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Abstract 

 
A multicomponent model that imposes conservation laws and constitutive relations for polymer chains, 
water, and ions was investigated by determining the transient changes in a negatively charged gel 
exposed to a solution containing both mono- and divalent cations. Association of ion exchange with gel 
volume is achieved by imposing a linear relation between the polymer-solvent interaction parameter 
and concentration of divalent cations adsorbed onto the polymer chains. Semi-quantitative agreement 
with measurements made on sodium polyacrylate gels is demonstrated in three aspects: (1) dynamics 
of gel swelling and deswelling, (2) ion partitioning coefficient, and (3) effect of crosslink density. These 
results imply that the multicomponent coarse-grained continuum modeling approach can be useful for 
quantitative predictions over macroscopic length and time scales including the description of volume 
transitions exhibited by these systems. 

 

1 Introduction 
 

Polyelectrolyte hydrogels are soft, complex media made of charged crosslinked 
macromolecules, solvent, and counter and co-ions organized in clouds around the polymer 
chains. The various competing forces (mechanical, electrical, osmotic, and chemical) give rise to 
a rich behavior over multiple time and length scales [1]. A steep and reversible change in volume 
can sometimes be observed in response to minute changes of environmental conditions, such as 
temperature, ionic composition, solvent quality, pH, and electric field [2]. This phenomenon was 
identified in living systems [3–5], and is also widely used in various man-made applications, such 
as sensors, actuators, and drug-delivery devices  [6,7].  

 
Many of these volume transitions occur at time and length scales that are typically larger 

than ∼1 millisecond and ∼1 micrometer, respectively [5,6]. Atomistic and coarse-grained 
molecular dynamic (MD) models, while powerful and detailed, are limited in their ability to be 
extended to the steady state or equilibrium regimes needed to describe these processes. The 
time and length scales simulated by such MD models are usually no more than ∼100 𝜇s and ∼100 
nm, respectively, and require high-performance computing [8]. Continuum models, on the other 
hand, can describe such systems over macroscopic time and length scales with a lower 
computational overhead. The mean-field simplification, however, comes at a price. Upon taking 
the continuum limit we might disregard important properties or features of the system. For 
instance, distinguishing the fluid-like characteristics of the solvent vs. the solid-like response of 
the polymer network. Therefore, considerations must be given to the form of the conservation 
and constitutive laws that define the relationships between and among the macroscopic 
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variables of the system. A promising continuum approach to model the dynamics of gels 
interacting with their environment is the multicomponent formalism, which distinctively treats 
the polymer network, solvent, and ions as separate entities. These models are based on 
traditional continuum-mechanics principles but maintain certain distinct features for each 
component; e.g., separate chemical potential expressions for the polymer network, solvent, and 
ions [9–18].  
 

In this article we model an anionic polyelectrolyte hydrogel exposed to new ionic 
environment containing a mixture of monovalent and divalent cations, a common situation in 
multiple biological systems [5]. Many experiments have been performed to characterize 
equilibrium properties of gels exposed to different ionic environments, both in synthetic [19–25] 
and biogels [26–29]. It was previously demonstrated that the ionic environment influences 
multiple properties of the system, including equilibrium gel volume [19,26], ion partitioning 
coefficient  [5], electric potential difference [30,31], elastic modulus of gel [32], mobility of 
solvent and ions within the gel [33], and the mean interaction between the polymer segments 
and solvent [20,34]. The latter implies that an ion-dependent Flory interaction parameter plays 
an important role in determining the equilibrium state of the system. 

 
Indeed, a small change in the concentration of divalent cations can lead to a steep 

transition in the equilibrium state through the effect on the ion-dependent Flory interaction 
parameter [35,36]. In many applications, including in biological systems however, transient 
changes are just as important as the steady state behavior. Mucus, DNA, and pectin are examples 
of negatively charged biopolymers undergoing analog abrupt transitions when exposed to 
different mono- and divalent cations, and their dynamic response to the ionic environment is 
believed to play an important functional role in vivo [5]. Furthermore, models with capabilities 
for predicting both dynamic and equilibrium behaviors are critical for describing the behavior of 
mechano-chemical actuators and sensors, drug delivery systems, polymer-based MEMS, and in 
various biomedical and tissue engineering applications [7]. However, only few attempts have 
been made to connect added salt to the polymer-solvent interaction parameter and the induced 
transient response of the polymer chains [37]. 

 
The purpose of this paper is to demonstrate that a relatively simple multicomponent 

continuum model captures multiple transient and equilibrium aspects – that are potentially 
universal – of a polyelectrolyte gel model. The important feature in the model is a linear relation 
between the Flory interaction parameter and concentration of adsorbed divalent cations onto 
the polymer chains. We demonstrate that using this simple relation is sufficient to obtain semi-
quantitative results that agree with measurements made on a polyelectrolyte gel model (sodium 
polyacrylate). Compatibility is achieved in three aspects: (1) dynamics of gel swelling and 
deswelling, (2) ion partitioning coefficient, and (3) effect of crosslink density. 
 
2 Model Description 
 

The model under consideration was originally developed by Keener, Fogelson, and co-
workers, and is described in detail in the Supplementary Material section S1 [38] as well as in 
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Ref. [36]. In brief, the polyelectrolyte hydrogel is treated as a multicomponent medium that 
includes the polymer network, solvent, and small molecular ionic species. The states of the 
polymer network and solvent are described by their volume fraction and velocity 
fields, 𝜃𝑛(𝑟, 𝑡), 𝑣𝑛(𝑟, 𝑡) and 𝜃𝑠(𝑟, 𝑡), 𝑣𝑠(𝑟, 𝑡), respectively (equations S1—S6 [38] that account for 
the conservation of mass and momentum as well as the volume-averaged incompressibility 
constraint). A common assumption is that other particle species do not contribute significantly 
to the local volume because they have a comparatively low concentration. The polymer building 
blocks (monomers) are either neutral or negatively charged, while the solvent is assumed to be 
electrically neutral. Counter- and co-ions are described by concentration fields, 𝑐𝑗(𝑟, 𝑡). We use 

a minimal Ansatz that includes hydrogen, hydroxide, sodium, chloride, and calcium ions, 𝑗 =
𝐻+, 𝑂𝐻−, 𝑁𝑎+, 𝐶𝑙−, 𝐶𝑎2+, respectively. The interaction between the cationic species 
(𝐻+, 𝑁𝑎+, 𝐶𝑎2+) and the polymer network is captured by crudely dividing each ionic group into 
two subgroups: one subgroup describing adsorbed ions that are strongly interacting with charged 
monomers (𝑏𝑘, 𝑘 = 𝐻, 𝑁𝑎, 𝐶𝑎, 𝐶2 (which stand for 𝐻𝑀, 𝑁𝑎𝑀, 𝐶𝑎𝑀+, 𝐶𝑎𝑀2, respectively), 
where 𝐶2 denotes the population of calcium ions paired with two adsorbing monomers [39]), 
and the second subgroup describing free ions that experience negligible interacting with the 
polymer chains (𝑐𝑗). Although the mathematical formalism we use (law of mass action, equations 

S7—S8 [38]) is typically associated with chemical reaction kinetics, the adsorption process 
considered here does not involve a chemical synthesis of the ion and monomer. Rather, by 
adsorbed ions we mean ions that are localized (on average) in a compact cloud around the 
polymer chains (thickness is less than the effective Debye screening length in the solution) [27]. 
Nevertheless, the mathematical formalism of the law of mass action serves as a useful 
approximation, which captures, for instance, the rate of exchange between adsorbed and free 
ions. Variables of the system are summarized in table 1 along with the corresponding 
conservation laws (equations S1—S8 and S23 [38]).  
 

Variable name Variable Equation description Equation 
number 

Polymer volume fraction 𝜃𝑛 Polymer conservation of mass  S2 

Polymer velocity field 𝑣𝑛 Polymer conservation of momentum  S3 

Solvent volume fraction 𝜃𝑠 Solvent conservation of mass  S4 

Solvent velocity field 𝑣𝑠 Solvent conservation of momentum  S5 

Pressure 𝑝 Volume-averaged incompressibility 
constraint  

S6 

Concentration of adsorbed ion 𝑗 𝑏𝑗 Adsorbed ion conservation of mass  S7 

Concentration of free ion 𝑗 𝑐𝑗 Free ion conservation of mass  S8 

Electric potential field ϕ𝑒 Electroneutrality constraint S23 
Table 1: list of model variables and corresponding conservation laws [38]. 

 
Additional equations include constitutive relations for the polymer network, solvent, and 

ions. In particular, the forces acting on the polymer network are derived from the stress tensor 
(equations S9) and from the free energy of the material. The latter is described as a linear sum of 
the entropic, elastic, short-range interactions, and electrostatic contributions (equations S11-
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S15). The form of the entropic potential is derived by a mean field argument after counting 
configurations of particles on a lattice. The original derivation of the model [36] assumes that all 
particles (monomers, solvent, ions) can be placed on the same lattice. However, even if we 
assume that the monomers are of much larger size than ions and solvent molecules, the final 
entropy potential acting on the system is unchanged [40]. 

 
The novel aspect of this model – which distinguishes it from other multicomponent 

models [9–18] – is the assumption that the phenomenological short-range polymer-solvent 
interaction parameter, namely, the Flory parameter is modified by adsorption of divalent cations 
onto the polymer chains. An ion-dependent Flory parameter was previously demonstrated in 
various polyelectrolyte gels [20,34]. However, the detailed relation remains unclear. Following 
Keener, Fogelson, and colleagues  [36] we consider the simplest, namely, a linear dependence of 
Flory parameter on local concentration of doubly adsorbed calcium ions:  

𝜒(𝑏𝐶2) = 𝜒0 + 𝜒1(𝑏𝐶2),            𝜒1 ∝ 𝑏𝐶2,      (1) 
(see equations S17-S18 for more details).  
 

An elastic term was not considered in Keener and Fogelson’ previous works. Here we use the 
Flory-Rehner model, which accounts for crosslinking between the polymer chains to prevent 
infinite dilution (equation S13)  [41]. The forces acting on the solvent are described by its stress 
tensor (equation S10) and entropic and short-range interaction expressions (equation S20). 
Forces acting on the ions include entropy (diffusion), electrostatic interactions (equation S22), 
and the ability of cations to adsorb onto the polymer chains (equations S7 and S8). 

 
The system of equations (equations S2—S8 and S23) is solved in one spatial dimension using 

the finite difference numerical technique, which is described in detail in Ref. [37]. In brief, a 
closed container is represented by imposing no-flux boundary conditions for all species and zero 
Dirichlet conditions for both velocity fields. At each time step we solved the equations in the 
following order:  

1. Given ionic concentrations (𝑐𝑗 and 𝑏𝑘, 𝑗 = 𝐻+, 𝑁𝑎+, 𝐶𝑎2+, 𝑂𝐻−, 𝐶𝑙− and 𝑘 =

𝐻, 𝑁𝑎, 𝐶𝑎, 𝐶2, electric potential gradient (∂xϕ𝑒), and volume fractions (𝜃𝑎 , 𝑎 = 𝑛, 𝑠), we 
evaluate the chemical potential gradients 𝜕𝑥𝜇𝑎and 𝜕𝑥𝜇𝑗. 

2. Given the chemical potential gradients (𝜕𝑥𝜇𝑎, 𝜕𝑥𝜇𝑗), we solve the force-balance equations 

to determine the network and solvent velocities (𝑣𝑎).  
3. For the respective velocity fields, we solve the continuity equations and update the 

solvent and network volume fractions (𝜃𝑎).  
4. The transport velocities and volume fractions (𝑣𝑎 and 𝜃𝑎) are used to evolve the ionic 

concentrations while simultaneously solving for a new electric potential gradient 
(𝑐𝑗 , 𝑏𝑘, 𝜕𝑥ϕ𝑒). 

 
A dimensionless form of the equations is given in the Supplementary Materials section 

S2 [38], along with characteristic length and time scales, and dimensionless variables. The 23 
dimensionless parameters of the model are described in the Supplementary Materials section 
S3 [38]. All the parameters describe quantities that have well-defined physical meaning and can 
be independently measured, in principle. They are required for a realistic treatment of a system 
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of this complexity, and generally appear in other multicomponent models [9–18]. The list of 
parameters includes diffusion coefficients for 5 ionic species, adsorption and desorption rates for 
3 types of cations, viscosity of solvent and polymer network, drag coefficient between the solvent 
and network, elastic modulus of polymer network, average chain length, fraction of charged sites 
on polymer chains, coordination number, 4 parameters governing the short-range pairwise 
interaction energies, and system size (table S1 in the Supplementary Material  [38]).  

 

Important length scales are the averaged particle size, 𝜈1/3 (𝜈 is the particle volume), the size 

of the gel, ℓ ≫ 𝜈1/3, and the total size of the system (gel + bath), 𝐿. Relevant time scales include 

the characteristic time of diffusion of the solvent, 𝜏𝑤 =
ℓ2

𝐷𝑤
, the characteristic time of ion 

adsorption 𝜏𝑘𝑗
+ =

1

𝑘𝑗
+𝑐𝑗

 and characteristic time of ion desorption 𝜏𝑘𝑗
− =

1

𝑘𝑗
−. Here, 𝐷𝑤 is the solvent 

diffusion coefficient, and 𝑘𝑗
+ and 𝑘𝑗

− are the adsorption and desorption coefficients of ion 𝑗 to 

the polymer chain, respectively.  
 

3 Results and Discussion 
 

To illustrate the competition between mono- and divalent cations and how their relative 
concentrations affect the dynamics of gel swelling, we numerically solve the dimensionless model 
equations (equations S29—S32, S41—S44 [38]) for a one-dimensional partially dry gel immersed 
in a solution containing sodium, calcium, and chloride ions with a specific pH. Figure 1a shows 
the initial profile of the polymer network volume fraction as a function of the spatial coordinate 
𝑥 normalized by the length of the total domain, 𝐿. The region with appreciable network fraction 
(𝜃𝑛 = 0.5) at the left side of the domain (𝑥/𝐿 < 0.15) represents the initial gel region. The rest 
of the domain (0.15 < 𝑥/𝐿) is the external bath solution, containing 0.3 mM CaCl2, 40 mM NaCl, 
and pH=7. 

 
Figure 1: Polymer network volume fraction as a function of the 1D spatial coordinate x. (a) At initial state, 
the polymer charged groups are neutralized with sodium ions and the solvent contains 40 mM NaCl, 0.3 
mM CaCl2 at pH = 7. (b) volume fraction profile of the polymer network at a non-equilibrium instance 
(t/τw=1.2). (c) volume fraction of the polymer network profile at equilibrium (t/τw>20). Model parameters 
are listed in section S3 of the Supplementary Material  [38]. 

As time evolves, solvent and ions diffuse in and out of the gel, leading to gel swelling. Figure 2b 
depicts a typical profile of 𝜃𝑛 at an intermediate time when the system is not in equilibrium with 
its environment. For a 1 𝜇m gel size, 𝜏𝑊 ~ 0.1 − 1 𝑠, while for a 1 mm gel size 𝜏𝑊 ∼ 10 − 100 

minutes. After sufficient time (
𝑡

𝜏𝑊
> 20) the system effectively reaches equilibrium. An 

equilibrium profile of  𝜃𝑛 is shown in figure 1c. Movie S1 shows the development of 𝜃𝑛(𝑥, 𝑡) from 

(a) (b) (c)

Gel Solvent Gel Solvent Gel Solvent

t/τ = 0w t/τ = 1.2w
t/τ = 46w
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initial state until an equilibrium is reached. It should be noted that although the movie shows 
oscillations at the gel-solvent interface, these are not physical oscillations. Rather, this is a well-
known numerical artifact, arising from using a Lax-Wendroff second order discretization of 
advection on problems that exhibit sharp interfaces [42]. 
 

The degree of swelling of the gel is defined as the ratio of the instantaneous gel volume to 
its volume in the dry state. For a 1D system we approximate the gel volume by calculating its 
cubed size at each instance of time, an approximation based on length-scale argument. Since the 
left edge of the cell is fixed at 𝑥 = 0, the gel size is calculated by identifying its right edge, 

𝑥𝑒𝑑𝑔𝑒(𝑡); i.e., the point where 𝜃𝑛 decreases below a certain value of choice (denoted as 𝜃𝑛
𝑐𝑟𝑖𝑡). 

Here, we use the condition 𝜃𝑛
𝑐𝑟𝑖𝑡 = 0.1 to estimate the right edge of the gel. For instance, in 

figure 1a the right edge of the gel is found at 𝑥𝑒𝑑𝑔𝑒/𝐿 = 0.15, while in figure 1c it is located at 

𝑥𝑒𝑑𝑔𝑒/𝐿 ≈ 0.42. The gel volume in the dry state is estimated by calculating its boundary if the 

entire volume of gel was at volume fraction 1. For the scenario considered in figure 1, 𝑥𝑒𝑑𝑔𝑒
𝑑𝑟𝑦

/𝐿 =

0.075. Accordingly, the instantaneous degree of swelling of the gel is calculated using the 
relation: 

𝑉

𝑉0
≈ [

𝑥𝑒𝑑𝑔𝑒(𝑡)

𝑥𝑒𝑑𝑔𝑒
𝑑𝑟𝑦 ]

3

   (2) 

 
Figure 2a shows the estimated degree of swelling of the gel as a function of time for 

different values of initial CaCl2 concentration in the external bath solution. Below a certain 

calcium concentration, 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 ≤ 𝑐0 (≈ 0.5 mM in the given example) the gel swells until it reaches 

equilibrium. Gel swelling results from the balance of forces, which favors network expansion at 
low adsorbed calcium concentration. The characteristic time scale of gel swelling is 𝜏𝑤.  
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Figure 2: (a) Degree of swelling as a function of time for different initial CaCl2 concentrations in the 
solution. Model parameters are listed in section S3 of the Supplementary Material  [38]. (b) Calculation 
of the equilibrium degree of swelling as a function of initial CaCl2 in the salt solution. Grey area indicates 
the region of volume transition. (c) Measured data showing the degree of swelling of sodium polyacrylate 
(NaPA) gels as a function of dimensionless time. (d) Equilibrium degree of swelling of NaPA gels measured 

after 5 days (
𝑡

𝜏𝑤
= 360).  

A significantly different swelling response is observed when the initial CaCl2 concentration 
in the external bath solution exceeds 𝑐0. In this case, after a transient time of gel swelling the gel 

gradually deswells until reaching an equilibrium state. For intermediate values, 𝑐0 < 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 < 𝑐1, 

(𝑐1 = 1.5 𝑚𝑀 in the above example) the equilibrium state of the deswollen gel is not fully 

collapsed, and for 𝑐1 ≤ 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 the gel expels most of the water and collapses almost completely 

(degree of swelling lower than 5). This is shown in figure 2a and Movie S2. For high calcium 

concentration (1.9 𝑚𝑀 ≤ 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 in the above example) we were unable to reach equilibrium 

because the solvent fraction within the gel approached 0. In such a scenario, the equations of 
motion become nearly singular. Small amounts of numerical error can lead to 𝜃𝑠 < 0, which causes 
a severe numerical instability. This is a well-known limitation of Eulerian numerical treatments of 
two-phase models [43]. Furthermore, the apparent unphysical decrease in polymer volume 
fraction at 𝑥 = 0 arises because the simulation is not resolving the large potential gradients 
between the first few grid points near the boundary. Because of the no flux boundary condition 
at the left, the collapse forces at the gel interior (two grid points from the boundary) pull the 
network from the grid point immediately next to the boundary into the second grid point. More 
sophisticated numerical treatments could potentially avoid these issues. 

 
The deswelling process is attributed to the adsorption of calcium ions onto the 

polyelectrolyte chains which modifies the Flory interaction parameter. The rate of this process 

(a) (b)

(c) (d)
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depends on the adsorption coefficient 𝑘𝐶𝑎
+ , associated with a characteristic time scale 𝜏𝐶𝑎 =

1

𝑘𝐶𝑎
+ 𝑐𝐶𝑎

𝑖𝑛𝑖𝑡. Indeed, the duration of the deswelling process decreases as the initial concentration of 

calcium in the solution increases (figure 2a). In the present work 𝜏𝐶𝑎 ∼ (1 − 10)𝜏𝑊.  
 

The equilibrium degree of swelling was calculated at 
𝑡

𝜏𝑊
= 300, and is shown as a function 

of the initial CaCl2 concentration in figure 2b. A gradual decrease in the degree of swelling is 

obtained for 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 < 𝑐0. Between 𝑐0 < 𝑐𝐶𝑎

𝑖𝑛𝑖𝑡 < 𝑐1, a steeper decrease in the degree of swelling is 

found. At 𝑐1 < 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 the gel is fully collapsed. 

 
Figure 2c shows swelling measurements made on cubic sodium polyacrylate (NaPA) gels 

starting from an initial dry state with an edge size of 1—1.5 mm3. Gel preparation and 
measurement process are described in detail in Ref.  [24]. The gel was immersed in a solution 
containing 40 mM NaCl, a varying amount of CaCl2, and pH=5.5. Here, 𝑞 is estimated by 
measuring the gel mass normalized by the mass of the dry gel, which is approximately the degree 
of swelling of the gel, 𝑉/𝑉0. Time axis is normalized using 𝜏𝑊=20 minutes, estimated from the 
initial gel size and water diffusion coefficient. The resemblance of figures 2a and 2c is evident by 
the qualitative gel response (significant swelling followed by deswelling), and the similarity of the 
order of magnitudes of both the degree of swelling and time.  Figure 2d shows the equilibrium 

value of NaPA gels measured after five days (
𝑡

𝜏𝑊
= 360). The volume transition model calculation 

resembles the experimental data in both shape and scale. Comparable equilibrium response was 
found also in biogels made of DNA chains [28]. This is an indication that qualitatively similar 
structural features can be identified in various polymer systems despite important differences, 
such as chain flexibility and chemical composition. 
 

To gain a deeper understanding on the swelling process, we investigate the dynamic 
behavior of the Flory interaction parameter. The dimensionless parameter 𝜒(𝑥, 𝑡) describes the 
degree of segregation between the polymer network and solvent and depends linearly on the 
local concentration of adsorbed calcium ions, 𝑏𝐶2(𝑥, 𝑡) (equation S17) [36,37]. To analyze its 
dynamics during the swelling/deswelling processes, we calculate the mean value of the 

interaction parameter within the gel, 𝜒̅ =< 𝜒 >𝑥

𝐿
<0.0125=

1

0.0125𝐿
∫ 𝜒𝑑𝑥

0.0125𝐿

0
. Figure 3a shows 

the evolution of 𝜒̅ over time for different values of the initial calcium concentration in the 

external bath solution. For 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 < 𝑐1, the interaction parameter remains smaller than the mean-

field prediction of the theta-solvent (𝜒𝜃 =
1

2
) through the entire gel swelling process. By 

adsorbing calcium ions onto the polymer network the effective interaction parameter increases, 

leading to gel deswelling. Once 
1

2
< 𝜒̅, the effective interactions between the gel segments are 

as if they are in poor solvent conditions, leading to phase separation between the polymer 

network and solvent. This expected behavior matches the results of figure 2a when 𝑐1 < 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡. 

At high concentration of calcium in the external bath solution (1.9 mM ≤ 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡) the calculation 

did not reach an equilibrium value of 𝜒̅ because of the numerical instability arising when 𝜃𝑠 
approaches 0.  
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Figure 3: (a) transient change of the Flory-like interaction parameter averaged within the gel interior (x/L<0.0125) as 
a function of time for multiple values of the initial calcium concentration in the external bath solution, 𝑐𝐶𝑎. (b) 
Equilibrium values of the interaction parameter as a function of 𝑐𝐶𝑎. Grey region indicates the region of volume 
transition. Dashed black line is a linear fit to data: 𝜒̅ = 2.9[𝐶𝑎𝐶𝑙2]2 +  2.34[𝐶𝑎𝐶𝑙2] − 11.48. 

Figure 3b plots the equilibrium value of the average interaction parameter as a function 

of 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 (plotted for 𝑐𝐶𝑎

𝑖𝑛𝑖𝑡 < 1.9 𝑚𝑀). A quadratic fit to data (dashed black line in figure 3b) yields 

𝜒̅ = A2(𝑐𝐶𝑎
𝑖𝑛𝑖𝑡)

2
+ A1𝑐𝐶𝑎

𝑖𝑛𝑖𝑡 + A0 = 2.9(𝑐𝐶𝑎
𝑖𝑛𝑖𝑡)

2
+  2.34𝑐𝐶𝑎

𝑖𝑛𝑖𝑡 − 11.48. The fit excludes results at 

high calcium concentration that did not reach equilibrium.  The observed increase of interaction 
parameter is consistent with previous measurements reported for NaPA gels, where analysis of 
osmotic pressure measurements indicated that the Flory-Huggins interaction parameter exhibits 
a continuous increase with increasing calcium concentration in the external bath solution [24]. 
An analogy may be drawn from the typical dependence of the interaction parameter on 

temperature, 𝜒 =
𝐴

𝑇
+ 𝐵, where calcium ion concentration replaces the role of inverse 

temperature [25].  
 

We now turn to the analysis of the ion partitioning coefficient of the gel in the 
multicomponent fluid model. The ion partitioning coefficient is defined as the ratio of ion 
concentrations within the gel interior to the external bath solution  

𝑃𝑗 =
𝑐𝑗

𝑔𝑒𝑙

𝑐𝑗
𝑠𝑜𝑙  .    (3) 

We define the calcium concentration within the gel to be a spatial average over its entire domain 

(𝑐𝐶𝑎
𝑔𝑒𝑙

=< 𝑐𝐶𝑎 >𝑥<𝑥𝑒𝑑𝑔𝑒
). Similarly, we estimate the calcium concentration within the solvent by 

averaging over a region well away from the gel (𝑐𝐶𝑎
𝑠𝑜𝑙 =< 𝑐𝐶𝑎 >0.99<

𝑥

𝐿
). The calcium partition 

function is calculated and plotted as a function of time in figure 4a for different values of initial 
calcium concentration in the external bath solution. Color code follows the legend of figure 3a. 
Interestingly, the calcium partition reaches an equilibrium value later than the degree of swelling. 

For example, at 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡 ≤0.9 mM the adsorption of calcium equilibrates at (80—100)𝑡/𝜏𝑊 while 

the degree of swelling equilibrates already at 10—20 𝑡/𝜏𝑊. For higher calcium concentrations 

(1.1 mM < 𝑐𝐶𝑎
𝑖𝑛𝑖𝑡) longer time is needed. This observation may be explained by the slower kinetic 

process of calcium ion adsorption as compared to solvent diffusion. 

(a) (b)
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Figure 4: (a) Partition of calcium ions as a function of time for different values of initial concentration of calcium in the 

external bath solution (color code similar to figures 2a and 3a). (b) Calcium ion partition as a function of 𝐾𝐶𝑎 (=
𝑘𝐶𝑎

−

𝑘𝐶𝑎
+ ) 

upon starting with 0.5 mM CaCl2 in the external bath solution (other parameters are similar to previous graphs). (c) 
Calcium (circles) and sodium (triangles) partition at last time-step of calculation (approximately “equilibrium”). (d) Ion 
partition coefficient measured for NaPA gels brought in equilibrium with an aqueous solution at pH = 5.5, containing 
40 mM NaCl, and different concentrations of CaCl2 [5]. 

 
Movies S3 and S4 display the time evolution of free and adsorbed sodium and calcium ions in 

the system upon starting with initial conditions of 0.3 and 1.7 mM CaCl2 in the external bath 
solution, respectively. To capture the weak attraction of monovalent cations to the polymer 
chains, we use relatively high desorption rate of the sodium ions and relatively low adsorption 
rate. Therefore, as solvent diffuses into the polymer network sodium ions are freed from the 

polymer attraction almost instantaneously (normalized time scale used in the simulation is 
𝜏𝑁𝑎

−

𝜏𝑤
∼

10−4). Subsequently only the calcium ions are adsorbed onto the polymer chains at a rate 
determined by the calcium adsorption coefficient. Electroneutrality is, of course, always satisfied. 

 
The ion partition value is strongly influenced by the equilibrium adsorption coefficient 𝐾𝑗 =

𝑘𝑗
−/𝑘𝑗

+. Figure 4b demonstrates a linear dependence between 𝐾𝐶𝑎 and 
𝑐𝐶𝑎

𝑔𝑒𝑙

𝑐𝐶𝑎
𝑠𝑜𝑙. Thus, we may be able 

to estimate the value of the equilibrium adsorption coefficient by measuring the partitioning 
response of the gel. Figure 4c compares the calcium (circles) and sodium (triangles) partition at 
the final time-step of calculation, which represents the equilibrium state for the swollen gels. 
Both cations partitioning coefficients increase monotonically upon increasing the concentration 
of calcium ions in the external bath solution. Sodium ion partitioning ranges between 1—10, 

(a) (b)

(c) (d)

csol (mM)
Ca

csol (mM)
Ca

Ca
P

Na

P
Ca

P
Na

P
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while calcium ion partitioning ranges between 101 − 103. Figure 4d shows the ion partitioning 
measured for NaPA gels [5]. The trend of monotonic increase and order of magnitude are 
captured by the model calculation. For larger concentration of calcium ions (larger than 𝑐1), the 
calcium partitioning seems to saturate or decrease slightly. Unfortunately, using the model we 
were unable to obtain equilibrium values for the collapsed phase in the regime of high calcium 
concentration. Thus, we can only conjecture that this behavior might be explained by competing 
trends between the capacity of the gel to adsorb calcium ions and increasing the calcium 
concentration in the external bath solution (the denominator of 𝑃𝐶𝑎).  
 
 As a final demonstration of the model capabilities, we study the effect of increasing the 
elastic modulus on the equilibrium degree of swelling. This is an example how the model may be 
used to predict effects of different internal and environmental parameters. Figure 5a indicates 
that increasing the elastic modulus causes a monotonic decrease in the degree of swelling of gels 
that are not completely collapsed (𝑐𝐶𝑎 ≤ 𝑐1), with no observable effect on the transition region, 
namely, the values of 𝑐0 and 𝑐1. Figure 5b shows measurements made on NaPA gels prepared 
with different crosslink densities [25]. According to the classical rubber elasticity theory the 
elastic constant, 𝐺0, is linearly proportional to the crosslink density [44]. The effect of the elastic 
modifications on the equilibrium degree of swelling according to the model is qualitative 
comparable to the measurements. 

 
Figure 5: (a) Model calculation of the degree of swelling as a function of initial calcium ion concentration in the external 
bath solution for different values of the elastic modulus 𝐺0. 𝑘𝐶𝑎

− = 10−2 was used. Other parameters are the same as in 
figure 2. (b) Measurement of the degree of swelling as a function of calcium ion concentration in NaPA gels prepared with 
different crosslink densities. Average number of monomer units per crosslinker is 160, 320, 800, and 1600, respectively.  

 
4 Conclusions 
 

We have numerically investigated the predictions of a multicomponent fluid model 
describing the transient response of an anionic (i.e., negatively charged) polyelectrolyte hydrogel 
exposed to a new ionic environment consisting of monovalent and divalent cations. This model 
is based on principles that have a fundamental physical interpretation, including the conservation 
of mass and momentum, electroneutrality, Flory-Rehner theory of mixing crosslinked polymers 
and solvent molecules, Nernst–Planck model, and the law of mass action [36]. Our investigation 
sheds light on the coupled dynamics of the system components in a realistic non-equilibrium 
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scenario, which is closely connected and complements experimental work made on NaPA gels. 
For example, it is difficult to observe the dynamics of ion competition and adsorption onto the 
polymer chains with even the most sensitive detectors. However, the ionic behavior and its effect 
on the gel system – particularly on the Flory interaction parameter – can be described in 
unprecedented detail in computational simulation.  
 

In turn, the experimental system provides crucial data (e.g., state diagrams), which are 
needed to keep the simulation as close as possible to reality. For example, in this work we used 
the simplest dependence of the interaction parameter 𝜒 on local concentration of adsorbed 
calcium ions. However, based on past experimental work the ionic dependence is believed to be 
more complex [24,34]. The modular nature of the model allows replacing a particular expression 
(e.g., equations S17-S18) with a more accurate one; e.g., as extracted from measurements. Thus, 
the model can become more precise by improving our understanding on certain constitutive 
relations. In particular, the Flory interaction parameter is modified by all types of ions (including 
monovalent cations) and not only by calcium ions [45]. Testing the constitutive model, namely, 
the linear dependence of the Flory parameter on the concentration of absorbed ions is crucial. 
Although it is difficult to directly probe this behavior, Molecular Dynamics simulations may be 
useful in predicting a more realistic relation between adsorbed ion concentration and the Flory 
interaction parameter [46]. 

 
While a continuum model of polymer-solvent-ion interactions does not provide the 

atomic or molecular specificity of an MD model, these are limited to describing processes 
occurring over nanometer length scales and at timescales ranging from picoseconds to 
nanoseconds. Their utility is limited when modeling processes like swelling and deswelling, which 
can occur over macroscopic length scales and over timescales ranging from milliseconds to hours 
to days. Using well-established polymer science concepts and explicitly imposing conservation 
laws leads to a satisfying compromise that is grounded in physics and polymer chemistry, but 
well suited to modeling water-ion-gel behavior at relevant scales. Of particular interest is the 
application of polymer science to biological polyelectrolytes at physiological ionic conditions, 
which is often not considered.  

 
In the present work we focused on two important characteristic time scales: water 

diffusion and calcium adsorption onto the anionic polymer chains. While the former is well 
known, experimental data is scarce regarding the latter. Our estimation that at physiological 
conditions the adsorption rate of calcium ions acts at similar order of magnitude as the water 
diffusion leads to the prediction that partially dry gels swell significantly when exposed to 
solution containing a high concentration of divalent ions, and only subsequently collapse due to 
the divalent cation adsorption (figure 1a). This counterintuitive response is indeed validated 
experimentally (figure 2c).  

 
Another important characteristic time – which was not the focus of this work – is the 

adsorption of hydrogen (or hydronium) ions onto the polymer chains. Hydrogen ions play an 
interesting role when competing with calcium ions – both are prone for adsorption and charge 
screening; e.g., in gastric mucus [37] – that would be worth studying in the future. Another 
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important time scale determines the re-organization of ions due to the electrical force and leads 
to electroneutrality. This characteristic time is determined from Ampere’s and Gauss’ laws and is 
∼10 ns; i.e., the ions are very quickly equilibrating in response to structural changes of the 
polymer chains, and as long as we are not modeling behaviors in the MHz regime, this 
approximation is expected to hold. 
 

Despite the simplifying assumptions associated with the mean-field limit, the model 
requires the specification of four physical values (equation S24) and 23 dimensionless parameters 
(Table S1). While some of the model parameters are either known (ion diffusion coefficient) or 
can be reasonably estimated (average length of chains, fluid viscosity), the value of several 
parameters is generally not known a priori (e.g., solvent-network drag coefficient, ion adsorption 
and desorption coefficients). Thus, comparison of the model predictions to both kinetic and 
equilibrium swelling data can provide a good test to estimate the model parameters. For 
example, using a realistic value of the elastic modulus (≈10-100 kPa for NaPA gels) swollen gels 
fill the entire simulated space (𝐿). Chain hydrophobicity, chain flexibility, chemical details 
(including specific interactions), etc., are critically important factors defining the interaction 
between polyelectrolyte chains, ions, and solvent molecules. These properties also affect the 
value of the elastic modulus [35]. Unfortunately, existing polyelectrolyte theories do not provide 
a reasonable estimate of the relative contributions of the above factors. It is likely that using 
more accurate values of other model parameters would resolve this apparent discrepancy.  
 
Acknowledgements 
  
 We thank Alexandros Chremos, Nathan Hu Williamson, Velencia Witherspoon, and Rea 
Ravin for fruitful discussions. MM thanks Sinisa Pajevic for assistance with running the 
calculations at the NIH High Performing Computation (HPC) Biowulf cluster. MM, PJB, and FH 
acknowledge support by the Intramural Research Program of the Eunice Kennedy Shriver National 
Institute of Child Health and Human Development, NIH. OL acknowledges funding by NIH grant 
5R01GM131408-04. 
 
References for supplementary  [47–53] 
 
References 
 
[1] M. Muthukumar, 50th Anniversary Perspective: A Perspective on Polyelectrolyte 

Solutions, Macromolecules 50, 9528 (2017). 
[2] Y. Li and T. Tanaka, Phase Transitions of Gels, Annual Review of Materials Science 22, 243 

(1992). 
[3] J. F. Joanny and J. Prost, Active Gels as a Description of the Actin-Myosin Cytoskeleton, 

HFSP Journal 3, 94 (2009). 
[4] P. Verdugo, Supramolecular Dynamics of Mucus, Cold Spring Harbor Perspectives in 

Medicine 2, a009597 (2012). 
[5] M. Mussel, P. J. Basser, and F. Horkay, Ion-Induced Volume Transition in Gels and Its Role 

in Biology, Gels 7, 1 (2021). 



 14 

[6] P. Calvert, Hydrogels for Soft Machines, Advanced Materials 21, 743 (2009). 
[7] H. Li, Smart Hydrogel Modelling (Springer, 2009). 
[8] Y. I. Yang, Q. Shao, J. Zhang, L. Yang, and Y. Q. Gao, Enhanced Sampling in Molecular 

Dynamics, The Journal of Chemical Physics 151, 70902 (2019). 
[9] D. Hariharan and N. A. Peppas, Modelling of Water Transport in Ionic Hydrophilic 

Polymers, Journal of Polymer Science Part B: Polymer Physics 32, 1093 (1994). 
[10] D. J. Segalman and W. R. Witkowski, Two-Dimensional Finite Element Analysis of a 

Polymer Gel Drug Delivery System, Materials Science and Engineering: C 2, 243 (1995). 
[11] E. C. Achilleos, R. K. Prud’Homme, I. G. Kevrekidis, K. N. Christodoulou, and K. R. Gee, 

Quantifying Deformation in Gel Swelling: Experiments and Simulations, AIChE Journal 46, 
2128 (2000). 

[12] E. C. Achilleos, K. N. Christodoulou, and I. G. Kevrekidis, A Transport Model for Swelling of 
Polyelectrolyte Gels in Simple and Complex Geometries, Computational and Theoretical 
Polymer Science 11, 63 (2001). 

[13] L. Feng, Y. Jia, X. Chen, X. Li, and L. An, A Multiphasic Model for the Volume Change of 
Polyelectrolyte Hydrogels, The Journal of Chemical Physics 133, 114904 (2010). 

[14] A. D. Drozdov and J. Declaville Christiansen, Modeling the Effects of PH and Ionic Strength 
on Swelling of Polyelectrolyte Gels, Journal of Chemical Physics 142, 114904 (2015). 

[15] Y. Mori, H. Chen, C. Micek, and M. C. Calderer, A Dynamic Model of Polyelectrolyte Gels, 
SIAM Journal on Applied Mathematics 73, 104 (2013). 

[16] V. V. Yashin and A. C. Balazs, Theoretical and Computational Modeling of Self-Oscillating 
Polymer Gels, Journal of Chemical Physics 126, 124707 (2007). 

[17] Y. Yu, C. M. Landis, and R. Huang, Salt-Induced Swelling and Volume Phase Transition of 
Polyelectrolyte Gels, Journal of Applied Mechanics, Transactions ASME 84, (2017). 

[18] G. L. Celora, M. G. Hennessy, A. Münch, B. Wagner, and S. L. Waters, A Kinetic Model of a 
Polyelectrolyte Gel Undergoing Phase Separation, Journal of the Mechanics and Physics 
of Solids 160, 104771 (2022). 

[19] F. Horkay, I. Tasaki, and P. J. Basser, Osmotic Swelling of Polyacrylate Hydrogels in 
Physiological Salt Solutions, Biomacromolecules 1, 84 (2000). 

[20] F. Horkay, P. J. Basser, A. M. Hecht, and E. Geissler, Osmotic and SANS Observations on 
Sodium Polyacrylate Hydrogels in Physiological Salt Solutions, Macromolecules 33, 8329 
(2000). 

[21] F. Horkay, I. Tasaki, and P. J. Basser, Effect of Monovalent-Divalent Cation Exchange on 
the Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions, Biomacromolecules 
2, 195 (2001). 

[22] F. Horkay and P. J. Basser, Ionic and PH Effects on the Osmotic Properties and Structure of 
Polyelectrolyte Gels, Journal of Polymer Science Part B: Polymer Physics 46, 2803 (2008). 

[23] F. Horkay, A. M. Hecht, C. Rochas, P. J. Basser, and E. Geissler, Anomalous Small Angle X-
Ray Scattering Determination of Ion Distribution around a Polyelectrolyte Biopolymer in 
Salt Solution, Journal of Chemical Physics 125, 234904 (2006). 

[24] M. Mussel, P. J. Basser, and F. Horkay, Effects of Mono- and Divalent Cations on the 
Structure and Thermodynamic Properties of Polyelectrolyte Gels, Soft Matter 15, 4153 
(2019). 



 15 

[25] M. Mussel and F. Horkay, Experimental Evidence for Universal Behavior of Ion-Induced 
Volume Phase Transition in Sodium Polyacrylate Gels, Journal of Physical Chemistry 
Letters 10, (2019). 

[26] P. Verdugo, Polymer Gel Phase Transition in Condensation-Decondensation of Secretory 
Products, Advances in Polymer Science 110, 145 (1993). 

[27] I. Morfin, F. Horkay, P. J. Basser, F. Bley, A. M. Hecht, C. Rochas, and E. Geissler, 
Adsorption of Divalent Cations on DNA., Biophysical Journal 87, 2897 (2004). 

[28] F. Horkay, P. J. Basser, A.-M. Hecht, and E. Geissler, Effect of Calcium/Sodium Ion 
Exchange on the Osmotic Properties and Structure of Polyelectrolyte Gels, Proceedings of 
the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 229, 
895 (2015). 

[29] M. A. Zwieniecki, P. J. Melcher, and N. M. Holbrook, Hydrogel Control of Xylem Hydraulic 
Resistance in Plants, Science 291, 1059 (2001). 

[30] T. Wallmersperger, B. Kröplin, and R. W. Gülch, Coupled Chemo-Electro-Mechanical 
Formulation for Ionic Polymer Gels----Numerical and Experimental Investigations, 
Mechanics of Materials 36, 411 (2004). 

[31] H. Guo, T. Kurokawa, M. Takahata, W. Hong, Y. Katsuyama, F. Luo, J. Ahmed, T. Nakajima, 
T. Nonoyama, and J. P. Gong, Quantitative Observation of Electric Potential Distribution 
of Brittle Polyelectrolyte Hydrogels Using Microelectrode Technique, Macromolecules 49, 
3100 (2016). 

[32] Y. D. Zaroslov, O. E. Philippova, and A. R. Khokhlov, Change of Elastic Modulus of Strongly 
Charged Hydrogels at the Collapse Transition, Macromolecules 32, 1508 (1999). 

[33] M. Mussel, E. Wilczynski, U. Eliav, J. Gottesman, M. Wilk, and U. Nevo, Dynamics of 
Water and Sodium in Gels under Salt-Induced Phase Transition, Journal of Polymer 
Science, Part B: Polymer Physics 53, (2015). 

[34] F. Horkay and P. J. Basser, Osmotic Observations on Chemically Cross-Linked DNA Gels in 
Physiological Salt Solutions, Biomacromolecules 5, 232 (2004). 

[35] J. Hua, M. K. Mitra, and M. Muthukumar, Theory of Volume Transition in Polyelectrolyte 
Gels with Charge Regularization, The Journal of Chemical Physics 136, 134901 (2012). 

[36] S. Sircar, J. P. Keener, and A. L. Fogelson, The Effect of Divalent vs. Monovalent Ions on 
the Swelling of Mucin-like Polyelectrolyte Gels: Governing Equations and Equilibrium 
Analysis, Journal of Chemical Physics 138, 14901 (2013). 

[37] O. L. Lewis, J. P. Keener, and A. L. Fogelson, Electrodiffusion-Mediated Swelling of a Two-
Phase Gel Model of Gastric Mucus, Gels 4, 76 (2018). 

[38] See Supplemental Material at [URL Will Be  Inserted by Publisher]., (n.d.). 
[39] C. Alvarez-Lorenzo, O. Guney, T. Oya, Y. Sakai, M. Kobayashi, T. Enoki, Y. Takeoka, T. 

Ishibashi, K. Kuroda, K. Tanaka, G. Wang, A. Y. Grosberg, S. Masamune, and T. Tanaka, 
Reversible Adsorption of Calcium Ions by Imprinted Temperature Sensitive Gels, The 
Journal of Chemical Physics 114, 2812 (2001). 

[40] J. Du, O. L. Lewis, J. P. Keener, and A. L. Fogelson, Modeling and Simulation of the Ion-
Binding-Mediated Swelling Dynamics of Mucin-like Polyelectrolyte Gels, (2021). 

[41] P. J. Flory and J. Rehner, Statistical Mechanics of Cross-Linked Polymer Networks II. 
Swelling, The Journal of Chemical Physics 11, 521 (1943). 



 16 

[42] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Finite Volume Methods 
for Hyperbolic Problems (2002). 

[43] V. Camacho, A. Fogelson, and J. Keener, Eulerian--Lagrangian Treatment of Nondilute 
Two-Phase Gels, Http://Dx.Doi.Org/10.1137/15M1023579 76, 341 (2016). 

[44] P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953). 
[45] D. W. Yin, F. Horkay, J. F. Douglas, and J. J. de Pablo, Molecular Simulation of the Swelling 

of Polyelectrolyte Gels by Monovalent and Divalent Counterions, Journal of Chemical 
Physics 129, (2008). 

[46] W. Zhang, E. D. Gomez, and S. T. Milner, Predicting Flory-Huggins χ from Simulations, 
Physical Review Letters 119, 017801 (2017). 

[47] K. Masatsuka, I Do Like CFD, Vol. 1, Vol. 1 (Lulu. com, 2013). 
[48] J. Du, A. L. Fogelson, and G. B. Wright, A Parallel Computational Method for Simulating 

Two-Phase Gel Dynamics on a Staggered Grid, International Journal for Numerical 
Methods in Fluids 60, 633 (2009). 

[49] J. P. Keener, S. Sircar, and A. L. Fogelson, Influence of the Standard Free Energy on 
Swelling Kinetics of Gels, Physical Review E 83, 41802 (2011). 

[50] J. P. Celli, B. S. Turner, N. H. Afdhal, R. H. Ewoldt, G. H. McKinley, R. Bansil, and S. 
Erramilli, Rheology of Gastric Mucin Exhibits a PH-Dependent Sol-Gel Transition, 
Biomacromolecules 8, 1580 (2007). 

[51] L. Alves, B. Lindman, B. Klotz, A. Böttcher, H.-M. Haake, and F. E. Antunes, Rheology of 
Polyacrylate Systems Depends Strongly on Architecture, (n.d.). 

[52] S. Schreiber and P. Scheid, Gastric Mucus of the Guinea Pig: Proton Carrier and Diffusion 
Barrier, Https://Doi.Org/10.1152/Ajpgi.1997.272.1.G63 272, (1997). 

[53] B. D. E. Raynal, T. E. Hardingham, J. K. Sheehan, and D. J. Thornton, Calcium-Dependent 
Protein Interactions in MUC5B Provide Reversible Cross-Links in Salivary Mucus *, Journal 
of Biological Chemistry 278, 28703 (2003). 

  


