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A novel computational strategy is presented to calculate from first principles the coefficient of
thermal expansion and the elastic constants of a material over meaningful intervals of temperature
and pressure. This strategy combines a novel implementation of the quasi-harmonic approximation
to calculate the isothermal-isochoric linear and nonlinear elastic constants of a material, with ele-
mentary equations of nonlinear continuum mechanics. Our implementation of the quasi-harmonic
approximation relies on finite deformations, the use of non-primitive supercells to describe a ma-
terial, a recently proposed technique to calculate generalized mode Grüneisen parameters, and the
numerical differentiation of the stress tensor to calculate both second- and third-order elastic con-
stants. The combination of this method with nonlinear continuum mechanics is shown to yield
accurate predictions of lattice parameters and linear elastic constants of a material over finite in-
tervals of temperature and pressure, at the cost of calculating isothermal second- and third-order
elastic constants for a single reference state. Here, validity and limits of our novel methods are
assessed by carrying out calculations of MgO based on classical interatomic potentials. To demon-
strate potential, our methods are then used in conjunction with a density functional theory approach
to calculate thermal expansion and elastic properties of silicon, lithium hydrate, and graphite.

PACS numbers:

I. INTRODUCTION

Thermal expansion and elasticity are materials
properties of both fundamental and technological
importance1–4. Thermal expansion is a phenomenon aris-
ing from anharmonic behaviors of a solid material, and
understanding and predicting thermal expansion proper-
ties are important, for example, to design reliable multi-
component devices operating at variable temperature3,4.
Elastic constants are materials parameters of broad rel-
evance. In geophysics, for example, second-order elas-
tic constants (SOECs) are used to interpret seismic
data1,5–7, whereas in fields such as mechanical engineer-
ing and solid state physics, SOECs and third-order elas-
tic constants (TOECs) are used to estimate the yield
strength of random solid solution alloys8,9, to calculate
the ideal strength and predict the mechanical failure of
metal alloys10–16, and to characterize solid-solid phase
transitions17–20. Although well-established experimen-
tal techniques are available to measure thermoelastic
parameters3,21,22, experimental data of thermal expan-
sion coefficients, and SOECs and TOECs are available
only for a subset of all known solid compounds, and of-
ten only at selected values or narrow intervals of temper-
ature and pressure21,23–28. Computational methods for
the routine calculation of thermoelastic parameters are
needed not only to compensate the lack of experimental
data29, but also to enable thermoelastic studies of materi-
als at conditions difficult to attain experimentally30,31, as
well as to facilitate the high-throughput screening29,32 of
useful mechanical parameters at relevant environmental
conditions, such as the ideal strength of metal alloys for

structural applications12–16. In this work, we present a
novel computational strategy to calculate from first prin-
ciples the coefficient of thermal expansion and the elastic
constants of a material over meaningful intervals of tem-
perature and pressure. This strategy is based the use of
a novel implementation of the quasi-harmonic approxi-
mation to calculate the isothermal-isochoric linear and
nonlinear elastic constants of a material, followed by an
extrapolation procedure relying on nonlinear continuum
mechanics.

Quasi harmonic approximation (QHA) methods are
suited to calculate thermodynamic and thermoelastic pa-
rameters of materials at temperatures and pressures at
which dynamical anharmonic effects are small and can be
disregarded33–39. In general, QHA methods give accurate
results at low up to moderate temperatures32,34–39,39–42.
At high temperatures, dynamical anharmonic effects play
an important role, and results obtained from QHA can
be corrected through the use of empirical models or
thanks to the aid of molecular dynamics techniques43–45.
The calculation of thermal expansion coefficients and
SOECs through the use of a conventional QHA method
involves the following tasks32,34–39,39–42. First, carry-
ing out phonon calculations to calculate the harmonic
Helmholtz free energy function for a list of deformed con-
figurations of a solid material in a neighborhood of a ref-
erence state. Second, using an equation of state (e.g.
Murnaghan’s46 or Vinet’s47) or a polynomial function to
interpolate the free energy values of the various configu-
rations and calculate lattice parameter and bulk modulus
at selected values of temperature and pressure. Third, for
given values of temperature and pressure, and hence lat-
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tice parameters, calculation of phonon frequencies for a
grid of strained configurations, and calculation of SOECs
via second-order differentiation of the Helmholtz free en-
ergy with respect to strain (Fig. 1). This implementation
of QHA is straightforward32,34–39,39–42. However, in gen-
eral it requires to consider numerous configurations of a
material, and therefore it suffers from an intricate work-
flow, which is typically manageable only in the case of
materials with the cubic symmetry. For example, in the
case of a hexagonal material, existing QHA methods em-
ploy a grid of at least 25 deformed configurations of a
reference state to calculate the two lattice parameters as
a function of temperature48, and an additional ∼15 de-
formed configurations to calculate the five independent
SOECs at any selected values of the temperature and
pressure41,48. It is not surprising that over the past years,
alternative49 and approximate41 QHA-based approaches
have been put forward to investigate the thermoelastic
properties of the vast class of materials not belonging to
the cubic crystal system.

In this work, we present an implementation of QHA
to calculate isothermal-isochoric SOECs and TOECs of
a solid material that involves a reduced workload and re-
quires a minimal number of deformed configurations of a
reference state. In detail, our QHA approach requires 4
deformed configurations, including the reference state, to
calculate the independent isothermal SOECs of a cubic
material at constant volume, and an additional 4 config-
urations to also calculate the independent TOECs. To
calculate the 5+10 and 9+20 independent SOECs and
TOECs of a hexagonal and orthorhombic system, these
two numbers become 6 and 6, and 10 and 8, respectively.
Furthermore, in this work we show that knowledge of
the isothermal-isochoric SOECs and TOECs of a mate-
rial in a reference state allows to estimate, within the
framework of nonlinear continuum mechanics, lattice pa-
rameters and SOECs in a meaningful neighborhood of
the reference state, or equivalently, within intervals of
temperature and pressure inducing deformations of the
reference state of a few percents in strain. Overall, here
we show that combination of our new QHA method to
calculate SOECs and TOECs with elementary equations
of nonlinear continuum mechanics consists of a compu-
tationally efficient strategy to investigate thermoelastic
properties of materials from first principles.

This manuscript is organized as follows. In Sec. II, we
introduce basic concepts and definitions of finite strain
theory and nonlinear elasticity. In Sec. III, we present our
implementation of QHA to calculate isothermal-isochoric
SOECs and TOECs. In this section, we also provide de-
tails about both the approach used to calculate general-
ized mode Grüneisen parameters and the finite differen-
tiation techniques used to calculate linear and nonlinear
elastic constants. In Sec. IV, we present our new com-
putational strategy combining the present QHA method
with nonlinear continuum mechanics to calculate ther-
moelastic parameters of a material in a neighborhood of
a reference state. In Sec. V, we demonstrate validity

FIG. 1: Schematic illustration of the key ingredients of con-
ventional (left) and present (right) implementations of QHA
to calculate thermoelastic parameters of a material. Both
implementations rely on generating a set of deformed config-
urations (light red) of a reference state (light gray); µ is the
Lagrangian strain, and for convenience, tensor components
are indexed using the Voigt notation. In the conventional
approach, SOECs are obtained via second-order differentia-
tion of the Helmholtz free energy (A), whereas the present
approach relies on the calculation of the generalized mode

Grüneisen parameters (γ
(α)
i ) to obtain SOECs and TOECs

via first- and second-order differentiation of the second Piola-
Kirchhoff stress tensor (P ), respectively.

and assess limits of our methods by carrying out calcula-
tions of MgO based on classical interatomic potentials50.
In Sec. VI, we discuss technical aspects and results ob-
tained by applying our methods in combination with a
density functional theory approach to calculate selected
thermoelastic properties of silicon, lithium hydride, and
graphite. A summary of our work and a discussion of
the potential applications of our methods are reported in
Sec. VII.

II. NOTIONS OF NONLINEAR CONTINUUM

MECHANICS

Here we consider solid materials described at the
atomistic level by using either classical interatomic
potentials50 or a periodic density functional theory
(DFT) approach51,52. With V we indicate the 3×3 ma-
trix whose columns, ~a1,~a2, and ~a3, are the vectors defin-
ing the geometry of the supercell used to describe the
material in a reference state. Each point of the unde-
formed material can be referenced by using a coordinate
system Xi (i = x, y, z). With V ′ we indicate the 3×3
matrix defining the geometry of the supercell describing
the material that has undergone a homogeneous deforma-
tion. Points of the deformed material are referenced by
using the coordinate system xi. Each point of the unde-
formed material is mapped onto a point of the deformed

material, and the gradient of the mapping function ~x( ~X)
defines the deformation gradient F , a second-order ten-
sor whose components are defined as follows:

Fij =
∂xi

∂Xj

= V ′

ikV
−1
kj , (1)

where the first equality gives the general definition of

Fij( ~X) in terms of deformed (xi) and undeformed (Xj)
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coordinates, whereas the second equality shows how F

relates to V and V ′ in case of a homogeneous deforma-
tion.
In nonlinear continuum mechanics2, deformations are

commonly described by using the Green-Lagrangian
strain tensor, µ, which is related to F as follows:

µ =
1

2
(FF T − I), (2)

where I is the identity matrix. To the third order in
the Lagrangian strain, the Helmholtz free energy of a
material A(T,µ) can be written as follows:

A(T,µ)

V
= C

(1)
ij µij +

1

2
C

(2)
ijklµijµkl

+
1

6
C

(3)
ijklmnµijµklµmn,

(3)

where V is the volume of the reference state, tensor in-

dexes refer to cartesian axes, C
(1)
ij is the internal stress

tensor of the material in the reference state, and C
(2)
ijkl

and C
(3)
ijklmn are the isothermal SOECs and TOECs of

the material at constant volume in the reference state.
C

(1)
ij , SOECs, and TOECs in Eq. 3 are all functions of

the temperature, with SOECs and TOECs defined as:

C
(2)
ijkl =

1

V

∂2A(T,µ)

∂µij∂µkl

∣

∣

∣

∣

µ=0

C
(3)
ijklmn =

1

V

∂3A(T,µ)

∂µij∂µkl∂µmn

∣

∣

∣

∣

µ=0

. (4)

We underline that the definitions in Eq. 4 are valid
also when the reference state is subjected to an exter-

nal stress, and hence C
(1)
ij is not null. In this latter case,

however, the mathematical definitions in Eq. 4 need to
be reconciled with physical parameters measured exper-
imentally, as for example in case of the relationship be-
tween (Cauchy) stress and strain:

σij = B
(2)
ijklµkl, (5)

for which it can be shown53 that the experimental second-

order elastic coefficients B
(2)
ijkl are related to the SOECs

defined in Eq. 4 as follows:

B
(2)
ijkl = C

(2)
ijkl +

1

2
(C

(1)
il δjk + C

(1)
jl δik + C

(1)
ik δjl

+ C
(1)
jk δil − 2C

(1)
ij δkl).

(6)

The coefficients B
(2)
ijkl and Eq. 6 are important when, for

example, SOECs defined as in Eq. 4 are used to calculate
the elastic moduli of a material in a stressed reference
state.
The definitions in Eq. 4 can be re-written in terms of

the second Piola-Kirchhoff (PK2) stress tensor, which is
defined as follows:

Pij(µ) =
1

V

∂A(T,µ)

∂µij

∣

∣

∣

∣

µ=0

. (7)

In particular, from Eqs. 3 and 4 we find:

Pij(µ) = C
(1)
ij + C

(2)
ijklµkl +

1

2
C

(3)
ijklmnµklµmn, (8)

with

C
(2)
ijkl =

∂Pij(µ)

∂µkl

∣

∣

∣

∣

µ=0

C
(3)
ijklmn =

∂2Pij(µ)

∂µkl∂µmn

∣

∣

∣

∣

µ=0

, (9)

where

C
(1)
ij = Pij(µ = 0) = σij , (10)

i.e. Cauchy stress and PK2 stress are equivalent in the
reference state. In general, the relationship between
Cauchy stress and PK2 stress of a material in a deformed
state is:

P = det |F|F−1σF−T , (11)

where F is the deformation gradient mapping the refer-
ence state V onto the deformed state V ′, and σ and P

are Cauchy and PK2 stress tensors of the material in the
deformed state V ′.
For convenience, in the following sections we will use

the Voigt notation to refer to tensor components. In

detail, Pij ↔ Pα, C
(2)
ijkm ↔ C

(2)
αβ and C

(3)
ijklmn ↔ C

(3)
αβγ ,

with Voigt indexes α, β, and γ assuming values between
1 and 6, and related to pairs of Cartesian indexes as
follows: xx → 1, yy → 2, zz → 3, yz → 4, xz → 5, and
xy → 6.

III. QHA METHOD TO CALCULATE SOECS

AND TOECS

Within QHA, thermoelastic parameters such as the
coefficient of thermal expansion and the isothermal
SOECs are typically obtained by calculating the har-
monic Helmholtz free energy A(T, V ) for a list of
deformed configurations of a reference state for a
solid material32,34–39,39–42. For each configuration, the
Helmholtz free energy is calculated as follows:

A(T, V ) =E0(V ) +
1

Nq

∑

q,κ

~ωq,κ

2

+
kBT

Nq

∑

q,κ

ln

[

1− exp

(

−~ωq,κ

kBT

)]

,

(12)

where E0 is the static energy of the material, ωq,κ are
the harmonic frequencies, Nq is the number of q-points
in the Brillouin zone, and κ is the branch index. Here
we present an implementation of QHA that relies on the
Cauchy stress tensor, rather than A(T, V ), to calculate
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the thermoelastic parameters. In particular, given a ref-
erence or a deformed configuration of a material, the com-
ponents σα of the Cauchy stress tensor can be calculated
within QHA as follows:

σα(T, V ) =σS
α(V ) +

1

NqV

∑

q,κ

γ(α)
q,κ

~ωq,κ

2

+
1

NqV

∑

q,κ

γ(α)
q,κ

~ωq,κ

exp
(

~ωq,κ

kBT

)

− 1
,

(13)

where γ
(α)
q,κ are components of the generalized mode

Grüneisen parameters tensor54 associated with the fre-
quency ωq,κ. Here we employ a novel approach to calcu-
late these parameters54.

A. Generalized mode Grüneisen parameters

The conventional technique used to calculate mode
Grüneisen parameters is based on the following equa-
tions:

γ(α)
q,κ = − 1

ωq,κ

∂ωq,κ

∂µα

=
1

ω2
q,κ

~e∗q,κ
∂D(q)

∂µα

~eq,κ, (14)

where D(q) is the dynamical matrix at q and ~eq,κ is
the eigenmode associated with the frequency ωq,κ. Here,
instead of Eq. 14, we use a novel method to calculate
these parameters54. This method can be used to calcu-
late mode-parameters associated only with frequencies at
Γ. In particular, it has been recently shown54 that, given
a Γ-point normal mode with frequency ωκ, the corre-
sponding generalized mode Grüneisen parameter satisfies
the following relations:

γ(α)
κ =

V

2ω2
κ

∂2
[

σα − σH
α

]

∂q2κ
=

V

2ω2
κ

∂2σA
α

∂q2κ
, (15)

where qκ is the normal mode coordinate associated
with ωκ, σα is the static Cauchy stress tensor, σH

α is
the harmonic stress tensor, which can be expressed in
terms of the real-space force constants matrix and ionic
displacements54, and σA

α is simply equal to σα − σH
α . In

practice, the calculation of the tensors, γκ, involves the
following operations. First, an ionic relaxation calcula-
tion to release any internal stress (resulting, for example,
from a homogeneous deformation), followed by the cal-
culation of the normal mode frequencies and coordinates.
Second, for each normal mode κ, two total energy calcu-
lations with ions fixed in a configuration accommodating
displacements along the normal mode, with amplitudes
±qκ. Finally, the components of the mode-parameters
tensor are calculated by using the following second-order
central finite difference formula:

γ(α)
κ ≅ V

σA
α [ζκ] + σA

α [−ζκ]− 2σA
α [0]

ζ2κ
, (16)

where ζκ =
√
2qκωκ and qκ is the normal mode coordi-

nate with a value such to obtain an increase of the po-
tential energy with respect to equilibrium of a few tenth
of an eV54.
It is to be noted that, in contrast to existing tech-

niques based on the use of Eq. 14, the method based on
Eqs. 15 and 16 yields all the components of the gener-
alized mode Grüneisen parameter tensors, and hence of
the thermal stress tensor (Eq. 13), by carrying out cal-
culations at only the volume of interest. At the same
time, however, this method yields only mode Grüneisen
parameters associated with frequencies at Γ. Therefore,
to obtain converged values of the thermal stress tensor
in Eq. 13, the QHA method here presented (which relies
on Eqs. 15 and 16 to calculate γκ) necessitates the use
of non-primitive supercells containing a sufficiently large
number, 3N -3, of normal modes of vibration at Γ, where
N is the number of atoms in the supercell.

B. Finite deformation method

To calculate SOECs and TOECs of a material at con-
stant temperature and volume, we use the finite deforma-
tion approach. In particular, to calculate SOECs we use
the following first-order central finite difference formula:

C
(2)
αβ =

∂Pα

∂µβ

≅
P

(+∆µβ)
α − P

(−∆µβ)
α

2∆µβ

, (17)

where P
(±∆µβ)
α is the PK2 stress tensor arising in a de-

formed supercell accommodating the finite strains±∆µβ .
To calculate TOECs, we have the following two cases.
One, TOECs with either two or three equal (Voigt) in-
dexes are calculated by using the following second-order
central finite difference formula:

C
(3)
αββ =

∂2Pα

∂µβ
2 =

P
(+∆µβ)
α + P

(−∆µβ)
α − 2P

(0)
α

∆µβ
2 , (18)

where P
(0)
α is the PK2 (equal to the Cauchy) stress tensor

of the material in the reference state. Two, TOECs with
three unequal (Voigt) indexes are calculated by using the
following finite difference formula:

C
(3)
αβγ =

(

P
(+∆µβ,+∆µγ)
α − P

(−∆µβ,+∆µγ)
α

−P
(+∆µβ,−∆µγ)
α + P

(−∆µβ ,−∆µγ)
α

)

/4∆µβ∆µγ .
(19)

In this latter case, the PK2 stress tensor is calculated
for deformed configurations of a reference state accom-
modating two different finite deformations, ±∆µβ and
±∆µγ .
Equations 17-19 can be used to calculate the isochoric

SOECs and TOECs of a material in a stressed or un-
stressed reference state, at both zero or finite tempera-
ture. In practice, the calculation of the elastic constants
involves the following elementary steps. One, selection
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of a reference state and a non-primitive supercell with
geometry and volume specifed by V . Two, generation
of the list of finite deformations required to calculate the
independent SOECs and TOECs via Eqs. 17-19. Three,
for each deformed supercell V ′, calculation of the gener-
alized mode Grüneisen parameters tensors and Cauchy
thermal stress tensor in Eq. 13. Lastly, Eq. 11 is used to
calculate the PK2 stress tensors resulting from the finite
deformations, and Eqs. 17-19 are used to calculate the
linear and non-linear elastic constants. In a schematic
form, the aforementioned operations can be outlined as
follows:

V
µ−→ F ,V ′ (σS ,ωκ,γκ)−−−−−−−→ σ(T,µ)

F−→ P (T,µ), (20)

where the text above arrows specifies the quantities
needed to accomplish each step, that is to derive the
quantities on the right side from the quantities on the
left.
To generate a deformed configuration of a reference

state V , we carry out the following elementary opera-
tions. One, we select a strain (Voigt) vector and con-
struct the strain tensor µ as follows:

(

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
)

⇒ µ =





ξ1 ξ6/2 ξ5/2
ξ6/2 ξ2 ξ4/2
ξ5/2 ξ4/2 ξ3



 .

(21)
Two, we determine the deformation gradient D associ-
ated to µ from Eq. 2 by carrying out a Cholesky decom-
position of the following 3×3 matrix:

2µ+ I = DDT . (22)

Three, we carry out the single value factorization of D,
thus obtaining D = WSV T , where W and V are uni-
tary matrices, and S is the diagonal matrix of singular
values. Four, we define the rotation-free deformation gra-
dient (or right stretch tensor) as F = V SV T (whereas
the rotation tensor is R = WV T ). Lastly, the 3×3 ma-
trix V ′ defining the geometry of the supercell for the
material in the deformed state is obtained from Eq. 1 as
follows: V ′ = FV .
In diagram 20, µ is either a single normal or pure shear

strain or, in case of selected TOECs, the combination of
two such elementary strains55. In particular, to calculate
the 3+6 independent SOECs and TOECs of a material
with the cubic symmetry, we use the following list of finite
deformations, which we express in terms of Lagrangian
strain (Voigt) vectors:

1 →
(

0 0 0 0 0 0
)

2 →
(

±ξ 0 0 0 0 0
)

3 →
(

0 0 0 +ξ 0 0
)

4 →
(

±ξ ±ξ 0 0 0 0
)

,
(

+ξ −ξ 0 0 0 0
)

5 →
(

0 0 0 +ξ +ξ 0
)

, (23)

where ξ is the strain parameter, typically taking val-
ues between 0.005 and 0.0150. In the list above, the

zero strain vector labeled ‘1’ corresponds to the refer-
ence state, the two vectors labeled ‘2’ allow to calculate

C
(2)
11 , C

(2)
12 , C

(3)
111, and C

(3)
112, the deformation labeled ‘3’ al-

lows to calculate C
(2)
44 , C

(3)
144, and C

(3)
244 = C

(3)
155, the three

vectors labeled ‘4’ allow to calculate C
(3)
123, and the vector

‘5’ yields C
(3)
456. Thus, our QHA method allows to calcu-

late the 3+6 independent SOECs and TOECs of a cubic
material by carrying out calculations (of static energies
and stress tensors, phonon frequencies, and generalized
mode Grüneisen parameters tensors) for a total list of
8 configurations of the material (including the reference
state). It is to be noted that the list in 23 excludes con-
figurations that, due to cubic symmetry, yield redundant
results. For example, the two deformations

(

+ξ −ξ 0 0 0 0
)

,
(

−ξ +ξ 0 0 0 0
)

(24)

give the same value of P3 in case of a cubic material,
and therefore only one of them is retained in the list

above to calculate C
(3)
123 via Eq. 19. For the same reason,

to calculate C
(3)
456 we only need one of the following 4

deformations:
(

0 0 0 ±ξ ±ξ 0
)

,
(

0 0 0 ±ξ ∓ξ 0
)

(25)

as the first two on the left yield the same value of P6,
whereas the last two give −P6.
For completeness, here below we list the 12 strain vec-

tors used to calculate the 5+10 independent SOECs and
TOECs of a hexagonal material:

0 →
(

0 0 0 0 0 0
)

1 →
(

±ξ 0 0 0 0 0
)

2 →
(

0 0 ±ξ 0 0 0
)

3 →
(

0 0 0 +ξ 0 0
)

4 →
(

±ξ ±ξ 0 0 0 0
)

,
(

±ξ ∓ξ 0 0 0 0
)

5 →
(

0 ±ξ 0 0 0 0
)

, (26)

where the two vectors labeled ‘1’ allow to calculate C
(2)
11 ,

C
(2)
12 , C

(2)
13 , C

(3)
111, C

(3)
112, and C

(3)
113; the two vectors labeled

‘2’ yield C
(2)
33 , C

(3)
333, and C

(3)
133; the vector labeled ‘3’ al-

lows to calculate C
(2)
44 , C

(3)
144, C

(3)
155, and C

(3)
344; the four

vectors labeled ‘4’ yield C
(3)
123, and lastly, the two vectors

labeled ‘5’ allow to calculate C
(3)
222. Similar lists can be

constructed for materials with the orthorhombic, mono-
clinic, and triclinic symmetry. In particular, it is easy to
show that 10+8 deformed configurations (including refer-
ence state) are needed to calculate the 9+20 independent
SOECs and TOECs of an orthorhombic material.

IV. COUPLING QHA WITH NONLINEAR

CONTINUUM MECHANICS

Given a material in a selected reference state, the QHA
method described in Sec. III can be used to calculate the
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total (static plus thermal) stress tensor, and the isochoric
SOECs and TOECs at any temperature. These quanti-
ties can be used, in combination with Eqs. 8 and 11, to
estimate changes in the lattice parameters occurring at a
constant pressure and variable temperature, or at a con-
stant temperature and variable pressure, as well as the
SOECs of the material in any deformed configuration in
a neighborhood of the reference state. These computa-
tionally inexpensive operations can be accomplished as
follows.
To estimate the lattice parameters at, for example, zero

pressure and increasing values of T , we use Eq. 8 to deter-
mine, the strain tensor, µ(T ), such that the PK2 tensor
P (T,µ) is equal to the null tensor. In general, to esti-
mate the lattice parameters at selected values of p and
T , the operations above can be outlined in the following
schematic form:

V ,σ,C(2),C(3) · · · µ(p,T )−−−−→ P (T,µ)
F−→ σ(T,µ), (27)

where V refers to the geometry of the reference state, and
σ, C(2), and C(3) are thermal stress tensor, and isochoric
SOECs and TOECs calculated via QHA for the material
in the reference state at the temperature T . These quan-
tities are then plugged in Eq. 8 to determine via a numeri-
cal iterative procedure56, the strain µ(p, T ) such that the
PK2 stress, P (T,µ), arising in the deformed configura-
tion yields the desired Cauchy stress tensor, σ(T,µ), at
the desired temperature T . PK2 and Cauchy stresses are
related to each other as in Eq. 11, where F is obtained
from µ(p, T ) through inversion of Eq. 2 (see Sec. III B).
Given a pair of values p and T , the aforementioned

procedure can be used to estimate the lattice parame-
ters and geometry, Ṽ , of a solid material whose isochoric
thermoelastic parameters are are known only for a par-
ticular reference state. At this point, Eqs. 8 and 11 can
again be combined to estimate the isothermal SOECs of
the material in this new (deformed) configuration. To
accomplish this task, we use the usual finite deformation
approach, and therefore the finite difference formula in
Eq. 17. In this case, however, for each deformed config-
uration of the reference state Ṽ , the PK2 stress tensor
is not calculated explicitly, but instead it is derived by
combining Eqs. 8 and 11, as outlined in the following
diagram:

Ṽ
µ̃−→F̃ , Ṽ ′ V−→ µ,F

µ−→ P (T,µ)
F−→ . . .

. . .
F−→ σ(T,µ) = σ̃(T, µ̃)

F̃−→ P̃ (T, µ̃),
(28)

where F̃ and µ̃ map the new reference state Ṽ to a de-
formed configuration Ṽ ′, µ and F are the tensors map-
ping the original reference state V (for which thermal
stress, and isothermal-isochoric SOECs and TOECs have
been calculated explicitly) to Ṽ ′, and P (T,µ) is the

PK2 stress tensor of Ṽ ′ referred to the reference state
V , whereas P̃ (T, µ̃) is the PK2 tensor of Ṽ ′ referred to

the deformed state Ṽ .
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FIG. 2: Lattice parameter (top panel) and bulk modulus (bot-
tom panel) of MgO versus T at zero pressure calculated by us-
ing a conventional QHA approach (red circles) and the meth-
ods presented in this work (black solid line), i.e. explicit QHA
calculation of thermal stress, isochoric-isothermal SOECs and
TOECs for a reference state yielding a zero static pressure,
followed by the extrapolation procedure described in Sec. IV.
MgO is described through the use cubic supercells contains
512 (red circles) and 64 (black solid line) atoms. Inset, rock-
salt structure of MgO.

As shown in the following sections, the aforementioned
extrapolation techniques based on combining QHA and
nonlinear continuum mechanics yield accurate results of
lattice parameters and isothermal SOECs within inter-
vals of temperature and pressure inducing deformations
of the reference state, V , of a few percents in strain.
Needless to say, these extrapolation techniques can be
applied to obtain a thermoelastic characterization of a
material in a neighborhood of a reference state wherein
electronic or ionic phase transitions are absent.

V. METHODS VALIDATION

To demonstrate validity and assess limitations of our
methods, we carry out rigid-ion atomistic calculations
of MgO using the Born-Mayer interatomic potentials of
Ref. 50. We use a proprietary code57 to run these calcula-
tions. This code implements the Ewald method to calcu-
late electrostatic energy and forces, a damped molecular
dynamics approach to optimize ionic positions, and the
small displacement method to calculate phonon frequen-
cies and normal modes at Γ. The results of combining
our new methods with this type of calculations are shown
in Figs. 2-5.
Figure 2 shows the lattice parameter and bulk modu-

lus of MgO versus T calculated by using both the present
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FIG. 3: Helmholtz free energy (blue discs) and pressure (red
discs) versus the lattice parameter of MgO at 1000 K. Sym-
bols show results calculated as described in the text by using
an energy scheme based on classical interatomic potentials50,
whereas solid black curves are the result of a polynomial in-
terpolation.

methods (Secs. III and IV) and a conventional QHA
approach32,34–39,39–42. In this latter type of calculations,
we use a grid of cubic supercells of MgO, obtained by
applying a hydrostatic strain ranging from -0.0875 to
0.0625 at intervals of 0.0025 to a reference state yield-
ing a zero static pressure. For each volume, we calculate
phonon frequencies, harmonic Helmholtz free energy (Eq.
12), as well as the isotropic mode Grüneisen parameters
and hence total stress tensor (Eq. 13) by using both the
conventional technique based on Eq. 14 and the recently
proposed approach relying on Eqs. 15 and 1654. At each
T , we then use a seventh-order polynomial to interpolate
both the free energy and the pressure values (Fig. 3),
which are used separately to derive the values of lattice
parameter and bulk modulus, at a zero or finite exter-
nal pressure. As expected, these redundant calculations
show that, indeed, our QHA method (relying the use of
the stress tensor and a novel approach to calculate gen-
eralized mode Grüneisen parameters54) gives the same
results as the conventional QHA approach (based on the
use of the free energy). Furthermore, we repeated these
QHA calculations by employing cubic supercells contain-
ing 64, 216, and 512 atoms, obtaining very similar results.
This shows that to obtain converged results, our QHA
method requires the use of non-primitive supercells con-
taining > 64 atoms, i.e. a few hundreds or more normal
modes at Γ.

Figures 2 and 4 show also the results obtained by com-
bining our QHA method with nonlinear continuum me-
chanics (Sec. IV). In particular, Fig. 4 shows values of
SOECs calculated explicitly at selected temperatures by
using our QHA approach (Sec. III), compared to values
obtained by employing our strategy based on combin-
ing QHA with nonlinear continuum mechanics (Sec. IV).
In these latter calculations, both lattice parameter (Fig.
2) and isothermal SOECs at zero pressure (Fig. 4) are
extrapolated by using values of thermal stress (Eq. 13),
and isochoric-isothermal SOECs and TOECs calculated

explicitly via QHA for a reference state yielding a zero
static pressure. Also in this case, calculations carried out
by using supercells containing 64, 216, and 512 atoms
give equivalent results.
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FIG. 4: Isothermal SOECs of MgO at zero pressure versus
T calculated by using the present methods. Red circles show
results obtained by calculating SOECs explicitly through the
use of our implementation of QHA; at each T , we used our
QHA method to calculate the isothermal-isochoric SOECs of
MgO with lattice parameter a(T ) (Fig. 2). The black solid
lines show values of SOECs obtained by using the extrap-
olation procedure relying on nonlinear continuum mechanics
discussed in Sec. IV, using thermal stress, SOECs and TOECs
calculated explicitly via QHA for a reference state yielding a
zero static pressure.

Overall, the results and comparisons in Figs. 2 and
4 show that, the present implementation of QHA (re-
lying on a new method to calculate generalized mode
Grüneisen parameters54 and the use of the stress ten-
sor to calculate isothermal SOECs and TOECs of a solid
material at constant volume) yields results equivalent to
those obtained from a conventional QHA approach rely-
ing on the Helmholtz free energy to calculate thermoe-
lastic parameters. Furthermore, our calculations demon-
strate that the combination of our QHA approach with
nonlinear continuum mechanics allows to obtain a ther-
moelastic characterization of a solid material in a neigh-
borhood of a reference state, and thus to estimate lattice
parameters and isothermal SOECs over meaningful inter-
vals of temperature and pressure. This is clearly shown
in Fig. 5, showing values of lattice parameter and bulk
modulus of MgO at 300 K and pressures ranging from 0
to 70 GPa, as obtained by using both conventional QHA
calculations and the present methods. These results show
that the extrapolation technique relying on Eqs. 8 and 11
yields meaningful and reliable results for both the lattice
constant and bulk modulus up to a strain of about 2%.
Interestingly, this interval can be extended up to a strain
of about 6%, by accounting in Eq. 8 also for the leading
third-order terms in strain, as follows:

Pα(µ) = C(1)
α +C

(2)
αβµβ+

1

2
C

(3)
αβγµβµγ+

1

6
C

(4)
αβββµ

3
β , (29)

where the fourth-order elastic constants C
(4)
αβββ can be
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obtained by using the following finite-difference formula:

C
(4)
αβββ =

∂3Pα

∂µβ
3 =

=
P

(+2∆µβ)
α − 2P

(∆µβ)
α + 2P

(−∆µβ)
α − P

(−2∆µβ)
α

2∆µβ
3 .

(30)
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FIG. 5: Percent variation of the lattice parameter (top panel)
and bulk modulus (bottom panel) of MgO at 300 K versus
pressure calculated by using a conventional QHA approach
(red circles) and the methods presented in this work (solid
lines), i.e. explicit calculation by using our QHA method of
thermal stress, and isochoric-isothermal linear and non-linear
elastic constants for a reference state yielding a zero static
pressure, followed by the extrapolation procedures relying on
nonlinear continuum mechanics described in Sec. IV. The
black solid line shows results obtained by combining Eqs. 8
and 11, whereas the thin blue solid line shows results obtained
by including in Eq. 8 also the leading third-order terms in
strain (Eq. 29), whose coefficients are the isothermal-isochoric

fourth-order elastic constants C
(4)
αβββ, with α, β = 1 . . . 6.

VI. APPLICATIONS

Our methods in combination with a DFT approach
are used to calculate selected thermoelastic properties
of silicon, lithium hydride, and graphite. These calcu-
lations are carried out using the Quantum ESPRESSO
package51,52 and pseudopotentials from the PSlibrary58.

A. Technical details of DFT calculations

To describe the diamond structure of Si, we use an
ultrasoft pseudopotential, Si.pz-nl-rrkjus psl.1.0.0.UPF,

a local density approximation (LDA) functional59, and
plane-wave energy cutoffs of 44 and 176 Ry for wave func-
tions and electron charge density, respectively. We use a
uniform mesh of 8×8×8 k-points to sample the Brillouin
zone of primitive unit cells, whereas we employ a grid of
2×2×2 k-points and the Γ-point to sample the Brillouin
zones of the non-primitive cubic supercells containing 64
and 216 Si atoms, respectively. To describe the rock-salt
structure of LiH, we use a generalized gradient approxi-
mation (GGA) functional60, the pseudopotentials Li.pbe-
sl-rrkjus psl.1.0.0.UPF and H.pbe-rrkjus psl.1.0.0.UPF,
and plane-wave energy cutoffs of 50 and 325 Ry. We
use a uniform mesh of 10×10×10 k-points to sample
the Brillouin zone of primitive unit cells, and uniform
meshes of 3×3×3 and 2×2×2 k-points in case of cubic
supercells containing 64 and 216 atoms, respectively. To
describe AB-stacked hexagonal structure of graphite, we
use a GGA functional61, the pseudopotential C.pbesol-
n-rrkjus psl.1.0.0.UPF, and plane-wave cutoff energies
equal to 80 and 550 Ry. We use a uniform mesh of
10×10×4 k-points to sample the Brillouin zone of prim-
itive unit cells of LiH, and a grid of 4×4×2 k-points to
sample the Brillouin zone of a hexagonal supercell con-
taining 5×5×1 unit cells and a total of 100 C atoms.
We use the finite displacement method to calculate Γ-

point phonon frequencies of solids described by the use
of non-primitive supercells, whereas we rely on density
functional perturbation theory (DFPT)51,52,62 to calcu-
late harmonic frequencies of solids described by the use
of primitive unit cells. In this latter case, we use DFPT
to calculate dynamical matrices on a 4×4×4 uniform grid
of q-points in the Brilouin zone, followed by an inverse
Fourier transform to obtain real-space interatomic force
constants, and Fourier interpolation to estimate dynam-
ical matrixes and frequencies on a 10×10×10 grid of q-
points.

B. Results and discussion

Table I reports lattice parameters and SOECs of Si,
LiH, and graphite in static conditions in selected refer-
ence states, and at zero pressure and temperatures of 0
and 300 K. These latter results are obtained by using our
strategy based on combining QHA and nonlinear contin-
uum mechanics, as described in Sec. IV. We remark that
results obtained in static conditions agree well with pre-
vious DFT studies42,68–70, and that our results at 300 K
are within the expected level of agreement with the ex-
perimental data (Table I). The Debye temperatures of
Si, LiH, and graphite are larger than 300 K, and there-
fore QHA is expected to yield satisfactory results at this
temperature for these three materials. We can then con-
clude that the small differences between calculated and
experimental data at 300 K are attributed to limits of
the DFT approach (based on the use of pseudopotentials
and approximations of the exchange-correlation energy),
rather than deficiencies of QHA. It is also interesting to
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TABLE I: Lattice parameters (in Å) and SOECs (in GPa) of
Si, LiH, and graphite calculated by using the present methods
and DFT calculations. For each material, the first row shows
results obtained in static conditions, that is at 0 K and in
absense of zero-point quantum corrections. The second row
shows results at 0 K accounting for zero-point quantum cor-
rections. The third and fourth rows show values of lattice
parameters and SOECs at a zero total pressure and tempera-
tures of 0 and 300 K, respectively. These results are obtained
by using the extrapolation procedure in Sec. IV, by employ-
ing the isothermal-isochoric SOECs and TOECs calculated
via our QHA method for the reference state in the first row.
Experimental data obtained at room temperature are also
shown for comparison.

T (K) p (GPa) a0 c0 C
(2)
11 C

(2)
12 C

(2)
44 C

(2)
13 C

(2)
33

Silicon

– -0.34 5.409 – 160 64 76 – –
0 0.11 5.409 – 159 64 75 – –
0 0.00 5.411 – 158 64 75 – –

300 0.00 5.412 – 156 62 74 – –
Refs. 63,64 5.431 – 166 64 80 – –

Lithium hydride

– -2.02 4.090 – 65 13 43 – –
0 0.03 4.090 – 68 14 43 – –
0 0.00 4.092 – 67 14 43 – –

300 0.00 4.115 – 56 15 44 – –
Refs. 65,66 4.084 – 67 15 46 – –

Graphite

– 0.00 2.459 6.695 1086 208 5 -2 31
0 2.51 2.459 6.695 1085 209 5 -2 32
0 0.00 2.466 6.719 1056 199 4 -2 30

300 0.00 2.465 6.763 1037 191 4 0 27
Ref. 67 2.463 6.712 1109 139 5 0 39

note that lattice parameters and SOECs at 300 K ex-
hibit small although noticeable deviations from the val-
ues obtained in static conditions. This demonstrates the
well-established notion that quantum motion and anhar-
monic effects influence the properties of a material, and
that although QHA accounts only in part for anharmonic
effects, it can nonetheless be used to achieve a meaning-
ful description of a broad class of materials over finite
intervals of temperature and pressure.
Tables II and III report values of TOECs for silicon

and graphite calculated as discussed in Sec. III, by using
a DFT approach, Eqs. 17-19, and the lists of deforma-
tions in (23) and (26), respectively. TOECs at 0 K are
calculated by using a strain parameter ξ ranging from
0.0025 to 0.0150, primitive unit cells, and stringent con-
vergence criteria (threshold on forces and selfconsistency
equal to 10−6 and 10−15 a.u., respectively)55. TOECs
at 300 K and zero pressure are calculated by using our
novel implementation of QHA (Sec. III) and supercells
containing 216 and 100 Si and C atoms, respectively.
The results in Tables II and III show that Eqs. 18 and

19 give results that depend little on the value of the strain
parameter (ξ). In particular, Table II shows that equiva-

TABLE II: TOECs (in GPa) of Si calculated by using a DFT
approach and the methods presented in Sec. III. TOECs at
zero temperature are calculated for increasing values of the
strain parameter ξ; TOECs obtained by using Eq. 19 are in-
dicated with a tilde. The fourth from the last row reports
TOECs at 300 K calculated by using our QHA method and
ξ = 0.0100. All these TOECs are calculated for a reference
state yielding a static pressure of -0.34 GPa. The last three
rows report experimental values of TOECs measured at room
temperature.

ξ C
(3)
111 C

(3)
211 C̃

(3)
112 C

(3)
144 C̃

(3)
441 C

(3)
155 C̃

(3)
551 C̃

(3)
123 C̃

(3)
456

0.0025 -764 -456 -451 31 37 -292 -299 -87 -52
0.0050 -759 -454 -454 31 31 -296 -296 -85 -52
0.0075 -761 -453 -453 29 30 -296 -295 -85 -52
0.0100 -761 -453 -453 27 28 -295 -295 -84 -52
0.0125 -761 -453 -453 28 28 -295 -295 -85 -53
0.0150 -761 -454 -453 28 28 -295 -295 -85 -53
0.0100 -710 -443 - 44 - -271 - -70 -45
Ref. 64 -795 -445 - 15 - -310 - -75 -86
Ref. 23 -825 -451 - 12 - -310 - -64 -64
Ref. 27 -817 -493 - -25 - -293 - -192 -37

lent TOECs, such as C
(3)
144 and C

(3)
441, can be calculated by

using either Eq. 18 or Eq. 19. These two finite difference
equations yield very similar results, with small differences
originating from truncation errors, which are inherently
different for these two formulas. Table II reports also
TOECs of Si at 300 K and a total pressure of 0.11 GPa
(Table I) calculated by using our QHA approach. We
remark that our values compare well with experimen-
tal TOECs measured at room temperature23,27,64 (Table
I). Also in this case, considering the harmonic nature of
Si and the values of the temperature and pressure, it is
reasonable to conclude that the small differences between
calculated and experimental data are attributed to limits
of our DFT approach. The investigation of these issues
lies outside the scope of the present work.
Table III reports values of TOECs at 300 K and zero

pressure calculated by using our QHA approach. These
values are in good agreement with TOECs calculated
by using a anharmonic Keating model for graphite71.
To the best of our knowledge, the present work is the
first one reporting TOECs of graphite calculated from
first principles, whereas only one recent experimental ef-
fort was undertaken to measure selected nonlinear elastic
constants of this material72. Unfortunately, these mea-
surements led to contradicting results, most likely due
to both the lack of crystallinity and the different mi-
crostructural properties of the graphite samples used in
the experiments72. For example, in this experimental

work C
(3)
111 was found to be equal to -120 GPa in case of

isostatic graphite (an isotropic, high-density, fine-grained
form of graphite), and equal to 377 and -203 GPa in case
of graphite samples obtained by cold pressing of graphite
powder from low-ash petroleum coke72.
Figure 6 shows the lattice parameter, the linear ther-

mal expansion coefficient, and bulk modulus of Si at zero
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TABLE III: TOECs (in GPa) of graphite calculated by us-
ing a DFT approach and the methods presented in Sec. III.
TOECs are calculated in static conditions for a reference state
yielding zero static pressure and increasing values of the strain
parameter ξ. The last column reports TOECs at 300 K and
zero total pressure calculated by using our QHA method and
ξ = 0.0100.

ξ 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0100

C
(3)
111 -9591 -9606 -9602 -9616 -9629 -9642 -8487

C
(3)
222 -8916 -8873 -8956 -8956 -8962 -8966 -7784

C
(3)
333 -594 -595 -604 -598 -604 -610 -647

C
(3)
211 -1411 -1391 -1403 -1396 -1392 -1388 -1003

C
(3)
311 19 31 31 29 29 29 -96

C
(3)
133 35 25 23 24 24 23 -82

C
(3)
144 0 -2 -1 -1 -2 -2 -2

C
(3)
155 7 11 8 8 9 9 -4

C
(3)
344 -72 -83 -82 -82 -83 -82 -84

C
(3)
123 -53 -63 -85 -63 -76 -68 -82

pressure and temperatures up to 1500 K. These results
are obtained by using both the methods presented in this
work and a conventional QHA approach. In particular,
in these latter calculations we use primitive unit cells,
a DFPT approach to calculate phonon frequencies, and
lattice parameter and bulk modulus are obtained from
the first- and second-order derivatives of the Helmholtz
free energy with respect to volume, respectively. To cal-
culate the same quantities, we use the approach combin-
ing results obtained from QHA with nonlinear continuum
mechanics (Sec. IV). In detail, we use our QHA method
to calculate total stress, and isothermal-isochoric SOECs
and TOECs for a reference state yielding a static pres-
sure of -0.34 GPa at 0 K (Table I). Then, we employ
the extrapolation procedures described in Sec. IV to cal-
culate lattice parameters, SOECs and elastic moduli at
zero pressure and increasing temperature. These calcu-
lations are repeated by using cubic supercells containing
64 and 216 Si atoms.

Figure 6 shows that our results are in excellent agree-
ment with those obtained by using a conventional QHA
approach. As expected, Fig. 6 shows also that, although
results obtained by using the smaller supercell are sat-
isfactory, a better agreement and full convergence are
obtained when a larger supercell containing 216 Si atoms
is used. These results demonstrate that our methods are
sound and that to achieve convergence, our methods re-
quire the use of supercells containing about a hundred or
more atoms, or equivalently, a supercell sufficiently large
to accommodate a few hundreds or more normal modes
at the Γ-point. We also remark that the results in Fig.
6 are in excellent agreement with recent QHA studies
of Si42, and that calculated and experimental values of
the linear thermal expansion coefficient (Fig. 6) show the
expected level of agreement73.

Figure 7 shows the lattice parameter of LiH at zero
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FIG. 6: Percent variation of the lattice parameter (top panel),
linear thermal expansion coefficient (middle panel), and bulk
modulus (bottom panel) of Si at zero pressure and increasing
T . Solid lines show results obtained from DFT by employ-
ing supercells containing 64 (gray) and 216 (black) atoms,
and by carrying out QHA calculations of thermal stress, and
isothermal-isochoric SOECs and TOECs for a reference state
yielding a static pressure of -0.34 GPa, followed by the ex-
trapolation technique discussed in Sec. IV. Red circles show
results obtained by using a conventional QHA approach42.
Experimental data for the linear thermal expansion coeffi-
cient are from Refs. 74 (blue discs) and 75 (light blue discs).
and 27 (blue circles). Inset, the diamond structure of Si.

pressure and temperatures up to 300 K, and at 300 K
and external pressures ranging from 0 up to 40 GPa. In
Fig. 7, results obtained by using both our methods and
conventional QHA calculations are compared to selected
experimental data65,76. In particular, we use primitive
unit cells in the conventional QHA calculations, whereas
we use cubic supercells containing 64 and 216 to calculate
the isothermal-isochoric SOECs and TOECs by using our
QHA approach. These latter quantities, calculated for a
reference state yielding a static pressure of -2.020 GPa
(Table I), are then used in combination with the extrap-
olation procedures of Sec. IV to estimate the lattice pa-
rameter of LiH at finite temperature and pressure.

Our calculations (Fig. 7) show that results obtained by
using the present methods are in overall good agreement
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with both experimental data and conventional QHA. Fig.
7 shows also that, as expected, our extrapolation tech-
nique gradually loses accuracy as the deformed state for
which predictions are sought falls farther away, in terms
of strain, from the reference state. We remark that our
DFT calculations give a lattice parameter of LiH in static
conditions and zero pressure equal to 4.006 Å, that is
∼2% smaller than the value of LiH in the reference state
used to derive the results in Table I and Fig. 7. Although,
for convenience, we opted to use this latter configuration
as reference state to extrapolate all the results in Fig.
7, we can state that the use of the former configuration
as reference state (of another one with a smaller lattice
parameter) would yield results of ∆a at 300 K and in-
creasing pressure agreeing with conventional QHA over
a wider interval of pressures.
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FIG. 7: Percent variation of the lattice constant of LiH ver-
sus T at zero pressure, and (inset, top left) versus pressure
at 300 K, calculated by using both a conventional QHA ap-
proach (solid red circles) and our methods. Gray and black
solid lines show results obtained by using supercells contain-
ing 64 and 216 atoms, respectively. Blue discs show selected
experimental data extracted from Refs. 65,76. Inset, bottom
right, the rock-salt structure of LiH.

To demonstrate merits and further corroborate valid-
ity of our methods, we consider the case of graphite, a
hexagonal material exhibiting strong anisotropy in the
structural, and hence, thermoelastic properties. In de-
tail, we use our QHA method to calculate isothermal-
isochoric SOECs and TOECs of graphite in two different
reference states: (i) the configuration with a zero static
pressure at 0 K, and (ii) a state having a zero total (static
plus thermal) pressure at 300 K (Table I). Then, we use
the SOECs and TOECs of these two reference states,
combined with the extrapolation procedures described
in Sec. IV, to estimate lattice parameters and SOECs
at zero pressure and at temperatures from 0 to 400 K.
Fig. 8 shows that these two sets of calculations produce
identical results, and hence that SOECs of graphite at
300 K can be determined explicitly via DFT by using
our QHA method, or via extrapolation by using SOECs
and TOECs calculated via DFT and our QHA method
for a reference state yielding a zero static pressure. For
completeness, in Fig. 9 we show the linear thermal expan-
sion coefficients of graphite obtained from our approach

combining QHA calculations and nonlinear continuuum
mechanics. These results compare well with experimen-
tal data77. Overall, this last application shows that our
methods are suited to investigate the thermoelastic prop-
erties of materials of any symmetry, and that the combi-
nation of our QHA method with nonlinear continuuum
mechanics consists of an efficient computational strategy
to calculated lattice parameters and SOECs over mean-
ingful intervals of temperature and pressure.
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FIG. 8: Top panel, percent variation of the in-plane (a) and
out-of-plane (c) lattice parameters of graphite versus T . Bot-
tom panel, independent SOECs of graphite versus T ; values
are shifted as indicated in figure. These results are obtained
from DFT by using our QHA method to calculate thermal
stress, SOECs and TOECs for a reference state, followed by
the use of the extrapolation techniques relying on nonlinear
continuum mechanics discussed in Sec. IV. Thick gray curves
show results obtained by considering a reference state yield-
ing a zero static pressure at 0 K, whereas the solid green lines
show results obtained by considering a reference state yielding
a zero total pressure at 300 K. DFT calculations are carried
out by using a hexagonal supercell containing 100 atoms, con-
sisting of a 5×5×1 array of primitive unit cells. Inset, top left
corner, an image showing the layered structure of graphite.

VII. CONCLUSION AND OUTLOOK

In this work, we have introduced a novel implemen-
tation of QHA to calculate from first principles both
SOECs and, most notably, TOECs of a material at finite
temperature and constant volume. This method relies
on finite deformations and the numerical differentiation
of the (second Piola-Kirchhoff) stress tensor to calcu-
late both SOECs and TOECs55, and it employs a re-
cently proposed method54 to calculate generalized mode
Grüneisen parameters and hence stress tensor. Thanks
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FIG. 9: Linear thermal expansion coefficients parallel (top
panel) and perpendicular (bottom panel) to the c-axis of
graphite. Black solid lines show results obtained by combin-
ing QHA calculations and nonlinear continuum mechanics,
whereas blue circles show experimental data77.

to this, the present QHA method involves a manageable
computational workflow that, measured in terms of num-
ber of deformed configurations, requires only 4, 6, and
10 configurations (including reference state) to calculate
the SOECs of a material with the cubic, hexagonal, and
orthorhombic symmetry, respectively. These numbers in-
crease to 8, 12, and 18 to obtain the 6, 10, and 20 inde-
pendent TOECs of a material with the cubic, hexagonal,
and orthorhombic symmetry, respectively. The main dis-
advantage of the present QHA implementation is that it
requires the use of large non-primitive supercells, con-
taining a sufficient number of atoms, and hence normal
modes at Γ, to obtain converged values of the thermal
stress tensor, and hence SOECs and TOECs.
In this work we have also introduced a computational

strategy combining QHA calculations and elementary
equations of nonlinear continuum mechanics. This hy-
brid approach allows to estimate thermoelastic parame-
ters over finite intervals of temperature and pressure, at
the cost of calculating via QHA the isothermal-ishochoric
SOECs and TOECs of a material in an opportune ref-
erence state. Here, both our novel implementation of
QHA and the computational strategy relying on nonlin-
ear continuum mechanics have been used to calculate se-
lected thermoelastic properties of Si, LiH, and graphite.
Our results show that our QHA implementation yields
results equivalent to those obtained by using a conven-
tional QHA approach. Furthermore, they show that the
computational strategy combining QHA calculations and
nonlinear continuum mechanics yields accurate predic-

tions of thermoelastic properties for configurations of a
material that are within about ±1% in strain from a ref-
erence state (whose SOECs and TOECs have been calcu-
lated explicitely via QHA). This strain interval translates
into meaningful intervals of temperature and pressure.

Overall, taking into account both advantages and dis-
advantages, we envision that the methods presented in
this work have the potential to be used for the follow-
ing purposes. One, the calculation from first principles
of nonlinear elastic constants (TOECs and potentially
fourth-order elastic constants) of materials at finite tem-
perature through the use of our QHA method. TOECs
are important coefficients characterizing the non-linear
mechanical response of a material subjected to a defor-
mation, and thereby related to properties such as sound
attenuation and yield strength55. Our QHA method can
be used to calculate these nonlinear elastic coefficients at
finite temperature for a variety of materials, for which
experimental data are still missing or difficult to obtain,
as in case of graphite. Two, the calculation from first
principles of isothermal SOECs of materials with the or-
thorhombic, monoclinic, or triclinic symmetry, classes of
materials that is within the reach of our QHA approach.
We remark that our QHA approach requires the the
same minimal list of configurations, that is 9 deformed
states plus reference state, to calculate the 9, 13, and
21 independent SOECs of materials with the orthorhom-
bic, monoclinic, or triclinic symmetry, respectively. This
puts our implementation of QHA at the forefront, to-
gether with other well-established techniques36,41,45,49,78,
to study thermoelastic properties of low-symmetry solids.
Three, the calculation from first principles of thermal ex-
pansion coefficients and SOECs of a material over finite
intervals of temperature and pressure through the use of
our approach combining QHA calculations and nonlinear
continuum mechanics. We underline that this approach
is computationally efficient, as it involves only the cal-
culation of the isothermal-isochoric SOECs and TOECs
via QHA for a single reference state. We also remark
that this approach is applicable to materials of arbi-
trary symmetry and complexity, and therefore it could
be used to build databases of materials properties at
finite temperature29,32, or investigate the thermoelastic
and mechanical properties of, for example, minerals of ge-
ological relevance30,36,78,79 or metal alloys for structural
applications12–16,80.
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