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Excitons localized around point defects in semiconductors are promising candidates for long-
lived and photon-addressable qubits. However, their microscopic origin is difficult to characterize
due to the computational complexity of studying large systems with defects. Here we study the
quasiparticle and optical absorption spectrum of the divacancy defect in 3C-SiC, a prototypical defect
for quantum information applications, by means of large-scale GW and GW plus Bethe-Salpeter
equation calculations. Despite the presence of localized unoccupied quasiparticle states in the gap,
we find that the low-energy excitonic states are made primarily of transitions from occupied defect
states to continuum conduction states from SiC, especially from the X point of the Brillouin zone.
The mixed character of defect states and bulk states of these low-energy exciton states is in contrast
with the NV− center in diamond and the divacancy in 4H-SiC, where the deep defect levels are
well separated from bulk states. Our calculations provide a quantitative prediction of the defect
quasiparticle energy levels and a physical understanding of the zero-phonon absorption. They
highlight the important role of frontier conduction bands in the optical properties and formation of
low-energy excitons in 3C-SiC divacancy.

I. INTRODUCTION

Optically accessible deep-level defects in solids have
the potential to function as quantum bits for quantum
computing or quantum sensing applications1,2. Among
numerous point defects, the negatively charged nitrogen-
vacancy (NV−) center is one of the most studied systems,
demonstrating many key properties, including long spin
coherence time at room temperature and a robust spin-
photon interface3,4. However, the high cost of processing
diamond, integrating it with established semiconducting
fabrication practices, and scaling up the number of co-
herently coupled NV− centers still pose huge challenges
for practical applications4. Recently, research efforts are
shifting to defects in alternative semiconductors, such as
divacancies in SiC polymorphs5–8, silicon-vacancy centers
in diamond9–12, and rare-earth ions in solids13–15 and so
on16–18. Among them, experiments show that divacancies
of 3C-SiC and 4H-SiC fulfill a few key requirements, such
as single-defect addressability and high-fidelity spin-to-
photon interfaces, which are critical for physical imple-
mentation of qubits6. Notably, the divacancy in 3C-SiC
possesses a record-long Hahn-echo spin coherence time of
one millisecond6. In addition to these advantages, SiC
is widely used in industry and can be fabricated in high
quality with lower costs than diamond19.

The ground-state properties, such as formation ener-
gies, hyperfine coupling tensors and zero field splittings,
of SiC divacancies have been thoroughly studied by ex-
periment and faithfully explained by theoretical calcu-
lations based on density functional theory (DFT).20–23

On the other hand, accurate theoretical calculations of
excited-states properties, including the quasiparticle en-
ergies of defect states and optical excitations, are im-
portant for a quantitative understanding of the interac-
tions between the defects and photon. As for divacan-
cies in common SiC polymorphs, the 4H phase is the
most studied one by both experiments and calculations.
Excited-states properties of 4H-SiC divacancies, such as
zero-phonon emission lines and the single-particle ener-
gies of deep defect states, were calculated using hybrid
functionals18,20,22. Furthermore, the energies of many-
body excited states with different spin multiplicities of
4H-SiC divacancy were calculated with active-space con-
figuration interaction calculations24,25. However, despite
many recent experimental efforts on exploiting the optical
properties of 3C-SiC divacancies for quantum photonic
applications26–28, accurate and thorough computational
studies on the excited-states properties of 3C-SiC diva-
cancy are still lacking, e.g., no conclusive computations for
quasiparticle energies of defect states and the characters
low-energy optical transitions exist.



2

In this context, DFT in principle can yield accurate
ground state energy and density, but it cannot accurately
yield excited-states properties. Recently, several methods
designed specifically for excited-states properties, such as
active-space configuration interaction and the GW approx-
imation, have been applied to study defects17,18,24,25,29–32.
Among them, GW approximation and GW plus Bethe-
Salpeter equations (GW-BSE), which are based on well-
established many-body perturbation theories, can give
accurate descriptions for the single-particle energy lev-
els and spin-conserving excitations33,34. Unfortunately,
the cubic to quartic scaling and non-trivial convergence
behavior of typical GW implementation35–38, as well as
the N6-scaling of BSE hinder wide applications of these
methods to defect systems.39,40 Moreover, in practical
calculations, defects are typically modeled with a finite-
size nanocluster or a periodic supercell. To minimize
artifacts from periodic images, large supercells containing
hundreds to thousands of atoms are required, posing fur-
ther difficulties for GW and GW-BSE calculations. Due
to these reasons, GW and GW-BSE calculations are not
routinely carried out for defects in solids, while DFT cal-
culations based on generalized-gradient approximation
(GGA) or hybrid functionals, which has relatively low
computational costs, are often used for the calculation
of defect levels and zero phonon optical transition lines
neglecting electron-hole transitions. 3,16,18,20,22,41–44.

Here we study quasiparticle energies and spin-conserved
optical absorption spectra of the divacancy defect in 3C-
SiC with large-scale GW and GW-BSE calculations. In
the study of the optical properties, we treat the system
as two spin fluids, and neglect all spin multiplet effects
for both the ground and excited states. Our calculations
explicitly evaluate the full frequency dependence of the
dielectric matrix without resorting to plasmon-pole ap-
proximations45. Different from the 4H-SiC divacancy and
diamond NV− center, our calculations reveal that unoc-
cupied defect quasiparticle states in 3C-SiC are relatively
shallow. Our GW-BSE calculations yield accurate zero-
phonon line energy within the two-spin-fluid formalism
and show the lowest-energy exciton states involve transi-
tions between localized defect and bulk continuum states,
while these low-energy excitons are still fairly localized
near the divacancy.

II. COMPUTATION DETAILS

We use the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional46 for collinear spin density func-
tional theory (DFT) calculations. The structures are
optimized with the real-space DFT code PARSEC47,48 us-
ing real-space grid of 0.285 bohr spacing. The optimized
lattice constant of bulk 3C-SiC is 4.379 Å, agreeing well
with the experimental value49. The divacancy is modelled
with a supercell. Here we keep lattice constant as that
of bulk SiC and relax atomic coordinates until residue
forces on each atom are less than 1× 10−4 Ryd/Bohr. By

Figure 1. Convergence of single-particle transition energies
calculated using (a) DFT and (b) G0W0 with supercell sizes.
The shadow areas highlight the energy ranges of 40 meV
around the data calculated with the 998-atom supercell. The
labels of defect states are explained in section III.

testing the convergence of the DFT results with respect
the supercell size, we find the energy separation between
the conduction band minimum (CBM) and spin up state
with the e symmetry converge within 50 meV with a
510-atom supercell and 2 meV with a 998-atom supercell,
as shown in Figure 1 (a).

GW and GW-BSE calculations are carried out with
the BerkeleyGW package33,34,50. The starting points for
GW-BSE calculations are the mean-field wave functions
calculated with PBE functional46 and SG15 Optimized
Norm-Conserving Vanderbilt pseudopotentials51–53 using
Quantum Espresso package54,55. The mean-field wave-
functions are calculated with an 50 Ryd cut-off and sam-
pled at Γ point. We perform “one-shot” GW calculations
(G0W0 approximation) at the full-frequency level within
the contour deformation formalism56,57. We also tested
the convergence of G0W0 calculations with respect to
supercell sizes. Figure 1 (b) shows that the G0W0 results
calculated with 510-atom and 998-atom supercells only
differ by up to 20 meV, which suggests a reasonably good
convergence. In the following discussions, the GW calcula-
tion results for the divacancy are performed with 998-atom
supercell, unless otherwise mentioned. The frequency de-
pendent parts of dielectric functions are obtained within
the static-subspace approximation45,58–60. The static-
subspace approximation method is a low-rank approxi-
mation method for calculating the frequency-dependent
dielectric matrix. In brief, we first calculate the eigen-
values and eigenvectors of the static dielectric matrix.
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Figure 2. (a) Quasiparticle band structure of pristine 3C-
SiC computed within DFT using Perdew-Burke-Ernzerhof
(PBE) functional and within the G0W0 approximation. (b)
Comparison between the imaginary part of dielectric function
calculated with GW-BSE and with non-interacting particle
approximation. A Gaussian smearing of 0.05 eV is used for
calculating dielectric function.

Then we pick the eigenvectors with large eigenvalues as
the basis set functions to represent dielectric matrices
of finite frequencies. This method has been discussed in
detail in reference45. To converge the G0W0 calculation
with a 998-atom supercell, we employed up to 18×103

eigenvectors for the static-subspace basis expansion. For
frequency integration, 16 imaginary frequencies and 34
frequencies on the real axis up to a maximum of 8 eV.
With the sum-over-bands GW implementation used in
our work, the equations of irreducible polarizability and
self-energy include a summation over all empty states. To
reduce the cost for summing over many empty states, we
employ the stochastic pseudobands method. With this
method, one combines several high-energy orbitals into a
single unnormalized states to represent high-energy empty
states45,61. The stochastic pseudobands allow us to effec-
tively include the whole Hilbert space for the evaluation
of the polarizability and self energy. A similar idea was
also reported in reference62. For the GW-BSE calculation
of 998-atoms supercell, we consider the Γ point and the
transitions between 40 conduction bands and 40 valence
bands for each spin channel. Our tests show that these
number of bands can converge the absorption spectrum
up to ω = 2.6 eV. For pristine bulk 3C-SiC, we considered
3 conduction bands, 3 valence bands, and a 24× 24× 24
q-points grid for optical absorption spectrum calculations.

III. RESULTS AND DISCUSSION

Before studying the divacancy, we briefly discuss the
electronic structure of bulk 3C-SiC. As shown in Figure 2
(a), pristine 3C-SiC has an indirect band gap between
valence band maximum (VBM) at Γ and CBM at X.
There are three equivalent X point on the edge of the
Brillouin Zone (BZ), so the CBM is triply degenerate.
Our DFT-PBE calculation predicts an indirect band gap
of 1.4 eV. With the GW approximation at the G0W0 level,
the quasiparticle self-energy effect opens up the band gap
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Figure 3. (a) The structure of divacancy in 3C-SiC64 (b) Top
view of a divacancy. The isosurface of the net spin charge
density |ρ↑(r)− ρ↓(r)| is shown in yellow.

to 2.3 eV, which agrees well with the experimental value
of 2.36 eV63. In Figure 2 (b), we compare the optical
absorption spectrum of 3C-SiC calculated with GW-BSE
and a non-interacting particle approximation. Within
the non-interacting particle approximation, the lowest
single-particle transition, which corresponds to the direct
transition at X, has an GW energy of 5.64 eV. In com-
parison, the energy of the lowest optically active exciton
calculated with GW-BSE is 5.45 eV, which corresponds
to an exciton binding energy of 0.19 eV.

In Figure 3, we show the structure of a divacancy
VCVSi in 3C-SiC, where the carbon vacancy VC and silicon
vacancy VSi are placed along the z axis (z axis is along
the (111) direction). Similarly to the diamond NV−

center, a divacancy in 3C-SiC has the C3v point group
symmetry, and the divacancy in 3C-SiC induces sizable
distortions to the positions of nearby atoms. In particular,
the nearest neighboring carbon atoms shift away from the
silicon vacancy VSi, making the distance dC−C between
nearest carbon atoms 3.298 Å, larger than the bulk value
of 3.096 Å. The positions of the nearest neighboring silicon
atoms show smaller distortions than carbon atoms. The
relaxed distance dSi−Si between nearest neighboring Si is
3.092 Å, close to the bulk value. DFT calculations within
GGA using PBE functional show a spin-polarized ground
state with a magnetic moment of 2µB per each divacancy.
We show the isosurface of the net spin charge density
|ρ↑(r) − ρ↓(r)| in Figure 3(b), which also demonstrates
the C3v symmetry of the system. The spin density is
mostly localized at the neighboring carbon atoms and has
the symmetry of p orbitals.

Next, we investigate the electronic structure of 3C-SiC
divacancy in terms of the single-quasiparticle energy levels.
A divacancy VSiVC in 3C-SiC creates six dangling bonds,
which form 6 defect states per each spin channel within
this limited Hilbert space. These localized defect states
are classified into either the non-degenerate a1 states or
doubly-degenerate e states according to their symmetry
properties. To identify all the localized states from our
full calculation, we evaluate the inverse participation ratio
(IPR), defined as IPR =

∫
|φ(r)|4d3r, for states φ(r); a

larger IPR is an indication that φ is more localized in
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real space. As shown in Figure 4 (a), we plot the IPRs of
states close to the band gap from a DFT-GGA calculation
using a supercell of 998 atoms and a Γ-point sampling.
The states inside the shaded region have IPRs ranging
from ∼ 10−5 to 8× 10−5 and are recognized as localized
defect states. We identify one a1 state and two pairs
of e states, which are labelled as 1eσ = {1eσx , 1eσy} and
2eσ = {2eσx , 2eσy} according to their energy ordering, for
two spin channels σ =↓, ↑. Two more a1 states are located
out of the plotting range and mixed with valence bands.
Conforming with previous group-theory analysis65, our
results show that e states have higher energies than the
a1 state. Among all localized defect states identified, the

spin-down a↓1 state and the spin-up 1e↑ states are located
deep inside the band gap, while the others are located
either below the VBM or above the CBM as resonances.

In addition to these localized defect states, we also find

a pair of spin-down states, denoted as X↓1 and X↓2 , display
large IPRs that are one order-of-magnitude larger than
typical extended bulk states, as shown in Figure 4 (a). X1

and X2 are close to CBM and show strong hybridization
between spin-down 1e↓ and conduction bands. We plot
the isosurface of the charge density of selected defect states
in Figure 4 (b). One can clearly see that the hybridization
makes the 1e↓ states more delocalized in real space than

a↓1 and 1e↑, which are inside the band gap and have minor
hybridization with bulk states.

We obtain a deeper understanding on the nature of

states X↓1 and X↓2 by computing the matrix elements
〈φ1|R|φ2〉 =

∫
Ωcell

φ∗1(r)Rφ2(r)d3r, where R = |r| is the

distance to the center of a divacancy and Ωcell is the real-
space domain of a supercell. We find the expectation value
〈φ|R|φ〉 is an intuitive measure to distinguish localized and
extended states. Related measures were also used66,67

in the literature. A larger expectation value 〈φ|R|φ〉
suggests that φ(r) is more extended in real space. We find

〈X↓1 |R|X
↓
1 〉 = 〈X↓2 |R|X

↓
2 〉 ≈ 14 Bohr, which is quite close

to 〈1e|R|1e〉 ≈ 12 Bohr. For comparison, the expectation
value of R for typical bulk states range from 18 to 22
Bohr, which is dictated by the size of the supercell used.
When then diagonalize the matrix 〈φ1|R|φ2〉 including
four states that are nearly degenerate within our DFT

calculations (i.e., the manifold of X↓1,2 and the two spin-

down 1e↓ states), we find two pairs of doubly degenerate
eigenstates. One pair of degenerate eigenstates has a
small expecation value of 〈R〉 = 6.5 Bohr and, apart
from the stronger localization, are very similar to the
two 1e↓ states. The remaining degenerate eigenstates
have a large expectation values of 〈R〉 = 19.6 Bohr and
their wavefunctions resemble that of the CBM at the X
point of bulk SiC. This strongly suggests that the two

X↓1,2 and two 1e↓ states are hybrid states made mostly
out of extended CBM states and localized defect orbitals,
respectively. These states are parts of the defect resonance
from two otherwise localized states if they were in the
gap; and there would be more X-like states (in the same
energy range) as the number of k-points are increase in

(a)

(b) spin down

a1
↓

1ex
↓

spin up

x

y

z

1ey
↓

1ex
↑

1ey
↑

a1
↑

Figure 4. (a) The inverse participation ratio for states close
to the Fermi energy; (b) The isosurface of sgn(φ(r))|φ(r)|2 of
aσ1 and 1eσ = {1eσx , 1eσy} states for two spin channels. Each
isosurface includes 50% of the charge density contributed by
the corresponding orbital.

the sampling in the supercell calculation.

In Figure 5 (a)-(c), we compare the energy levels near
the band edge of 4H-SiC divacancy, diamond NV− center,
and 3C-SiC divacancy, calculated within DFT with the
PBE functional. Clearly, the defect states associated with
low-energy and optically active transitions, such as the

a↓1 and e↓ of 4H-SiC divacancy and diamond NV− center,
are separated from bulk states, and the lowest-energy

single-particle transition is (a↓1 → 1e↓). In contrast to
4H-SiC and diamond, 3C-SiC has a much smaller band



5

gap, so it is not surprising to see hybridization between
certain localized defect states and bulk states, as discussed
before. As shown in Figure 5 (c), the DFT-PBE states
1e↓ are above the CBM and the lowest-energy band-to-

band transition of the 3C-SiC divacancy is (1e↑1 → CBM↑).
Compared to DFT-PBE results, the G0W0 approximation
increases the separations between deep defect states and
bulk states. In particular, states in the middle of band

gap, namely a↓1 and 1e↑, are further separated from the
VBM. Notably, G0W0 self-energy effects pushes 1e↓ lower
than the conduction bands.

We compute the imaginary part of dielectric function
ε2(ω) using the independent-particle approximation (with
the G0W0 state energies) and GW-BSE approach, as
shown in Figure 6 (a) and (b). Full relativistic effects
and spin-flipping optical transitions are not considered in
our calculations. To analyze the characters of low-energy
optical excitations of the 3C-SiC divacancy within our
formalism, we classify optical transitions according to the
characters of the electron and hole states involved in a
transition, as shown in Figure 6 (c). We define a subspace

D of defect states: D = {aσ1 , X
↓
1 , X

↓
2 , 1e

σ, 2eσ}, where
σ =↑, ↓ and all the other states are recognized as bulk
states. Under the non-interacting particle approximation
(using G0W0 energies), the lowest-energy excitation cor-
responds to the transition from 1e↑ to the CBM↑ with
the energy of 1.55 eV. The lowest-energy defect-to-defect

transitions (a↓1 → 1e↓) and (a↓1 → X↓1,2) are located at
1.67 eV and at 1.74 eV, respectively. Next, we perform
first-principles GW-BSE calculations and find that exci-
tonic effects lower the absorption edge to 1.06 eV, giving a
large exciton binding energy of 0.49 eV. Interestingly, the
calculated ε2(ω) in the low-energy range becomes smaller
with the inclusion of excitonic effects. This observation is
in stark contrast to common bulk or 2D materials, where
excitonic effects usually enhance the low-energy absorp-
tion peaks. The reason behind this contrasting behavior
is due to the different nature of the low-energy excitonic
states compared to independent-particle transitions. As
we discussed later, low-energy excitons have significant
contributions from transitions to bulk states of different
momenta,as finite-momenta transitions can mix with zero-
momentum transitions since translational symmetry in
SiC is broken due to the presence of a defect.

We also find the low-energy absorption spectra strongly
depend on the polarization direction e of the incident
light. As shown in Figure 6 (a), the single-particle transi-

tions (a↓1 → 1e↓) and (a↓1 → X↓1,2) show strong absorption

of transversely polarized light (e = [1, 0, 0]), but become
dark for longitudinally polarized light (e = [0, 0, 1]). The
linear dichroism can be qualitatively explained by dipole
selection rules. Within the independent-particle approxi-
mation, the optical transition matrix element of a transi-
tion between a valence state v and a conduction state c
is proportional to |e · 〈v|v̂|c〉|2, where v̂ = v̂x + v̂y + v̂z
is the velocity operator. Since [v̂x, v̂x], [X↓1 , X

↓
2 ], and

1e↓ = [1e↓x, 1e
↓
y] transforms according to the e represen-

tation and a↓1 is fully symmetric under C3v group, the
matrix elements 〈1ex|v̂x|a1〉 and 〈1ey|v̂y|a1〉 are generally
non-zero, while 〈1ex|v̂z|a1〉 and 〈1ey|v̂z|a1〉 vanish accord-

ing to the dipole-selection rules. Consequently, (a↓1 → 1e↓)

and (a↓1 → X↓1,2) transitions are bright under transversely
polarized light as we observed in independent-particle-
approximation calculations. Similarly, when we solve the
BSE, we observe that the lowest-energy excitons between
1.0 and 1.3 eV are bright under longitudinal polariza-
tion but dark under transverse polarization. The optical
oscillator strength is contributed mainly by transitions
between defect states.

We analyze our results including electron-hole inter-
actions by writing each excitonic state |S〉, within the
Tamm-Dancoff approximation, as a linear combination of
electron-hole pairs

|S〉 =

hole∑
v

elec∑
c

ASvc|v〉|c〉,

where v, c, and S are the index for occupied, unoccupied,
and excitonic states, respectively. And ASvc are the eigen-
vectors of the BSE and satisfy the normalization relation∑

vc |ASvc|2 = 1.

The decomposition of excitonic states into different
characters are shown in Figure 6 (d), where the length
of each colored vertical lines at energy ω is the weight of
the corresponding type of single-particle transition of the
excitons within an energy range [ω− δ/2, ω+ δ/2], where
δ = 0.02 eV. For example, the length of red lines is the
weight of defect-to-defect transitions, defined as

wdefect→defect(ω)

=

∫ ω+δ/2

ω−δ/2
∑
S

∑
v,c∈D δ(E − ΩS)|ASvc|2dE∫ ω+δ/2

ω−δ/2
∑
S δ(E − ΩS)dE

where defect states D are defined before and ΩS are the
energy of excitonic states |S〉. For low-energy excitons
below 1.3 eV, the dominant characters are defect-to-bulk
transitions, such as (1e↑ → CBM↑), mixed with a small
amount of defect-to-defect transitions. Some of the ex-
citons between 1.3 to 1.8 eV have large components of
defect-to-defect transitions. For excitons with energies
ranging from 1.8 to 2.6 eV, transitions involving bulk
states are dominant. We note that the bulk-to-bulk tran-
sitions contributing to low-energy excitons (less than 2.6
eV) originate from indirect transitions between a valence
electron at Γ and an unoccupied state at the X point of
the BZ in pristine 3C-SiC. These bulk-to-bulk transitions
have negligible contributions to the optical transition
matrix elements.

The zero-phonon line of 3C-SiC divacancy corresponds
to the excitation from ground state 3A2 to the first spin-
triplet excited state 3E6. Within the single-particle termi-
nology, this excitation corresponds roughly to promoting

an electron from a↓1 to 1e↓. In Table I, we compare the
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Figure 5. Single particle energy levels of (a) diamond NV− (b) 4H-SiC kk divacancy (There are two different lattice sites ,
namely, the hexagonal and cubic sites in 4H-SiC. And “kk divacancy” means both VSi and VC are located at cubic sites.) (c)
3C-SiC divacancy calculated with a DFT-PBE approach. (d) Defect energy levels of 3C-SiC divacancy calculated with G0W0

approximation. Horizontal lines represent localized defect states and grey shaded areas are extended bulk states.
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Figure 6. Imaginary part of frequency-dependent dielectric functions (absorption spectra) of a 3C-SiC divacancy calculated with
(a) independent particle approximation with the G0W0 energies and (b) GW-BSE approach. The defect is modelled with a
998-atom supercell and a Gaussian smearing of 0.035 eV is used for the calculation of delectric function. Characters of optical
excitations calculated with (c) independent particle approximation with the G0W0 energies and (d) GW-BSE approach. Note
that a vertical line in (c) and (d) may correspond to several optical excitations.

components of the a↓1 → {X
↓
1,2, 1e

↓} transitions in se-
lected excitons. The excitons at 1.33, 1.43, 1.49 eV have

large contributions from (a↓1 → 1e↓) and (a↓1 → X↓1,2)
transitions. Our analysis also shows that, while the
lowest-energy exciton at 1.06 eV only has a small fraction

of a↓1 → {X
↓
1,2, 1e

↓} transitions, its oscillator strength
mainly originates from these defect-to-defect transitions.
The electron-hole interactions tends to reduce the defect-
to-defect character of the lowest-energy exciton. Such
a reduction of the defect-to-defect characters makes an

exciton optically weaker compared to low-energy defect-
to-defect transitions computed within the independent-
particle picture. We plot the wave function ΨS(re, rh)
of the lowest-energy exciton in Figure 7, with the hole
position rh kept at the center of a divacancy. Despite
the significant contributions from conduction states with
extended features, the exciton wave function is still highly
localized near the divacancy, showing the symmetry of
1e↓ states.

We compare the vertical transition energy and zero-



7

Table I. Excitons with large contributions from single-particle
transitions from a↓1 to {X↓1 , X

↓
2 , 1e

↓}.

Exciton
energy

ΩS (eV)

|ASvc|2
c = X↓1
v = a↓1

c = X↓2
v = a↓1

c = 1e↓x
v = a↓1

c = 1e↓y
v = a↓1

1.06 0.02 0.02 0.03 0.07
1.11 0.07 0.00 0.04 0.00
1.14 0.00 0.08 0.00 0.02
1.33 0.13 0.19 0.04 0.08
1.43 0.21 0.03 0.16 0.00
1.49 0.03 0.15 0.06 0.15
1.59 0.02 0.05 0.06 0.06
1.80 0.09 0.04 0.12 0.04
1.84 0.02 0.08 0.03 0.12

Figure 7. The lowest-energy exciton wave function ΨS(re, rh),
where re and rh are the electron and hole coordinates, respec-
tively. rh is fixed at the center of a divacancy, shown as a red
cross here.

phonon line of 3C-SiC divacancy estimated with con-
strained DFT (cDFT) and first-principles GW-BSE ap-
proaches, as shown in Table II. We performed cDFT
calculations in two different excited-states configurations.

The first cDFT calculation depopulates a↓1 and popu-

lates one of X↓1,2 states. In this calculation, our result
underestimates the zero-phonon line by around 0.17 eV.
Incidentally, the first cDFT and GW-BSE calculations
yield the same vertical excitation energy. For the second
cDFT calculation, we set the excited-states configura-

Table II. Comparisons between calculated excitation properties
and experiment.

Properties (eV)
cDFT

a↓1 → X↓1,2

cDFT
|0〉 → |S0〉

GW-BSE Expt.6

Anti-Stokes Shift 0.095 0.09 - -
Stokes Shift 0.11 0.05 - -
Vertical Excitation 1.06 1.17 1.06 -
Zero-phonon line 0.95 1.12 1.01 1.12

tion according to the lowest exciton |S0〉 of 1.06 eV, such
that the occupation of an originally occupied state |v〉 is
changed to 1.0−

∑
c |AS0

vc |2, while that of an unoccupied
state |c〉 is set to

∑
v |AS0

vc |2. In the second cDFT calcula-
tion, we find a zero-phonon line of 1.12 eV, which agrees
well with the experimental data6. We also find a smaller
Stokes shift energy of 0.05 eV, which is smaller than the
first cDFT calculation. Such a smaller Stokes shift is
due to the large contribution from conduction bands to
the exciton wave function. Since the conduction bands
are more delocalized in real-space, they tend to induce
smaller atomic distortions to atoms near a divacancy than
localized defect states and therefore a smaller Stokes shift.
Combining the Stokes shift energy of 0.05 eV from the
second cDFT calculation and exciton energy 1.06 eV, we
get an ZPL energy 1.01 eV, which slightly underestimates
the experimental value by 0.11 eV.

Finally, we note that, while current many-body pertur-
bation theory approaches cannot be rigorously performed
on degenerate ground states, as is the case with an open-
shell system, spin-preserving neutral excitations energies
are typically well-described in such systems like diamond
NV− center by GW-BSE calculations68. However, in or-
der to accurately capture neutral excitations that involve
a change in the total spin, one needs to resort to alterna-
tive techniques, such as a full configuration-interaction
calculations based on model systems or parameterized
extended Hubbard models29 may provide a more faithful
descriptions.

IV. CONCLUSIONS

We performed large-scale G0W0 and GW plus Bethe-
Salpeter equation calculations for 3C-SiC divacancy, an
emerging candidate for physical implementation of solid-
states qubit. In contrast to the diamond NV− center and
the 4H-SiC divacancy, where the deep defect levels are
well separated from bulk states, our GW calculations show
the optically active spin-down e states are only 0.1 eV
below the extended bulk states. Such a small separation
lead to the emergence of excitons composed of transi-

tions between defect-to-defect (a↓1 → 1e↓), defect-to-bulk,
and bulk-to-bulk transitions. Our independent-particle
approximation and GW-BSE calculations show that the
calculated absorption spectra display strong linear dichro-
ism near the absorption edge, which is explained with
dipole selection rules. Through GW-BSE calculations, we
show that the lowest exciton has a large binding energy
of 0.49 eV and observe that electron-hole interactions
decrease the optical weight of the lowest-energy exciton.
Substantial contribution from bulk states are observed
in low-energy excitons, indicating the importance of bulk
states in the understanding the optical properties of 3C-
SiC divacancy. Finally, we estimate the zero-phonon
line using cDFT and GW-BSE methods and obtain good
agreement with the experimental value.
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