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The three-dimensional microstructure of Ni, observed after five annealing intervals, was compared
to simulations of grain growth using the threshold dynamicsmethodwith the assumption of capillarity
as the only driving force. A grain-by-grain comparison made it possible to identify the sources of
differences between the simulation and experiment. The most significant difference was for grains of
the smallest sizes, which the simulation predicted would lose volume and disappear at a greater rate
than observed in the experiment. The loss of grains created errors in the numbers of neighbors of the
remaining grains, and it was found that errors in the simulated grain volume were correlated to errors
in the number of near neighbors. While anisotropic grain boundary properties likely play a role in
the differences, the size dependence of the errors suggest that it might be necessary to include a size
dependence in the model for grain boundary migration kinetics.

1. Introduction
The microstructures of polycrystalline metals and ceramics processed at high temperatures are influenced by
grain growth and this influences structure sensitive materials properties. To better understand grain growth,
analytic theories [1, 2] and, more recently, Monte Carlo simulations [3–6], cellular automata models [7, 8],
molecular dynamics [9–16], vertex simulations [17, 18], phase field models [19–31], and other approaches
[32–35], have been developed.

Recent studies of three-dimensional (3D) grain growth using simulation have attempted to quantify
and understand topological evolution [21, 36–40], volumetric growth rate [41], and grain boundary energy
evolution in isotropic as well as anisotropic grain growth [42, 43]. There have been relatively few attempts
in the past to compare the results of grain growth simulations with experiments on a grain-by-grain basis.
For example, in 2003 Demirel et al. [44] validated an anisotropic grain growth simulation in 2D using GB
curvature as a driving force and it explained 50% of the experimental grain growth. They also showed that
an isotropic simulation with 17% explaining power had very poor matching with experimental evolution.
McKenna et al. [45] compared the evolution of individual grains in a 3D experiment with grains in a 3D
isotropic phase field simulation of grain growth in polycrystalline β-Ti. Statistical analysis revealed good
agreement between experiment and simulation for grain growth kinetics. However, direct comparison of
individual grains revealed a poor match in grain shapes and grain boundary widths because the simulation
was unable to capture local anisotropy in grain boundary energy and mobility. Another study by Zhang
et al. [46] compared a phase field simulation of grain growth with 3D experimental data and assigned
reduced mobilities to each grain boundary so that the simulation reproduced the experiments. However, the
assigned grain boundary properties were independent of grain boundary crystallography in the sense that
crystallographically identical boundaries had to be assigned reduced mobilities that varied by a factor of
nine.
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The prior work clearly shows that, unless inconsistent grain boundary properties are assigned, as in [46],
simulations of grain growth are poor predictors of real grain growth. However, the mechanism of how the
simulations fail has not yet been identified and the current work is aimed at understanding this issue. We
compare the outcomes of 3D grain growth simulations with the microstructure evolution in annealed Ni
[47, 48]. For microstructures containing 600 to 900 grains, we compare the volume changes, changes in the
numbers of near neighbors, and curvatures of grains in the simulation and experiment. We concentrate on
three places where the simulated microstructures depart from the observations: the volume changes for the
smallest grains, grains for which the topology (number of neighbors) is simulated incorrectly, and the grain
face curvature. While the later two observations might be connected to anisotropic boundary properties, the
first is more likely to stem from other factors.

To simulate grain growth driven by mean curvature, we have selected the threshold dynamics (TD)
method originally introduced by Merriman, Bence and Osher in [49, 50]. The choice of using TD to tackle
the 3D grain growth problem comes naturally from its beneficial characteristics. First, we can use experiment
image/data directly without additional meshing. Second, the representation of the interface is implicit, as
in the phase field or level set methods, so that topological changes are tracked automatically. Third, TD has
unconditional stability and high computational efficiency. Finally, the isotropic formulation of the model
can be easily extended to an anisotropic formulation by replacing the isotropic kernel with anisotropic ones
assuming different anisotropic surface energy/mobility forms, a feature we are leveraging in our ongoing
work.

2. Methods
2.A. Threshold Dynamics
The threshold dynamics model assumes that capillarity is the only driving force for grain boundary motion.
In TD, phases can be represented through the characteristic function (order parameter) 1Σi of each phase
Σi.

1Σi =

{
1, if x ∈ Σi.
0, otherwise.

(2.1)

The evolution of the interface network is reflected by the change of the phase boundary of 1Σi . The original
TD scheme from Merriman, Bence and Osher in the isotropic, two-phase setting is given as in Algorithm 1
from [49].

Algorithm1 MBO
1: Initialization Given Σ0 and time step size δt
2: For iteration k + 1
3: ψk = Kδt ∗ 1Σk . Convolution/Diffusion step
4: Σk+1 = {x : ψk(x) ≥ 1

2
} . Threshold/Sharpening step

The convolution kernelK : Rd → R, can be any spherically symmetric kernel, and is usually chosen to
be the Gaussian:

Gδt(x) =
1

(4π(δt))d/2
exp(− |x|

2

4(δt)
) (2.2)

By this choice of kernel, the MBO scheme evolves the boundary ∂Σ by mean curvature motion [49] and
the phase boundary velocity is

v(x) = µσκ(x)n̂(x) (2.3)
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where κ is the mean curvature, µ is the boundary mobility, n̂ is the boundary unit normal, and σ is the
boundary energy.

The time step size δt is a model variable that has no effect on stability, but should be considered to reach
desired accuracy. In [51], Esedoglu and Otto introduced an extension of the two-phase MBO scheme to a
general multi-phase setting, as showing in the Algorithm 2.

Algorithm2 EO
1: Initialization Given Σ0

1 , ..., Σ
0
N and time step size δt

2: For iteration k + 1

3: ψki =
N∑
j=1
j 6=i

Ki,j
δt ∗ 1Σk

j
. Convolution/Diffusion step

4: Σk+1
i = {x : ψki (x) ≤ min

j 6=i
ψkj (x)} . Threshold/Sharpening step

The main difference between the MBO and the EO schemes is that in the EO scheme the new kernel
Ki,j
δt is designated for the boundary between Σi and Σj . The new kernel in the EO scheme is constructed

to account for non-constant σ and µ between two phases. As mentioned in the introduction, σ and µ play
far more complex roles in grain growth than being constant. They are affected by both the grain boundary
normal and misorientation between neighboring grains. Incorporating the anisotropic surface energy and
mobility intoKi,j

δt yield to an anisotropic grain growth formulation.
In this work, we focus on multi-phase isotropic simulations. We use Algorithm 2 and take the same form

as in Equation (2.2) for the kernelKi,j
δt . In the grain growth simulations performed in this work, Algorithm

2 makes direct use of the observed microstructures as the input by assigning one characteristic function 1Σi

to each grain Σi, and evolves the grain boundary network by first a convolution/diffusion step and then a
threshold/sharpening step. The developed code for this study is available online at
https://github.com/JadeXiaoyaoPeng/GrainGrowth_TD_iso.

2.B. Model Validation
To validate the isotropic TD model, we compare the results of the model to the expectations from isotropic
grain growth theory. For example, for normal isotropic grain growth, the resulting distribution of grain
sizes is expected to be self similar [52, 53]. The grain size distributions of the simulated microstructures
at different anneal states are plotted in Figure 1. The number of grains in each simulated anneal state from
anneal state 1 to anneal state 5 are 643, 666, 775, 715 and 606, respectively. The five curves from different
time steps overlap, with some small fluctuations that result from the limited number of grains. Therefore, we
conclude that the simulation produces self similar grain size distributions once the times scale is considered.

Burke and Turnbull [52] found a linear relation between time and average grain size to the power n, where
2 ≤ n ≤ 4, using an isotropic curvature-driven model for both 2D and 3D systems. The most commonly
reported exponent for grain growth is n = 2. In Figure 2, the difference between the 2nd power of average
grain size 〈R〉2 and initial average grain size 〈R0〉2 of a simulation are plotted as a function of iteration step.
The iteration steps can be interpreted as normalized time steps. The change in the square of the average
grain size with time is well fit to a line, with a correlation coefficient (R2) equal to 0.99. Throughout this
paper, grain size is calculated as R = (

3

4π
V )1/3 with V being the volume of the grain in voxels.

Taken together, Figures 1 and 2 indicate that the grain growth model produces results consistent with the
classical theory.

2.C. Experimental data
The 3D simulations described here are instantiated with observed Ni microstructures and compared to a
second observation of the same sample at a later time. Prior to the grain growth experiment at 800 ◦C, the

https://github.com/JadeXiaoyaoPeng/GrainGrowth_TD_iso
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Figure 1. Grain size distributions of simulations at different annealing states.

Figure 2. 〈R〉2 − 〈R0〉2 as a function of iteration step. r2 is the R-squared value from the linear fit of the data.

high-purity Ni was annealed at 950 ◦C for 6 [47], which led to a completely recrystallized microstructure.
The X-ray data showed that the orientation spread within the grains was less than 0.1◦. With this spread,
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the geometrically necessary dislocation density is less than 2.5×1011/m2. The estimated driving force for
boundary migration from dislocations (the product of the dislocation energy per length and the dislocation
density) is therefore on the order of 1 kJ/m3. The capillary driving force provided by 20×10−6 m grains is
about 100 times larger. The sample was measured at six instances in time using near-field high energy X-ray
diffraction microscopy [47, 54] and was used to reconstruct the shapes and orientations of the grains within
six 3D volumes [55, 56]. Between each measurement, the sample was annealed for≈ 30min at 800◦C. The
details of the data acquisition and interpretation have been described in previous publications [47, 55, 56].
For this work, we segmented the grains and represented the microstructures as a set of discrete voxels using
DREAM.3D [57] as described in [48]. The Ni microstructure has an abundance of twin boundaries that
have a significantly lower energy than other Ni grain boundaries [58, 59]. Obviously, such features cannot
be reproduced by a simulation with isotropic boundaries properties. To create a microstructure with a
narrower range of grain boundary energies that more closely approximates the isotropic grain growth model,
all neighboring grains with the twin misorientation were merged to form a single grain using the merge
twins function in DREAM.3D [57]. After the twins were merged, the microstructures contained 600 to 900
grains made up of voxels with dimensions of 2.3 × 2.3 × 4.0µm. In the initial state, there was an average
of 7582 voxels per grain.

2.D. Data processing for comparison
2.D.1. Establishing the common volume.
The cylindrical Ni sample in the initial state is illustrated in Figure 3(a), where the 920 grains are colored
by orientation. The experimental volume was cylinder shaped with free surfaces around the periphery
and orientations were sampled on a fixed grid. These geometric features determined the geometry of the
simulation. The simulations volume is as rectangular parallalepiped, as illustrated by the frame in Figure
3(a), where the transparent voxels do not belong to any grain. The simulation directly uses the orientation
map to create characteristic functions 1Σi as in Equation 2.1, and the phasesΣ

0
i are the input for iterations as

in Algorithm 2. Thus, the computational grid of the simulation has the same size of the input microstructure,
for example 369× 372× 62 for anneal state 0.

Because of the cylindrical shape of the sample, a special procedure must be used to exclude the space that
is inside of the computational grid but outside of the actual sample (transparent region in Figure 3(a)). The
easiest way to accomplish this is to manipulate the characteristic function of the transparent region Σ0. By
setting 1Σ0 = 0, if x ∈ Σ0 the contribution to ψi (i = 1, 2, ...920) from Σ0 is always 0 in the convolution
step in Algorithm 2, and the boundary between Σ0 and Σi will not evolve during the iteration. Thus, the
volume is preserved throughout the simulation.

To compare the microstructure in two different time steps, they must be in the same spatial reference
frame and have the same volume. Because non-identical fields of view were imaged at each time step, and
the sample position was not perfectly reproduced, it is necessary to both translate the volume and crop it
vertically to obtain a constant volume in a fixed frame of reference. We first translated each volume until we
identified the translation with the minimum disorientation between the two time steps. The larger volume
was then cropped in the vertical direction so that both volumes had the same number of voxels at identical
locations.

2.D.2. Establishing the time scale.
As the simulation proceeds, the average grain size increases with the square root of time, as illustrated
in Figure 2. To compare with experiment, a criterion is needed to decide when to stop the simulation at
an equivalent time. One was to use a voxel-by-voxel comparison of the grain identification (ID) number,
counting all voxels that matched and taking the maximum of this as the point of best agreement. The second
criterion was to determine the average distance that the boundaries moved in the simulation and match this
with experiment. The third criterion was to stop the simulation at the time when it had the closest average
grain size as the experiments. To decide which to use, we compared the number of grains in the simulated
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and experimental microstructure. None of the methods were perfect, but the criterion based on the nearest
average grain size led to grain counts in the simulation that were closest to the experiment.

3. Results
Figure 3 (a) shows the experimentally measured microstructure of the initial anneal state of 920 grains and
(b) the experimental final state microstructure with 756 grains and (c) the simulated microstructure of the
final anneal state with 642 grains. The average grain size in (a) is 26.0µm, in (b) is 26.8µm. and in (c) is
30.2µm. Between the grains that matched, the reconstructed initial experimental state has an average of 11
faces per grain, and the final state has 11 faces per grain while the simulation state has 9.6 faces per grain.
Comparing the top surface between the two, the interfacial network of the simulated grains is smoother than
the experiment. This will be addressed in detail later. Figure 4 takes a closer look at the faces of a grain

Figure 3. (a) Experimentally measured microstructure of the initial anneal state of 920 grains and (b) experimental
final state with 756 grains and (c) simulated microstructure of the final anneal state with 642 grains.

for the initial and final experimental state (a), (b) and the final simulation state (c). The number of grain
faces changes in the simulation and experiment, but not in exactly the same way. While there are six anneal
states, each state was used as an initial state to simulate the next one. A grain that does not contact any of
the external surfaces has been visualized at all states as it evolves from Anneal State 0 to Anneal State 5 in
Figure 5. This grain shrinks during each annealing interval in the experiment as well as simulation.

Figure 4. A grain in experimentally measured microstructure of the (a) initial anneal state, (b) final anneal state and
(c) the corresponding grain in the simulated microstructure of the final state. Grain faces are colored to make them
distinguishable.

The experimental and simulated changes in grain radius for the grain visualized in Figure 5 have been
plotted in Figure 6 as a function of the anneal states. Starting at a radius of 42.2µm for both, the experimental
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Figure 5. Visualization of a bulk grain across all Anneal States in experiment and comparison with simulation of
the same grain. The top row and bottom row shows experimental and simulation grains starting from An0 to An5
respectively.

plot shows the grain grew until An2 and then shrank to 40.6µm. While the simulated grain also shrank in
the final state (40µm), it did not follow the same size trajectory. For example, while both started from the
same radius, the simulated grain shrank between An0-An1 but in the experiment it grew. Ultimately though,
the grain shrank and the simulation could captured that.

Figure 6. The actual and simulated evolution of the grain size of the bulk grain in Figure 5 at every anneal state.

Figure 7 depicts the grain size distribution of observed and simulated microstructures for all the anneal
states. While the simulation is mostly coincident with the actual grain size distribution, there are significant
differences for the smaller grain sizes. The distribution shows that the simulated microstructure has a
significantly higher fraction (0.11%) of smaller grains (<5µm) than in experiment (0.01%). In other words,
simulation is shrinking more grains than shrink in the experiment.

Figure 8 plots the histogram of fractional change in volume for observed and simulated grains. The data
includes all grains that matched from the initial anneal state to the final anneal state as well as the grains that
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Figure 7. The grain size distribution of observed and simulated microstructures for all the anneal states.

were smaller than the average grain size that did not find a match and were assumed to have disappeared
(fractional volume change of -1). It is seen that approximately the same fraction of grains have shrunk
to zero in both experiment and simulation ( 10%). In both simulation and experiment, the maximum of
the distribution is for grains that have small volume changes near zero. Also, there are more grains in the
experiment that increase in size as shown by the right tail of the distribution.

To understand Figure 8 in more detail we consider Figure 9, which plots the fractional change in volume
as a function of grain radius for both simulation and experiment. The simulation tends to shrink the small
grains. Note that nearly all of the simulated grains in the size range of 5 to 25µm have negative volume
changes while grains in the same size range in the experiment are equally probable to have positive or
negative volume changes. Counter-intuitively, most of the largest positive fractional volume changes occur
for the small grains in the experiment. When correlated with Figure 8, it means that the lower extreme of
fractional change in volume (<-0.6) corresponds to grain sizes less than 35µm. It also shows that in both
experiment and simulation, as the grain size gets lager, the magnitude of fractional change is smaller. This
suggested that the mismatch at the right tail of the distribution in Figure 8 is mainly caused by incorrect
volume predictions for small grains. Notice that the grains that disappeared in the simulation are clustered
in the small grain size region, whereas grains of the same sizes exhibit significant growth in the experiment.
Based on Figure 9, we conclude that most of the differences between the volume changes in Figure 8 arise
from errors in the volume predictions for the small grains.

Figure 10 compares simulated and observed volume changes in the same grains. The observed volume
changes have been classified into discrete bins and the markers in the plot are the means of the values in each
bin and the bars are the standard deviation. The negative extreme of the plot is much flatter; this is because
grains that disappeared are not included. Therefore, the sum of the increased and decreased volumes is not
zero. In other words, the volume is not conserved because of the over prediction of grain shrinkage. The
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Figure 8. Histogram of fractional change in volume for final state experimental and simulated grains. The markers
show the bin centers and the lines connect bin centers to guide the eye.

plot shows a positive direct relationship between the experimentally observed and the simulated change in
volume. When the experimental volume change is greater than zero, the simulated volume change also
is positive, and we see a positive monotonic trend between the two. The slope of the trend is lower than
the ideal 45◦ line, meaning simulation under-predicts the grain growth. It was found that for all matched
grains between each anneal state pair, considered together, the simulation has correctly predicted the sign of
volume change 62% of the time.

Figure 11 shows a comparison between the unsigned triangle curvatures from the grain boundary mesh
for all matched grain boundaries of the experiment and simulation. The y-axis displays the fraction of
triangles in the simulation and experiment. The lower curvatures have been overpredicted by the simulation
while it is underpredicting higher values of curvature. In other words, the simulation produces smaller grain
boundary curvatures. Experimental curvatures have a higher fraction of triangles with curvatures greater
than 0.008µm−1 while simulation triangles have a higher fraction of lower curvature values (14%) than
experiment (12%). This quantifies the visual impression one gets from comparing the experimental and
simulated microstructures, that the simulated microstructures have smoother interfaces.

One source of the volume error might be errors in the predicted topology of the grains and to test this
hypothesis, we compare the volume prediction error (V PE) with the topological error (TE) for individual
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Figure 9. The fractional change in volume vs grain size in experimental and simulated grains.

grains. V PE and TE are defined as follows:

∆Ns = Nsim −Nexp(initial) (3.1)
∆Ne = Nexp(final) −Nexp(initial) (3.2)
TE = ∆Ns −∆Ne (3.3)

V PE =
Vs − Ve
Ve

(3.4)

(3.5)

whereNexp(initial) is the number of neighbors of a grain in the initial experiment state,Nexp(final) is the number
of neighbors of the same grain in the final experiment state and Nsim is the number of neighbors of the
same grain in the final simulation state. V PE is the fractional difference in volume predicted by simulation
of final anneal state (Vs) and experimental final state (Ve). TE is the difference in ∆N for each grain
between simulation and experiment. In other words, TE is the error in predicting topological evolution by
the simulation. Figure 12 plots the volume prediction error as a function of topological error. A low V PE
indicates a small difference between the final volume predicted and the actual final volume of the grain. A
high TE value means there is a large error in predicting the topological evolution of the grains. This plot is
approximately linear and monotonically increasing. When TE is close to zero, V PE is also close to zero.
As TE increases, the error in the predicted volume also increases, in both positive and negative directions.
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Figure 10. Simulated volume change as a function of observed volume change in experiment for all matched grains.

Figure 11. Absolute triangle curvatures for all boundaries in the simulation and final experiment state.

4. Discussion
Based on Figs. 8 and 9, one of the key features of the simulation that differ from the experiment is the
behavior of the smallest grains. As an example, during the simulation of growth during one annealing period,
101 grains disappeared. These grains are illustrated in Fig. 13, illustrating that they are relatively small and
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Figure 12. The volume prediction error (V PE) as a function of topological error (TE). V PE is the fractional
difference in predicted and observed grain volume. TE is the difference in grain face evolution between simulation
and experiment.

positioned randomly in the volume. Of these grains, 57 (47%) also disappeared in the experiment. Of the
remaining grains, about 2/3 of them got smaller or did not change volume. One supposes that eventually,
these grains will also disappear. However, the remaining grains (1/5 of the total) increased in volume,
directly contrary to the simulations. Whether a grain grows or not has more to do with its environment
than its size [48, 60] and it has been shown that small grains can form and grow, provided they decrease
the total interfacial energy [61]. However, even the grains undergoing a negative volume change in the
experiment appear to shrink more slowly than in the simulation. This suggests the possibility of some
physical process that retards the migration of boundaries around the smallest grains. It does not seem likely
that the decreased rate of shrinkage could be a result of the grain boundary energy anisotropy, which is not
accounted for here. While a spectrum of grain boundary energies would alter the driving force and grain
boundary migration rate, it is just as likely to increase the rate as decrease the rate, and the grain boundary
energy is not expected to change with the grain size. One possibility is that as the grain boundary area
decreases, the local concentration of segregated impurities [62] or boundary defects increases [63] and this
influences migration kinetics. However, this possibility cannot be tested with the available data. It was noted
that the grain boundaries had, on average, lower curvatures than the experimental data set. This observation
cannot explain the difference in the behavior of the shrinking grains, as reduced curvature should reduce the
rate of grain volume change. Because the energies are anisotropic in the experiment, the curvature is not
expected to be uniform as it is in the simulations. The variations in local curvature in the experiment may
be a result of grain boundary energy anisotropy or simply are an artifact of the experiment’s finite spatial
resolution. In any case, it is difficult to predict how this would influence grain boundary migration; for the
case of anisotropic grain boundary energy, the migration rate depends on the grain boundary stiffness and the
anisotropy of the stiffness is greater than that of the grain boundary energy [64]. However, grain boundary
properties are not expected to change with size, so this does not explain the difference in the behavior of the
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Figure 13. Visualization of the 101 grains in An4 that shrunk to zero in An5 in simulation. These grains are colored
by IPF coloring and are opaque while the rest of the microstructure is transparent.

small grains.
It was also found that errors in the volume change of each grain are tied to errors in topological changes.

In other words, if a grain’s change in its number of neighbors is the same in the simulation and experiment,
the volume change is more accurately predicted. This is not too surprising. Once the simulated and
experimental grain have a different number of near neighbors, the sizes of the grain faces and grain face
curvatures will be different, causing them to evolve differently. The greater the difference in the number of
neighbors, the larger the error in the volume change. The source of these errors is difficult to identify, but
one is certainly disappearance of more grains in the simulation. Assuming the grains that disappear have
a minimum of four neighbors, each grain that disappears in the simulation but not the experiment changes
the number of neighbors of at least four grains. For the example discussed above, where 64 more grains
disappear in the simulation than in the experiment, this changes the number of neighbors of as many as 256
grains.

There have been a number of recent grain growth simulations that assume anisotropic grain boundary
energies [42, 65–67]. It is envisioned that if realistic models for the grain boundary energy anisotropy are
used, they will better predict the evolution of the microstructure. However, the current results suggest that it
might be necessary to include a size dependent migration model because grains that disappear too quickly
change the environments of other grains and this leads to errors in the prediction of volume changes. In
future work, the isotropic TD scheme used here will be extended to include anisotropic surface energy and
mobility data from experiment [68]. This platform will make it possible to explore different forms of the
anisotropic kernel that will best model the anisotropic grain growth in Ni.

5. Conclusions
Experimentally observed Ni microstructures, at six time steps, were compared in a grain-by-grain fashion
to the results of isotropic grain growth simulations. This comparison led to the following conclusions. The
simulation predicts the correct sign of the volume change for only 62% of the grains. The errors are the
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most pronounced for the smaller grains, for which shrinkage is over predicted and growth is under predicted.
Improved grain growth models might need to incorporate migration kinetics influenced by grain size. The
grain boundary curvatures in the simulation are systematically lower than in the experimental observations.
Volume prediction errors are correlated to errors in predicting topological changes. When the simulation
captures the topological changes correctly, it can predict the grain volume change accurately as well.

Software Availability
A version of the code developed for this work is available at
https://github.com/JadeXiaoyaoPeng/GrainGrowth_TD_iso
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