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We theoretically study the carrier doping e↵ect for magnetism in a stacked-kagome system
Co3Sn2S2 based on an e↵ective model and the Hartree-Fock method. We show the electron filling
and temperature dependences of the magnetic order parameter. The perpendicular ferromagnetic
ordering is suppressed by hole doping, whereas undoped Co3Sn2S2 shows magnetic Weyl semimetal
state. Additionally, in the electron-doped regime, we find a non-collinear antiferromagnetic ordering.
Especially, in the non-collinear antiferromagnetic state, by considering a certain spin-orbit coupling,
the finite orbital magnetization and the anomalous Hall conductivity are obtained.

I. INTRODUCTION

Magnetic kagome-lattice systems such as Mn3Sn[1–5],
Fe3Sn2[6, 7], and Co3Sn2S2[8–12] (CSS) are attracting
a great deal of attentions because of their diverse elec-
tronic and magnetic properties. The anomalous Hall ef-
fect, originated from the topological gapless points in
momentum space called the Weyl points[13–15], is one
of the significant transport properties in these materi-
als. Especially, CSS possesses the small Fermi surface
with the Weyl points and is called the Weyl semimetal[8].
In addition to the electronic properties, these systems
show di↵erent magnetic ordering, although they com-
monly have kagome-lattice layers[16]. Mn3Sn shows a
non-collinear antiferromagnetic ( AFM ) arrangement in
which the magnetic moments of Mn are oriented at a
relative angle of 120� in the kagome plane[1]. Fe3Sn2
shows ferromagnetic (FM) ordering with the in-plane
magnetic anisotropy[6, 7]. In CSS, although the ground
state shows perpendicular FM ordering[8, 17, 18], recent
experiments predict a non-collinear AFM arrangement
at finite temperature[19–21]. According to the theory
of metallic magnetism[22], it has been established that
the Fermi surface structure plays an important role for
magnetic ordering. Therefore, it is expected that the
magnetic ordering is altered by tuning the Fermi level.
However, the theoretical investigations for the magnetic
ordering with di↵erent Fermi levels in stacked-kagome
systems are not well achieved.

In this paper, based on the e↵ective model of the mag-
netic Weyl semimetal CSS[23], we study the magnetic
ordering with respect to the experimentally controllable
parameters, the filling factor of dopants and tempera-
ture. Our results for magnetic ordering are summarized
as a schematic picture in Fig. 1. A non-collinear AFM or-
dering appears by electron doping, wheres undoped sys-
tem shows the perpendicular ferromagnetic Weyl state.
As characteristic properties in the non-collinear AFM
state, the orbital magnetization and the anomalous Hall
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FIG. 1. Possible phases in doped Co3Sn2S2. In undoped
Co3Sn2S2, Weyl semimetal phase with perpendicular ferro-
magnetic ordering appears. In hole-doped Co3Sn2S2, the fer-
romagnetic ordering is suppressed and the system becomes
paramagnetic. In electron-doped Co3Sn2S2, a non-collinear
antiferromagnetic ordering appears.

conductivity become finite by considering a certain spin-
orbit coupling.

II. TIGHT-BINDING HAMILTONIAN AND
HARTREE-FOCK MEAN-FIELD FORMALISM

First, we briefly introduce the e↵ective model of CSS.
In our previous study[23], we constructed an e↵ec-
tive two-orbital model of CSS, by considering few or-
bitals. This model reproduces the electronic band struc-
ture which is similar to that obtained by first-principles
calculations[8, 9]. Figure 2(a) shows the original crystal
structure of CSS. The stackcked kagome layers consist of
Co and sandwich two types of triangle layers which con-
sist of Sn and S, respectively. In the e↵ective model, one d
orbital from Co forming kagome layers and p orbital from
interlayer Sn are extracted as a dashed box in Fig. 2(a)
shows. All other orbitals are neglected in the follow-
ing for simplicity. The primitive translation vectors are

a1 = (a
2
, 0, c), a2 = (�a

4
,

p
3a

4
, c), a3 = (�a

4
,�

p
3a

4
, c). In

the following we set c =
p
3a

2
for simplicity. The hopping
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term of this model is given by,

H0 = Hdp +HKM. (1)

Hdp is the spin independent hopping term, HKM is the
spin-orbit coupling term. First, we explain Hdp,

Hdp = �

X

ij�

[tijd
†
i�
dj� + t

dp

ij
(d†

i�
pj� + p

†
i�
dj�)]

+✏p

X

i�

p
†
i�
pi�. (2)

di� and pi� are the annihilation operators of d orbital
on the kagome lattice and p orbital on the triangle lat-
tice, respectively. tij includes the first and second-nearest
neighbor hopping, t1 and t2, in the intra-kagome layer,
inter-kagome layer hopping tz. t

dp

ij
indicates dp hybridiza-

tion between d orbital of Co and p orbital of Sn. ✏p is the
on-site potential of p orbital on Sn. HKM describes the
Kane-Mele type SOC term[24, 25] on the intra kagome
layer given as follows,

HKM = �itKM

X

hhij ii��0

⌫ij · d
†
i��

z
��0dj�0 . (3)

tKM is the hopping strength and the summation hhijii is
about intra layer second-nearest-neighbor sites. The sign
is ⌫ij = +1(�1), when the electron moves counterclock-
wise (clockwise) to get to the second-nearest-neighbor
site on the kagome plane[24, 25]. Spin-orbit coupling
plays a role in obtaining the Weyl points[8, 23].

Next, we construct the mean-field Hamiltonian by us-
ing the Hartree-Fock approximation. In order to discuss
the itinerant magnetism due to the electron correlation,
we introduce the on-site Coulomb interaction term. The
on-site Coulomb interaction terms for d orbital HU

dd
and

p orbital HU

pp
are respectively given by,

H
U

dd
= Udd

X

i

X

↵

d
†
i↵"d

†
i↵#di↵#di↵", (4)

H
U

pp
= Upp

X

i

p
†
i"p

†
i#pi#pi". (5)

Udd and Upp are the bare on-site Coulomb interaction
strengths of d orbital on Co and of p orbital on Sn, re-
spectively. i and ↵ = A,B, or C indicate the position of
the unit cell and the sublattice index of Co, respectively.
We assume that the fluctuation of the magnetic moment
is small. Thus we introduce the Hartree-Fock approxima-
tionH

U

dd
⇠ H

HF

dd
, HU

pp
⇠ H

HF

pp
for the two-body operators

in Eq. (4) and Eq. (5) as,

H
HF

dd
= Udd

X

i↵

⇥
hni↵"ini↵# + hni↵#ini↵" � hni↵"ihni↵#i

� hd
†
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†
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†
i↵#di↵"id

†
i↵"di↵#

+ hd
†
i↵"di↵#ihd

†
i↵#di↵"i
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, (6)

H
HF

pp
= Upp

X

i

⇥
hnip"inip# + hnip#inip" � hnip"ihnip#i

⇤
.

(7)

ni↵� = d
†
i↵�

di↵� and nip� = p
†
i�
pi� are the particle num-

ber operators of Co and Sn, with spin � on ith unit cell,
respectively. We neglect the in-plane component of mag-
netization on Sn site for simplicity. The total mean-field
Hamiltonian HMF is given by,

HMF = H0 +H
HF

dd
+H

HF

pp
. (8)

To simplify the mean-field analysis, we assume that
the translational symmetry of the crystal structure re-
mains even in the magnetically ordered phase. Addi-
tionally, we are motivated by AFM ordering discussed
in previous experiment[19]. The mean-field Hamilto-
nian in momentum space can be obtained by using
the Fourier transformation di↵� = 1p

N

P
k e

ik·Ridk↵�,

pi� = 1p
N

P
k e

ik·Ripk�. Here k is the crystal mo-

mentum and N is the number of unit cells. The
Bloch Hamiltonian matrix HMF(k) can be written in
the form, HMF =

P
k,� C

†
k�HMF(k)Ck�, where C

†
k� =

(d†kA�
, d

†
kB�

, d
†
kC�

, p
†
k�) and HMF(k) is given by 8 ⇥ 8

matrix,

HMF(k) = H0(k) +Hexc +HE , (9)

in momentum space. Hexc is the exchange term which
describes coupling between the mean-field parameter and
spins of electrons as,

Hexc = �
Udd

2
diag[� · hmAi,� · hmBi,� · hmCi, 0]

�
Upp

2
diag[0, 0, 0,�zhm

z

S
i].

(10)

� is the vector of Pauli matrices which corresponds to
the spin of electron. hm↵i and hm

z

S
i are the mean-

field parameters on the ↵ sublattice of Co and Sn, re-
spectively. In this mean-field Hamiltonian Eq. (9), the
z-component of magnetization and particle number on
each site are computed as hmz

�
i = hn�"i � hn�#i, hn�i =

hn�"i+hn�#i. Here, we use the simplified sublattice index
as � 2 ↵, S, and hn��i =

1

N

P
�,kh�,k|P

�

�
|�,kif(E�k �

µ). In-plane components can be obtained as, hm
x

↵
i =

2Rehd†
↵"d↵#i, hm

y

↵
i = 2Imhd

†
↵"d↵#i, where hd

†
↵"d↵#i =

1

N

P
�,kh�,k|P

↵
�
+
|�,kif(E�k�µ). f(E�k) is the Fermi-

Dirac distribution function. µ is the chemical potential
and discussed in detail in the next section. P

� is the
projection operators for � site with spin �. �

+ is given
by �

+ = �x + i�y. Third term HE is given by,

HE =
Udd

4
diag[EA, EB , EC , 0] +

Upp

4
diag[0, 0, 0, ES ]

+
Udd

2
diag[hnAi, hnBi, hnCi, 0] +

Upp

2
diag[0, 0, 0, hnSi]

(11)
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FIG. 2. (a) Crystal structure of Co3Sn2S2. Co forms the kagome lattice network and sandwiches two layers of triangle lattice
formed by Sn and S, respectively. (b) Anticipated electronic structures of undoped Co3Sn2S2. A dashed box indicates the
limited orbitals in our e↵ective model. The total electron number per unit cell is ne = 3. (c) Electronic structure when the
total electron number is ne = 2. In experimental situation, one hole is doped by substituting Co with Fe, in each unit cell.
(d) Electronic structure when the total electron number per unit cell is ne = 4. In experimental situation, one electron is doped
by substituting Co with Ni, in each unit cell.

E↵ = hm↵i
2
� hn↵i

2 and ES = hm
z

S
i
2
� hnSi

2. For
each k, the Bloch state is given as an eight compo-
nent vector |�,ki, where � is the band index. E�k is
the eigenvalue of |�,ki. The eigenvector |�,ki and or-
der parameters hm↵i can be obtained by diagonalizing
HMF(k) so that the Eq. (9) should be calculated self-
consistently. In the following, we set t1 as a unit of en-
ergy, t2 = 0.6t1, tdp = 2.35t1, tz = �1.2t1, ✏p = �8.5t1,
tKM = 0.2t1, Udd = 7.0t1, and Upp = 5.5t1. These pa-
rameters are chosen to fit the band structure to the result
obtained by first-principles calculations[8, 26, 27]. Addi-
tionally, if we set t1 being t1 ⇠ 0.15eV, the strength of the
Coulomb interaction can be estimated as Udd ⇠ 1.05eV
and Upp ⇠ 0.83eV.

III. CONDITION OF TOTAL NUMBER OF
ELECTRONS IN UNIT CELL

Next, we discuss the chemical potential in our theoret-
ical model. In the following, we assume that the doping
e↵ect is considered as only a change of the number of
electrons per unit cell, and the randomness due to the
impurities is neglected. As mentioned in the previous
section, we extracted one orbital from five d orbitals of
each Co and one orbital from p orbitals of interlayer Sn,
and neglected all other orbitals as shown in Fig. 2(a).

Therefore, the unit cell has (3+1)⇥ 2 =8 states including
the spin degrees of freedom in our model. To determine
µ appropriately, we discuss the electronic orbital config-
urations in the doped CSS. As discussed in our previous
paper[23], in the undoped CSS, we assume that one of
three sites of Co is occupied by one electron, and in-
terlayer Sn site is occupied by two electrons. Thus the
total number of electrons in limited orbitals, is ne = 3
per unit cell as shown in Fig. 2(a). This configuration is
consistent with the magnetization per unit cell mz ⇠ 1.0
as obtained by experiment[8]. In this work, we study the
doping e↵ect to the undoped CSS. To clearly characterize
the filling factor of dopants, we use �ne as the deviation
from ne = 3 in the following results. Therefore, ne = 3
is equivalent to �ne = 0. When one Co in each unit
cell is substituted with one Fe, the anticipated electronic
orbital configuration is shown in Fig. 2(c). In this case,
the total number of electrons per unit cell is ne = 2 so
�ne = �1. Presumably, even if Sn is substituted with
In, instead of substituting Co with Fe, the total number
of electrons per unit cell is same as that in Fig. 2(c). This
is because one electron at the Co orbital is expected to
move to the In orbital, which is assumed to be energeti-
cally low. On the other hand, when one of Co site in each
unit cell is substituted with one Ni, the anticipated elec-
tronic orbital configuration is shown in Fig. 2(d). In this
case, the total number of electrons per unit cell is ne = 4
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FIG. 3. Color maps for (a) z component of magnetization mz per unit cell in units of µB, (b) in-plane component of mag-
netization and (c) z component of vector spin chirality with respect to the filling factor of dopants and temperature. In case
�ne ⇠ 0.0, (a) ferromagnetic ordering with mz ⇠ 0.9 appears. mz decreases as �ne deviates from �ne ⇠ 0. When �ne ⇠ +1.0,
(a) z component of magnetization diminishes, while (b) in-plane component of magnetization and (c) z component of the vector
spin chirality become finite, indicating non-collinear antiferromagnetic state. Electronic band structures of (d) paramagnetic
state, (e) perpendicular ferromagnetic state and (f) non-collinear antiferromagnetic state obtained by the Hartree-Fock method.
In (d) �ne = �1, system is paramagnetic and the chemical potential is close to the band gap. In (e) �ne = 0 , system is
ferromagnetic, the chemical potential is located near the local minimum of the spin majority band, corresponding to the Weyl
points, and near the gap of the spin minority band. In (f) non-collinear antiferromagnetic state, the electronic band dispersion
around the L point remains almost unchanged, comparing to that in ferromagnetic state.

so �ne = +1. The chemical potential µ is numerically
determined to satisfy the following equation,

ne =

Z 1

�1
d✏⇢(✏)f(✏� µ, T ). (12)

Here, ⇢(✏) is the density of states per unit cell, kB is
the Boltzman constant and T is temperature. According
to the above argument, we can determine the chemical
potential µ using the Eq. (12).

IV. MAGNETIC ORDERING

Next, we investigate the magnetic ordering with re-
spect to the filling factor of dopants �ne and tem-
perature T . In Fig. 3, the �ne-T dependence of
(a) the z component of magnetization m

z =
P

�
hm

z

�
i,

(b) the in-plane component of magnetization m// =P
↵

p
hmx

↵
i2 + hm

y

↵i
2 (↵=A, B, and C), (c) the z-

component of the vector spin chirality[28] (K)z = (SA⇥

SB + SB ⇥ SC + SC ⇥ SA)z are shown. Additionally,
in Fig. 3, the band structure and the density of states
at (d) �ne = �1, (e) �ne = 0, and (f) �ne = +1 are
shown. First, we study the FM ordering with the per-
pendicular anisotropy in undoped CSS (�ne = 0). Fig-
ures 3 (a) and 3 (b) show, at low temperature, mz

⇠ 0.9
and m// ⇠ 0 in undoped case (�ne = 0), indicating
FM ordering with the perpendicular anisotropy. The
value m

z
⇠ 0.9 is consistent with results obtained by

first-principles calculations[8] and experiment[8, 29]. We
find the critical temperature in undoped case being T0 =
0.4t1/kB. The band structure and the density of states
in undoped case (�ne = 0) obtained by the Hartree-Fock
method are shown in Fig. 3(e). We set kBT/t1 = 0.01.
E1/t1 = 0 is set as the chemical potential µ obtained by
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Eq. (12). We do not depict the lower two bands because
they are energetically apart from µ. As the right panel of
Fig. 3(e) shows, near µ, the spin up band has a relatively
small density of states corresponding to the Weyl points.
Whereas the spin down band is close to the band gap.
This describes the spin-polarized Weyl semimetalic state
in undoped CSS.

Next, we show the suppression of the FM order-
ing in the hole-doped regime. Figure 3(a) shows that
the FM transition temperature decreases when �ne <

0. This suppression of FM ordering by hole-doping
is consistent with experiment in Co3�xFexSn2S2[30–
33] and first-principles calculations and experiment for
Co3InxSn2�xS2[27, 34]. The non-magnetic band struc-
ture and the density of states in the hole-doped CSS when
�ne = �1 are shown in Fig. 3(d). We note that the
small density of states around µ comes from the states
away from the high-symmetry lines. In this situation, µ
is close to the band gap, indicating a paramagnetic state
with small carriers.

Then, we study the electron-doped regime. This situa-
tion could be realized experimentally in Co3�xNixSn2S2
[35, 36]. As shown in Fig. 3(a), m

z decreases as �ne

increases from �ne = 0. As Fig. 3(c) shows, z com-
ponent of vector spin chirality becomes positive as �ne

increases, while mz vanishes. Especially, when �ne =
+1, we find that the spin configuration becomes as
mA = m(1, 0, 0), mB = m(cos (2⇡/3), sin (2⇡/3), 0),
mC = m(cos (4⇡/3), sin (4⇡/3), 0), where m ⇠ 0.5µB.
These results conclude that the non-collinear AFM order-
ing appears within the restricted order parameter space
of our model. In Fig. 3(f), the electronic band struc-
ture and the density of states in the non-collinear AFM
state are shown. Around the L point, the band disper-
sion near µ remains almost unchanged from that in FM
state [Fig. 3(e)]. In Fig. 3(c), the non-collinear AFM or-
dering sustains up to T/T0 ⇠ 2.3. However, we note that
the magnetic transition temperature is overestimated due
to the use of Hartree-Fock method[37]. On the other
hand, at low temperature the appearance of magnetic
ordering is reliable. The origin of non-collinear AFM or-
dering might be understood as follows. When �ne = +1,
the limited eight orbitals are occupied by four electrons so
that the system corresponds to a half-filled multi-orbital
Hubbard model. Therefore, each magnetic moment on
Co site interacts anti-ferromagnetically on kagome lattice
then non-collinear AFM state is stabilized. Tendency of
the AFM ordering in the half-filled Hubbard model has
been well studied in, for example[38].

V. ORBITAL MAGNETIZATION IN
ANTIFERROMAGNETIC STATE

In the previous section, we showed that the non-
collinear AFM ordering appears in the electron-doped
regime. Here, we discuss the orbital magnetization and
the anomalous Hall conductivity, characterizing the non-
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FIG. 4. (a) Orbital magnetizations and (b) anomalous Hall
conductivity for tzKM=0.0, 0.1t1, and 0.2t1, as a function of
magnetization angle ✓ depicted in an inset of (a).

collinear AFM state. Considering a certain additional
SOC, the orbital magnetization and the anomalous Hall
conductivity become finite in the non-collinear AFM
state. We note that, by considering only the intralayer
Kane-Mele SOC given by Eq. (3), both of these values
vanish. As an additional interaction, we introduce the
interlayer Kane-Mele type SOC due to the honeycomb
structure.

H
z

KM
= �itz

KM

X

hhij ii��0

⌘ij · d
†
i����0dj�0 . (13)

Here, ⌘ij are given by ⌘CA = a1
2

⇥
a3
2
, ⌘AB = a2

2
⇥

a1
2
,

and ⌘BC = a3
2
⇥

a2
2
. Although the magnetic ordering re-

mains mostly unchanged by this additional SOC Eq. (13),
this term makes the orbital magnetization and the AHC
finite in non-collinear AFM state.
We study the spin-moment angle dependences of the

orbital magnetization. The orbital magnetization can be
obtained by the formula[4, 39–41],

M
orb

↵
=

e

2~
X

�

Z

BZ

d
3
k

(2⇡)3
f�k✏↵��

⇥ Im
X

�0 6=�

h�,k|~v� |�0
,kih�0

,k|~v� |�,ki
(E�0k � E�k)2

⇥ (E�0k + E�k � 2EF). (14)

Here, vi (i = x, y, z) is the velocity operator given by
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vi =
1

~
@H(k)
@ki

. The eigenstates |�,ki are obtained by diag-
onalizing H0(k)+Hexc with Eq. (13). Figure 4(a) shows
M

orb

z
as a function of the angle of magnetic moment on

kagome lattice for tz
KM

= 0.0, 0.1t1 and 0.2t1. Each mag-
netic moment is rotated with an equivalent relative an-
gle as shown in an inset of Fig. 4(a). EF in Eq. (14)
is obtained by �ne = +1 condition and the magnetic
order parameters on each site are obtained by Hartree-
Fock method. M

orb

z
is finite and changes like a cos ✓

function. We note that M
orb

x
= M

orb

y
= 0. These re-

sults indicate that our model in the non-collinear AFM
state shows a finite orbital magnetization although the
net magnetization vanishes. The direction of the spin
moments can be changed by an external magnetic field
as similarly discussed in Ref. [4]. In the presence of an
external magnetic field pointing the z direction Bz, the
orbital magnetization M

orb

z
couples as �M

orb

z
Bz. When

the external magnetic field points +z direction, the spin
angle ✓ = 0 is energetically favored. On the other hand,
when the external magnetic field points �z direction, the
spin angle ✓ = ⇡ is energetically favored. The change of
the spin direction is related to the AHE. The intrinsic
AHC �xy can be calculated by the formula[42] given by,

�xy = e
2~

X

�

Z

BZ

d
3
k

(2⇡)3
f�k

⇥ Im
X

�0 6=�

h�,k|vx|�0
,kih�0

,k|vy|�,ki

(E�0k � E�k)2
. (15)

As shown in Fig. 4(b), the angle dependence of the AHC
is similar to that of the orbital magnetization in Fig. 4(a).

Therefore, the sign of the AHC changes when the direc-
tion of spin moments is changed by an external magnetic
field. Although the AHC in �ne = +1 is smaller than
that in ferromagnetic Weyl state (�ne = 0) [23], the
change of the direction of spin moments in non-collinear
AF state might be detected by applying a uniform mag-
netic field. In the non-collinear AFM state with finite
t
z

KM
, we find some Weyl points which may contribute to

the AHC and orbital magnetization.

VI. CONCLUSION

In this paper, we investigated the magnetic ordering
in an e↵ective model of stacked-kagome lattice system
CSS, based on the Hartree-Fock method. We showed the
suppression of the perpendicular ferromagnetic ordering
by hole doping. Non-collinear AFM phase appears in
electron-doped regimes and possesses finite orbital mag-
netization and the AHC by considering the interlayer
SOC.
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