does not exceed 0.01 (GPa)−1 in α-
Pu. This implies that the maximum change expected for ∆VR
measured in units of atomic volume over 5 GPa is less than
0.05. Hence, while the formation enthalpies can be strongly
dependent on dilatation pressure in α-Pu, the formation vol-
umes are quite insensitive to it. As a result, the SP+SO+OP-
GGA approximation may be necessary for obtaining accurate
estimates of enthalpies of formation of point defects in α-Pu.
We defer this study to future works.

Nevertheless, the three qualitative results found in this sec-
tion with the collinear SP-GGA theory will stand: (i) the mag-
nitudes of the vacancy relaxation volumes in α-Pu are an order
of magnitude smaller than those of δ-Pu and their distribution
is much more short range, (ii) the equilibrium vacancy con-
centrations in α-Pu at finite temperatures are higher than in δ-
Pu, and (iii) the two sites with the lowest vacancy enthalpies
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Table IX. Vacancy properties in 128-atom supercells of α-Pu, calcu-
lated within SP-GGA under dilational stress conditions, p0 = -50.0
kbar; Ωat = 19.3Å3 is the atomic volume for the bulk. The average
magnitude of the atomic spin moment in the bulk is 2.66 µB .

Site Formation Relaxation vol. Formation mom.
enthalpy (eV) / atomic vol. / atomic mom.

1 1.02 -0.02 0.9
2 0.64 -0.05 2.2
3 0.87 0.06 2.2
4 0.31 -0.14 2.3
5 0.47 -0.07 2.1
6 0.89 0.05 1.9
7 0.98 -0.01 1.4
8 1.33 -0.63 -3.3
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Figure 8. Cumulative formation spin moment ∆ΣC
F (d) as a function

of distance d from a vacant site in α-Pu. It is the induced spin mo-
ment accumulated within a distance d from a vacancy in a defect su-
percell. It is given in units of the average magnitude of per-atom spin
moments (AMSM) in α-Pu, calculated using the dilated SP-GGA (at
-5 GPa) method applied to the eight inequivalent vacancies in α-Pu.

are 4 and 5, which together with their periodic replicas in-
scribe two-dimensional planes spaced over 9 Å apart. This
heterogeneous spatial distribution can have important impli-
cations for vacancy diffusion in the material, although activa-
tion barrier heights will have to be calculated before conclu-
sive predictions can be made.

5. Self-interstitials in α-Pu

The self-interstitial calculations in α-Pu have been per-
formed using the same electronic and supercell structure pa-
rameters as for the vacancies in this phase. However, the po-
sitions of low-energy self-interstitials in this low-symmetry
phase were unknown. Hence we chose starting guesses for
candidate self-interstitial defect positions by searching for
centers of the largest empty holes in the lattice. They cor-
respond to Voronoi vertices belonging to the largest Voronoi

Table X. Interstitial properties in 128-atom supercells of α-Pu, calcu-
lated within SP-GGA under dilational stress conditions, p0 = -50.0
kbar; Ωat = 19.3Å3 is the atomic volume for the bulk. The average
magnitude of the atomic spin moment in the bulk is 2.66 µB .

Site Formation Relaxation vol. Formation mom.
enthalpy (eV) / atomic vol. / atomic mom.

1 1.66 2.47 5.3
2 2.07 2.22 4.9
3 1.19 2.24 3.5
4 1.70 2.16 2.7
5 2.10 2.42 3.0
6 2.12 2.33 3.9

Table XI. The table lists the formation energies and relaxation vol-
umes of all the inequivalent vacancies and distinct self-interstitial
defects found in this study in α-Pu. The calculations are con-
ducted within within non-magnetic GGA at 0 GPa. In this approx-
imation, the calculated atomic volume of the bulk α-Pu lattice is
Ωat = 17.6 Å3.

Site Vacancy Self-interstitial
i Form. Energy Rel. Vol. Form. Energy Rel. Vol.

(eV) (at. vol.) (eV) (at. vol.)

1 1.2 -0.23 1.2 1.1
2 1.8 -0.42 1.6 1.2
3 1.6 -0.35 1.7 1.4
4 1.4 -0.45 2.5 1.5
5 1.6 -0.35 1.1 1.3
6 2.1 -0.21 2.0 1.5
7 2.1 -0.24
8 1.2 -0.23

0 5 10
Distance from the interstitial (Å)

-2

0

2

4

6

C
um

ul
at

iv
e 

F
S

M
/A

M
S

M

1
2
3
4
5
6

Figure 9. Cumulative formation spin moment ∆ΣC
F (d) as a function

of distance d from a self-interstitial site in α-Pu. It is the induced
spin moment accumulated within a distance d from a self-interstitial
in a defect supercell. It is given in units of the average magnitude
of per-atom spin moments (AMSM) in α-Pu, calculated using the
dilated SP-GGA (at -5 GPa) method applied to the six distinct self-
interstitial defects found in α-Pu.
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cells in the lattice. For this purpose, we have followed a se-
quential process for finding new candidate positions:

• Find the Voronoi vertex in the lattice, about which
the largest sphere can be drawn that contain no lattice
points.

• Add this center and all its symmetry-equivalent points
to the lattice.

• Repeat.

In this way, we have identified six distinct self-interstitial
positions in the α-Pu structure. Table X reports their forma-
tion enthalpies and relaxation volumes after complete struc-
tural relaxations including cell-shape changes have been con-
ducted. The calculated formation enthalpies span values from
1.19 eV to 2.12 eV. While these values are much higher than
the self-interstitial formation enthalpies in δ-Pu, they are quite
small relative to normal close-packed metals. For example,
the calculated value for Cu within DFT-PBE is 3.0 eV, see
Tab. VI. In spite of the rather small formation enthalpies in
α-Pu, the corresponding relaxation volumes are quite large,
spanning values from 2.16 at. vol. to 2.47 at. vol., which
should be compared to 1.9 at. vol. for Cu. This is at first
sight a surprising result. In normal materials, a clear posi-
tive correlation exists between formation energies of lattice
defects and magnitudes of deformation they introduce in their
hosts. The apparent disconnect in α-Pu between formation
energy and relaxation volume can be traced to f -electron spin
moments induced by addition of a self-interstitial atom in the
lattice. For this purpose, the FSM values for the different self-
interstitial species in α-Pu are listed in Tab. X. The values
span a range from 2.7 AMSM to 5.3 AMSM, by far largest
than any other defects encountered in this paper. Hence, pro-
motion of f -electron spin polarization by the self-interstitials
in α-Pu leads to large relaxation volumes. It should be noted
that for the purpose of calculation of void swelling bias, the
relaxation strain is of primary interest.

In order to better understand the coupling of f -electron cor-
relations to self-interstitials in α-Pu, we study the distributions
of cumulative FSM ∆ΣCF (d), as defined in Eq. 21 for d > 0,
and as follows for d = 0

∆ΣCF (0) = σdint − Σ̄L. (23)

In the above equation, σdint is the spin moment magnitude
of the interstitial atom, and Σ̄L is the average magnitude of
the per-atom spin moments (AMSM) of α-Pu. Figure 9 de-
picts the distributions of ∆ΣCF (d) for the six self-interstitial
species found in α-Pu. It appears that the interstitial atom
and its immediate neighbors undergo compression and reduc-
tion of their spin moment magnitudes, while beyond a radius
that can be either ∼ 3 Å or ∼ 5 Å, depending on the self-
interstitial site, dramatic increase in spin moments followed
by volume expansion takes place. It is clear that both the
spin-density response as well as the tensile strain field ema-
nating from self-interstitials in α-Pu are quite long-range and
likely require larger supercells than 129-atom ones used in
this study to reach convergence. In order to verify the effect

of induced spin moments on lattice expansion due to self-
interstitials, we compare with relaxation volumes calculated
within non-magnetic GGA at 0 GPa, see Tab. XI. Under these
conditions, the relaxation volumes are much reduced, quite as
expected. They range from 1.1 to 1.5 atomic volumes. Hence,
the coupling of the self-interstitials to f -electron correlations
in α-Pu is crucial to the large relaxation volumes predicted for
these defects in this system.

Finally, examining the two lowest-energy self-interstitial
sites in Tab. X, i.e. 3 and 4, it is found that they comprise
layers of atoms spaced over 7 Å apart. The next most fa-
vored interstitial site lies significantly (0.5 eV) higher. This
suggests that self-interstitial diffusion may also be quasi-two-
dimensional, although again the transition state barriers need
to be calculated. In particular, transport in two-dimensions is
not well-described by mean field approximations. This sug-
gests that the conventional rate theory of void swelling may
be complicated in α-Pu. Both vacancies and interstitials favor
site 4; this may increase the cross section for annihilation over
conventional expectations based on uniform distributions and
isotropic diffusion.

V. DISCUSSION

A. Aging and Void Swelling

To date, comparatively little research has been reported on
radiation-induced aging in α-Pu, even though it is the thermo-
dynamic equilibrium phase at ambient conditions. In contrast,
many aspects of the problem have been studied in metastable,
alloy-stabilized δ-Pu including compositional changes due to
decay/transmutation, changes in density[1, 4, 15], collision
cascades [7, 97, 98], evolution of damage and defect popula-
tions [6, 92, 96, 99–104], including He bubbles[3, 8, 10, 12–
14, 16], changes in bulk properties [2, 9, 11, 17, 20, 22, 105],
and the prospect of void swelling[59, 60].

So far, there have been no experimental reports of void
swelling in δ-Pu, despite having samples irradiated over
decades and despite calibrated attempts at accelerated aging
in more recent years. It has been proposed that the so-called
net bias factor may be negligible in δ in which case void
swelling should be insignificant [59]. The bias is the crux
of the phenomenon:[106–108] there would be no void growth
and no swelling in the absence of biased diffusion and de-
fect segregation. However, this expectation is predicated on
models of elastic coupling between stress fields from the mi-
crostructure and mobile defects using parameters taken from
ab initio DFT calculations. It is unclear if this conventional
approach can be directly extended to as complex a metal as
Pu. Such uncertainty makes the behavior of other phases of
Pu of interest. The conventional theory (including the DFT-
derived parameters) would gain support if it can successfully
explain swelling behavior in a diversity of Pu phases. Ar-
guably, finding discrepancies with experiment would be even
more informative.

In practice, the conventional theory explains both peak rates
and trends in void swelling in ordinary metals, but the ap-
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proximations made in the analysis and the uncertainties in
the underlying parameters make the results as much explana-
tory or extrapolative as predictive. Environmental parameters
like temperature, pressure, and radiation flux (or self-decay
rates in Pu) may be well-known for a given system. However,
the microscopic response that immediately follows radiation
bombardment (effectively the average number of atoms dis-
placed and the average number of point defects ultimately left
behind by a single Pu-decay) is uncertain. Typically, reason-
able parameter choices can be made that quantitatively repro-
duce experimental swelling behavior in, e.g., reactor structural
materials. Theory-based modeling can then explain a range of
key swelling properties [25], viz: 1) There is an incubation pe-
riod and transient initial delay during which swelling and void
growth is absent or greatly reduced. 2) Once the peak swelling
rate (measured against the rate of radiation-driven atomic dis-
placements) is achieved it can continue fairly steady-state
even as the relative volume changes exceed 100%. 3) The
peak swelling rate for a given material is also fairly indepen-
dent of temperatures and radiation fluxes over a wide range,
as well as initial microstructure. 4) In contrast, the incubation
delay can vary greatly depending on the starting microstruc-
ture, temperature, and radiation dose rate.

That final point is understood from classical nucleation the-
ory: under a vacancy supersaturation, voids typically nucle-
ate heterogeneously at pre-existing helium bubbles, thus void
swelling cannot commence until bubbles have grown to the
critical size [109]. A high concentration of defect traps like
small precipitates can delay the onset of void swelling by ab-
sorbing or binding mobile defects like helium, vacancies, and
interstitials. This leads to many, smaller bubbles (delaying
the first bubbles from reaching critical-size), and it also fa-
cilitates the annihilation of intrinsic defects by trapping both
vacancies and interstitials together. However, such extrinsic,
microstructure-dependent delays mean that a null swelling re-
sult from a given experiment does not preclude its appearance
at later times. Indeed, the microstructure is expected to change
substantially during prolonged irradiation. Under long expo-
sures, each atom in a material can be displaced from its lattice
site on average 10 or 100 times, usually settling at a com-
pletely new lattice site and only occasionally forming a point
defect or defect cluster. In light of this prospect, the theoret-
ical intrinsic net bias towards swelling may provide valuable
insight into possible long-term void swelling behavior [108].

In the theory, steady radiation bombardment generates
quasi-stationary vacancy and interstitial populations such that
defect creation balances loss by mutual annihilation or by
absorption at microstructural sinks in the system. The rel-
evant microstructure includes network dislocations, disloca-
tion loops, cavities (high gas-density helium bubbles and low
density voids), precipitates, grain boundaries, etc. In many
analyses, stochastic defect production and spatially-dependent
fluxes within a real microstructure are approximated by mean
field, steady-state diffusion calculations in idealized geome-
tries. The microstructure evolution may be comparably sim-
plified: cavities evolve according to mean field reaction rates
while dislocations multiply and annihilate according to simple
rate equations for the aggregate density [109]. Often the mean

field problem is simplified further by assuming isotropic diffu-
sivity and by taking the biasing interactions to be the product
of relaxation volumes of mobile defects and hydrostatic stress
fields of microstructure sinks.

The computed average flux of vacancies and interstitials
to each type of sink is then summarized by separate bias
factors, each a single dimensionless number comparing the
diffusive flux in the presence of the mutual interaction and
in the absence (i.e., unbiased diffusion). Their relative val-
ues determine the overall tendency to vacancy-interstitial seg-
regation and swelling. Network dislocations contribute the
most significant long-range elastic stresses, so their bias fac-
tors dominate the situation. E.g., dislocations of density ρ
(m−2) are modeled as an infinite straight edge dislocation in
a cylindrically-symmetric region with a 2-D Wigner-Seitz ra-
dius, where πR2

dis = 1/ρ. Solving for the diffusion with and
without an elastic coupling that decays with distance as 1/r,
the dislocation bias factor is approximated by:

Zdis(T,∆VR)= ln

(
Rdis
rcordis

)
×[

K0(rcapdis /Rdis)

I0(rcapdis /Rdis)
−
K0(rcapdis /r

cor
dis )

I0(rcapdis /r
cor
dis )

]−1

(24)

in terms of modified Bessel functions, where ∆VR is the re-
laxation volume (Eq. 11) of the mobile point defect, Rdis
is the 2D Wigner-Seitz radius, rcordis = 2b is the dislocation
core radius (taken to be twice the burgers vector, b), and
rcapdis = (1+ν)2

36π(1−ν)
µ|∆VR|
kBT

is the capture radius at which the
point defect is absorbed by the sink in terms of shear modu-
lus, µ, and Poisson ratio, ν. Voids, the other important class of
sinks in this problem, have comparatively weak stress fields
and become increasingly unbiased sinks, Zcav ' 1, in the
limit of large sizes.

The net difference at which interstitials and vacancies are
absorbed then determines whether dislocations climb and lat-
tice sites are added while cavity volume increases; this is ex-
pressed by the net bias factor. If the predicted value is small,
there should be little impetus for void swelling, incubation
periods can be prolonged, and any eventual swelling will be
gradual. Assuming that the overall total sink strength is domi-
nated by the dislocation contribution [108], the net bias factor
becomes:

B ' Zintdis

Zvacdis

− Zintcav(x)

Zvaccav (x)
(25)

as a function of cavity size, x. The most favorable conditions
for void growth are obtained when Zcav → 1, which will
be assumed here. The resulting material property, B, can be
estimated from first principles calculations.

However because of the assumed isotropy in the deriva-
tion of Eq. 25, the result is only applicable to materials like
cubic δ-Pu. The site-dependent defect energies for α-Pu in
Tabs. IX and X already suggest that diffusion will be highly
anisotropic, potentially affecting the calculations for net bias.
The low crystal symmetry in α also implies anisotropic lattice
relaxation around defects, which requires coupling to the full
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elastic stress tensor. Nevertheless, the relative V and SI re-
laxation volumes are still primary quantities of interest here,
and so we simply compare relaxation volumes between α- and
δ-Pu as surrogates for the relative tendency to void swelling.
Based on Eq. 25 and the computed defect relaxation volumes,
swelling would be weak or nonexistent in δ-Pu but based on
the defect volumes in α-Pu it is significantly likelier to be seen
there.

1. δ-Pu

Despite the simple crystal structure, there are significant
uncertainties for void swelling properties in δ-Pu. Given the
well-known errors for equilibrium volumes of Pu phases, stan-
dard approaches like SP-GGA could have difficulty with the
defect relaxation volumes. Besides the usual elastic interac-
tions, recent calculations in (static mean field) SP-GGA also
find a magnetic component to Pu defects [93, 96, 110], which
would contribute to the total interactions and bias factors.
There may furthermore be low energy electronic/magnetic
excitations of the defects with significant effects on the re-
laxation volume, as considered in this work. Table VIII in-
cludes the SP-GGA results for a number of metastable mag-
netic excitations in the 108-site δ-Pu vacancy supercell. The
tabulated configurations represent a fraction of all possible
nearest-neighbor site combinations, but they are enough to
show that magnetism may be significantly coupled to lattice
degrees of freedom. However as yet, there is no evidence of
a similar magnetoelastic effect for the interstitial in δ-Pu near
the experimental density. This asymmetry may be intrinsic or
it may be an artifact of the external tension applied in the SP-
GGA calculations to approximate the experimental density.
The simple vacancy spin-flips in Table VIII are all disfavored
in the more accurate SP+SO+OP-GGA approximation. Non-
collinear excitations may occur instead.

Independently of any particular DFT approximation, elec-
tronic fluctuations can influence the defect volume whenever
the energy for an atom to adjust its electronic state (and f-shell
size) is less than the energy stored in elastic strain. I.e. such
a localized excitation, ∆E, could become favorable if it al-
ters an atomic volume by ∆V , where the local pressure gives
−P∆V /∆E > 1. Some similar dimensionless parameter
argument may relate to the unusual bulk polymorphism and
thermal expansion properties as well. For example, thermally-
accessible electronic excitations have been suggested to ex-
plain the anomalous thermal expansion or Invar effect of δ-Pu.

It is notable that all of the vacancy energies listed in Ta-
ble VIII are thermally-accessible. A partition function for this
limited state space can provide expectation values for classi-
cal thermal fluctuations: the thermal average vacancy relax-
ation volume ranges from -0.25 atomic volumes at 300K to -
0.29 at 600K. The results suggest that the net bias factor could
be temperature-dependent in δ-Pu. However, the variation is
only of order 10%, probably not enough to affect accelerated
aging experiments. Some temperature dependence is not un-
precedented in void swelling; here it is a magnetostructural
version of the paraelastic effect already seen in some other

materials.
The large volume range for the δ-Pu vacancy also implies

that the thermal-average relaxation volume will further de-
pend on the local hydrostatic stress. Similar so-called ‘di-
aelastic’ defect effects (also called modulus interactions) are
also seen in some systems. It means that the expected va-
cancy relaxation volume will be weakly position dependent,
affecting the mean field diffusion analysis for the bias fac-
tors. For completeness, Table VI includes estimates for the ef-
fective compressibilities of the ground-state vacancy and self-
interstitial species. In particular, the large effective compress-
ibility found for the vacancy implies that the modulus effects
can be quite significant in plutonium.

The different DFT approximations predict a considerable
range of defect parameters, but all of them imply that void
swelling is weak or nonexistent in δ-Pu. The most extreme
case is for the SP-GGA results at the theoretical equilibrium;
here the distorted monoclinic vacancy has a larger absolute
relaxation volume than the interstitial. In that case, the net
bias, ∆B is actually negative; no swelling is then expected as
the vacancies would be preferentially drawn to dislocations.
If the SP+SO+OP-GGA results are used, v=-0.9, i=0.85, and
the net bias is effectively zero. The SP-GGA results at -3GPa
external stress depend on which distribution of magnetic va-
cancy states is considered. For the putative vacancy ground
state (with the smallest relaxation volume), ∆B < 0.2; this
net bias is comparable to that for ferritic steels, which do not
swell much [108]. Thus, essentially no DFT parameter set
for δ-Pu predicts much void swelling (i.e., DFT predicts long
incubation times and slow steady swelling, if any at all).

2. α-Pu

We also examine defect formation energies and relax-
ation volumes in α-Pu, a more complicated structure with 8
crystallographically-distinct sites. SP-GGA vacancy and in-
terstitial calculations have been performed under -5 GPa hy-
drostatic tensile stress for all of the sites. This is sufficient for
a preliminary comparison of void swelling tendencies with δ-
Pu. Interstitial formation energies are consistently lower than
vacancies. While the lowest vacancy formation energy sug-
gests an extremely high thermal equilibrium density, the other
striking result is that the relaxation volumes are close to zero
for almost all of the lattice sites, with large or small forma-
tion energies alike. In contrast, the interstitial relaxation vol-
umes are all quite large. This would imply that α-Pu is as
prone to void swelling as aluminum (one of the faster swelling
materials known), although the low symmetry and potentially
anisotropic diffusion may affect this prediction. The incuba-
tion delay will also depend on impurities and the starting mi-
crostructure.

Remarkably, the two lowest energy sites are located in a
layer-like arrangement for both interstitials and vacancies. In-
trinsically anisotropic bulk diffusion in low-symmetry crys-
tal structures may influence the mean field diffusion fields
to voids versus dislocations and so affect the bias [111,
112]. Furthermore, if the diffusion approaches quasi two-
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dimensionality it could invalidate the mean field approxima-
tions for the bias factors. Conceivably, the spatial arrangement
of surrounding sinks (bubbles or voids and dislocations) could
then become important.

The lower energy defect sites also coincide for vacancies
and interstitials, which may substantially increase their an-
nihilation rates. In contrast, the lowest energy sites for Ga
are well-separated from the preferred vacancy positions [18].
This may inhibit Ga diffusion and prolong the metastability of
alloy-stabilized Pu. Substitutional He may conceivably show
similar behavior. In this light, a SP-GGA study of He defects
is already planned.

VI. CONCLUSION

In this paper, we report extensive first-principles calcula-
tions of point defect energies and structures in the α- and δ-
Pu phases. Two broad surveys of point defect properties are
reported in the SP-GGA approximation along with a separate
study using the SP+SO+OP-GGA approximation, a method
that predicts accurate bulk phase behavior. We discuss the
likelihood of void swelling for these two materials in light of
the calculated defect parameters. As might be expected from
the equilibrium phase diagram, defect behaviors are complex
in this material, and this naturally complicates any analysis of
swelling behavior. However, conventional elastic interactions
will remain relevant to the theory even if other, more novel
mechanisms may contribute. The calculated material proper-
ties suggest that void swelling is a greater possibility in α-Pu.
Void swelling is expected to be weak or nonexistent in δ-Pu,
and indeed no void swelling has been reported from experi-
ment.

1. Acknowledgements

We acknowledge Hector Lorenzana and Scott McCall for
helpful discussions, and for making us aware of their recent
experimental progress by private communication, and Patrick
G. Allen for helpful conversations about the theory of aging
in Pu. We also thank A. Arsenlis, N. Barton, and J. Belof for
project support. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.

1. Appendix: Finite supercell-size errors

Our goal in this appendix is to study size-convergence of
defect energies under supercell volume/shape constraint as
compared to under applied external stress. For this purpose,
consider a perfect crystal structure at pressure P0, temperature
T0, and non-hydrostatic stress state σ0. For brevity, we only
consider here a single stress component, but generalization to
a full stress tensor is straightforward. As an example of a crys-
tal under a non-hydrostatic stress, let us consider an antiferro-
magnetic fcc crystal, composed of ferromagnetic (001) layers,

with the adjacent (001) layers having opposite spin moments,
i.e. L10 spin ordering. This is the lowest-energy spin con-
figuration for δ-Pu within the SP-GGA approximation, and
happens to break the cubic symmetry. Hence, in general the
cubic fcc structure will be under a non-zero stress state that
couples to tetragonal shear distortion of the crystal leading to
c/a-ratio that deviates from unity. Let us denote by ηL the
tetragonal strain state of the perfect crystal corresponding to
the stress σ0, and by VL its volume at pressure P0.

We now define the canonical energy as a function of volume
and strain E(V, η), with the properties

∂E(V, η)

∂η
= σ. (A.26)

∂E(V, η)

∂V
= −P. (A.27)

These equations state the relevant stress-strain relationships.
Before proceeding, we define two relevant elastic constants

∂2E(V, η)

∂η2
= Cη. (A.28)

∂2E(V, η)

∂V 2
= −K

V
. (A.29)

Note that K is the bulk modulus, and in the current example,
Cη is the elastic constant for tetragonal shear.

We now proceed to define the enthalpy by a Legendre trans-
formation of the canonical energy

H(P, σ) = E(V (P, σ), η(P, σ)) + P V (P, σ)

− σ η(P, σ), (A.30)

where η(P, σ) are V (P, σ) are obtained by solving Eqs. A.26
and A.27. For the example of the perfect crystal described
above, the different variables in Eq. A.30 can be defined as
follows: P ≡ P0, σ ≡ σ0, V (P0, σ0) ≡ VL, and η(P0, σ0) ≡
ηL.

Now consider the energetics of this crystal upon introduc-
tion of a concentration c0 of point defects. The energy and
the enthalpy functions can now be generalized to incorporate
a finite point-defect concentration, denoted by Ẽ(VL, ηL, c0),
whenever system’s density and strain are constrained, and
H̃(P0, σ0, c0), whenever the external pressure and stress are
controlled. Of course in practice, the defect properties are
calculated in periodic supercells at finite defect concentration.
Hence finite difference formulas are used to approximate par-
tial derivatives.

In the following, we consider two different procedures: (i)
calculating formation energy ∂Ẽ

∂c

∣∣∣
VL,ηL,c0

of point defects al-

lowing for no relaxation of either cell shape or volume, and
(ii) calculating formation enthalpy ∂H̃

∂c

∣∣∣
P0,σ0,c0

of point de-

fects allowing for relaxations of both supercell shape and vol-
ume. In this case, we can also define a relaxation volume as
in Eq. 10, and analogously a relaxation strain

∆ηR =
∂H̃

∂c
. (A.31)
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Let us then start with case (i). In this case, the defect su-
percell volume VD as well as its strain state ηD are kept fixed
and equal to the perfect lattice VL and ηL, i.e. VD = VL, and
ηD = ηL. The finite-size error of the formation energy calcu-
lated in a defect supercell containing N sites can be expanded
in a Taylor serier, whose first term is

Ẽ(VL, ηL, 1/N)− Ẽ(VL, ηL, 0)−∆EF =
c0
2

∂2Ẽ

∂c2
+ ....

(A.32)
Note that ∆EF = ∂Ẽ/∂c.

Now let us consider case (ii). In this case, the defect su-
percell volume VD and the tetragonality parameter ηD are al-
lowed to relax in order to maintain the pressure P0 and the
stress σ0. Hence, the finite-size error of the formation en-
thalpy, calculated in a defect supercell containing N sites can

be expanded in a Taylor serier, whose first term is

H̃(P0, σ0, 1/N)− H̃(P0, σ0, 0)−∆HF =

c0
2

∂2Ẽ

∂c2
− KL

VL
∆V 2

R − C
η
L ∆η2

R + ..., (A.33)

where KL and CηL are the bulk modulus and elastic constant
of the perfect crystal. The above result is easily obtained by
Taylor expansion of the generalized enthalpy H̃(P0, σ0, 1/N)
about zero defect concentration, using the stress-strain rela-
tions Eqs. A.26 and A.27, as well as the definitions of the
elastic constants Eqs. A.28 and A.29. In this way, it can also
be shown that ∆HF = ∆EF .

Equation A.33 confirms that finite supercell-size errors in-
troduced in calculated defect properties can often be reduced
significantly whenever supecell shape and volume relaxations
are allowed. The above derivation relies on the defect con-
centration be small enough, or supercell sizes large enough,
such that corrections due to periodic image interactions can
be expanded in low-order perturbation theory. This condi-
tion is usually satisfied in defect supercells exceeding 100
atoms. However, it should be noted that even in large su-
percells, shape and volume relaxations cannot fully account
for all the periodic image interactions. They can be consid-
ered the lowest order terms in a multipole expansion of these
interactions.
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