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Abstract 

The discovery of atomically thin two-dimensional (2D) magnetic semiconductors has 

triggered enormous research interest recently. In this work, we use first-principles many-body 

perturbation theory to study a prototypical 2D ferromagnetic semiconductor, monolayer chromium 

tribromide (CrBr3). With broken time-reversal symmetry, spin-orbit coupling, and excitonic 

effects included through the full-spinor GW and GW plus Bethe–Salpeter equation (GW-BSE) 

methods, we compute the frequency-dependent layer polarizability tensor and dielectric function 

tensor that govern the optical and magneto-optical properties. In addition, we provide a detailed 

theoretical formalism for simulating magnetic circular dichroism, magneto-optical Kerr effect, and 

Faraday effect, demonstrating the approach with monolayer CrBr3. Due to reduced dielectric 

screening in 2D and the localized nature of the Cr d orbitals, we find strong self-energy effects on 

the quasiparticle band structure of monolayer CrBr3 that give a 3.8 eV indirect band gap. Also, 

excitonic effects dominate the low-energy optical and magneto-optical responses in monolayer 

CrBr3 where a large exciton binding energy of 2.3 eV is found for the lowest bright exciton state 

with excitation energy at 1.5 eV. We further find that the magneto-optical signals demonstrate 

strong dependence on the excitation frequency and substrate refractive index. Our theoretical 

framework for modeling optical and magneto-optical effects could serve as a powerful theoretical 

tool for future study of optoelectronic and spintronics devices consisting of van der Waals 2D 

magnets. 

 

 

about:blank
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I. Introduction 

Chromium trihalides CrX3 (X = Cl, Br, I) – magnetic semiconductors with layered structure 

in the bulk form [1–3] – have received enormous attention recently since the discovery of 

atomically thin 2D van der Waals magnets [4–10]. Atomically thin chromium trihalides exhibit 

high tunability with respect to electrostatic gating and magnetic fields [11–14], pressure [15, 16], 

and stacking order [17, 18], etc. Promising spintronics and valleytronics applications with van der 

Waals heterostructures consisting of atomically thin CrX3, such as the magnetic filtering effect [19, 

20] and proximity effect [21, 22], have also been demonstrated in experiments. 

Magneto-optical (MO) effects, including the MO Kerr effect, Faraday effect, and magnetic 

circular dichroism (MCD), etc., are widely used as highly sensitive probes to characterize the 

electronic structure and magnetic properties of thin films [23, 24]. Among these, the MO Kerr 

effect has played an important role in the initial discovery of atomically thin intrinsic 2D magnets 

and demonstrated their rich magnetic behaviors [4, 5]. MO effects stem from the coupling between 

photons and the orbital motion of spin-polarized electrons, which is further interacting with the 

spin degree of freedom via spin-orbit coupling (SOC). Both the spin splitting and SOC effects are 

essential for MO effects [25, 26]. In addition, the optical and MO properties of 2D magnetic 

semiconductors are strongly modified by the electron−hole interaction, forming tightly bound 

excitons that enhance the optical and MO responses [27–29]. To accurately model the optical and 

MO properties of 2D magnetic semiconductors, one needs to calculate the quasiparticle excitation 

energies including self-energy effects, and then calculate both the diagonal and off-diagonal 

elements of the dielectric function tensor including excitonic effects. These goals are achieved by 

using many-body perturbation theory such as the first-principles GW and GW-BSE methods [30–

33], which have proven very successful in explaining and predicting the optical or MO properties 

of a variety of 2D materials of recent interest, such as monolayer transition metal dichalcogenides, 

black phosphorus, and CrI3 [28, 34–38]. With our method, which supports full spinor 

wavefunctions and broken time-reversal symmetry from the outset, we are able to achieve accurate 

quasiparticle band structure and dielectric responses from first principles, with which we can 

calculate the optical and MO properties. 

So far, there have been several theoretical efforts using the ab initio GW and GW-BSE 

methods to study excited-state physics in atomically thin CrX3, such as the exciton-dominated 

optical and MO properties in monolayer CrI3 [28], strong excitonic effects in the optical properties 
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of monolayer, few-layer and bulk CrCl3 [39], as well as chemical trends in the electronic structure, 

optical, and MO responses in monolayer CrX3 [40]. However, there is still ambiguity regarding 

whether self-energy effects on the quasiparticle band structure can be approximated through a rigid 

shift of the mean-field valence and conduction bands, as well as in how to calculate the MO signals 

from first principles including the important excitonic effects. In this work, we use ferromagnetic 

monolayer CrBr3 as a model system. As a member of the CrX3 family, monolayer CrBr3, which is 

an air-stable magnetic semiconductor with non-negligible SOC effects, provides an ideal platform 

for exploring fundamental physics and for potential applications of spintronics devices [41, 42]. 

However, a detailed and thorough theoretical study of self-energy and excitonic effects has been 

lacking. To this end, we perform full-spinor GW and GW-BSE calculations of ferromagnetic 

monolayer CrBr3 and demonstrate the importance of SOC, self-energy, and excitonic effects. We 

further lay out the formalism to simulate the optical and MO properties with the calculated ab 

initio frequency-dependent layer polarizability tensor and dielectric function tensor. 

The rest of this paper is organized as follows. In Sec. II, we discuss the crystal structure of 

monolayer CrBr3 and the importance of SOC effects. Computational methods are explained in 

detail. In Sec. III, we discuss the treatment of broken time-reversal symmetry in the GW method 

and present the computed quasiparticle band structure results. In Sec. IV, we calculate the exciton 

eigenstates, and construct both the diagonal and off-diagonal elements of the layer polarizability 

tensor as well as the dielectric function tensor. We simulate the absorbance spectrum with linearly 

polarized light, and analyze the exciton energy levels and exciton amplitudes in real space. In Sec. 

V, the formalism of simulating MO effects is presented. We then calculate the MCD of the 

absorbance spectrum. Finally, to connect to experiments, a two-interface polar setup with normal 

incidence is used to simulate the MO Kerr and Faraday effects in monolayer CrBr3 with different 

substrates. 

 

II. Crystal structure and spin-orbit coupling effects 

Bulk CrBr3, crystallized in the rhombohedral BiI3 structure type below 420 K, is a van der 

Waals layered material, with the space group R3̅ [2, 43]. Below the Curie temperature of ~ 37 K, 

long-range ferromagnetic order emerges with an out-of-plane easy axis [44, 45]. Within each 

atomic layer, Cr atoms are arranged in a honeycomb structure, with each surrounded by six 

bromine atoms arranged in an octahedron, as shown in Figs. 1(a) and 1(b). In its monolayer form, 
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CrBr3 has a point group of S6, and a Curie temperature around 27 – 34 K [41, 42, 46]. The 

octahedral crystal field splits the Cr d orbitals into t2g and eg manifolds, of which the spin 

degeneracy is further broken by the magnetic exchange interaction, as shown in Fig. 1(c). 

Hybridization between Cr d orbitals and Br p orbitals in the octahedral crystal field forms ligand 

states and broadens the band dispersion [47] (see Sec. I of the Supplemental Material [48]).  

Because Cr is in the 3d3 electronic configuration, each Cr site hosts a magnetic moment of 3𝜇B 

(with fully occupied majority-spin t2g orbitals), according to the Hund’s first rule. Recent in situ 

spin-polarized scanning tunneling microscopy and spectroscopy experiments have confirmed the 

monolayer crystal structure and the out-of-plane easy axis [17]. Throughout this work, the 

magnetization of ferromagnetic monolayer CrBr3 is taken to be along the +z direction. The 

majority-spin polarization direction is denoted as spin-up. 

In this work, we used density-functional theory (DFT) and the method of local-spin-density 

approximation (LSDA) with an on-site Hubbard potential (LSDA+U) to serve as a reasonable 

mean-field starting point for the following GW (at the G0W0 level) and GW-BSE studies. The 

LSDA+U method employed is implemented in the Quantum ESPRESSO package [49, 50]. We 

took the on-site Hubbard interaction parameter U = 1.5 eV and Hund’s exchange interaction 

parameter J = 0.5 eV [51], the validity of which have been justified in previous theoretical works 

of chromium trihalides, sharing similar crystal structures and chemical environment [28, 39, 40]. 

A supercell model with a thickness of 16 Å along the direction normal to the layer was adopted to 

avoid interactions between periodic images. We employed optimized norm-conserving Vanderbilt 

pseudopotentials including Cr 3s and 3p semicore states [52]. The Kohn-Sham orbitals were 

constructed with a plane-wave energy cutoff of 70 Ry. We used the experimental monolayer lattice 

constant 𝑎 = 6.3 Å [17] and relaxed the internal coordinates until the forces are converged within 

5 meV/Å. The relaxed structure has a Cr-Br-Cr bond angle of 94.84, consistent with the 

ferromagnetic super-exchange interaction [53]. In both DFT and GW calculations, we truncated 

the Coulomb interaction in the z-direction as discussed in Refs. [54–56]. 

In the materials family of CrX3 (X = Cl, Br, I), the SOC strength and magnetic anisotropy 

increase with the atomic mass of the halogen element [2, 42, 57]. On the one hand, previous first-

principles studies on excitonic effects in monolayer and few-layer CrCl3 have neglected SOC 

effects [39], which is justified by its small magnetic anisotropy [58]. On the other hand, monolayer 

CrI3 hosts strong SOC strength and forms a highly anisotropic Ising-type spin system with an out-
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of-plane easy axis, which means a first-principles modeling of its optical and MO properties must 

include SOC effects [28, 40]. It is therefore interesting to first study SOC effects on the Kohn-

Sham (mean-field) DFT band structure of monolayer CrBr3, which shows reduced anisotropy 

compared with CrI3 in the bulk and few-layer forms [42, 59]. In Figs. 1(d) and 1(e), we compare 

the band structure of monolayer CrBr3 without and with SOC effects, respectively. Monolayer 

CrBr3 has an indirect band gap of 1.67 eV both without and with SOC, the valence band maximum 

is at the M point while the conduction band minimum is along the -K path. The direct band gap 

at the M point is 1.69 eV without SOC and 1.68 eV with SOC. Without SOC effects, spin is a good 

quantum number, and the band structure in Fig. 1(d) can be grouped into spin-up and spin-down 

bands. The energy ordering of Cr d states, as shown in the projected density of states (DOS) plots 

in Figs. 1(d) and 1(e), agrees well with our above analysis of the Cr d-orbits in an octahedral crystal 

field. When we switch on SOC effects, there are noticeable changes to the band structure, as shown 

in Fig. 1(e). First, two-fold degeneracies at the  point are lifted, because the double group 𝑆6
D (to 

which the Bloch states at the  point belong in the presence of SOC) has only one-dimensional 

irreducible representations. Second, spin is no longer a good quantum number and some lower-

energy valence states have mixed spin polarization. Third, according to the projected DOS plot in 

Fig. 1(e), spin-down Cr d orbitals have more contribution to the top valence states when SOC 

effects are present. In this way, we conclude that SOC effects are important in describing the 

electronic structure of monolayer CrBr3, and therefore using full-spinor wavefunctions in the GW 

and GW-BSE formalism is essential [28, 38]. 

 

III. Quasiparticle band structure 

In this section, we describe the computational details of our GW calculations at the G0W0 

level and compute the quasiparticle band structure of monolayer CrBr3. An accurate first-principles 

modeling of the electronic structure of monolayer CrBr3 needs to account for the magnetic order, 

the dielectric screening in a quasi-2D environment, as well as the on-site Coulomb interaction 

among the localized spin-polarized electrons. Through the screened Coulomb interaction W, the 

nonlocal and dynamical screening effects beyond DFT-LSDA can be captured accurately. In the 

presence of long-range magnetic order, there is no time-reversal symmetry in the system. We 

therefore use the full Adler–Wiser expression to calculate the static irreducible polarizability 
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within the random-phase approximation (RPA) used in the Hybertsen–Louie plasmon-pole model 

[30, 60], 

𝜒̃𝐆1𝐆2
(𝐪) =

1

𝑁𝑘𝑉
∑{

⟨𝑣(𝐤 − 𝐪)|𝑒−𝑖(𝐪+𝐆1)⋅𝐫|𝑐𝐤⟩⟨𝑐𝐤|𝑒𝑖(𝐪+𝐆2)⋅𝐫|𝑣(𝐤 − 𝐪)⟩

𝜖𝑣(𝐤−𝐪)
MF − 𝜖𝑐𝐤

MF

𝑐𝑣𝐤

+
⟨𝑐𝐤|𝑒−𝑖(𝐪+𝐆1)⋅𝐫|𝑣(𝐤 + 𝐪)⟩⟨𝑣(𝐤 + 𝐪)|𝑒𝑖(𝐪+𝐆2)⋅𝐫|𝑐𝐤⟩

𝜖𝑣(𝐤+𝐪)
MF − 𝜖𝑐𝐤

MF
}, 

(1) 

where |𝑣(𝐤 ± 𝐪)⟩ denotes a valence band eigenstate with band index v and crystal momentum 

𝐤 ± 𝐪, |𝑐𝐤⟩ denotes a conduction band eigenstate with band index c and crystal momentum 𝐤, 

and 𝜖𝑣(𝐤±𝐪)
MF  and 𝜖𝑐𝐤

MF are the mean-field energies of corresponding states, respectively. 𝐆𝟏 and 𝐆2 

refer to reciprocal lattice vectors which form the Bravais lattice in the reciprocal space. 𝑁𝑘 is the 

number of k-points and V is the volume of a unit cell. The static irreducible polarizability 𝜒̃ is 

then used to calculate the screened Coulomb interaction W as detailed in Ref. 30. Note that here 

the two terms in the summation cannot be combined into one using time-reversal symmetry. The 

full Adler–Wiser expression is crucial to keep the particle exchange symmetry of the screened 

Coulomb interaction such that 𝑊(1, 2) = 𝑊(2, 1), where 1 and 2 each denote coordinates 

(space, spin, and time) of a particle. Since we choose LSDA+U as our mean-field starting point 

for the subsequent G0W0 calculations, we treat on the same footing the Hubbard potential (𝑉Hub) 

and the LSDA exchange-correlation potential (𝑉xc
LSDA). That is, we subtract these mean-field 

contributions to the exchange-correlation potential in the G0W0 self-energy and use the difference 

as a first-order perturbation on the mean-field band energies [30]. The self-energy correction 

operator is given by [61–63], 

𝛥𝛴 = 𝛴 − 𝑉xc
LSDA − 𝑉Hub, (2) 

where 𝛴 is the self-energy operator in the GW approximation [64].  

The GW (at the G0W0 level) and GW-BSE calculations – for the quasiparticle band structure 

and optical properties, respectively – were performed using the BerkeleyGW package [55]. Since 

the standard sum-over-bands approach [30] and the static remainder approach [65] in calculating 

the GW self-energy converge to the final result in opposite directions, we took their average to 

speed up the convergence of quasiparticle band energies with respect to the number of empty states. 

The kinetic energy cutoff in calculating the screened Coulomb interaction was set to 50 Ry, and a 
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total of 2,000 bands were included in the GW calculation, with the highest band energy at around 

90 eV above the valence band maximum. We adopted a 3×3×1 q-grid with 3 subsampling points 

using the nonuniform neck subsampling method to describe the 2D dielectric screening [66]. The 

quasiparticle band gap was converged to within 50 meV. In order to perform Wannierization of 

the Cr 3d orbitals and Br 4p orbitals (a total of 56 orbitals) for later interpolation of the quasiparticle 

band structure, the self-energy corrections of 42 valence bands and 14 conduction bands were 

calculated on a 33×33×1 grid. We treated the dynamical screening effect through the Hybertsen-

Louie plasmon-pole model [30], where the charge density of the itinerant valence states (42 in 

total, excluding semicore Cr 3s and 3p states) were used. The resulting quasiparticle band structure 

was interpolated with spinor Wannier functions, using the Wannier90 package [67].  

In Fig. 2, we show the quasiparticle band structure of monolayer CrBr3 at the G0W0 level. 

The indirect quasiparticle band gap is 3.80 eV and the direct band gap at the M point is 3.81 eV. 

Our calculations reveal a strong self-energy correction of 2.13 eV to the direct quasiparticle band 

gap at the M point, due to the weak dielectric screening in reduced dimensions and the localized 

nature of the Cr d states. This self-energy correction is larger than that of 1.77 eV in monolayer 

CrI3 [28] because the states are more localized with smaller bandwidth in monolayer CrBr3 and 

the dielectric screening is weaker. Moreover, according to the plot of projected density of state 

(DOS) in Fig. 2, we find that self-energy effects push the valence states that are dominated by Br 

p orbitals further down in energy. At the G0W0 level, majority-spin and minority-spin 𝑡2𝑔 bands 

have a similar bandwidth around 0.72 eV. The bandwidth is 0.38 eV for majority-spin 𝑒𝑔 bands 

and 0.34 eV for minority-spin 𝑒𝑔 bands. These bandwidths are similar to those computed at the 

LSDA+U level (see Table S1 of the Supplemental Material [48]). However, self-energy effects on 

the shape of majority-spin t2g and eg bands cannot be approximated by a rigid shift, after comparing 

Figs. 1(e) and 2. The calculated quasiparticle band energies will be used in the next section as input 

to the BSE calculations. 

 

IV. Excitonic effects and optical properties 

To solve for exciton eigenstates (correlated electron−hole pairs), we solve the BSE of the 

interacting two-particle Green’s function [31] in the form of an eigenvalue problem, 
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𝐴𝑐𝑣𝐤
𝑆 (𝜖𝑐𝐤 − 𝜖𝑣𝐤) + ∑ 𝐴𝑐′𝑣′𝐤′

𝑆

𝑐′𝑣′𝐤′

⟨𝑐𝑣, 𝐤|𝐾̂|𝑐′𝑣′, 𝐤′⟩ = 𝐴𝑐𝑣𝐤
𝑆 Ω𝑆, (3) 

where 𝜖𝑐𝐤 and 𝜖𝑣𝐤 are quasiparticle energies of the conduction and valence bands, respectively. 

The exciton eigenstate with excitation energy Ω𝑆 is given by |𝑆⟩ = ∑ 𝐴𝑐𝑣𝐤
𝑆 |𝑐𝑣, 𝐤⟩𝑐𝑣𝐤 , as a coherent 

superposition of free electron−hole pairs at different k-points. 𝐾̂ = 𝐾̂d + 𝐾̂x is the electron−hole 

interaction kernel, containing an attractive direct screened Coulomb term 𝐾̂d  and a repulsive 

exchange bare Coulomb term 𝐾̂x  [31]. When evaluating 𝐾̂d , we again use Eq. (1) for the 

irreducible polarizability in order to keep the BSE matrix Hermitian. We performed the BSE 

calculation of monolayer CrBr3 within the Tamm-Dancoff approximation [31] and considered 

interband transitions between 21 valence bands and 14 conduction bands on a 15×15×1 

Monkhorst-Pack k-grid in order to converge the calculation of the optical spectra up to the 

frequency of 4.2 eV. An energy cutoff of 20 Ry was used for W in constructing the BSE kernel. 

The eigenvalues Ω𝑆  and eigenstates |𝑆⟩ are used to construct the frequency-dependent 

effective dielectric function tensor 𝜀𝛼̃𝛽(𝜔) in the supercell approach (in units of the vacuum 

permittivity 𝜀0), 

𝜀𝛼̃𝛽(𝜔) = 𝛿𝛼𝛽 (1 −
𝜔p

2

𝜔2
) −

1

𝜀0𝜔2𝑁𝑘𝑉
∑[

⟨0|𝑗p̂
𝛼|𝑆⟩⟨𝑆|𝑗p̂

𝛽
|0⟩

ℏ𝜔 − Ω𝑆 + 𝑖𝜂
−

⟨𝑆|𝑗p̂
𝛼|0⟩⟨0|𝑗p̂

𝛽
|𝑆⟩

ℏ𝜔 + Ω𝑆 + 𝑖𝜂
 ]

𝑆

, (4) 

where 𝜔p  is the plasma frequency, 𝜂 → 0+, and 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧.  Matrix elements of the 

paramagnetic current operator 𝐣̂p = −𝑒𝐯̂ between the ground state and a given exciton state |𝑆⟩ is 

given by, 

⟨0|𝑗p̂
𝛼|𝑆⟩ = ∑𝐴𝑐𝑣𝐤

𝑆 ⟨𝑣𝐤|𝑗p̂
𝛼|𝑐𝐤⟩

𝑐𝑣𝐤

, (5) 

where 𝑒 and 𝑚 are the elementary charge and electron rest mass, respective, and 𝐯̂ =
1

𝑖ℏ
[𝐫̂, 𝐻̂] is 

the single-particle velocity operator.  

As an extensive physical quantity, the dielectric function is ill-defined for 2D materials. 

The meaningful quantity for comparison with physical measurements is the layer polarizability 

tensor 𝐏, 

𝑃𝛼𝛽 ≡ 𝑙(𝜀𝛼̃𝛽 − 𝛿𝛼𝛽)/𝑁layer,  (6) 
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where 𝑙 is the thickness of the supercell used along the out-of-plane direction and 𝑁layer is the 

number of layers of the 2D material in a specific calculation. In the following discussion of optical 

and MO properties, we define the dielectric function of a monolayer CrBr3 using a layer thickness 

of 𝑑 = 𝑐bulk/3 = 6.07 Å based on its bulk crystal structure [68, 69], 

𝜀𝛼𝛽(𝜔) ≡ 𝛿𝛼𝛽 +
𝑃𝛼𝛽

𝑑
. (7) 

It is important to point out that this rescaling process is done to make connection with previous 

formulations of optical properties of layered systems using dielectric functions. For the optical 

responses of atomically thin few-layer van der Waals 2D materials, the important physical quantity 

is P which is independent of any assumption of d. Since we only consider normal incidence in the 

following discussion, the in-plane (xx and xy) components of 𝐏(𝜔) are calculated and shown in 

Figs. 3(a) and 3(b). We find that the excitonic effects greatly reshape the dielectric responses by 

comparing the layer polarizability in Fig. 3(a) (without electron−hole interaction, GW-RPA) and 

those in Fig. 3(b) (with electron−hole interaction, GW-BSE). In Fig. 3(c), we calculated the optical 

absorbance spectrum of linearly polarized light using the diagonal elements of the GW-RPA and 

GW-BSE dielectric functions. The GW-BSE absorbance spectrum features several absorption 

peaks below the quasiparticle band gap at around 1.5 eV, 2.1 eV, 2.6 eV, etc. and another strong 

peak with ~10% absorbance at around 4.0 eV. Several bright exciton states are responsible for 

these peaks in the absorbance spectrum, as seen in the plot of exciton energy levels in Fig. 4(a), 

where the bright exciton states are colored in red and dark states in gray. Unlike monolayer CrI3, 

the top valence bands are flat in monolayer CrBr3, creating a large joint DOS across the band gap 

which strongly enhances the excitonic effects and thus increases the exciton binding energies. The 

first bright exciton has an excitation energy of 1.5 eV, which leads to a huge binding energy of 2.3 

eV. In the following, we visualize the exciton amplitudes in real space in Figs. 4(b)−4(e). Note 

that the valence and conduction Bloch waves here are all two-component spinor wavefunctions, 

which means the electron−hole distribution in real space for a selected exciton state should be 

calculated as, 

𝐴𝑆(𝐫𝑒, 𝐫ℎ) ≡ ∑|𝐴𝑐𝑣𝐤
𝑆 |

2

𝑐𝑣𝒌

∑|𝜙𝑣𝐤(𝐫ℎ, 𝜎ℎ)|2

𝜎ℎ

∑|𝜙𝑐𝐤(𝐫𝑒, 𝜎𝑒)|
2

𝜎𝑒

, (8) 

where 𝜎ℎ and 𝜎𝑒 refers to the z-axis spinor components of the hole (𝜙𝑣𝐤
∗ ) and electron (𝜙𝑐𝐤) band 

states, respectively. By calculating the expectation value of spin operators for the electron and hole 
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in an exciton state, we find that the bright exciton states in Figs. 4(b)−4(e) all consist of majority-

spin electrons and minority-spin holes (i.e., formed by up-to-up interband transitions, see Sec. II 

of the Supplemental Material [48]). Unlike monolayer transition metal dichalcogenides where the 

lowest-energy bright excitons are of the Wannier–Mott type with a diameter of several nanometers 

[34, 35], ferromagnetic monolayer CrBr3 hosts bright charge-transfer exciton states that extends 

over one to several primitive cells ( 1 nm) which is still large compared to atomic size and is 

indicative of excitonic formation from band transitions instead of intra-atomic d–d transitions. 

These plots of exciton distribution are also consistent with the intuition that a larger exciton 

binding energy is related to a smaller exciton radius [70]. 

 

V. Magneto-optical effects 

In magneto-optics, a linearly polarized continuous-wave light propagating through a 

medium is modified by the presence of a magnetic field, where the 𝜎+ and 𝜎− circularly polarized 

components propagate with different refractive index and therefore pick up different optical path 

length and absorption. There are several important MO effects, such as the Faraday effect [71], the 

MO Kerr effect [72], and MCD. In the Kerr effect, the polarization change of the reflected light is 

measured, while in the Faraday effect, the polarization change of the transmitted light is measured. 

That is, the reflected or transmitted light become elliptically polarized (characterized by an 

ellipticity angle) and the long axis of the polarization ellipse is rotated (characterized by a rotation 

angle). In this work, we consider the most common MO setup used to study 2D magnets [5, 9]: 

the polar setup with normal incidence, where the direction of magnetization is parallel to the out-

of-plane direction (+z). MCD, on the other hand, describes differential absorption of circularly 

polarized lights. SOC effects are important to achieve non-zero MO effects in rhombohedral 

systems such as CrBr3, because it breaks the orbital degeneracy such that optical transitions 

corresponding to different circularly polarized lights are no longer equivalent [24–26, 73]. 

For a ferromagnetic material with C3 rotational symmetry along the spin polarization 

direction (z-axis), its frequency-dependent layer polarizability tensor as a function of the magnetic 

field takes the following form, 

𝐏(𝜔, 𝐁) = (−

𝑃𝑥𝑥(𝜔, 𝐁) 𝑃𝑥𝑦(𝜔, 𝐁) 0

𝑃𝑥𝑦(𝜔, 𝐁) 𝑃𝑥𝑥(𝜔, 𝐁) 0

0 0 𝑃𝑧𝑧(𝜔, 𝐁)

), (9) 
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where B is the internal Weiss field and we have applied 𝑃𝑦𝑦 = 𝑃𝑥𝑥, 𝑃𝑦𝑥 = −𝑃𝑥𝑦, and 𝑃𝑥𝑧 = 𝑃𝑧𝑥 =

𝑃𝑦𝑧 = 𝑃𝑧𝑦 = 0 due to the C3 symmetry (see the Appendix). To simplify the expression of the 

diagonal element 𝑃𝑥𝑥, we calculate the imaginary part of 𝑃𝑥𝑥 in the limit of 𝜂 → 0+, 

Im 𝑃𝑥𝑥(𝜔) =
𝜋ℏ2𝑙

𝜀0𝑁𝑘𝑉𝑁layer
∑

1

Ω𝑆
2 |⟨0|𝑗p̂

𝑥|𝑆⟩|
2
[𝛿(ℏ𝜔 − Ω𝑆) − 𝛿(ℏ𝜔 + Ω𝑆)]

𝑆

, (10) 

where we have replaced 1/𝜔2 by ℏ2/Ω𝑆
2  due to the Dirac delta functions. In the limit of low 

frequency, the Thomas–Reiche–Kuhn sum rule, 𝜔𝑝
2 =

2

𝜀0𝑁𝑘𝑉
∑

|⟨0|𝑗̂p
𝛼|𝑆⟩|

2

Ω𝑆
𝑆 , leads to the cancellation 

of the frequency-dependent parts of both the first term and the second term in Eq. (4), leading to a 

finite value of the dielectric constant at zero frequency, as expected for a semiconductor. And then 

the expression of the real part of 𝑃𝑥𝑥 can be derived with the Kramers−Kronig relation, 

Re 𝑃𝑥𝑥(𝜔) =
1

𝜋
𝒫 ∫ d𝜔′

Im 𝑃𝑥𝑥(𝜔
′)

𝜔′ − 𝜔

∞

−∞

= −
ℏ2𝑙

𝜀0𝑁𝑘𝑉𝑁layer
∑

1

Ω𝑆
2 |⟨0|𝑗p̂

𝑥|𝑆⟩|
2

𝑆

 [
1

ℏ𝜔 − Ω𝑆
−

1

ℏ𝜔 + Ω𝑆
], 

(11) 

which is now numerically stable around 𝜔 = 0. Combining Eqs. (4)–(6), and (9), we can prove 

that Re ⟨0|𝑗p̂
𝑥|𝑆⟩⟨𝑆|𝑗p̂

𝑦
|0⟩ ≡ 0 (see Appendix), which means the real part of 𝑃𝑥𝑦 is given by, 

Re 𝑃𝑥𝑦(𝜔) =
𝑖𝜋ℏ2𝑙

𝜀0𝑁𝑘𝑉𝑁layer
∑

1

Ω𝑆
2 [⟨0|𝑗p̂

𝑥|𝑆⟩⟨𝑆|𝑗p̂
𝑦
|0⟩𝛿(ℏ𝜔 − Ω𝑆)

𝑆

− ⟨𝑆|𝑗p̂
𝑥|0⟩⟨0|𝑗p̂

𝑦
|𝑆⟩𝛿(ℏ𝜔 + Ω𝑆)]. 

(12) 

And then the expression of the imaginary part of 𝑃𝑥𝑦 can be derived with the Kramers−Kronig 

relation, 

Im 𝑃𝑥𝑦(𝜔) = −
1

𝜋
𝒫 ∫ d𝜔′

Re 𝑃𝑥𝑦(𝜔′)

𝜔′ − 𝜔

∞

−∞

=
𝑖ℏ2𝑙

𝜀0𝑁𝑘𝑉𝑁layer
∑

1

Ω𝑆
2

𝑆

[
⟨0|𝑗p̂

𝑥|𝑆⟩⟨𝑆|𝑗p̂
𝑦
|0⟩

ℏ𝜔 − Ω𝑆
−

⟨𝑆|𝑗p̂
𝑥|0⟩⟨0|𝑗p̂

𝑦
|𝑆⟩

ℏ𝜔 + Ω𝑆
]. 

(13) 

To model the inhomogeneous broadening observed in optical experiments, we add a Gaussian 

broadening, 𝛿(ℏ𝜔 ± Ω𝑆) ≈
1

𝜂√2𝜋
𝑒

−
(ℏ𝜔±Ω𝑆)

2

2𝜂2  to Eqs. (10) and (12). A regularization procedure, 

1

ℏ𝜔±Ω𝑆
≈

ℏ𝜔±Ω𝑆

(ℏ𝜔±Ω𝑆)2+𝜂2, is used to avoid numerical problems with fine frequency sampling for Eqs. 

(11) and (13). The validity of Eqs. (10)–(13) has been verified by previous work [55]. 

We define the complex refractive index with the direction of the wave vector 𝐤 of light, 

𝐧 ≡
𝑐𝐤

𝜔
, where 𝑐 is the speed of light in vacuum and 𝜔 is the frequency of light. By solving the 
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wave equation (𝑛2 𝕀 − 𝛆 − 𝐧𝐧⊤) ∙ 𝐄 = 0 with Eqs. (7) and (9), we get the eigenmodes as 𝜎+ and 

𝜎− circularly polarized plane waves, with distinct refractive indices, 

(𝑛±(𝜔, 𝐁))2 = 𝜀𝑥𝑥(𝜔, 𝐁) ± 𝑖𝜀𝑥𝑦(𝜔, 𝐁), (14) 

of which the complex electric field amplitude points along the direction of the basis, 𝐞̂± =

∓

√2
(𝐞̂𝑥 ± 𝑖𝐞̂𝑦). In the wave equation, 𝐧 is a column vector and 𝐧⊤ is the transposed row vector. In 

this work, we avoid the ambiguous terminology of left and right circularly polarized lights and 

stick to the usage of 𝜎+  and 𝜎−  circularly polarized lights, which are well-defined after the 

cartesian coordinate system is set up. Moreover, according to the Onsager reciprocal relations [74], 

we have, 

𝜀𝛼𝛽(𝜔, 𝐁) = 𝜀𝛽𝛼(𝜔,−𝐁). (15) 

Eq. (15) allows us to easily calculate the MO effects when the magnetization direction is flipped. 

If there is no net magnetization or external magnetic field (i.e., 𝐁 = 0), Eqs. (7), (9), and (15) lead 

to 𝜀𝑥𝑦 ≡ 0, which means there are no MO effects. 

Using Eq. (14), we calculated the absorbance spectrum of circularly polarized lights in Fig. 

5(a) without electron−hole interaction, and in Fig. 5(b) with electron−hole interaction. Note that 

the ranges of frequency and absorbance are different in these two plots. Comparing Figs. 5(a) and 

5(b), we find that the electron−hole interaction enhances the optical absorption for both circularly 

polarized lights in the frequency range of interest. In addition, by calculating the MCD signal as 

(𝐴+ − 𝐴−)/(𝐴+ + 𝐴−) in Fig. 5(c), where 𝐴± denotes the absorbance for 𝜎± circularly polarized 

lights, we find that the excitonic effects significantly enhance the dichroism over a large frequency 

range up to the onset of the electron−hole continuum. This is because the BSE matrix, which 

involves the dielectric function and carrier wavefunctions in the presence of a magnetic order, has 

broken time-reversal symmetry. Therefore, the excitonic effects are different on different 

circularly polarized transitions. The peak position and helicity of the first bright exciton peak in 

Fig. 5(b) agree well with recent polarization-resolved magneto-photoluminescence measurements, 

where the photoluminescence peak is located at 1.35 eV [41]. 

In the following, we discuss how to calculate MO Kerr and Faraday signals in a two-

interface polar setup, as shown in Fig. 6(a). The system consists of two interfaces located at 𝑧0 and 

𝑧1, with the middle (1st) layer being the atomically thin magnetic material of interest. The left (0th) 
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and right (2nd) layers are semi-infinitely thick. A normal incident light comes from the right side, 

and we measure the reflected light on the right side or the transmitted light on the left side. To 

mathematically describe how an electromagnetic wave interacts with such stratified and 

anisotropic media, we adopt a 44 formalism involving the in-plane components of both electric 

(𝐸𝑥, 𝐸𝑦 ) and magnetic fields (𝐵𝑥, 𝐵𝑦 ). This formalism has been used to study birefringent 

multilayer media and MO ellipsometry [75, 76], and it can be generalized to more complex setups. 

We consider a ferromagnetic monolayer CrBr3 magnetized along the +z direction, and the 2nd layer 

is vacuum. Within each layer (𝑙 = 0, 1, 2), we choose the four eigenmodes of light as follows, 

𝐞̂(𝑙)
1 = 𝐞̂(𝑙)

2 = 𝐞̂+, 𝐞̂(𝑙)
3 = 𝐞̂(𝑙)

4 = 𝐞̂−, with the corresponding refractive indices, 𝑛1
(𝑙)

= −𝑛2
(𝑙)

=

𝑛+, 𝑛3
(𝑙) = −𝑛4

(𝑙) = 𝑛−. The electric and magnetic fields of light in the 1st and 2nd layers are given 

by, 

𝐄(𝑙) = ∑𝐸0𝑗
(𝑙) 𝐞̂𝑗

(𝑙)𝑒𝑖(𝑘𝑗
(𝑙)(𝑧−𝑧𝑙−1)−𝜔𝑡)

4

𝑗=1

, (16) 

and 

𝑐𝐁(𝑙) = ∑𝐸0𝑗
(𝑙) 𝐛𝑗

(𝑙)𝑒𝑖(𝑘𝑗
(𝑙)(𝑧−𝑧𝑙−1)−𝜔𝑡)

4

𝑗=1

, (17) 

with 𝐛𝑗
(𝑙) = 𝑛𝑗

(𝑙)
 𝐞̂𝑧 × 𝐞̂𝑗

(𝑙)
, and 𝑘𝑗

(𝑙) =
𝜔

𝑐
𝑛(𝑙). The electric and magnetic fields of light in the 0th 

layer are given by, 

𝐄(0) = ∑𝐸0𝑗
(0)

 𝐞̂𝑗
(0)

𝑒𝑖(𝑘𝑗
(0)

(𝑧−𝑧0)−𝜔𝑡)

4

𝑗=1

, (18) 

and 

𝑐𝐁(0) = ∑𝐸0𝑗
(0)

 𝐛𝑗
(0)

𝑒𝑖(𝑘𝑗
(0)

(𝑧−𝑧0)−𝜔𝑡)

4

𝑗=1

. (19) 

The requirement of the continuity of the tangential field components at the interfaces connects the 

field amplitudes 𝐸0𝑗
(𝑙)

 between two layers. The dynamical matrix within each layer is given by a 

block-diagonal form, 
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𝐃(𝑙) =

[
 
 
 
 
 𝐞̂1

(𝑙)
⋅ 𝐞̂+

∗ 𝐞̂2
(𝑙)

⋅ 𝐞̂+
∗

𝐛1
(𝑙) ⋅ 𝐞̂+

∗ 𝐛2
(𝑙) ⋅ 𝐞̂+

∗

𝐞̂3
(𝑙)

⋅ 𝐞̂+
∗ 𝐞̂4

(𝑙)
⋅ 𝐞̂+

∗

𝐛3
(𝑙) ⋅ 𝐞̂+

∗ 𝐛4
(𝑙) ⋅ 𝐞̂+

∗

𝐞̂1
(𝑙) ⋅ 𝐞̂−

∗ 𝐞̂2
(𝑙) ⋅ 𝐞̂−

∗

𝐛1
(𝑙) ⋅ 𝐞̂−

∗ 𝐛2
(𝑙) ⋅ 𝐞̂−

∗

𝐞̂3
(𝑙) ⋅ 𝐞̂−

∗ 𝐞̂4
(𝑙) ⋅ 𝐞̂−

∗

𝐛3
(𝑙) ⋅ 𝐞̂−

∗ 𝐛4
(𝑙) ⋅ 𝐞̂−

∗ ]
 
 
 
 
 

=

[
 
 
 

1 1

−𝑖 𝑛+
(𝑙) 𝑖 𝑛+

(𝑙)
0 0
0 0

0 0
0 0

1 1
𝑖 𝑛−

(𝑙) −𝑖 𝑛−
(𝑙)]

 
 
 
. (20) 

The propagation matrix is defined as a diagonal matrix with entries being the phase shift associated 

with the optical path length for each eigenmode within the sample, 𝐏(1) =

diag{𝑒𝑖𝛿+ , 𝑒−𝑖𝛿+ , 𝑒𝑖𝛿− , 𝑒−𝑖𝛿−}, where 𝛿± =
𝜔

𝑐
𝑛±𝑑 and d is the thickness of the middle layer. In this 

two-interface setup, 𝐄0
(0)

 and 𝐄0
(2)

 are related by the transfer matrix 𝐌c in the basis of circularly 

polarized lights, 

𝐄0
(2)

= 𝐌c𝐄0
(0)

= [(𝐃(2))
−1

𝐃(1)𝐏(1)(𝐃(1))
−1

𝐃(0) ] 𝐄0
(0)

. (21) 

𝐌c has a simple block-diagonal form, 

𝐌c = [
𝐌+ 0
0 𝐌−

],  

𝐌± =
1

𝑡21
± 𝑡10

± [
𝑒𝑖𝛿± + 𝑒−𝑖𝛿±𝑟21

±𝑟10
± 𝑒𝑖𝛿±𝑟10

± + 𝑒−𝑖𝛿±𝑟21
±

𝑒𝑖𝛿±𝑟21
± + 𝑒−𝑖𝛿±𝑟10

± 𝑒𝑖𝛿±𝑟21
±𝑟10

± + 𝑒−𝑖𝛿±
], 

(22) 

where 𝑟𝑚𝑛 and 𝑡𝑚𝑛 are the one-interface Fresnel coefficients from the m-th layer to the n-th layer. 

However, in the measurement of MO signals, we use a linearly polarized light and measure the 

polarization of the reflected or transmitted elliptically polarized light. Assuming the left and right 

layers are non-magnetic and isotropic with one optic axis of their dielectric function tensor 

pointing along the z direction, we adopt a basis transformation from the circularly polarized light 

to linearly polarized light in the left and right layers: 𝐞̂1
(𝑙) = 𝐞̂2

(𝑙) = 𝐞̂𝑥, 𝐞̂3
(𝑙) = 𝐞̂4

(𝑙) = 𝐞̂𝑦, as well as 

𝑛1
(𝑙)

= −𝑛2
(𝑙)

= 𝑛3
(𝑙)

= −𝑛4
(𝑙)

= 𝑛(𝑙) , for 𝑙 = 0, 2 . In the following, this new basis of linearly 

polarized plane waves is denoted as {𝑥 →, 𝑥 ←, 𝑦 →, 𝑦 ←} , emphasizing the polarization and 

propagation direction of each mode. In this basis of linearly polarized lights, the electric field 

amplitudes in the left and right layer are related by transfer matrix 𝐌, 

[
 
 
 
 
 𝐸0𝑥→

(2)

𝐸0𝑥←
(2)

𝐸0𝑦→
(2)

𝐸0𝑦←
(2)

]
 
 
 
 
 

= 𝐌

[
 
 
 
 
 𝐸0𝑥→

(0)

𝐸0𝑥←
(0)

𝐸0𝑦→
(0)

𝐸0𝑦←
(0)

]
 
 
 
 
 

,  (23) 
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𝐌 =
1

2
[

𝐌+ + 𝐌− −𝑖(𝐌+ − 𝐌−)

𝑖(𝐌+ − 𝐌−) 𝐌+ + 𝐌−
]. 

As mentioned above, we consider an incoming x-polarized light from the 2nd medium to the 0th 

medium, that is, 𝐸0𝑦←
(2)

= 0. Moreover, there are no incident lights from the 0th medium to the 2nd 

medium, which means, 𝐸0𝑥→
(0)

= 𝐸0𝑦→
(0)

= 0.  With these conditions, we can calculate the 

reflectivities and transmissivities as follows, 

𝑡𝑠𝑠 ≡
𝐸0𝑥←

(0)

𝐸0𝑥←
(2)

=
𝑀44

𝑀22𝑀44 − 𝑀24𝑀42
, (24)  

𝑡𝑠𝑝 ≡
𝐸0𝑦←

(0)

𝐸0𝑥←
(2)

=
−𝑀42

𝑀22𝑀44 − 𝑀24𝑀42
, (25) 

𝑟𝑠𝑠 ≡
𝐸0𝑥→

(2)

𝐸0𝑥←
(2)

=
𝑀12𝑀44 − 𝑀14𝑀42

𝑀22𝑀44 − 𝑀24𝑀42
, (26) 

𝑟𝑠𝑝 ≡
𝐸0𝑦→

(2)

𝐸0𝑥←
(2)

=
𝑀32𝑀44 − 𝑀34𝑀42

𝑀22𝑀44 − 𝑀24𝑀42
. (27) 

As shown in Fig. 6(b), the Faraday signals for the transmitted (left-moving) electric field 𝐄←
(0)

=

𝐸0𝑥←
(0)

 𝐞̂𝑥 + 𝐸0𝑦←
(0)

 𝐞̂𝑦, are determined by the ratio of transmissitivities 𝑡𝑠𝑝/𝑡𝑠𝑠 [77], 

tan 2𝜃F =
2 |

𝑡𝑠𝑝
𝑡𝑠𝑠

| cos (arg
𝑡𝑠𝑝
𝑡𝑠𝑠

)

1 − |
𝑡𝑠𝑝
𝑡𝑠𝑠

|
2 , −

𝜋

2
< 𝜃F ≤

𝜋

2
,  (28) 

sin 2𝜒F =
2 |

𝑡𝑠𝑝
𝑡𝑠𝑠

| sin (arg
𝑡𝑠𝑝
𝑡𝑠𝑠

)

1 + |
𝑡𝑠𝑝
𝑡𝑠𝑠

|
2 , −

𝜋

4
< 𝜒F ≤

𝜋

4
. (29) 

Similarly, the Kerr signals for the reflected (right-moving) electric field 𝐄→
(2)

= 𝐸0𝑥→
(2)

 𝐞̂𝑥 +

𝐸0𝑦→
(2)

 𝐞̂𝑦,  are determined by the ratio of reflectivities 𝑟𝑠𝑝/𝑟𝑠𝑠, 

tan 2𝜃K =
2 |

𝑟𝑠𝑝
𝑟𝑠𝑠

| cos (arg
𝑟𝑠𝑝
𝑟𝑠𝑠

)

1 − |
𝑟𝑠𝑝
𝑟𝑠𝑠

|
2 , −

𝜋

2
< 𝜃K ≤

𝜋

2
,  (30) 
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sin 2𝜒K =
2 |

𝑟𝑠𝑝
𝑟𝑠𝑠

| sin (arg
𝑟𝑠𝑝
𝑟𝑠𝑠

)

1 + |
𝑟𝑠𝑝
𝑟𝑠𝑠

|
2 , −

𝜋

4
< 𝜒K ≤

𝜋

4
. (31) 

Next, we apply Eqs. (24)–(31) to study the MO Kerr and Faraday signals of monolayer 

CrBr3 with different substrate materials. First, we consider the simplest case with both left and 

right layers being just vacuum and calculate the Faraday angle 𝜃F  (solid blue) and ellipticity 𝜒F  

(dashed red) in Fig. 6(d). We find that 𝜃F  and 𝜒F are connected through a set of approximate 

Kramers−Kronig relations, as expected from previous work [24]. As shown in Figs. 6(d)−6(f), we 

find a strong dependence of the MO signals on the excitation frequency. In particular, we predict 

a maximal positive 𝜃F of 2 mrad around the excitation frequency of 2.6 eV and negative 𝜃F of the 

order of −1 mrad between 2.0 and 2.5 eV. Furthermore, we calculate the Kerr signals in the 

presence of conventional thick substrate materials, namely, sapphire and fused silica. Both 

insulating substrates have large band gaps and little absorption in the range of 1.0 ~ 3.5 eV. In this 

work, we modeled their refractive indices using experimental values at the relevant frequencies 

with n = 1.5 for fused silica [78] and n = 1.75 for sapphire [79]. In Figs. 6(e) and 6(f), we show 

the calculated Kerr signals in the setup with sapphire and fused silica substrates, respectively. We 

find a similar shape for the signals but with opposite sign compared with the Faraday signals in 

Fig. 6(d). In addition, different substrate materials can strongly modify the amplitudes of Kerr 

signals. For example, the signals in the fused silica setup are almost twice as large those in the 

sapphire setup. Close attention therefore should be paid in interpreting MO experiments on 

atomically thin 2D magnetic semiconductors with different substrate configurations. 

 

VI. Summary 

In conclusion, we present a detailed theoretical formalism to model the optical and MO 

properties of 2D magnetic semiconductors, including the important SOC and excitonic effects. 

The theoretical and numerical methods presented in this work can also be applied to other mono- 

or multi-layer 2D magnets, as well as van der Waals heterostructures consisting of 2D magnets. 

Using the first-principles full-spinor GW and GW-BSE methods without time-reversal symmetry, 

we calculate the exciton eigenstates, layer polarizability tensor, as well as optical and MO spectra 

of a prototypical 2D magnetic semiconductor, ferromagnetic monolayer CrBr3. The calculated 

optical absorbance spectra and MO signals demonstrate dominant excitonic effects. With a two-
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interface model, we also find that the substrate refractive index will significantly affect the MO 

signals. Our work provides a theoretical framework and a first-principles approach to simulate the 

optical and MO properties of 2D magnetic semiconductors, and sheds new light on possible design 

principles for building new optoelectronic and spintronic devices with magnetic van der Waals 

materials. 
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Appendix 

In this section, we prove the form of the matrix in Eq. (9). Monolayer CrBr3 has 𝑆6 = 𝐶3 ⊗

𝐶𝑖 point group symmetry, and a general layer polarizability tensor is given by 

𝐏 = (

𝑃𝑥𝑥 𝑃𝑥𝑦 𝑃𝑥𝑧

𝑃𝑦𝑥 𝑃𝑦𝑦 𝑃𝑦𝑧

𝑃𝑧𝑥 𝑃𝑧𝑦 𝑃𝑧𝑧

). (A1) 

𝐏 should be invariant under the 𝐶3 rotational operation given by a SO(3) rotation matrix 𝐃, 

𝐃 =

(

 
 

−
1

2
−

√3

2
0

√3

2
−

1

2
0

0 0 1)

 
 

, (A2) 

which leads to, 



 18 

𝐏 ≡ 𝐃𝐏𝐃−1. (A3) 

Compare each entry of the matrices on both sides of Eq. (A3), we have the following identities, 

𝑃𝑥𝑧 = 𝑃𝑧𝑥 = 𝑃𝑦𝑧 = 𝑃𝑧𝑦 = 0, (A4) 

𝑃𝑥𝑥 = 𝑃𝑦𝑦, (A5) 

𝑃𝑦𝑥 = −𝑃𝑥𝑦. (A6) 

Combining Eqs. (4)–(6) and (A6), we arrive at 

∑[⟨0|𝑗p̂
𝑥|𝑆⟩⟨𝑆|𝑗p̂

𝑦
|0⟩ + ⟨0|𝑗p̂

𝑦
|𝑆⟩⟨𝑆|𝑗p̂

𝑥|0⟩] [
1

ℏ𝜔 − Ω𝑆 + 𝑖𝜂
−

1

ℏ𝜔 + Ω𝑆 + 𝑖𝜂
 ] ≡ 0

𝑆

, ∀𝜔. (A7) 

Eq. (A7) leads to, 

⟨0|𝑗p̂
𝑥|𝑆⟩⟨𝑆|𝑗p̂

𝑦
|0⟩ + ⟨0|𝑗p̂

𝑦
|𝑆⟩⟨𝑆|𝑗p̂

𝑥|0⟩ = 2Re ⟨0|𝑗p̂
𝑥|𝑆⟩⟨𝑆|𝑗p̂

𝑦
|0⟩ ≡ 0, ∀𝑆. (A8) 
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FIG. 1. Crystal structure and electronic structure of ferromagnetic monolayer CrBr3. (a) Top view 

and (b) side view of the crystal structure of monolayer CrBr3. Cr atoms are in blue while Br atoms 

in brown. Red arrows denote the out-of-plane magnetization, which is pointing along the 

+z direction. (c) Schematic energy diagrams of Cr d orbitals in the presence of an octahedral crystal 

field and magnetic exchange interaction. The horizontal dashed line denotes the Fermi level. 

LSDA + U band structure (left) and projected DOS (right) of monolayer CrBr3 without (d) and 

with (e) SOC effects. A rotationally invariant Hubbard potential is employed with U = 1.5 eV and 

J = 0.5 eV in the LSDA + U calculation. Colors denote the magnitude of spin polarization along 

the out-of-plane direction. The red (blue) color denotes the majority-spin (minority-spin) 

polarization. The DOS (in units of states per eV per unit cell) is decomposed into contributions 

from Cr majority-spin 3d orbitals (red curve), Cr minority-spin 3d orbitals (blue curve), Br 

majority-spin 4p orbitals (cyan curve) and Br minority-spin 4p orbitals (brown curve). The energy 

of the valence band maximum is set to zero. A gaussian broadening of 50 meV is used for the 

projected DOS plots. 
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FIG. 2. G0W0 band structure (left) and projected DOS (right) of monolayer CrBr3 with SOC effects. 

Computational parameters and the color scheme are the same as in Fig. 1. 
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FIG. 3. (a) Calculated real part (solid lines) and imaginary part (dashed lines) of the 

diagonal Pxx (red) and off-diagonal Pxy (blue) layer polarizability of ferromagnetic monolayer 

CrBr3 without electron−hole interaction (GW-RPA). (b) Calculated real part (solid lines) and 

imaginary part (dashed lines) of the diagonal Pxx (red) and off-diagonal Pxy (blue) with 

electron−hole interaction (GW-BSE). (c) Absorbance spectrum of linearly polarized light with 

electron−hole interaction (GW-BSE, solid blue line) and without electron−hole interaction (GW-

RPA, dashed red line). The amplitudes below 1.8 eV (indicated by black dashed line) are 

multiplied by 10 for better visibility. An 80 meV energy broadening is applied. 
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FIG. 4. (a) Exciton energy levels of ferromagnetic monolayer CrBr3 calculated using the first-

principles GW-BSE method. Energy levels of optically bright exciton states are in red while those 

of dark states in gray. The bright excitons have at least two orders of magnitude stronger oscillator 

strength compared with the dark ones. The free electron−hole continuum starts from 3.81 eV. (b-

e) Top view and side view of electron distribution in real space with the hole fixed on a Cr atom 

for selected bright exciton states. The exciton excitation energies are: (b) 1.5 eV, (c) 2.1 eV, (d) 

2.6 eV, and (e) 2.9 eV. Shown are iso-value surfaces with the value set at 1% of the maximum. 

Here the dominant states (with the largest oscillator strength among the nearby bright states) are 

plotted. 
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FIG. 5. (a) Absorbance spectrum of circularly polarized lights without electron−hole interaction 

(GW-RPA). (b) Absorbance spectrum of circularly polarized lights with electron−hole interaction 

(GW-BSE). The solid red (dashed blue) curve corresponds to the 𝜎+ (𝜎−) circularly polarized light. 

The amplitudes below 1.8 eV (black dashed line) are multiplied by 10 for better visibility in (b). 

(c) Frequency-dependent MCD signal of absorbance with (red, GW-BSE) and without (blue, GW-

RPA) electron−hole interaction. The MCD signal is calculated as (𝐴+ − 𝐴−)/(𝐴+ + 𝐴−), where 

𝐴± denotes the absorbance for 𝜎± circularly polarized lights in (a) and (b). To avoid numerical 

instability, a small imaginary part of 𝜂 = 0.001𝑖 is added to the denominator and the real part is 

plotted. 
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FIG. 6. (a) Polar setup of the MO effects with two interfaces (located at 𝑧0 and 𝑧1). Each layer is 

homogeneous in the x-y plane. The left (0th) and right (2nd) medium is semi-infinitely thick, and 

the middle (1st) layer has a finite thickness 𝑑 = 𝑧1 − 𝑧0. The normal incident light coming from 

right to left is linearly polarized along the x-axis. The red arrow pointing along the +z direction 

denotes the magnetization of layer 1. 𝐄(0) and 𝐄(1) denote the amplitudes of electric fields in the 

0th and 1st layer at the 𝑧0 interface, respectively. 𝐄(2) denotes the amplitude of electric field in the 

2nd layer at the 𝑧1 interface. (b) The polarization plane of the transmitted light. 𝐄←
(0)

 denotes the 

electric field amplitude of the transmitted (left-moving) light. The polarization ellipse is oriented 

at a Faraday angle 𝜃F with respect to the x-axis. The Faraday ellipticity is defined through the 

Faraday ellipticity angle 𝜒F . (b) The polarization plane of the reflected light. 𝐄→
(2)

 denotes the 

electric field amplitude of the reflected (right-moving) light. The polarization ellipse is oriented at 

a Kerr angle 𝜃K with respect to the x-axis. The Kerr ellipticity is defined through the ellipticity 

angle 𝜒K. (d) Calculated Faraday angle and ellipticity in the setup with layers of semi-infinite 

vacuum, monolayer CrBr3, and semi-infinite vacuum. (e) Kerr angle and ellipticity in the setup 

with layers (from left to right) of semi-infinite sapphire, monolayer CrBr3, and semi-infinite 

vacuum. (f) Kerr angle and ellipticity in the setup with layers (from left to right) of semi-infinite 

fused silica, monolayer CrBr3, and semi-infinite vacuum. A monolayer thickness d = 6.07 Å is 

used for monolayer CrBr3. 


