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Dense, disordered packings of particles are useful models of low-temperature amorphous phases
of matter, biological systems, granular media, and colloidal systems. The study of dense packings
of nonspherical particles enables one to ascertain how rotational degrees of freedom affect packing
behavior. Here, we study superballs, a large family of deformations of the sphere, defined in three
dimensions by |x1|

2p + |x2|
2p + |x3|

2p ≤ 1, where p ∈ (0,∞) is a deformation parameter indicating
to what extent the shape deviates from a sphere. As p increases from the sphere point (p = 1),
the superball tends to a cuboidal shape and approaches a cube in the p → ∞ limit. As p → 0.5,
it approaches an octahedron, becomes a concave body with octahedral symmetry for p < 0.5, and
approaches a three-dimensional cross in the limit p → 0. Previous characterization of superball
packings has shown that they have a maximally random jammed (MRJ) state, whose properties
(e.g., packing fraction φ, average contact number Z̄) vary nonanalytically as p diverges from unity.
Here, we use an event-driven molecular dynamics algorithm to produce MRJ superball packings.
To supplement the previous work on such packings, we characterize their large-scale structure by
examining the Q → 0 behavior of their structure factors S(Q) and spectral densities χ̃

V
(Q), which

indicate that these packings are effectively hyperuniform for all values of p examined. We show
that the mean width w̄ is a useful length scale to make distances dimensionless in order to compare
systematically superballs of different shape. Moreover, we compute the complementary cumulative
pore-size distribution F (δ) and find that the pore sizes tend to decrease as |1− p| increases. From
F (δ), we estimate how the fluid permeability, mean survival time, and principal diffusion relaxation
time vary as a function of p. Additionally, we compute the diffusion “spreadability” S(t) [Torquato,
Phys. Rev. E, 104, 054102, (2021)] of these packings and find that the long-time power-law
scaling indicates these packings are hyperuniform with a small-Q power law scaling of the spectral
density χ̃

V
(Q) ∼ Qα with an exponent α ∈ (0.32, 0.64) that decreases as |1 − p| increases. Each of

the structural characteristics computed here exhibits an extremum at the sphere point and varies
nonanalytically as p departs the sphere point. We find the nonanalytic behavior in φ on either side
of the sphere point is nearly linear, and determine that the rattler fraction φR decreases rapidly as
|1−p| increases. Our results can be used to help inform the design of colloidal or granular materials
with targeted densities and transport properties.

I. INTRODUCTION

A particle packing is a collection of nonoverlapping
bodies in d-dimensional Euclidean space Rd. The pack-
ing fraction φ is the fraction of Rd covered by these bod-
ies. Dense packings have been used to model physical
phenomena in a wide variety of contexts including con-
densed and soft matter physics [1–4], materials science
[3, 5], and biology [6–8], among many others (see Refs.
9 and 10). A jammed packing is one in which each par-
ticle is contacted by its neighbors such that mechanical
stability of a particular type is conferred to the packing
[9]. Such systems grant insight into the structure and
bulk properties of crystals, glasses, and granular media
[9, 11].

Jammed packings can be organized into three math-
ematically precise categories based on the nature of the
mechanical stability conferred, which in order of increas-
ing stability are as follows [9, 12]: (1) Local jamming: no

individual particle can be moved while holding all other
particles fixed. (2) Collective jamming: the packing is lo-
cally jammed, and no collective motion of a finite subset
of particles is possible. (3) Strict jamming: the pack-
ing is collectively jammed and all volume-nonincreasing
deformations are disallowed by the impenetrability con-
straint.

A jammed state of particular interest is the max-

imally random jammed (MRJ) state. Such packings
are the most disordered configuration (as measured by
a set of scalar order metrics) subject to a particular
jamming category, and can be viewed as prototypical
glasses because of their maximal disorder and mechan-
ical rigidity [9, 13]. Moreover, these packings are hyper-

uniform, meaning their infinite-wavelength density fluc-
tuations are anomalously suppressed compared to those
in typical disordered systems [14–16]. Numerical simula-
tions in R3 have produced, to a very good approximation,
monodisperse MRJ packings of several particle shapes



2

including spheres [13], ellipsoids [17], superballs [18], the
Platonic solids [19], and truncated tetrahedra [20]. While
MRJ sphere packings have been characterized extensively
[15, 21–25], other shapes are less well understood due to
their relative mathematical complexity.

MRJ packings of spheres in R3 are isostatic [24, 26],
meaning that the total number of interparticle contacts
(constraints) is equal to the number of degrees of freedom
in the system and that all of the constraints are linearly
independent. In such packings, it is thus implied that
the average number of contacts per particle Z̄ is equal
to twice the number of degrees of freedom per particle
(i.e., Z̄ = 2f) in the thermodynamic limit, which has
been verified to a high numerical accuracy [24, 26]. Ad-
ditionally, analyses approximating the nonaffine elastic
response of disordered solids have shown the isostaticity
of jammed sphere packings (see, e.g., Ref. 27). While,
e.g., spheres, polyhedra [19, 28], and lenses [29] have iso-
static MRJ packings, this is not a general signature of
the MRJ state. In particular, certain aspherical particles
with smooth boundaries, e.g., ellipsoids [17], superellip-
soids [30], and superballs [18] have hypostatic MRJ pack-
ings, meaning that Z̄ < 2f . Using second- and higher-
order jamming analyses, Donev et al. [31] have rigorously
shown that if the curvature of nonspherical particles at
their contact points is considered, then hypostatic pack-
ings of nonspherical particles can indeed be jammed.

In practice, disordered jammed packings of monodis-
perse spheres and nearly-spherical particles produced via
simulation or experiment contain a small concentration
of rattlers (. 3% of particles [9, 10]), which are un-
jammed particles locally imprisoned by their jammed
neighbors [9, 13]. Jamming precludes the existence of
rattlers [9, 12]. Nevertheless, it is the significant major-
ity of particles that confers rigidity to the packing, and
in any case, the rattlers could be removed (in computer
simulations) without disrupting the remaining jammed
particles [9, 10]. The rattler fraction φR is greatest in
packings of spherically symmetric particles (∼2.5% in
R3), decreases in packings of particles with rotational de-
grees of freedom [32] (vanishing in the case of sufficiently
aspherical particles [18, 31]), and increases in lower spa-
tial dimensions (∼3.5% in R2) [33]. Atkinson et al. [34]
have shown that removing rattlers from MRJ packings
results in a nonhyperuniform packing, meaning the sub-
set of jammed particles alone is not hyperuniform.

Torquato and Stillinger [14] suggested that certain
defect-free, strictly jammed packings of identical spheres
are hyperuniform. Specifically, they conjectured that any
strictly jammed, saturated, infinite packing of identical
spheres is hyperuniform. A saturated packing is one in
which there is insufficient space to add another particle
of the same type to the packing. The conjecture ex-
cludes packings that contain rattlers because they are by
definition not strictly jammed (see above). Nonetheless,
such packings are effectively hyperuniform [15, 35–40].
The Torquato-Stillinger conjecture is supported by re-
cent theoretical considerations [41] involving free-volume
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FIG. 1. Superballs with different values of the deformation
parameter p.

theory and numerical investigations [42] involving large-
scale correlations in three-dimensional sphere packings at
jamming. One expects this conjecture to extend to cer-
tain defect-free strictly jammed packings of nonspherical
particles. Zachary et. al [35, 39, 40] have shown that
two-dimensional MRJ packings of polydisperse and/or
nonspherical particles are effectively hyperuniform with
respect to the spectral density, the proper spectral mea-
sure for packings of polydisperse or noncircular particles.
For the first time, we use the spectral density to show
that MRJ packings of nonspherical particles in three di-
mensions are effectively hyperuniform.
It is fundamentally and practically important to un-

derstand the packing behavior of nonspherical particles
[17, 19, 28, 32, 43–47]. In particular, this allows us to bet-
ter understand real granular media and low-temperature
states of matter. Supramolecular chemistry of organic
compounds, which attain a wide range of symmetry
groups [48], can also be modeled using particles with the
same symmetry.
Studies of the dense packings of superballs in two and

three dimensions were introduced by Jiao, Stillinger, and
Torquato [18, 49, 50] to ascertain the effect of deform-
ing from a sphere and the resulting rotational degrees
of freedom. Superballs in Rd are a family of centrally
symmetric shapes with d equal semiaxes, defined by the
inequality

|x1|
2p + |x2|

2p + · · ·+ |xd|
2p ≤ 1, (1)

where xi(i = 1, . . . , d) are Cartesian coordinates and
p ≥ 0 is the deformation parameter which indicates the
extent to which the shape is deformed away from the
d-dimensional sphere (p = 1). Henceforth, the term su-
perball will refer to the three-dimensional object, while
superdisk will refer to the two-dimensional object. As
p increases from unity superballs attain cubic symme-
try, becoming a cube in the limit of p → ∞, and as p
decreases attain octahedral symmetry (see Fig. 1) be-
coming an octahedron at p = 0.5, concave at p < 0.5,
and a three-dimensional cross in the p → 0 limit.
A superball breaks the rotational symmetry of a sphere

differently from an ellipsoid [18]. In the direct vicinity
of the sphere point, the superball attains either cubic
(p > 1) or octahedral (p < 1) symmetry, while ellip-
soids are simply affine transformations of the sphere. Far
from the sphere point, the asphericity [19, 28], defined as
the ratio of the radii of the circumsphere and insphere
of a nonspherical particle, can increase without limit as
the aspect ratio a grows for ellipsoids, while it is always
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bounded and close to unity for convex superballs (i.e.,
p ≥ 0.5). These unique geometric properties of super-
balls result in rich phase behavior [51–53], including a
multitude of crystalline phases, plastic crystalline phases,
and complex melting transitions. Moreover, novel in-
organic synthetic methods allow for the production of
superball-shaped colloids [54–56]. Thus, the results pre-
sented herein can be used to inform the design of dis-
ordered colloidal materials with desired properties using
such particles.

Previous theoretical studies of superball and superdisk
packings include the determination of their densest
known packings for all values of p, which are Bravais lat-
tices with symmetries consistent with those native to the
superball [50], as well as their phase behavior (see above).
Moreover, Jiao et al. have studied the properties of MRJ
superball packings [18]. In particular, they found that φ
and Z̄ increase rapidly and nonanalytically as the super-
balls become more aspherical (i.e., as |1 − p| increases),
while φR decreases, which is attributed to the symmetry
breaking as |1 − p| increases from 0. This increase in φ
is a result of the superball shape becoming more efficient
at filling space as p deviates from unity. Ellipsoids, how-
ever, have a critical aspect ratio a∗ [17] at which φ is
maximized and thereafter begins to decrease due to very
elongated or plate-like ellipsoids having strong exclusion-
volume effects in orientationally disordered packings (see,
e.g., Ref. 57) which causes the MRJ packing fraction
to decrease. A comparison of the ellipsoid and super-
ball MRJ packing fractions as a function of the scaled
mean width (see Secs. II C, III C) is given in Fig. 6.
These observations are consistent with the notion that
packings of particles with rotational degrees of freedom
tend to have larger φ and smaller φR. The nonanalyt-
icity around p = 1 is also observed in optimal superball
and superdisk packings [49, 50]. By contrast, the dens-
est known ellipsoid packings have a smooth increase in
φ as a deviates from unity [58]. They also show that
MRJ superball packings are highly hypostatic, meaning
Z̄ is much less than 2f , which requires non-trivially cor-
related local arrangements of particles. These so-called
“non-generic” local configurations, in which a particle has
fewer contacts than average, are counter-intuitively not
rare. This property of superballs stands in contrast to el-
lipsoid packings, which are slightly hypostatic, meaning
Z̄ is only slightly less than 2f .

Similar nonanalytic behavior is also observed in MRJ
packings of bidisperse superdisks in which there are
equimolar amounts of superdisks with a size ratio of 1.4
[18]. To our knowledge, however, monodisperse MRJ
superdisk packings for p 6= 1 have not been observed.
Monodisperse disks in R2 lack geometrical frustration,
i.e., the densest local packing arrangement is compatible
with the global densest packing arrangement (the trian-
gular lattice). As a result, typical packing algorithms
generate polycrystalline disk packings with a probabil-
ity of nearly unity [33]. Thus, the definition of random
close packing (RCP), which identifies the most probable

packings as the most disordered, misleadingly identifies
these polycrystalline packings as the RCP state, a du-
bious proposition for the MRJ state [9, 59]. Atkinson
et al. [33] produced MRJ-like disk packings using the
Torquato-Jiao sequential linear programming algorithm
[60], which are isostatic and qualitatively distinct from
commonly observed polycrystalline packings.

Herein, we aim to build on the foundational study of
MRJ superballs by Jiao et al. [18]. We use the Donev-
Torquato-Stillinger (DTS) algorithm [61, 62], which em-
ploys event-driven molecular dynamics to produce dense
packings of centrally symmetric objects (more details in
Sec. III A), to produce large MRJ superball packings for
a wide range of p values. We show that these packings
are effectively hyperuniform and compute the structure

factor S(Q) and spectral density χ̃
V
(Q) and examine the

small-Q power-law scaling given by:

χ̃
V
(Q) ∼ Qα, (2)

where Q is the wavenumber and α > 0 is the hyperunifor-
mity scaling exponent, which are defined in section IIA.
The structure factor and spectral density (mathemati-
cally defined in Sec. II A) are related to the Fourier trans-
forms of the pair correlation function g2(r) and autoco-
variance of the phase indicator function χ

V
(r), respec-

tively, and can be obtained via scattering experiments
[3, 63]. Using χ̃

V
(Q), we compute the spreadability S(t)

and find the long-time scaling indicates these packings
are hyperuniform with α ∈ (0.32, 0.64) which decreases
as |1 − p| increases [64]. We additionally compute the
complementary cumulative pore-size distribution F (δ),
and find that pore sizes tend to be smaller as |1 − p|
increases. We also note that each packing is saturated.
From F (δ), we are able to estimate the fluid permeabil-
ity k, mean survival time τ , and principal diffusion relax-
ation time T1. We observe that k, τ , and T1 have maxima
at p = 1 and decrease as |1− p| increases. By producing
MRJ packings with |1−p| closer to zero than in previous
work, we determine that φ increases nearly linearly for
sufficiently small values of |1 − p|. We also characterize
φR as a function of p, which decreases rapidly and non-
analytically as p diverges from unity. We expect these
results to be useful in the design of disordered colloidal
materials with desired properties.

The rest of the paper is organized as follows. Section
II contains the pertinent background and mathematical
definitions. Section III describes the methods used to
produce and characterize the MRJ superball packings.
In section IV we present results from the structural char-
acterization of said packings and in section V we present
their transport properties. We then offer conclusions and
potential future studies in section VI.
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II. BACKGROUND AND DEFINITIONS

A. Structure Factor and Spectral Density

A system comprising point particles in Rd can be com-
pletely characterized by a set of n-particle probability
density functions ρn(r1, . . . , rn) ∀ n ≥ 1, which are pro-
portional to the probability of finding n particles at the
positions r1, . . . , rn. For statistically homogeneous sys-
tems, ρ1(r1) = ρ, where ρ is the number density, and
ρ2(r1, r2) = ρ2g2(r), where r = r2 − r1 and g2(r) is the
pair correlation function. If the system is also statis-
tically isotropic, g2(r) = g2(r), where r = ‖r‖. The
ensemble-averaged structure factor S(Q) is defined as

S(Q) = 1 + ρh̃(Q), (3)

where h̃(Q) is the Fourier transform of the total correla-
tion function h(r) = g2(r)− 1, and Q is a wave vector.
For single periodic configurations with N point parti-

cles with positions rN = (r1, . . . , rN ) within a fundamen-
tal cell F of a lattice Λ, the scattering intensity S(Q) is
given by

S(Q) =

∣

∣

∣

∑N
i=1 exp(−iQ · ri)

∣

∣

∣

2

N
. (4)

In the thermodynamic limit, an ensemble of N -particle
configurations in F is related to S(Q) by

lim
N,VF→∞

〈S(Q)〉 = (2π)dρδ(Q) + S(Q), (5)

where VF is the volume of the fundamental call and δ is
the Dirac delta function [16]. For finite N simulations
under periodic boundary conditions, Eq. (4) is used to
compute S(Q) directly by averaging over configurations.
Here, we compute the angular-averaged S(Q) by apply-
ing Eq. (4) to the superball centroids.
Packings can be interpreted as two-phase heteroge-

neous media, where the matrix phase V1 is the void
(pore) space between the particles, and the particle phase
V2 is the space occupied by the particles, such that
V1 ∪ V2 = V ⊂ Rd [29]. The packing microstructure
can be fully characterized by a countably infinite set of

n-point probability functions S
(i)
n , defined by [3]

S(i)
n (x1, . . . ,xn) =

〈

n
∏

j=1

I(i)(xn)

〉

,

where I(i) is the indicator function for phase i:

I(i)(x) =

{

1, x ∈ Vi

0, else.
(6)

The function S
(i)
n gives the probability of finding n points

at positions x1, . . . ,xn in phase i. In what follows, we

drop the superscript i, and restrict our discussion to the
particle phase V2.
For statistically homogeneous media, Sn(x1, . . . ,xn) is

translationally invariant and, in particular, the one-point
correlation function is independent of position and equal
to the packing fraction

S1(x) = φ, (7)

while the two-point correlation function S2(r) depends
on the displacement vector r ≡ x2−x1. The correspond-
ing two-point autocovariance function χ

V
(r) [3, 65, 66]

is obtained by subtracting the long-range behavior from
S2(r):

χ
V
(r) = S2(r) − φ2 (8)

The nonnegative spectral density, χ̃
V
(Q), is defined as

the Fourier transform of χ
V
(r) [3], i.e.,

χ̃
V
(Q) =

∫

Rd

χ
V
(r)e−iQ·rdr. (9)

For a monodisperse packing of particles Ω with arbitrary
shape, it is known that [3, 67, 68]

χ̃
V
(Q) = ρ|m̃(Q;R)|2S(Q), (10)

where R denotes the geometrical parameters of the par-
ticle shape and m̃(Q;R) is the Fourier transform of the
particle indicator function (form factor) defined as

m(r;R) =

{

1, r is in R

0, otherwise,
(11)

where r is a vector measured with respect to the particle
centroid.
For single finite configurations of N identical hard par-

ticles under periodic boundary conditions, χ̃
V
(Q) can be

expressed as [40]

χ̃
V
(Q) =

∣

∣

∣

∑N
j=1 exp(−iQ · rj)m̃(Q;Rj)

∣

∣

∣

2

VF

(Q 6= 0),

(12)

where {rj } denotes the set of particle centroids and Rj

denotes the jth particle. Moreover, for such systems φ is
given by

φ =
Nv1
VF

, (13)

where v1 is the volume of a single particle.
To our knowledge, m̃(Q;R) has not been computed

for superballs. To circumvent this issue, we create a cu-
bic voxelization of the packings using a novel method
(described in Sec III B) and apply Eq. (12) to the re-
sult, requiring only m̃(Q;R) for the cube. We then com-
pute the angular-averaged χ̃

V
(Q) by applying Eq. (12)
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to the voxelized packings. Additionally, approximations
of m̃(Q;R) for the superballs used in this work, com-
puted using this voxelization procedure, are given in the
Supplemental Information [69].
In this work, we consider both the angular-averaged

structure factor of the superball centroids and the
angular-averaged spectral density. The spectral density
takes into account the structure and orientation of the
particle volume, information which is lost when only con-
sidering S(Q). Superballs (for p 6= 1) are nonspherical,
thus requiring the use of χ̃

V
(Q) to fully characterize the

density fluctuations in their packings. A more detailed
discussion of the importance of computing the spectral
density is given in Sec. IVD and Refs. 35, 39, 40.
A system has hyperuniform local-number-density fluc-

tuations if as Q → 0, S(Q) → 0, while it has hype-
runiform local-volume-fraction fluctuations if as Q →
0, χ̃

V
(Q) → 0 [16]. Spectral densities that approach

the origin with the power-law form given in Eq. (2) can
be divided into three different classes based on their hy-
peruniformity scaling exponent α [70]:

χ̃
V
(Q) ∼ Qα











α > 1, Class I

α = 1, Class II

α < 1, Class III.

(14)

Classes I and III are the strongest and weakest forms of
hyperuniformity, respectively. Such classes apply analo-
gously to structure factors that approach the origin with
a power-law form [14, 71, 72]. Moreover, a system is
deemed to be “effectively hyperuniform” (i.e., that a sys-
tem is, for all intents and purposes, hyperuniform) when
the hyperuniformity index H , defined as [73],

H =
χ̃

V
(0)

χ̃
V
(Qpeak)

, (15)

where χ̃
V
(Qpeak) is the largest peak of the spectral den-

sity, is less than about 10−2 [73]. Equation (15) is exact
in the infinite system limit, but a numerical extrapola-
tion is required for numerical simulations due to finite
system sizes.

B. Pore-Size Distribution and Transport

Properties

1. Pore-Size Distribution

We characterize the void space in the superball pack-
ings by the distribution of their pore sizes δ, i.e., the
maximum radius of a spherical pore that can be assigned
to a random point in the void space such that the pore
lies entirely in the void space. The probability density
function P (δ) of the pore sizes, also known as the “pore-
size distribution” [3, 74], is normalized

∫∞

0
P (δ)dδ = 1

and has units of inverse length. For a randomly selected
point in the void space, P (δ)dδ is the probability that the

shortest distance to the nearest void-particle interface is
between δ and δ + dδ.
Equivalently, one can use the complementary cumula-

tive pore-size distribution function F (δ) defined as

F (δ) =

∫ ∞

δ

P (r)dr, (16)

which can be interpreted as the fraction of void space
that can admit a pore with a radius greater than δ. By
definition, F (0) = 1, F (∞) = 0, and F (δ) is unitless.
With F (δ), we can compute the mean pore size 〈δ〉 and
the second moment 〈δ2〉 of P (δ) using [3]:

〈δ〉 =

∫ ∞

0

F (δ)dδ, (17)

〈δ2〉 = 2

∫ ∞

0

F (δ)δdδ. (18)

These two quantities can be interpreted as characteristic
length scales of the matrix phase and used to compute
the transport properties of heterogeneous media [3].

2. Fluid Permeability

Darcy’s law, which describes the slow flow of an incom-
pressible viscous fluid through a porous medium, defines
the fluid permeability k, and can be rigorously derived
via homogenization theory [75]. The quantity k has di-
mensions of (length)2 and can be interpreted as an ef-
fective pore channel area of the dynamically connected
part of the pore space [3]. Using the solutions of the un-
steady Stokes equations for the fluid velocity vector field,
Avellaneda and Torquato [76] derived the following rela-
tionship between k, the formation factor F of the porous
medium, and a length scale L that is determined by the
eigenvalues of the Stokes operator:

k =
L2

F
, (19)

where L is a certain weighted sum of the viscous relax-
ation times Θn (i.e., inversely proportional to the eigen-
values of the Stokes operator), and F = σ1/σe where σe is
the effective conductivity of a porous medium with a con-
ducting fluid of conductivity σ1 and a perfectly insulating
solid phase. Qualitatively, F quantifies the “windiness”
of the entire void space and is a monotonically decreasing
function of the porosity [77]. Note, L in Eq. (19) absorbs
a factor of 8 compared to the definition given in Ref. 75,
specifically, L = L/8.
The theoretical prediction of k is a difficult problem

because it is nontrivial to estimate L. Recently, Torquato
[77] proposed that, for well-connected pore spaces, L2 can
be approximated by 〈δ2〉,

k ≈
〈δ2〉

F
(20)
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which was verified by Torquato [77] for BCC, equilib-
rium, and stealthy sphere packings and by Klatt et al.
[78] for a number of other ordered and disordered sphere
systems. Additionally, to approximate F , we use a tight
lower bound derived by Torquato [79] for any porous
medium in R3 that accounts for up to four-point infor-
mation. To an excellent approximation, the four-point
parameter vanishes for a class of ordered and disordered
dispersions of particles, thus yielding the accurate esti-
mate

F ≈
2 + φ− (1− φ)ζ2
(1− φ)(2 − ζ2)

, (21)

where ζ2 ∈ (0, 1] is a three-point microstructural pa-

rameter, which is a weighted integral involving Si for
i = 1, 2, 3. This approximation is in excellent agree-
ment with simulations of a variety of ordered and dis-
ordered sphere dispersions [79–84]. In the ζ2 = 0 case,
Eq. (21) reduces to the well-known Hashin-Shtrikman
lower bound on F [3, 85].

3. Mean Survival Time and Principal Diffusion Relaxation

Time

Another set of material descriptors concern the dif-
fusion of a species through a pore space with a diffusion
coefficient D that reacts at the pore-solid interface with a
reaction rate κ. The diffusion controlled-limit is reached
as κ → ∞, while taking κ → 0 corresponds to a perfectly
reflective interface. One related quantity of interest is
the mean survival time τ , or the average lifetime of the
diffusing species before reacting with the interface. Ad-
ditionally, the principal relaxation time T1 is associated
with the time-dependent decay of the initially uniform
concentration field of the diffusing particles [3], and is
also pertinent to the description of viscous flow in porous
media [86].
Using variational principles, Torquato and Avellaneda

[86] derived the following upper bounds on τ and T1 in
terms of lower-order moments of the pore-size probability
density function

τ ≤
〈δ〉2

D
+

(1− φ)

κs
, (22)

T1 ≤
〈δ2〉

D
+

3(1− φ)〈δ〉2

4κs〈δ2〉
, (23)

where s is the specific surface of the medium. In this
work, we only consider the diffusion-controlled limit.

4. Spreadability

Recent work [64] has revealed that the time-dependent
spreadability is a powerful new dynamic-based figure

of merit to probe and classify the spectrum of possi-
ble microstructures of two-phase media across length
scales. Consider the time-dependent problem describ-
ing the mass transfer of a solute between two phases and
assume that the solute is initially only present in one
phase, specifically the particle phase, and both phases
have the same D. The fraction of total solute present in
the void space as a function of time S(t), is termed the
spreadability because it is a measure of the spreadability
of diffusion information as a function of time. Quali-
tatively, given two different two-phase systems at some
time t, the one with a larger value of S(t) spreads dif-
fusion information more rapidly. Recently, Torqauto has
shown that the excess spreadability S(∞) − S(t) can be
expressed in Fourier space in any dimension d as [64]:

S(∞) − S(t) =
dωd

(2π)dφ

∫ ∞

0

Qd−1 χ̃
V
(Q) exp[−Q2Dt]dk,

(24)
where ωd is the volume of a d-dimensional unit sphere:

ωd =
πd/2

Γ(1 + d/2)
. (25)

Consider the particular case of two-phase media with
χ̃

V
(Q) that obeys a power-law scaling in the Q → 0 limit:

lim
Q→0

χ̃
V
(Q) = B|Qℓ|α, (26)

where B is a positive dimensionless constant, ℓ repre-
sents some characteristic microscopic length scale, and
α ∈ (−d,∞). Such media can then be classified by their
value of α, in particular if α > 0, the medium is hyperuni-
form; if α = 0, it is a typical nonhyperuniform disordered
medium; and if α < 0, it is antihyperuniform, meaning
χ̃

V
(Q) diverges at the origin. The long-time behavior

of the excess spreadability for this class of media can be
written as [64],

S(∞)− S(t) ∼ 1/t(d+α)/2 (27)

Thus, hyperuniform two-phase media media have a decay
rate faster than 1/td/2 at large t. Here, we use Eq. (24)
to compute S(∞)− S(t) for the superball packings.

C. Mean Width

We will show that the mean width w̄ is a useful means
to make distances dimensionless when comparing su-
perballs with different values of p. The mean width
w̄ is a Minkowski functional with dimensions of length
[65]. Consider a convex d-dimensional body trapped be-
tween two parallel (d− 1)-dimensional hyperplanes. The
“width” of the convex body w(n) in the direction n is
the distance between the closest pair of parallel hyper-
planes that do not intersect the body. The average of
w(n) such that n is uniformly distributed over the unit
(hyper)sphere in Rd is w̄ [65, 87].
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(a) (b)

FIG. 2. Illustrative configurations of MRJ packings of super-
balls with N = 250 for two different values of the deformation
parameter: (a) p = 0.85, (b) p = 1.5.

III. ALGORITHMIC AND EXPERIMENTAL

DETAILS

A. Donev-Torquato-Stillinger Algorithm

We use an event-driven molecular dynamics simulation
developed by Donev, Torquato, and Stillinger [61, 62]
(henceforth referred to as the DTS algorithm) to gen-
erate MRJ packings of superballs. This algorithm gen-
eralizes the Lubachevsky-Stillinger (LS) sphere packing
algorithm [88] to accommodate other centrally symmet-
ric convex particles, e.g, ellipsoids and superballs. Ini-
tial conditions are produced by randomly distributing
randomly oriented particles, without overlap, in a cu-
bic periodic simulation box (fundamental cell). In this
work, we choose φinitial = 0.2. Particles are then as-
signed random translational and rotational velocities,
and their motions are followed as they collide elastically
and expand uniformly with an expansion rate γ. Even-
tually, a jammed state with a diverging collision rate is
reached, as is a local maximum in φ. To enforce random-
ness in our packings, we use an initially large expansion
rate (γ ∈ (0.05, 0.005) up to a dimensionless pressure
P = 106) to avoid following the equilibrium branch of
the phase diagram, which leads to crystallization. As the
jamming point is approached, we decrease the expansion
rate (γ ∼ 0.001) to ensure a truly jammed packing with a
well-defined contact network is produced. Previous work
on spheres [24], ellipsoids [17], and superballs [18] indi-
cates that this is a reliable method to produce MRJ-like
packings. Illustrative examples of the packings produced
are shown in Fig. 2. We find that using initial expan-
sion rates larger than γ = 0.05 causes the initial expan-
sion step to terminate far from the jamming point. This
allows the configuration much more space to rearrange
during the second, slower expansion step which tends to
result in configurations with larger φ and Z̄, which indi-
cates they are not representative of the MRJ state.
In this work, we study superballs with p ∈ [0.85, 1.5].

For p < 0.85 the resulting superballs are polyhedron-
like, which causes numerical instability in the algorithm.

While previous work [18] uses values of p up to 3, we
find that our larger system sizes (N = 5000 compared
to N = 1000) are unable to produce high-quality MRJ
packings in a feasible amount of time. For packings with
N = 5000, 1000 the terminal pressure is P = 1014. The
results for φ, Z̄, and φR for p 6= 0.975, 1, 1.025, 1.05 are
averaged over 50 N = 5000 configurations, and over 10
N = 5000 configurations for p = 0.975, 1.025, 1.05. For
packings of spheres with N > 1000, the DTS algorithm
is known to take an impractical amount of time to pro-
duce high-quality contact networks [15], so for the φ, Z̄,
and φR of spheres we use 10 N = 1000 configurations.
Particles are considered to be in contact if they are less
than a distance of 10−10D apart, where D is the length
of one of the superball’s major axes. For F (δ), 1000000
pore sizes are computed in each of 10 N = 5000 config-
urations. The results for S(Q) and χ̃

V
(Q) are averaged

over 50 N = 5000 configurations.

B. Voxelization

Here, we present a novel procedure by which we vox-
elize a packing of superballs in a cubic fundamental cell,
allowing us to easily compute certain properties of these
packings, such as χ̃

V
(Q) and F (δ). To do so, we leverage

the superellipsoid shape function given in Refs. 31, 89.
The following assumes a monodisperse superball packing
in R3, but an analogous procedure can be carried out for
polydisperse packings, packings in R

2, or packings of su-
perellipsoids (so long as value of p for each coordinate is
equal (cf. Eq. (1)), with appropriate modifications.
First, we divide a cube with the same dimensions as

the simulation box into M ×M ×M cubic voxels, where
increasing M results in a higher-resolution packing. For
each superball in the packing, we then carry out the fol-
lowing steps. Let

O−1 =





1/(Rǫ) 0 0
0 1/(Rǫ) 0
0 0 1/(Rǫ)



 (28)

be a matrix that describes a sphere that has a radius
R equal to the major semiaxes of the superball and ǫ is
a small parameter that scales the superballs such that
φ of the voxelization better matches the true value of
φ [90]. Then, using the location of the centroid in the
simulation box, we find the corresponding voxel which
contains it, and check all voxels within a cubic neighbor-
hood around this voxel such that the entire superball is
contained within the neighborhood. To determine if a
particular voxel should be filled or not, we evaluate

ξ(r) = g
[

ξ̃(r̃)
]

− 1 (29)

where r̃ = O−1Q(r − r0) is the relative position rotated
and scaled according to the orientation and shape of the
superball, where Q is a rotational matrix describing the
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FIG. 3. Mean width w̄ [defined by Eq. (32)] as a function
of deformation parameter p of a superball with unit-length
axes, with attention called to the octahedron (p = 0.5), sphere
(p = 1.0), and cube (p → ∞) cases.

orientation of the superball, r is the location of the voxel,
and r0 is the location of the centroid of the superball. For
single exponent superballs, we have

g(x) = x1/p (30)

and

ξ̃(r̃) = eT f(r̃) (31)

where e is (1, 1, 1), and f(x) = |x|2p. If ξ(r) < 0 then
the superball overlaps the voxel and we set its value to 1
(filled), else we set its value to 0 (empty).
To compute χ̃

V
(Q), we apply Eq. (12) to the result

of the above procedure, which is effectively a packing of
cubes. For each of the N = 5000 packings used to com-
pute χ̃

V
(Q), we produce a voxelization with a resolution

of 300×300×300 voxels. To compute F (δ), we use a pro-
cedure very similar to the one given in Ref. 91. In brief,
we choose a random point in the void space of the pack-
ing, determine which voxel it lies in, and compute the
distance to the nearest filled voxel. To do this quickly, we
precompute a list of vectors ν = (n, n, n), where n ∈ N0,
in order of increasing magnitude, then check the voxels
by iterating through this list and adding the vector ν
to the index of the starting voxel until a filled voxel is
found. For each of the N = 5000 packings used to com-
pute F (δ), we produce a voxelization with a resolution
of 500× 500× 500 voxels.

C. Mean Width Details

To account for the differences in particle geometry as
p changes, we scale distances by the mean width w̄. To
our knowledge, there is no known analytical formula for
w̄ of the superball. Thus, we create a polygonal mesh to
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FIG. 4. The percentage rattler fraction φR of MRJ superball
packings as a function of deformation parameter p.

approximate the surface of the superball and use [92]

w̄ =
1

4π

∑

i

liθi, (32)

where li is the length of the ith edge of the mesh, and θi
is the angle between the normals of the faces which meet
at the ith edge, which exactly computes w̄ for any convex
polyhedron. Figure 3 shows w̄ for superballs over a wide
range of p using this approximation. To demonstrate the
effectiveness of this approach, we note that w̄ can be com-
puted exactly for octahedra, spheres, and cubes, which
given a unit diameter are 3

π
√
2
arccos(1/3), 1, and 3/2, re-

spectively. Using the approximation above, we find that
the octahedron and sphere cases (p = 0.5, 1.0) agree up
to 4 decimal places, and that the nearly cubic superball
(p = 106) value agrees up to 6 decimal places, all of
which are slightly smaller than the expected value. We
note that when Q is scaled by w̄ the principal peaks of
both S(Q) and χ̃

V
(Q) become very closely clustered (see

Sec. IVD), indicating that this is a reasonable choice of
scale. Scaling by other, seemingly sensible, length scales,
such as the major axis length of the superballs results in
a larger distribution of principal peak positions, and as
such are not the proper choice (see Supplemental Infor-
mation [69]).

IV. STRUCTURAL CHARACTERISTICS OF

MRJ SUPERBALL PACKINGS

A. Rattler Fraction

We carefully examine φR in superball packings, the re-
sults of which are shown in Fig. 4. Previously, it was
stated that the rattler fraction decreases as |1 − p| in-
creases, and nearly vanishes for p > 2.75 [18]. Such a
decrease in φR was also observed in ellipsoid packings as
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FIG. 5. The packing fraction φ of MRJ superball packings as
a function of deformation parameter p.

a was increased [17]. The present findings are consistent
with that notion. We find that sphere packings have the
largest φR, which decreases rapidly and monotonically as
|1 − p| increases. We expect that φR will vanish in the
p → ∞ limit. Thus, for the majority of values of p, the
dense disordered superball packings cannot be regarded
to be idealized MRJ states (for reasons noted in the intro-
duction), but can be regarded to be good approximations
of MRJ packings given the small concentration of rat-
tlers. The introduction of rotational degrees of freedom
results in a decrease in φR due to the increased number
of contacts required for jamming, as well as an increased
difficulty in forming the isotropic cages needed to house
rattlers [18].

B. Packing Fraction

Figure 5 shows φ for MRJ superball packings as a func-
tion of p. The sharp, nonanalytic increase we observe as
|1−p| increases is due chiefly to the breaking of the spher-
ical symmetry of the particle. Non-spherical particles can
more efficiently cover space by orienting themselves such
that their protuberances occupy open spaces that spheres
would be unable to. In previous work [18], the closest val-
ues of p to the sphere point studied were p = 0.95 and
1.10. To better characterize the cusp at the sphere point,
we produce packings with p = 0.975, 1.025, and 1.05, and
use a linear regression to fit this data. We find that the
slope for p < 1 is -0.2084 (coefficient of determination
R2 = 0.9984) and 0.207 (R2 = 1) for p > 1, showing that
the increase in φ as |1− p| increases is very nearly linear.
The qualitative behavior of φ observed here is otherwise
consistent with previous findings [18].
In Fig. 6 we compare φ for MRJ packings of superballs

for 0.85 ≤ p ≤ 1.50 and prolate and oblate spheroids as
a function of the scaled mean width (see Ref. 87 for
spheroid mean width formulae). Notably, for superballs,

0.95 1 1.05 1.1

Scaled Mean Width

0.64

0.66

0.68

0.7

0.72

�

Superballs

Prolate

Oblate

FIG. 6. Packing fraction φ for superballs, oblate, and prolate
spheroids [31] as a function of their scaled mean widths. Su-
perball mean widths are scaled by the length of their major
axes, while the spheroid mean widths are scaled by the length
of their two equivalent major axes. The ratios of the semi-
axes for the prolate spheroids are 1:1:a, and 1:a:a for oblate
spheroids, where a is the aspect ratio.
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FIG. 7. The average contact number Z̄ of MRJ superball
packings as a function of deformation parameter p.

φ varies linearly (slope of -0.6402, R2 > 0.99 for p ≤ 1,
slope of 0.5579, R2 > 0.99 for p ≥ 1) over the entire
range of mean widths considered. The packing fraction
of MRJ oblate spheroid packings also increases roughly
linearly, and more rapidly than superballs, as the scaled
mean width decreases. By contrast, φ for MRJ prolate
spheroid packings increases quickly and then begins to
plateau as the scaled mean width increases because of
the increased effect of the anisotropic exclusion volume
of such deformed spheroids [17]. For the range of scaled
mean widths considered in Fig. 6, the spheroids have
larger φ because they require more contacts per particle
than superballs to achieve mechanical stability, which re-
quires a denser packing of particles [17].



10

0 5 10 15 20

Qw

0

1

2

3

4

Q
p = ���5

p = ��	�

p = ��	5

p = 1.00

FIG. 8. The structure factor S(Q) [defined by Eq. (4)] as a
function of wavenumber Q scaled by the mean width w̄ for
values of the deformation parameter p ≤ 1.
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FIG. 9. The structure factor S(Q) [defined by Eq. (4)] as a
function of wavenumber Q scaled by the mean width w̄ for
values of the deformation parameter p ≥ 1.

C. Average Contact Number

Much like with φ and φR, Z̄ also exhibits the character-
istic “cusp” at p = 1, but unlike φ, does not have linear
growth in its vicinity. Figure 7 shows Z̄ as a function
of p in the MRJ superball packings. Note that rattlers
are ignored when computing Z̄. The values of Z̄ increase
sharply for small values of |1− p|, then begin to plateau
for large values of p. This sharp increase occurs because
additional contacts are required to constrain the new ro-
tational degrees of freedom that arise when the spherical
symmetry is broken. For p = 1 the packings are exactly

isostatic, as expected [24], while the remainder of the
packings are highly hypostatic (specifically, Z̄ < 12). In
particular, we find that Z̄ ≈ 7.9 (cf. Ref. 18) for suffi-
ciently large p. By contrast, for large a, prolate spheroids
plateau at Z̄ ≈ 9.9, while other, more asymmetric, ellip-
soids plateau at Z̄ ≈ 11.75 [17]. The qualitative behavior
of Z̄ is consistent with previous findings [18]. Notably,
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FIG. 10. The scaled spectral density χ̃
V
(Q) /w̄3 [defined by

Eq. (12)] as a function of wavenumber Q scaled by the mean
width w̄ for values of the deformation parameter p ≤ 1.
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FIG. 11. The scaled spectral density χ̃
V
(Q) /w̄3 [defined by

Eq. (12)] as a function of wavenumber Q scaled by the mean
width w̄ for values of the deformation parameter p ≥ 1.

when φR begins to plateau at p ≈ 1.4, so too does Z̄.

D. Effective hyperuniformity of MRJ Superball

Packings

Zachary et al. have shown that the spectral density
χ̃

V
(Q) needs to be used to fully characterize the den-

sity fluctuations for packings of polydisperse and/or non-
spherical particles [35, 39, 40]. The structure and orien-
tation of the particle volume are accounted for in χ̃

V
(Q),

while S(Q) only considers the particle positions. Thus,
because superballs lack spherical symmetry (for p 6= 1),
we must consider χ̃

V
(Q). To examine the shape effects of

the slightly aspherical superballs (i.e., those with p very
close to unity), we also consider S(Q). These charac-
terizations allow us to ascertain the degree of hyperuni-
formity in these superball packings. Notably, our work
appropriately utilizes the spectral density χ̃

V
(Q) to as-
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TABLE I. The fit parameters a0 and a1 obtained by fitting
Eq. (33) to the small-Q values of χ̃

V
(Q) (Qw̄ . 1.4) with a

fixed hyperuniformity scaling exponent α computed via the
the excess spreadability [cf. Eq. (24)], and the corresponding
value of the hyperuniformity index H for each value of the
deformation parameter p considered.

p a0 × 10−4 a1 × 10−3 α H × 10−3

0.85 1.74 1.16 0.540 7.94
0.90 1.18 1.24 0.618 5.00
0.95 1.48 1.24 0.624 5.74
1.00 0.26 0.14 0.640 0.96
1.10 2.00 1.11 0.600 8.22
1.20 0.97 1.08 0.540 4.29
1.30 1.68 0.87 0.500 7.81
1.40 0.99 1.01 0.380 4.98
1.50 2.10 1.06 0.320 11.30
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FIG. 12. The H index [defined by Eq. (15)] as a function
of the deformation parameter p computed from the spectral
density χ̃

V
(Q).

certain whether an MRJ packing of nonspherical parti-
cles is effectively hyperuniform for the first time in R

3.
Previous studies considering the hyperuniformity of MRJ
packings of nonspherical particles in R

3, (e.g., Ref. 19)
consider only S(Q).
Figures 8 and 9 show S(Q) for the centroids of MRJ

superball packings with p ≤ 1 and p ≥ 1, respectively.
By scaling Q by w̄, we find that the principal peaks all
collapse to nearly the same position. Moreover, as |1−p|
increases, peak positions are pushed to larger values of
Qw̄. Second and subsequent peak heights also begin to
see attenuation, which increases in magnitude as |p − 1|
increases.
While the centroids in MRJ sphere packings are known

to be hyperuniform [15], this is not generally true of
packings of particles with anisotropy or polydispersity
[35, 39, 40]. Due to the striking similarities between
S(Q) for spheres and all other superballs considered here,
it is reasonable to conclude that superballs behave like
effective spheres inscribed within the superballs. This
sphere-like behavior occurs because there is sufficient ori-

entational disorder in the superball packings. This distri-
bution of orientations averages out local inhomogeneities
in the spatial distribution of particle centroids caused by
the particle anisotropy on large scales.

Figures 10 and 11 show χ̃
V
(Q) for MRJ superball pack-

ings with p ≤ 1 and p ≥ 1, respectively. As above, scaling
Q by w̄ results in the principal peaks clustering tightly.
Likewise, minor peaks are shifted to larger values of Qw̄
and have their heights attenuated as |1 − p| increases.
The significant attenuation of the principal peak heights
in χ̃

V
(Q) as |1− p| increases compared to those in S(Q)

is a result of m̃(Q;R) (cf. Eq. (12)).

To estimate χ̃
V
(0) to obtain H defined by Eq. (15)

we must fit the small-Q region of χ̃
V
(Q) (i.e. Qw̄ . 1.4)

with

χ̃
V
(Q) = a0 + a1Q

α, (33)
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FIG. 13. The complementary cumulative pore-size distribu-
tion function F (δ) [defined by Eq. (16)] as a function of pore
radius δ scaled by the mean width w̄ for values of the defor-
mation parameter p ≤ 1.
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radius δ scaled by the mean width w̄ for values of the defor-
mation parameter p ≥ 1.
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where a0 = χ̃
V
(0) and a1 are fit parameters and α is

the hyperuniformity scaling exponent. As a result of the
voxelization procedure and small system size, the small-
Q values of the spectral density are noisy. Thus, a di-
rect numerical fit using Eq. (33) with the triplet a0, a1,
and α as free parameters has a strong dependence on
the range of Q values to which the fit is applied, result-
ing in a large range of values for both a0 and α. For
example, for p = 1.50, by varying the fit window be-
tween Qw̄ ∈ (0.415, 1.16) and Qw̄ ∈ (0.415, 2.07) we find
α ∈ (0.244, 0.711) and a0 ∈ (3.82 × 10−8, 6.94 × 10−4).
Computing the excess spreadability (see Sec. VB for
additional details) is a robust and accurate way to find
α. To reduce the variability in our results for H when
fitting χ̃

V
(Q) for a given value of p, we fix α in Eq.

(33) to be the value computed via the excess spread-
ability. Over the same range of fits above for p = 1.50,
a0 ∈ (2.10× 10−4, 3.64× 10−4) when α is fixed to be the
value found via the excess spreadability. Table I contains
the fit parameters a0 and a1, the fixed value of α from
the excess spreadability calculation used in the fit, and
the corresponding value of H for each p value examined.
Figure 12 shows H as a function of p computed by us-
ing Eq. (15). We find the values of H are on the order
of, or less than, the effective hyperuniformity threshold
(10−2), thus we consider the packings to be effectively
hyperuniform, as one would expect for MRJ packings of
anisotropic particles.

V. EFFECTIVE PROPERTIES OF MRJ

SUPERBALL PACKINGS

A. Pore-Size Distribution Function and Transport

Properties

Figures 13 and 14 show F (δ) for MRJ superball pack-
ings with p ≤ 1 and p ≥ 1, respectively. The maximum
value of δ in these packings is bounded and less than
w̄/2, indicating that each packing is saturated. Again,
the p = 1 point represents an extreme value; the MRJ
packings of such superballs have the largest pore sizes,
reflective of sphere packings having the lowest φ (largest
volume of void space). As p diverges from unity (with
a concomitant increase in φ), we find that the pore sizes
tend to become smaller.
Using the equations in Sec. II B, we approximate k,

and compute upper bounds on τ , and T1 in the diffusion-
controlled limit (see Fig. 15) for a range of p values. To
approximate F in Eq. (20), we use the following formula
for ζ2 based on an interpolation analysis on data involv-
ing packings of spheres and packings of cubes from Ref.
3:

ζ2 = 0.21068φ+ |p− 1|(0.11882+ 0.772236φ). (34)

We find that our predictions of τ and T1 for MRJ sphere
packings are slightly larger than (but of the same or-
der as) previous results, which we attribute to the vox-
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FIG. 15. The fluid permeability k (Eq. (19)) scaled by the
mean width squared w̄2, mean survival time τ (Eq. (22))
scaled by the diffusion coefficient D and w̄2, and principal
diffusion relaxation time T1 (Eq. (23)) scaled by D and w̄2 of
the MRJ superball packings as a function of the deformation
parameter p.
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FIG. 16. The excess spreadability S(∞)−S(t) [defined by Eq.
(24)] as a function of dimensionless time for the MRJ super-
balls packings, as well as for nonhyperuniform Debye random
media, for comparison. The dimensionless times are tD/â2

for Debye random media, where â is the length scale given
in Eq. (35), and tD/w̄2 for superball packings. The dashed
lines are eye guides to show the long-time scaling behavior.

elization procedure slightly overestimating the pore sizes,
while k falls within the previously computed bounds [23].
The transport properties have a maximum at p = 1
(where φ is at a minimum), and decrease as |1 − p| in-
creases, which is consistent with sphere packings having
larger pore sizes than spherically asymmetric superballs.
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via fitting the long-time behavior of Eq. (24) to Eq. (27) as
a function of p.

B. Spreadability

In three dimensions, if the long-time excess spreadabil-
ity of a medium decays more quickly than t−3/2, then the
medium is hyperuniform (cf. Eq. (24)) [64]. To contrast,
consider a typical disordered nonhyperuniform medium
such as Debye random media [63], whose spectral density
in three dimensions is given by [64]

χ̃
V
(k) =

φ(1 − φ)πa3

(1 + (kâ)2)2
, (35)

where â is the characteristic length scale of the medium,
with long-time excess spreadability scaling of exactly
t−3/2. Figure 16 shows the excess spreadability for MRJ
superball packings with p = 0.85, 1.00, 1.50, and Debye
random media for comparison. These packings, for all
values of p considered, have long-time scaling exponents
between -1.66 and -1.82. The spreadability decay tends
to become slower as |1−p| increases, indicating packings
of less spherical superballs are more weakly hyperuni-
form.
The corresponding values of α based on these scaling

exponents are given in Fig. 17. We find the MRJ su-
perball packings belong to Class III (see Eq. (14)) for
all values of p considered. In the special case of the
sphere (p = 1), a recent numerical study of randomly
close packed spheres [93] also reports that such packings
are of class III, but with a value of α = 0.24, extracted
from the structure factor, that is substantially smaller
than for our MRJ sphere packings. It is not surpris-
ing that the spreadability offers a robust and accurate
method to compute α that is less susceptible to pointwise
variations in χ̃

V
(Q) itself, since the spreadability can be

regarded to be a Gaussian smoothing of the spectral den-
sity as derived in Ref. 64. Due to finite system sizes, the
small-Q region of χ̃

V
(Q) tends to have low resolution and

is prone to being noisy, which can lead to large variabil-
ity in the resulting numerical fits. Computing the excess

spreadability does not rely on these potentially dubious
extrapolations, and as such is more robust against noise
than other measures of α. One can compare these results
to those from Ref. 64, which demonstrates that these
packings are “less hyperuniform” than the stealthy hype-
runiform systems considered therein, which is consistent
with the classification of these hyperuniform systems in
previous work (see, e.g. Table 1 in Ref. 16).

VI. CONCLUSIONS

In this work, we examined superballs, a family of cen-
trally symmetric shapes defined by Eq. (1), that take
on both cube-like (p > 1) and octahedron-like shapes
(p < 1). Using the DTS algorithm, we produced large
MRJ packings of superballs with p ∈ [0.85, 1.50]. We
also generated voxelized versions of these packings us-
ing a novel method to aid in the computation of χ̃

V
(Q)

and F (δ). To characterize these packings, we compute
φ, Z̄, and φR. We also compute the mean width w̄, and
find that it is a useful length scale to make distances
dimensionless to compare superballs of different shape.
In particular, w̄ is a better choice of scale than other,
seemingly sensible, choices of scale, like the length of
the major axes of the superball. In addition, we com-
puted S(Q) of the superball centroids and χ̃

V
(Q) of the

voxelized packings and examined the small-Q behavior
to characterize the large-scale properties. We also com-
puted F (δ) and the transport properties k, τ , and T1,
as well as the excess spreadability S(∞) − S(t). Novel
experimental techniques have allowed for the synthesis
of colloidal particles with superball-like shapes [54–56].
Thus, careful characterization of simulated packings can
be helpful in the design of real colloidal materials fabri-
cated via these methods.
To build on previous work in this area [18], we more

closely characterized the nonanalytic “cusp” in φ at p = 1
and find that φ increases nearly linearly on either side
of the sphere point as |1 − p| increases for sufficiently
small |1− p|. The notion that p = 1 is an extreme point
persists in each of the subsequent characterizations of
the packings, although the linear scaling does not. We
additionally determine φR as a function of p and find
that it rapidly decreases as |1− p| increases. Notably, as
Z̄ begins to plateau at p ≈ 1.4, so too does φR. Because
φR monotonically decreases, we expect it to vanish in the
p → ∞ limit.
Here, for the first time, we have used χ̃

V
(Q) to assess

the hyperuniformity of packings of nonspherical particles
in R3. We find that the MRJ superball packings are ef-
fectively hyperuniform with respect to χ̃

V
(Q) , which is

the appropriate spectral measure for nonspherical par-
ticles. Further, due to the striking similarities between
S(Q) of spheres and those of the nonspherical superballs,
we conclude that superballs behave like effective spheres

inscribed within the superballs.
Moreover, we find that the pore sizes in MRJ superball
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packings tend to become smaller away from the sphere
point (i.e., as φ increases). The maximum pore sizes in
these packings are also bounded and less than the semi-
axes of the superballs, indicating that the packings are
saturated. The fluid permeability k, mean survival time
τ , and principal diffusion relaxation time T1 all have a
maximum at p = 1 and decrease as |1−p| increases. Addi-
tionally, the long-time excess spreadability indicates that
these packings are hyperuniform with α ∈ (0.32, 0.68)
that decreases as |1− p| increases. Use of the spreadabil-
ity to compute α is robust to noise, and as such a reliable
way to compute α for numerically- or experimentally-
generated two-phase media.
Due to stability issues in the DTS algorithm, we are

unable to simulate the behavior of superballs with p > 3.0
(cube limit) or p < 0.85 (octahedral limit, concave super-
balls). While the the MRJ state of octahedra has been
studied using other methods (see Refs. 19, 28), the MRJ
state of cubes is still undiscovered. Further, very little
is known about the behavior of hard concave superballs,
e.g., only predictions for the densest packings of concave
superballs are known [50], and disordered packings have

only been examined via RSA [94]. It is also of great inter-
est to more carefully examine the structure of the contact
network beyond Z̄ and its relationship with the particle
shape. For example, similar to the analysis carried out
in Ref. 95, one can examine the relationship between p
and the distribution of contact angles (or α, in the case
of spheroids), which could help determine why MRJ su-
perball packings are more hypostatic than MRJ spheroid
packings.
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