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Computational materials discovery efforts utilize hundreds or thousands of density functional
theory (DFT) calculations to predict material properties. Historically, such efforts have performed
calculations at the generalized gradient approximation (GGA) level of theory due to its efficient
compromise between accuracy and computational reliability. However, high-throughput calcula-
tions at the higher metaGGA level of theory are becoming feasible. The Strongly Constrained and
Appropriately Normed (SCAN) metaGGA functional offers superior accuracy to GGA across much
of chemical space, making it appealing as a general-purpose metaGGA functional, but it suffers from
numerical instabilities that impede it’s use in high-throughput workflows. The recently-developed
r2SCAN metaGGA functional promises accuracy similar to SCAN in addition to more robust nu-
merical performance. However, its performance compared to SCAN has yet to be evaluated over a
large group of solid materials. In this work, we compared r2SCAN and SCAN predictions for key
properties of approximately 6,000 solid materials using a newly-developed high-throughput compu-
tational workflow. We find that r2SCAN predicts formation energies more accurately than SCAN
and PBEsol for both strongly- and weakly-bound materials and that r2SCAN predicts systematically
larger lattice constants than SCAN. We also find that r2SCAN requires modestly fewer computa-
tional resources than SCAN and offers significantly more reliable convergence. Thus, our large-scale
benchmark confirms that r2SCAN has delivered on its promises of numerical efficiency and accuracy,
making it a preferred choice for high-throughput metaGGA calculations.

I. INTRODUCTION

Density functional theory (DFT) has emerged as the
most widely-used computational method for predicting
material properties in recent decades [1]. Hundreds of
thousands of DFT calculations now populate materials
databases such as the Materials Project [2], NOMAD [3],
or OQMD [4, 5], laying the foundation for a new era of
data-driven materials discovery [6].

The vast majority of these calculations employ the
Perdew-Burke-Ernzerhof (PBE) [7] generalized gradient
approximation (GGA) [8] functional, due to its popular-
ity among researchers and its efficient compromise be-
tween high accuracy and high performance across a wide
variety of chemistries and properties. However, as a
semi-local GGA functional, PBE and its variants such
as PBEsol [9] have well-documented and systematic er-
rors related to electron self-interaction [1, 10] and fail
to capture medium- and long-range dispersion [1, 11].
These errors compromise their predictive accuracy for
many properties of interest. Specifically, PBE system-
atically under-predicts the magnitude of formation ener-
gies (i.e., under-binds) [12], slightly over-predicts lattice
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parameters [12, 13], and severely under-predicts semicon-
ductor bandgaps [12, 14, 15]. In principle, higher levels
of theory such as metaGGA DFT functionals can capture
medium-range dispersion interactions and should exhibit
smaller self-interaction errors than GGA functionals such
as PBE [10]. However, metaGGA functionals have his-
torically been either too specific to selected properties or
chemistries and/or too computationally demanding to be
feasible for high-throughput calculations across the entire
periodic table.

The challenge of generality was addressed by Sun
and co-workers via development of the Strongly Con-
strained and Appropriately Normed (SCAN) [16] func-
tional. This non-empirical metaGGA functional has been
shown to be substantially more accurate than PBE for
predicting lattice constants and ground-state structures
of solids [13, 17–20], and modestly more accurate for
semiconductor bandgaps [12, 15, 21]. SCAN predicts for-
mation energies more accurately than PBE for strongly-
bound compounds, but less accurately than PBE for
weakly-bound compounds (e.g., intermetallics) [12]. Re-
searchers have also noted that SCAN underpredicts some
lattice parameters compared to experiment [12, 21] and
identified shortcomings in SCAN’s predictions of the
magnetic moments of ferromagnetic systems [12, 21–25],
the ground-state polymorphs of selected binary com-
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pounds [13], and the bulk moduli of crystalline solids
and water ice [21, 26]. Nevertheless, the generally supe-
rior accuracy of SCAN compared to PBE across many
chemical systems and properties makes it appealing as
a general-purpose functional for solids. However, it has
a higher computational cost than PBE (by a factor of
about 5 [12, 27]), and suffers from numerical instability.
This numerical instability in particular makes it imprac-
tical to reliably and efficiently perform automated, high-
throughput calculations with SCAN.

To mitigate the computational challenge, Furness and
co-workers recently introduced r2SCAN [28], a modifica-
tion of the original SCAN functional with substantially
improved numerical stability, allowing calculations to
converge much more reliably than in the original SCAN
functional. This improved stability is achieved by utiliz-
ing a smoother switching function to interpolate between
the slowly-varying and single-orbital density limits, and
by relaxing one of the 17 theoretical constraints satis-
fied by the original SCAN functional (specifically, the
fourth order gradient expansion constraint for exchange
GE4X [28, 29]). These changes result in a smoother po-
tential energy surface free of discontinuities. Compared
to previous efforts to mitigate numerical difficulties in
SCAN [27, 30], r2SCAN satisfies a greater number of
theoretical constraints and was shown to largely pre-
serve the accuracy of SCAN when benchmarked against
several hundred molecular properties and 20 solid lat-
tice constants [28]. Hence, it would appear that the ar-
rival of r2SCAN has at last created a general-purpose,
numerically-robust metaGGA functional. However, its
accuracy compared to SCAN has yet to be demonstrated
for a large group of solid materials.

To further promote progress towards high-throughput
metaGGA DFT calculations for solids, in this work we
compare the formation energies, cell volumes, and elec-
tronic structures of approximately 6,000 solid materi-
als calculated in r2SCAN and SCAN by means of an
automated, high-throughput workflow. We show that
r2SCAN achieves comparable or even improved accuracy
compared to SCAN and reaches convergence much more
reliably for this large and diverse set of calculations.

II. METHODOLOGY

A. Automated workflow for metaGGA calculations

DFT calculations were carried out using a two-step
workflow comprising an initial GGA structure opti-
mization followed by a structure optimization with the
SCAN [16] or r2SCAN [28] metaGGA functionals, cou-
pled with automatic error correction logic (see Figure 1).
The purpose of the initial GGA structure optimiza-
tion was to generate an initial guess of the structure
and charge density at lower computational cost, thereby
speeding up the subsequent metaGGA calculation. Per-
forming two optimizations in series also makes the calcu-

lation more robust to changes in the size or shape of the
unit cell, as elaborated further in Section S1 [31]. SCAN
calculations used PBE [7] for the initial GGA optimiza-
tion, while r2SCAN calculations employed the PBEsol [9]
functional, which is a variant of PBE tuned to predict
solid lattice constants with greater accuracy. Since the
purpose of the initial GGA calculation is simply to ac-
celerate the metaGGA optimization, the final metaGGA
result should not be particularly sensitive to the choice
of GGA functional.

We employed the Vienna ab initio Simulation Package
(VASP) [32, 33], version 6.1.1 with custom patches for
r2SCAN, in conjunction with projector-augmented wave
(PAW) pseudopotentials [34] and a plane-wave energy
cutoff of 680 eV. Note that r2SCAN is officially available
in VASP as of version 6.2. k-point grids were generated
automatically by VASP using KSPACING values ranging
from 0.22 to 0.44 Å−1, which were determined from the
GGA-estimated bandgap of each material based on the
work of Wisesa et al. [35]. Plane-wave energy cutoff and
k-point density settings were selected such that formation
energies converged within approximately 1 meV/atom
for a benchmark set of 21 materials (listed in Section
S1 [31]) and were selected to be conservatively high. All
calculations used pseudopotentials from the “PBE PAW
datasets version 54” set released in September 2015; a
list of the specific POTCAR symbols used for each ele-
ment is provided in Section S9 [31, 36]. Although these
pseudopotentials were developed for use with the PBE
functional, their use with SCAN is common practice be-
cause no SCAN-specific pseudopotentials are available for
use in VASP. Additional details related to development
of our computational workflow are provided in the Sup-
plemental Material [31, 37–39].

B. Selection of materials

The dataset we analyze below includes 6,307 distinct
materials, comprising 412 elements, 5,297 binary mate-
rials, and 598 ternary materials whose elemental com-
positions cover the majority of the periodic table (see
Figure S24). We first screened the Materials Project
Database [38] for materials that were within 20 meV of
the convex energy hull and had 20 or fewer sites, re-
sulting in a set of approximately 45,000 materials. We
retrieved PBE-relaxed structures for each of these from
the Materials Project REST API [38], which we used as
starting structures in our computational workflow. From
this set, we prioritized elements, ground states, and ma-
terials close to the convex energy hull and performed
metaGGA calculations for as many materials as possi-
ble within the computational resources available to our
project. We were able to complete approximately 8,000
and 25,000 materials using SCAN and r2SCAN, respec-
tively. We observed considerably more reliable conver-
gence with r2SCAN than with SCAN (as discussed fur-
ther below), which allowed us to complete calculations



3

FIG. 1. Automated workflow for metaGGA calculations. The input structure is used to construct an initial guess of the charge
density for the GGA optimization using a GGA functional. A high k-point density is used in this step. The output charge
density from the GGA optimization is used as the initial guess in the subsequent metaGGA optimization using either r2SCAN or
SCAN. The bandgap estimated from the GGA calculation is used to refine the k-point density for the metaGGA optimization,
where metals have the highest k-point density and semiconductors or nonmetals have lower k-point density. Automated error
correction routines adjust settings and restart calculations that fail for well-defined reasons, improving reliability.

for more materials with this functional. Among these
SCAN and r2SCAN calculations, there are 6,307 materi-
als (including 5,895 non-elemental solids) for which both
SCAN and r2SCAN calculations were completed. 5,466
of these materials correspond to structures reported in
the Inorganic Crystal Structure Database (ICSD) [40],
indicating that they represent experimentally-confirmed
structures. We use this set of materials to compare the
properties predicted by the two functionals. We note
that the ≈ 1,700 materials for which we completed SCAN
but not r2SCAN calculations do not indicate cases where
r2SCAN failed to converge. Rather, after completing
our SCAN calculations we chose to prioritize calculations
slightly differently for r2SCAN, and hence some materi-
als originally completed in SCAN were not attempted in
r2SCAN.

III. RESULTS AND DISCUSSION

A. Relative comparison of r2SCAN vs SCAN

1. Formation Energy

Computed formation energies predicted by r2SCAN
and SCAN are summarized in Figure 2a. In an exten-
sive benchmark of the original SCAN functional, Isaacs
and Wolverton [12] observed that SCAN formation en-
ergies were somewhat more accurate for strongly-bound
compared to weakly-bound materials, where ‘strongly-
bound’ materials are those with formation energies ≤ −1
eV/atom and ‘weakly-bound’ materials are those with
formation energies between 0 and −1 eV/atom. We
adopt the same categories here to facilitate comparison
with this prior work. By this definition, our data con-

tains 1,428 and 4,317 strongly- and weakly-bound mate-
rials, respectively. We exclude any materials containing
U, Np, or Pu (150 materials), because many exhibited
exceptionally large differences in formation energy be-
tween the two functionals. For these cases, we found that
r2SCAN-predicted formation energies were substantially
more accurate than SCAN-predicted energies compared
to experiment. However, since these calculations were
performed without spin-orbit coupling, the results must
be interpreted with caution and we do not consider them
in detail here. Further discussion is provided in Section
S4 [31, 41].

Overall, r2SCAN and SCAN predicted similar forma-
tion energies for most materials within both the strongly-
and weakly-bound categories, as indicated by the fact
that the median difference in formation energy was only
−5 meV/atom. Nevertheless, there were substantial dif-
ferences for many materials. For 95% of strongly-bound

materials, ∆Hr2SCAN
f differed from ∆HSCAN

f by ≈ −135

to +170 meV/atom, while for weakly-bound materials,
the 95th-percentile difference in formation energy was ≈
−105 to +115 meV/atom. Although the absolute differ-
ences in formation energy were similar for strongly- and
weakly-bound materials, in relative terms they are much
more significant for weakly-bound materials, since the
magnitude of ∆Hf for weakly-bound materials is smaller
by definition. Reassuringly, we find that in spite of these
apparently large relative differences in predicted ∆Hf

for weakly-bound materials, r2SCAN has a lower aver-
age error compared to experiment by every measure(see
Section III B 1).

In Section S7 [31] we analyze how differences in
r2SCAN and SCAN formation energies relate to specific
chemistries. Among strongly- and weakly-bound mate-
rials, the largest positive differences (i.e., materials for
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FIG. 2. Changes in a) formation energy, b) bandgap, c) cell volume, and d) formation electron localization function (∆ELFf ;
see Section S5 [31]) when computed in r2SCAN vs SCAN. Note that the y axis is logarithmic. Dashed and dotted vertical lines
represent the median differences and two-sided 95th percentile differences, respectively, across both material categories.

which ∆Hr2SCAN
f was less negative than ∆HSCAN

f ) were
materials containing Pt or Au, while Co, Ni, Rh, and
Pd-containing materials also tended to have less negative

∆Hr2SCAN
f . On the other hand, the largest negative dif-

ferences in formation energy were observed for Cs, Pa, Br
and Bi-containing materials. It is unclear why the largest
differences in formation energy are associated with ma-
terials containing these particular elements. The major
difference in construction between r2SCAN and SCAN
(the change in switching function and in the formulation
of the gradient expansion for exchange) have the greatest
effect in regions of slowly-varying electron density which

would be encountered in metallic compounds [42]. Since
the compounds with large positive differences tend to
contain (transition) metals, it is possible these elements
happen to be particularly sensitive to the different for-
mulation of exchange. For the negative differences, a
possible explanation may be that intermediate van der
Waals interactions in the elemental Cs, Pa, Br and Bi
phases are less captured by r2SCAN than SCAN [42].
In general, however, differences in elemental energies do
not explain our observations. For pure elements, the dif-
ference in electronic energy between r2SCAN and SCAN
grows systematically larger with the atomic number (Fig-
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ure S28), hence one might expect materials containing
heavier elements to exhibit the largest differences in for-
mation energy. This is not what we observed: formation
energies of materials show no such systematic trend (Fig-
ure S29 and S30). Since the formation energy of a mate-
rial is calculated by subtracting the energies of elemental
references from that of the material, it would appear that
the sometimes substantial differences in formation energy
predicted by r2SCAN and SCAN are attributable to dif-
ferent energies of the materials rather than the elemental
references.

2. Bandgaps

GGA DFT functionals are known to systematically
and significantly underestimate bandgaps, and this short-
coming is only slightly mitigated by SCAN [12]. Nev-
ertheless, it is instructive to examine whether r2SCAN-
predicted bandgaps differ substantially from those pre-
dicted by SCAN (Figure 2b). For strongly and weakly
bound materials, r2SCAN bandgaps were within ±0.15
eV of SCAN-predicted bandgaps for 95% of materials
studied. r2SCAN was slightly more likely to predict a
smaller bandgap than SCAN for strongly-bound materi-
als and a larger bandgap than SCAN for weakly-bound
materials.

Qualitative agreement between the r2SCAN and
SCAN predicted metallic character of materials is ar-
guably more relevant than the quantitative bandgap pre-
dictions. Out of 5,895 materials for which we computed
bandgaps, there were 73 cases (≈ 1%, listed in Table
S4) in which r2SCAN predicted metallic character (zero
bandgap) when SCAN predicted non-metallic character
or vice versa. In six of these cases, the predictions dif-
fered by & 1 eV. Manual inspection of the density of
states (DOS; see Section S2 [31, 43]) for the materials
with the largest discrepancies indicates that they repre-
sent edge cases in which the band occupancies are partic-
ularly sensitive to the exchange energy. For example, the
material Sb2F13, was a notable outlier where r2SCAN
predicted a metallic material rather than the large-gap
insulator predicted by SCAN, due to a small amount of
ferromagnetism in the r2SCAN case shifting the Fermi
level into the valence band. Thus, the subtle differences
in construction between r2SCAN and SCAN can occa-
sionally result in large differences in predicted bandgaps.
However, this example represents a fictitious, unphysical
material, since the originating crystal structure file was
found to have omitted hydrogens when compared against
the original publication. We emphasize, that we observed
these large discrepancies in only ≈ 0.1% of materials in
our dataset, and that they may be partially attributable
to recently-identified changes in the way VASP computes
the Fermi level.

3. Lattice Volumes

r2SCAN systematically predicted larger lattice vol-
umes for many materials than SCAN, and this system-
atic difference was observed to a similar extent across
both material categories (Figure 2c). Specifically, the me-
dian volumes per atom predicted by r2SCAN were 1.4%
and 1.8%, (0.2 - 0.3 Å3/atom) larger than the SCAN
predicted volumes for strongly-bound and weakly-bound
materials, respectively. The systematically larger lat-
tice volumes predicted by r2SCAN compared to SCAN
may be fortuitous, since SCAN was previously shown to
under-predict experimental lattice volumes by an aver-
age of 0.11 Å3/atom [12]. We will examine the accuracy
of SCAN and r2SCAN lattice volumes compared to ex-
periment in a later section.

4. Electron Localization

To evaluate the consistency between r2SCAN and
SCAN in a more general way, we next present differences
in the electronic structure predicted by the two function-
als. Both r2SCAN and SCAN incorporate information
about the kinetic energy density into their calculation of
the exchange and correlation energies by means of the iso-
orbital indicator α = τ−τW

τunif
or ᾱ = τ−τW

τunif+ητW
for SCAN

and r2SCAN, respectively, where τ is the positive kinetic
energy density, τW and τunif are the limiting kinetic ener-
gies of a single orbital and uniform electron gas, respec-
tively and η=0.001 is a regularization parameter [10, 28].
The calculated value of the exchange and correlation en-
ergies depends on the value of the iso-orbital indicator,
and hence on the bonding regime (e.g. localized/covalent
or delocalized/metallic). This ability to adjust for differ-
ent local electronic environments is a major reason for
the superior accuracy of r2SCAN and SCAN compared
to GGA [12], and also explains why SCAN requires much
smaller Hubbard U values than GGA functionals to ac-
curately predict formation energies of transition metal
oxides [44].

r2SCAN differs from SCAN primarily in that 1) it uses
ᾱ instead of α as the iso-orbital indicator (see definitions
above) and 2) it uses a different ‘switching function‘ to
adjust the value of the exchange-correlation enhancement
factor, Fxc, for different values of ᾱ [28]. The iso-orbital
indicator is closely related to the electron localization
function (ELF), which is equal to (1 +α2)−1 [16, 28] and
ranges from 0 to 1, where a value of 0.5 corresponds to
an electron gas and 1 corresponds to highly localized (co-
valent) bonding [45]. Since both α and ᾱ and hence the
value of Fxc are directly related to ELF, in Figure 2d we
present the difference in ‘formation ELF’, ∆ELFf , pre-
dicted by r2SCAN and SCAN. ∆ELFf is calculated by
analogy to the formation energy (see 3), and represents
the degree to which the average amount of electron lo-
calization around each atom in a material differs from
that in the corresponding elemental references. By con-
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struction, the formation ELF must fall between 0 and 1.
However, because high electron localization occurs only
in a relatively small fraction of the volume occupied by
a crystal (e.g., near the nuclei or along a covalent bond),
average values for an entire atomic basin are typically
small. An example illustrating the local value of ELF
in a crystal structure is provided in Section S5 [31, 46–
48]. In our dataset, the median values of ∆ELFf were
0.034 and 0.036 (dimensionless) for r2SCAN and SCAN,
respectively. These values are 10-20% larger than the
median ∆ELFf calculated by PBEsol (0.030), indicating
that the two metaGGA functionals predict larger changes
in electronic structure during compound formation than
GGA.

Figure 2d shows that broadly speaking, ∆ELFf val-
ues predicted by r2SCAN and SCAN are similar for
both categories of materials (as indicated by the differ-
ences being centered around 0). There is a slight skew
towards r2SCAN predicting smaller ∆ELFf (i.e., less
change in localization between elements and compounds)
than SCAN, with differences of−0.033 to +0.028 defining
the 95th percentile of all materials. However in relative

terms (i.e.,

∣∣∣∣∆ELFr2SCAN
f −∆ELFSCAN

f

∆ELFSCAN
f

∣∣∣∣) these changes were

quite large, with a median relative change of 16% and
a 95th percentile relative change of 82%. Hence, while
r2SCAN and SCAN predict similar ∆ELFf in aggregate,
subtle absolute differences in their respective prediction
of ELF may result in large relative changes for specific
materials.

By definition, the difference in DFT energy between
the two functionals when evaluated on the same density
(and Kohn-Sham orbitals) is equal to the difference in
their exchange and correlation energy, which is a complex
function of not only the ELF, but also the density, den-
sity gradient, and kinetic energy density [10, 28] which
are themselves products of previous self-consistent itera-
tions. Hence, it is difficult to relate changes in ∆ELFf
directly to changes in DFT or formation energy. Fig-
ure 2a suggests that the large relative shifts in ∆ELFf
that we observe between r2SCAN and SCAN do not lead
to commensurately large shifts in ∆Hf . For compari-
son, the median and 95th percentile relative changes in
the electronic energy (i.e., the DFT energy) from SCAN
to r2SCAN were 26% and 32%, respectively, while the
median and 95th percentile changes in ∆Hf were 6.5%
and 54%. Nevertheless, Figure 2d shows that differences
in ∆ELFf tended to be larger for weakly-bound materi-
als compared to strongly-bound materials, and this fact
could be related to the larger relative changes in forma-
tion energy that we observed for weakly-bound materials
(see above).

B. Experimental benchmarks

1. Formation Energy

Having examined how material properties predicted by
r2SCAN differ from those of SCAN, we now turn our
attention to how accurately r2SCAN and SCAN predict
experimental formation energies, volumes, and bandgaps.
Predictions by the PBEsol GGA functional [9], executed
with the same settings as the first step of the auto-
mated workflow (see Section II A) are shown as an ad-
ditional point of comparison. We note that since ex-
perimental benchmarking was not the primary objective
of this work, the materials we evaluate in this section
are dictated primarily by the calculations we generated
rather than through deliberate selection. Complemen-
tary efforts are underway by other research groups [42]
to benchmark r2SCAN against experimental data using
carefully-curated sets of materials presented in previous
studies [12, 17].

Figure 3a shows the mean absolute error (MAE)
in formation energy for 986 materials. Experimen-
tal energies for these materials were obtained from
the expt formation enthalpy kingsbury dataset dis-
tributed with Matminer [49], which associates formation
energies with specific crystal structures, allowing us to
match our computed data with high confidence. Addi-
tional details about the dataset are provided in Section
S8 [31, 40, 50–55].

For the majority of materials studied, the MAE in for-
mation energy predicted by metaGGA functionals was
≈80-120 meV/atom. Strikingly, r2SCAN formation en-
ergies had approximately 20% and 15% lower MAEs than
SCAN for strongly- and weakly-bound materials, respec-
tively, even though r2SCAN is less theoretically exact
(i.e., r2SCAN relaxes the fourth order gradient expansion
constraint for exchange that is satisfied by SCAN [28]).
Although surprising from a theoretical standpoint, other
recent studies have also reported greater accuracy of
r2SCAN compared to SCAN. For example, r2SCAN was
found to predict cohesive energies and bulk moduli of
solids more accurately than SCAN [56].

We observed in Section III A that despite many ma-
terials having similar formation energies, there were a

number of outlying materials for which |∆Hr2SCAN
f −

∆HSCAN
f | ≥ 100-200 meV/atom or more. To evaluate

the implications of such large differences, we examined
the accuracy vs. experiment of all strongly- or weakly-

bound materials for which |∆Hr2SCAN
f −∆HSCAN

f | ≥ 50

meV/atom. There are 665 such materials in the entire
dataset, of which we have experimental data for 345.

Among this group of outliers, ∆Hr2SCAN
f is more accurate

than ∆HSCAN
f . Specifically, the mean error for r2SCAN

was −43.8 meV/atom, while the mean error for SCAN
was−55.8 meV/atom, and the MAEs were 90.2 and 134.9
meV/atom for r2SCAN and SCAN, respectively.

Comparing the metaGGA functionals to PBEsol, we
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FIG. 3. Mean absolute error compared to experiment in a) formation energy (n=986 materials) b) cell volume (n=4,974
materials), and c) bandgap (n=582 materials) computed with r2SCAN, SCAN, or PBEsol.

.

note that for strongly-bound materials, both r2SCAN
and SCAN predicted formation energy much more ac-
curately than PBEsol. This finding is similar to the pre-
vious observation by by Isaacs and Wolverton [12] that
SCAN outperforms PBE for strongly-bound materials.
For weakly-bound materials, however, SCAN was slightly
less accurate than PBEsol (also consistent with previ-
ous findings [12]), whereas r2SCAN was more accurate.
Hence, r2SCAN predicted formation energy more accu-
rately than SCAN or PBEsol for all material categories.
This is a fortuitous result: it appears that the regulariza-
tion procedure used to create r2SCAN not only enhances
numerical stability but also improves accuracy in one of
the few areas in which SCAN was less accurate than PBE.
This suggests that the greater smoothness of the r2SCAN
potential energy surface is beneficial to accuracy as well
as computational reliability, as elaborated by Furness et
al. [29, 42].

2. Lattice Volume

Figure 3b summarizes the performance of the three
functionals for predicting cell volume using experimen-
tal data obtained from the Inorganic Crystal Structure
Database (ICSD) [40]. For strongly-bound materials,
PBEsol has the lowest MAE of 0.89 Å3/atom, followed by
r2SCAN (0.97 Å3/atom) and SCAN (1.0 Å3/atom). For
weakly-bound materials, PBEsol and SCAN predict vol-
ume with a similar MAE of 0.97 Å3/atom, while r2SCAN
has a slightly higher MAE of 1.0 Å3/atom. Overall,
neither metaGGA functional shows a clear and signifi-
cant improvement in lattice volume prediction compared
to PBEsol. Although surprising considering that SCAN
lattice constants were shown to be more accurate than
PBE (albeit underpredicted, whereas PBE lattice con-
stants were overpredicted) [12], it is important to remem-
ber that PBEsol was developed specifically to reproduce
solid lattice constants with high accuracy.

3. Bandgap

The errors in predicted bandgap are shown in Figure 3c
for 582 materials that were present in both our dataset
and the experimental expt gap kingsbury dataset in
Matminer [49]. Compilation of the bandgap data is de-
scribed in more detail in Section S8 [31].

For strongly-bound materials, the MAE in predicted
bandgap was nearly identical between r2SCAN and
SCAN at 1.078 and 1.081 eV, respectively. The same
was true for weakly-bound materials; although in this
case the MAE was much lower at ≈0.28 eV. Although
the MAEs for both metaGGA functionals were consid-
erable, they were ≈0.21 eV and 0.04 eV lower than the
PBEsol MAE for strongly- and weakly-bound materials,
respectively.

C. Computational performance and reliability

Finally, we used the large amount of computed data
we generated to develop a qualitative understanding of
the relative computational demands and reliability of
r2SCAN and SCAN. In Figure 4a we present the rel-
ative performance of r2SCAN, SCAN, and PBEsol in
terms of 1) total CPU time, 2) total number of ionic
steps and 3) total number of self consistent field (SCF)
cycles (summed over all ionic steps) required to reach
convergence. We note that this was not a rigorous com-
putational benchmark, because the starting structures
for the GGA and metaGGA stages of the workflow were
not identical. As described in Section II A, each starting
structure was optimized using equivalent VASP settings
using both 1) PBE followed by SCAN and 2) PBEsol
followed by r2SCAN. All calculations were carried out
on the Cori supercomputer at the National Energy Re-
search Scientific Computing Center (Berkeley, CA); how-
ever the parallelization settings (i.e., number of nodes,
cores, and multiprocessing tasks) varied slightly among
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FIG. 4. a) Relative computational performance of r2SCAN compared to SCAN (blue) or PBEsol (orange), demonstrating that
computational time required for r2SCAN is smaller than SCAN but larger than PBEsol. Each variable is plotted as the ratio
of the value in the r2SCAN calculation divided by the value in the corresponding SCAN or PBEsol calculation. Dashed lines
inside each violin represent the quartiles of the distribution. b) Completion rate of calculations carried out using each density
functional.

calculations. As such, the information in Figure 4 should
not be considered a definitive representation of the rel-
ative computational demands of these functionals, but
rather a qualitative representation of their performance
over a large and diverse set of materials.

As shown in the figure, r2SCAN required approxi-
mately 0.5-2x the CPU time to converge as SCAN, and
0.5-1x the number of ionic and electronic steps. Com-
pared to PBEsol, r2SCAN required 2-4x the CPU time, 1-
3x the number of ionic steps, and 1-2x the number of total
SCF cycles. Our results here are largely consistent with
a previous rigorous benchmark for CPU time based on
single-point calculations, which showed that r2SCAN re-
quired approximately 0.9x of the CPU time as SCAN and
approximately 4x as much as PBE. [57] Our finding that
fewer ionic steps are required is consistent with a study
by Ning and co-workers [58] which found r2SCAN to
generate smoother potential energy surfaces (facilitating
convergence) compared to SCAN. Thus, modestly fewer
ionic steps and modestly less CPU time are required to
converge r2SCAN than SCAN, but both functionals re-
quire considerably more computational resources than
PBEsol.

Time required for convergence does not tell the whole
story, however, because the data in Figure 4a reflect only
successful calculations, and hence mask the much more
reliable convergence of r2SCAN. Among approximately
11,000 and 25,000 total calculations we attempted with
SCAN and r2SCAN, respectively, we observed a comple-
tion rate of 96% for r2SCAN, but only 69% for SCAN
(Figure 4b). Among the incomplete SCAN calculations,
we estimate that at least 25% failed due to unrecoverable
errors, whereas the remaining calculations may have sim-

ply run out of wall time, which was limited to 48 hours
in our work. Again, although these failure statistics do
not represent a rigorous comparison of the two function-
als (for example, the SCAN convergence rate may im-
prove somewhat with very long wall time), they quali-
tatively highlight the generally much more reliable con-
vergence of r2SCAN compared to SCAN, which was a
key objective of its development [28]. Furthermore, it is
noteworthy that for weakly-bound compounds, PBEsol
predicted only modestly less accurate formation energies
than r2SCAN, while consuming less than half the com-
putational resources and offering extremely reliable con-
vergence. Hence, PBEsol may still be considered an ex-
cellent choice for computing many properties of interest.

IV. SUMMARY AND OUTLOOK

In summary, we have compared r2SCAN and SCAN
predictions for key properties of approximately 6,000
solid materials. We find that r2SCAN predicts sub-
stantially similar formation energies, bandgaps, and de-
grees of electron localization as the original SCAN func-
tional, but predicts systematically larger lattice con-
stants. r2SCAN is found to predict formation ener-
gies more accurately than SCAN and PBEsol for both
strongly- and weakly-bound materials, while r2SCAN
and SCAN calculated bandgaps are virtually identical
and modestly more accurate than those predicted by
PBEsol. For materials containing U, Np or Pu, r2SCAN
predicts formation energies that are substantially differ-
ent from and considerably more accurate than those pre-
dicted by SCAN. The reason for this is not clear, and
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could arise from a fortuitous cancellation of errors re-
lated to the lack of spin-orbit-coupling in our calcula-
tions and/or as a consequence of the smoother potential
energy surface generated by r2SCAN. With respect to
computational reliability, we find that r2SCAN requires
modestly fewer computational resources than SCAN, but
offers much more reliable convergence. Thus, our large-
scale benchmark confirms that r2SCAN has delivered on
its promises of numerical efficiency and accuracy [28],
making it an ideal choice for high-throughput metaGGA
calculations.

V. DATA AVAILABILITY

All data referenced herein are publicly available on
Figshare [59] and will be integrated into the Materials
Project database [38] in the near future. Our computa-
tional workflow has been implemented into the pymat-
gen [36], custodian [36], and atomate [60] packages as of
versions 2020.12.3, 2021.1.8, and 0.9.6, respectively, for
readers wishing to utilize it in their own work.

VI. ACKNOWLEDGEMENTS

We gratefully acknowledge James Furness and Jianwei
Sun of Tulane University and Aaron Kaplan and John
Perdew of Temple University for helpful discussions and
assistance in compiling VASP with the r2SCAN source
code. This work was intellectually led by the Materials
Project, which is funded by the U.S. Department of En-

ergy, Office of Science, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division, under Con-
tract no. DE-AC02-05-CH11231: Materials Project pro-
gram KC23MP. Additional support was also provided by
the Data Infrastructure Building Blocks (DIBBS) Local
Spectroscopy Data Infrastructure (LSDI) project funded
by the National Science Foundation (NSF) under Award
Number 1640899.

VII. AUTHOR CONTRIBUTIONS

Ryan Kingsbury: Conceptualization, Software,
Methodology, Data Curation, Formal Analysis, Writing
- Original Draft, Writing - Review & Editing. Ayush
Gupta: Formal Analysis, Writing - Review & Editing.
Christopher Bartel: Conceptualization, Writing - Re-
view & Editing. Jason Munro: Methodology, Writing
- Review & Editing. Shyam Dwaraknath: Conceptu-
alization, Methodology, Writing - Review & Editing,
Supervision. Matthew Horton: Conceptualization,
Methodology, Writing - Review & Editing, Supervision.
Kristin Persson: Conceptualization, Writing - Review &
Editing, Supervision, Funding Acquisition.

VIII. COMPETING INTEREST STATEMENT

The authors declare no competing financial interests.

IX. REFERENCES

[1] N. Mardirossian and M. Head-Gordon, Thirty years of
density functional theory in computational chemistry:
An overview and extensive assessment of 200 density
functionals, Molecular Physics 115, 2315 (2017).

[2] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder,
and K. A. Persson, The Materials Project: A materials
genome approach to accelerating materials innovation,
APL Materials 1, 011002 (2013).

[3] C. Draxl and M. Scheffler, Nomad: The fair concept
for big data-driven materials science, MRS Bulletin 43,
676–682 (2018).

[4] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and
C. Wolverton, Materials design and discovery with high-
throughput density functional theory: The open quan-
tum materials database (oqmd), JOM 65, 1501 (2013).

[5] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W.
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