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Abstract

Using Labusch-type solid solution strengthening models parameterized with DFT-computed solute-

dislocation interaction energies, we perform a computational search for 63 solutes across the periodic table

that lower anisotropy ratios (non-basal to basal CRSS) of magnesium potentially increasing its ductility

per the von Mises criterion. For this purpose, we compute changes in strength for solutes as a function

of composition and temperature, and compute anisotropy ratios for solutes that include both rare-earth

and non-rare earth. We specifically focus on solute-dislocation interaction energies in the following DFT-

optimized dislocations as representative of three non-basal plastic deformation modes: 〈c + a〉 edge, (101̄2)

tension twinning edge, and the (101̄1) compression twinning edge. We find that solute-induced changes

in non-basal deformation modes can be approximated using a second-order polynomial in the size misfit

of the solutes, which permits rapid screening of solutes. Our approach to identfy solutes known to im-

prove strengthening incorporates solute solubility, and suggests other solutes that not have been previously

explored for strengthening. The 8 rare earth solutes that our method suggests as the best, ordered by in-

creasing anisotropy ratios at their optimal concentrations, are: Gd, Tb, Dy, Nd, Ho, Er, Tm, and Yb. The 12

non-rare- solutes that our method suggests as the best, ordered by increasing anisotropy ratios, are: Y, Mn,

Sc, Pb, Ca, Ag, Bi, Tl, Zn, Li, Ga, and Al. Of these, Gd, Nd, Er, Yb, Y, Mn, Ca, Zn, Li, and Al are used in

commercial Mg alloys.

Keywords: dislocation; edge, screw; 〈c+a〉; twinning; HCP Mg; Mg alloys; solutes; first principles; DFT; CALPHAD

I. INTRODUCTION

Magnesium alloys have a high strength-to-weight ratio [1, 2] and are therefore of interest to

transportation industries as light weight alternatives to heavier non-ferrous and ferrous alloys.

However, broader application of wrought Mg alloys in ground transportation vehicles, for exam-

ple, has been limited by low room temperature ductility, poor formability, and corrosion [3]. The

low polycrystalline ductility is a result of the yield strength anisotropy of the HCP crystal structure

of Mg. Slip activity is primarily limited to the basal plane at room temperature since the critical re-

solved shear stress (CRSS), or yield stress (these two terms are used interchangeably throughout),

to move basal dislocations is more than an order-of-magnitude lower than the CRSS for non-basal
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deformation modes [4–10]. The large differences between the basal and non-basal CRSSs result in

insufficient active slip systems at room temperature for generalized plasticity according to the von

Mises criterion [11]; fracture occurs before plastic deformation and hence component forming re-

quires application of heat to activate non-basal systems [12]. Room temperature non-basal plastic

deformation modes in Mg are (101̄2) twinning in tension [7, 13], and (101̄2) twinning and the slip

of 〈c + a〉 dislocations in compression [10, 14]. One approach to improving Mg plasticity is via

solute additions to strengthen deformation modes, and reduce plastic anisotropy at lower temper-

atures. A useful metric is the ratios of the solute-induced non-basal CRSSs to the solute-induced

basal CRSS: if a given solute lowers these for realistic solute solubilities in Mg, then improved

plasticity will result.

Significant experimental and theoretical/computational research has focused on improving Mg

alloy plasticity. Solid-solution strengthening using classical strengthening models parameterized

with solute-dislocation interactions computed with density functional theory (DFT) has been the

subject of several studies. For example, Yasi et al. [15, 16] determined the strengthening potencies

for many different solute species on basal dislocation slip [6] and thermally-activated basal to

prismatic cross-slip in Mg alloys. Ghazisaeidi et al. [7] computed the strengthening effects of

Al and Zn solutes on (101̄2) tension twinning edge dislocations, and Buey et al. [10] performed

similar strengthening calculations for Y solute on the slip of 〈c + a〉 edge dislocations. Jang et al.

[17] recently developed a computational approach aimed at exploring activation of 〈c + a〉 slip in

Mg alloys. Other studies have attempted to use surrogate quantities like generalized stacking fault

energies to predict solute effects on non-basal slip in Mg alloys [18]. Experimental efforts have

largely focused on the effects of alloying elements and processing on grain refinement [9, 19–25]

and texture modification [9, 24–32], or introducing solutes [9, 25, 33, 34], shaped precipitates

[35–37], or long-period stacking ordered (LPSO) phases [38–40] to strengthen basal slip relative

to non-basal deformation modes. These approaches are aimed at reducing the plasic anisotropy

responsible for the poor room temperature ductility of conventional Mg alloys.

Recent experiments have led to new Mg alloys with improved room temperature strength and

ductility. Of particular note are the work of Shi et al. [41, 42], who developed Mg-2Zn-0.3Ca-

0.2Ce-0.1Mn (wt.%), a new Mg alloy with unprecedented room temperature strength (∼269 MPa)

and ductility (∼9.4%). These properties were achieved with a homogenization route designed

with CALPHAD. Upon heat treatment, alloy ductility was substantially increased to ∼20% with

a modest decrease in strength. The reported properties were attributed to a weakening of the
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basal texture, fine grain structure (nominal 5.4 µm), and Mn and Mn6Zn3Ca2 precipitates. In a

subsequent study, Shi et al. [42] used their experimental/computational approach to develop Mg-

1.0Zn-1.0Al-0.5Ca-0.4Mn-0.2Ce (wt.%) with a new homogenization route. This alloy has ∼31%

ductility and ∼350 MPa strength at room temperature. Mechanical property improvements were

attributed to a weak or split basal texture, a fine grain structure (nominal 9.6 µm), and formation

of solute clusters. Zhou et al. [43] found that grain refinement and solid-solution strengthening

are responsible for the considerable ductility of Mg-Sc-Yb-Mn-Zr alloys.

Despite impressive progress towards improving room temperature mechanical properties, a

fundamental study on the effects of a wide range of solutes on non-basal deformation in Mg is

lacking. In particular, results from a comprehensive search across the periodic table to examine

the effect of solute chemistry on the ratios of the solute-induced change in non-basal yield stresses

to the solute-induced change in basal yield stress, while accounting for solute solubility, are not

available. There is ample evidence in the literature that solutes such as Al, Zn, Ca, Mn, and various

rare earth elements have a beneficial impact on Mg room temperature mechanical properties but

not necessarily via the same microstructural mechanisms [42]. Lithium, for example, is known

to reduce the c/a ratio of Mg and activate non-basal slip while alteration of texture during re-

crystallization in Mg extrusion alloys has been attributed to Ce additions [44–46]. At present,

the contribution from solute strengthening via interaction of solutes with dislocation cores on me-

chanical properties and its importance relative to other strengthening mechanisms are difficult to

determine with experimental methods.

Here, we combine DFT calculations with solid solution strengthening models to explore the

strengthening effect of 63 different solutes. We were especially interested to learn if our approach

identifies solutes known to improve strengthening and if it suggests other solutes that not have been

previously explored for strengthening. Solution strengthening in alloys is a direct consequence of

solute interactions with dislocations [47], and electronic structure calculations are needed to com-

pute these interactions accurately [6]. Therefore, we used density functional theory (DFT) to com-

pute the interactions of selected solute species with three dislocation types associated with non-

basal deformation in Mg: 〈c+a〉 edge, (101̄2) tension twinning edge, (101̄1) compression twinning

edge. We use these direct interaction calculations to develop approximate interaction models that

combine geometric information from the equilibrium dislocation cores in pure Mg with solute size

and chemical misfits—quantities that can be efficiently computed with DFT. Labusch-type solu-

tion strengthening models previously applied to Y solutes in 〈c + a〉 edge dislocations [10] and Al
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and Zn solutes in (101̄2) tension twinning edge dislocations in Mg [7] are employed. In addition to

alleviating the high computational cost of calculating the solute-dislocation interactions by directly

substituting every type of solute into all the sites of the three non-basal dislocation cores, the ge-

ometric models also quantify the relationships between the solute-dislocation interaction energies

and solute misfits. The computed interaction energies parameterize the Labusch models which

predict changes to CRSS from 63 different solute species on the three different non-basal plastic

deformation modes. We evaluate the potential of each solute to improve the strength and ductility

of Mg by computing the ratios of the solute-induced change in non-basal CRSSs to the solute-

induced change in basal CRSS. Promising solute candidates reduce these ratios thereby promoting

dislocation slip on a larger number of slip systems required for generalized plastic deformation.

Solute solubility is incorporated into the ratios.

II. COMPUTATIONAL METHODS

We determine the strengthening of 63 different substitutional solute species on 〈c + a〉 and

(101̄2) tension and (101̄1) compression twinning edge dislocations in Mg using Labusch-type

solid solution strengthening models [7, 10, 48, 49]. The inputs to the strengthening models are

(1) equilibrium dislocation core structures which can determine (2) solute-dislocation interaction

energies, along with (3) dislocation line tension. The dislocation core structures and solute inter-

actions are all computed with density-functional theory, while the line tension requires a empirical

interatomic potential. As seen below, the Labusch model requires the interaction energy U(xi, yi)

of a solute at a variety of xi, yi positions within the dislocation core. Doing so directly requires a

large number of computationally intense calculations. However, the direct calculations can be ef-

fectively replaced with a computationally simpler approach: the pure Mg defect geometries can be

analyzed in terms of their local volumetric strain and local “slip” (in the pyramidal plane for 〈c+a〉,

or the corresponding twin boundary for twin dislocations), and then the solute “misfit”—changes

in lattice constants, stacking fault or twin energies—can be used to efficiently and accurately com-

pute the interaction energy. Such an approach has a long history[6, 7, 10, 16], and can be validated

against the direct calculations. In addition, the interaction energy for solutes in different planes

of a pyramidal fault or the two twin boundaries can also be effectively modeled as a quadratic

function of the size misfit ε s
v . While this is not possible for the basal fault—which has nearly

zero elastic strain—the non-basal deformation modes all involve large local distortions with sig-
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nificant volumetric components. The end result is that the solute-dislocation interaction energies

themselves are quite accurately expressible as quadratic functions of the solute size misfits, and

so the strengthening models below can be rewritten in terms of the solute size misfits only. The

supplementary materials contain additional details of the density functional theory calculations for

line defects and the various solute misfits calculations, and the empirical models with respect to

volumetric strain [50].

A. Solid-solution strengthening models

Labusch-type weak pinning models are used to calculate the effects of solute concentration,

temperature, and strain rate on the critical resolved shear stress (CRSS) of the 〈c + a〉 edge dis-

location, and (101̄1) and (101̄2) twinning edge dislocations. This approach has been previously

applied to Y solutes with a 〈c + a〉 edge dislocation in Ref. [10], and for Al and Zn solutes with a

(101̄2) twinning edge dislocation in Ref. [7]. We briefly review the approach here. A dislocation

bows out through a random field of solutes, taking on a shape that minimizes the combination of

the solute-dislocation interaction energies and the elastic energy due to the change in the shape of

the dislocation. The presence of solutes produces energy barriers that the dislocation must over-

come to move through the lattice, thereby raising the yield stress. The total energy Etot of the

dislocation as a function of the dislocation bowing amplitude w and the bowed-out segment length

ζ is

Etot(ζ,w) =

(Γw2

2ζ

)
−

(
csζ

a0

)1/2

∆Ẽp(w)
 L

2ζ
, (1)

where cs is solute concentration, Γ is the dislocation line tension, L is the dislocation line length,

and a0 is the periodicity along the threading direction. The interaction with solutes enters through

∆Ẽp(w); if we know the interaction energy U(xi, y j) of a solute at position (xi, y j) relative to a

dislocation centered at the origin with an xz slip plane, then the collective effect of all the solutes

in Eqn. 1 enters as

∆Ẽp(w) =

∑
i j

(
U(xi, y j) − U(xi − w, y j)

)2


1/2

. (2)

Eqn. 1 can be analytically minimized with respect to ζ to find the characteristic segment length ζc;

the characteristic width wc is found via numerical minimization. From this, the zero-temperature

6



change in yield stress ∆τy,0 is

∆τy,0 = β

c2
s∆Ẽ4

p(wc)

Γa2
0w5

c

1/3

, (3)

where β is a unitless geometric factor related to the lattice geometry and slip system[10, 49].

Including the effect of temperature T and strain rate ε̇ gives the change in stress required for

dislocation motion ∆τy is

∆τy(T, ε̇) = ∆τy,0

1 − (
T
T0

)2/3 , (4)

where

T0 =
α

kB ln(ε̇/ε̇0)

Γw2
c∆Ẽ2

p(wc)cs

a0

1/3

, (5)

and α is a unitless geometric factor similar to β and ε̇0 = 105s−1 is a reference strain rate. The

model of Eqn. 4 is applicable directly for 〈c + a〉 strengthening.

However, as Ghazisaeidi et al. note, edge dislocations in twin boundaries act quite differently[7].

Namely, the term Etot(ζc) does not reach a minimum with respect to w; rather, Etot/Lc2/3
s ap-

proaches a constant limiting value. This is due to the interaction of solutes with the twin boundary

itself, as opposed to the dislocation; motion of the dislocation necessarily moves solutes in and

out of the twin boundary. In such a case, the model takes on a different, much simpler form[7],

∆τy(T, ε̇) = γ
[−Etot/Lc2/3

s ]3/2
√

Γcs

kBT ln ε̇0/ε̇
, (6)

where the limiting value of −Etot/Lc2/3
s is found numerically for a given solute, and γ is a unitless

geometric factor related to the lattice geometry and twin system. References [7, 10, 51–53] provide

additional details on the strengthening models. Determining the line tensions for our line defects

requires the use of interatomic potentials as described in the supplementary material, and what

remains is to determine the spatial distribution of solute-dislocation interaction energies U(xi, y j)

in and around the 〈c + a〉, (101̄1) and (101̄2) edge dislocations, which can be used in Eqn. 4 and

Eqn. 6.

B. Solute interactions

The volumetric solute size misfit ε s
V quantifes the size mismatch between the volume of solute

atom s and the volume of a matrix Mg atom. The volumetric size misfit also determines the

interaction energy of the solute with the volumetric strain field of defects like dislocations [6, 7, 10]
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and twin boundaries [54]. We compute volumetric size misfits for 63 substitutional solutes in Mg

using the strain misfit tensor methodology in Refs. [55–57]. The strain misfit tensor ε s
i j gives the

derivative of solute-induced strain ecs
i j with respect to solute concentration cs. To determine ε s

i j, we

substitute a single substitutional solute into an HCP Mg supercell and then relax the positions of

the atoms while keeping the supercell lattice vectors fixed. We then compute ε s
i j from the solute’s

elastic dipole tensor Ps
kl and the DFT-computed elastic compliance tensor S 0

i jkl of pure Mg,

ε s
i j = −

1
Ω0

∑
k,l

S 0
i jklP

s
kl, (7)

where

Ps
kl = −NΩ0σ

(s,N,Ω0)
kl . (8)

Here, Ω0 is the volume per atom in the ideal solute-free HCP crystal, N is the number of lattice

sites in the computational supercell, and σ(s,N,Ω0)
kl is the DFT-computed stress that a single solute

induces in the supercell with fixed ideal HCP lattice vectors after relaxing the atomic positions.

To ensure that only solute-induced stress is included in Eqn. 8, any small residual stress in the

solute-free supercell should be subtracted from σ(s,N,Ω0)
kl . In the dilute limit, σ(s,N,Ω0)

kl scales with

1/N so Ps
kl becomes independent of supercell size. For substitutional solutes in Mg, ε s

i j is diagonal.

The element ε s
ii gives the solute size misfit along Cartesian direction i, and the trace gives the

volumetric size misfit ε s
V .

The other misfits are defined in terms of the change in the fault energy (pyramidal stacking

fault or twin fault energy), and depend on the position of the solute in the fault plane and distance

away from it. For the pyramidal fault, it is

ε s,n
p2 =

1
γp2

 ∂γp2

∂cs

∣∣∣∣∣∣
cs=0


n

, (9)

for layer n relative to the fault plane. It is worth noting that scaling by the fault energy to get

a unitless quantity is purely convention for the “chemical misfit”; as we will use the misfit to

construct an interaction energy model, we will have to multiply the misfit by the slip energy to

produce an interaction energy. In a similar vein, we can compute the interaction energy, Un, of

a solute with respect to twin boundary for position n in the boundary; that is commonly reported

simply as an interaction energy, and we do so here.
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C. Effect of energy errors on ∆τy

As explained at the beginning of the methods section, we find we can accurately and efficiently

reduce the prediction of strength changes to a simple model in terms of the solute size misfit ε s
v ;

however, this introduces error in our prediction, and we wish to quantify this effect. We do so with

a simple propagation of error approach; we compute the variance in ∆τy from the variance and

covariance in the interaction energies Un,

σ2
∆τy

=
∑
m,n

σ2
UmUn

(
∂∆τy

∂Um

) (
∂∆τy

∂Un

)
, (10)

where σ2
UmUn

is the covariance matrix for the solute-dislocation interactions, and σ2
Um
≡ σ2

UmUm
is

the variance in Um. We compute the covariance matrix σ2
Un,Um

for the fault energies Un using the

direct and fitted solute-fault interactions,

σ2
Un,Um

=
1

Ns − 2

∑
s

(U s
m − U s,fit

m )(U s
n − U s,fit

n ), (11)

where Ns is the number of solutes used to fit the interactions as a function of solute size misfit, and

σ2
Un
≡ σ2

Un,Un
.

III. RESULTS

Our intermediate goal is a prediction of the strength of different deformation modes, as a func-

tion of chemical composition, temperature and strain rate; from these, our final goal is the ratio

of non-basal strengths to basal strengths to guide alloy selection. The strengthening models from

Section II A require spatial interaction energies. For the 〈c + a〉 dislocation, that information starts

with the pure Mg dislocation core structure; we can then directly substitute solutes at different

sites. We find that knowing the local strain and slip in the pure core is sufficient to use a model

for the interaction from only the size and stacking fault misfit; moreover, the stacking fault misfit

itself can be well-approximated as a polynomial in the size misfit. For the (101̄1) compression

twin and (101̄2) tension twin dislocations, the information starts with the pure Mg dislocation

cores structures and the twin boundaries; we can again directly substitute solutes at different sites

for both the dislocation and the twin boundaries. We find that the changes in the twin boundary

energies, and the interaction energies in the twin dislocation cores can be well-approximated as

a polynomial in the size misfit. The final result is a model for the strength of different non-basal
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deformation modes in terms of the size misfit, solute concentration, temperature and strain rate.

The supplemental material [50] contains tabulated data for all of the fits in addition to the graphical

data presented here.

A. Dislocation core structures from first-principles calculations

𝑐 + 𝑎 edge

𝑐 + 𝑎 screw

0.130−0.13

𝛼31

𝛼3𝑖 (Å–1)

𝛼33

FIG. 1. (color online). Core structures of the 〈c + a〉 edge and screw dislocations optimized using DFT with

LGF-based FBC. The edge core is visualized using the α31 edge component of the Nye tensor distributions,

and the screw core is visualized using the α33 screw component. The dislocations dissociate into 1/2〈c + a〉

partial edge or screw dislocations separated by a pyramidal 2 stacking fault.

The 〈c + a〉 edge and screw perfect dislocations dissociate into 1/2〈c + a〉 partial dislocations

separated by a pyramidal 2 stacking fault. Fig. 1 shows the dislocation geometries visualized us-

ing a combination of atomic positions and Nye tensor distributions [58, 59]. Our core geometries

relaxed using DFT with lattice Green function-based (LGF) flexible boundary conditions agree

well with the DFT cores found in Refs. [60, 61]. The screw dislocation core was optimized in

Ref. [60] using LGF-based flexible boundary conditions, but the edge core in that work was opti-

mized under fixed boundary conditions. The authors of Ref. [61] studied cross-slip mechanisms
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for screw dislocation using a periodic quadrupolar array configuration. The relaxed core structures

provide substitutional sites for computing solute-dislocation interactions and geometric informa-

tion used to construct computationally efficient approximations for these interaction energies. Our

relaxed edge and screw geometries have substantially fewer atoms than previously published core

structures, which greatly increases computational efficiency when computing solute-dislocation

interactions by direct substitution of solutes into the core. We focus on solution strengthening of

edge dislocations here, and leave strengthening of screw dislocation for a future study; it is ex-

pected that the strengthening effect of the screw dislocation will not be significantly different than

that of the edge dislocation.
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(1011) twinning edge

FIG. 2. Core structures of the (101̄1) compression twinning edge dislocation optimized using DFT. The

red lines indicate the two parallel twin planes, with the line defect spanning the distance between. The

out-of-page direction is along the a-direction.

Fig. 2 shows the computed (101̄1) compression twinning edge dislocation, relaxed using DFT.

Unlike the 〈c + a〉 dislocation cores, we use fixed boundary conditions to handle the dislocation

core. The initial geometry is found using an modified-embedded atom potential[8], with a 50,000

atom geometry, then truncated to a 895 atom geometry; the outer 10Å layer of atoms are held

fixed. For the (101̄2) tension twin edge dislocation, we use the relaxed geometry from [7].
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TABLE I. Volumetric size misfits and approximate pyramidal 2 chemical misfits for 63 substitutional solutes

in Mg. The chemical misfits are well-approximated by a second-order polynomial in the size misfit. The

misfits are used to efficiently compute solute interactions with the different dislocations in this study, which

ultimately lead to solid solution strengthening (see Fig. 7).

B. Solute size and chemical misfits

Table I show our computed solute misfits of 63 different substitutional solute species in Mg

using the strain misfit tensor approach discussed in Section II B. The size misfit ε s
V shown in the top

of Table I is the most significant quantity for our purposes, as the other changes in pyramidal slip

and twin energies can be predicted using an approximation that is quadratic in the size misfit; the

supplemental material includes the quadratic equation[50]. We computed pyramidal 2 chemical

misfits for Al, Ca, Cs, Ir, K, La, Li, Mn, Na, Os, Pr, Rb, Sn, Sr, Y, and Zn solutes in the three

atomic layers adjacent to the pyramidal 2 stacking fault (see Section II B). The volumetric size

misfits ε s
V of these solutes range from −1.31 for Os to 1.71 for Cs, and we find that the chemical

misfits for all three layers are described well by a second order polynomial in ε s
V . The polynomials

provide a better description for solutes with positive ε s
V than for solutes with negative ε s

V , with

the Os and Ir having the largest fitting errors. However, for solutes with large magnitude |ε s
V |, the

solute-dislocation interactions are dominated by the volumetric strain contributions, and the slip

energy contributions have a negligible effect on the strengthening predictions. We use the fitted

dependence on ε s
V to predict the chemical misfits for the rest of the solutes in this study. The values
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of the approximated chemical misfits for the 63 substitutional solutes are given in the bottom of

Table I.

C. Solute-twin boundary interactions

1
0
ത 1
ത 1
→
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0 320 –95
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𝜎𝑈𝑖𝑈𝑗
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FIG. 3. (color online). Interaction energies of Al, Ba, Be, Ca, Cs, Ir, K, La, Li, Mn, Na, Os, Pr, Rb, Sn, Sr, Y,

and Zn solutes with the (101̄2) tension twin boundary. (Top) The twin boundary is indicated by a dashed line

in both left and right geometries; the sites on the left are colored based on the linear fitting coefficient U(1)

for the solute interaction energies, while the right are colored based on the quadratic fitting U(2) coefficient.

(Bottom left) The solute-twin boundary interaction energies computed from the polynomial (U s
TB, fitted)

agree with the directly computed interactions. The quadratic fits predict interaction energies for the other

45 solutes considered in this study. (Bottom right) The covariance matrix (visualized as a signed |σ2
UiU j
|1/2)

shows that the sites 1 and 2 have the largest fitting errors, and that these errors are anticorrelated; we can

propagate these errors into our error estimates for our strengthening model (cf. Eqns. 6 and 10).

For the interaction of solutes with twin boundaries, we computed direct interactions for 18

distinct solutes, then fit a second-order polynomial with size misfits to predict interactions for 63

solutes across the periodic table. For direct substitution, we chose the 18 solutes: Al, Ba, Be,

Ca, Cs, Ir, K, La, Li, Mn, Na, Os, Pr, Rb, Sn, Sr, Y, and Zn. For both the (101̄1) compression

and (101̄2) tension twin boundaries, we found that the interaction energies, U s,fit
n,TB, can also be
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FIG. 4. (color online). Interaction energies of Al, Ba, Be, Ca, Cs, Ir, K, La, Li, Mn, Na, Os, Pr, Rb, Sn,

Sr, Y, and Zn solutes with the (101̄1) compression twin boundary. (Top) The twin boundary is indicated by

a dashed line in both left and right geometries; the sites on the left are colored based on the linear fitting

coefficient U(1) for the solute interaction energies, while the right are colored based on the quadratic fitting

U(2) coefficient. (Bottom left) The solute-twin boundary interaction energies computed from the polynomial

(U s
TB, fitted) agree with the directly computed interactions. The quadratic fits predict interaction energies

for the other 45 solutes considered in this study. (Bottom right) The covariance matrix (visualized as a

signed |σ2
UiU j
|1/2) shows that the sites 1 and 2 have the largest fitting errors; we can propagate these errors

into our error estimates for our strengthening model (cf. Eqns. 6 and 10).

approximated in terms of the solute volumetric size misfit ε s
V as

U s,fit
n,TB := U (1)

n ε s
V + U (2)

n ε s
V

2, (12)

where U (1)
n is the linear and U (2)

n the quadratic fitting parameters for each site n (the sites we

consider are shown in Figs. 3 and 4, and Fig. S1). These polynomials are used to predict the

interactions of the other 45 solute species with the twin boundaries. The top panels of Figs. 3 and

4 show the linear and quadratic coefficients for each site in the (101̄1) and (101̄2) twin boundaries.

The coefficients are largest at sites 1 and 2 in each boundary—those directly in the twin planes—

and generally decrease in magnitude away from the boundaries, showing that the solutes interact

most strongly with sites 1 and 2. The bottom left panels of these two figures show the good

agreement between the directly computed twin boundary interaction energies and the predicted

energies from Eqn. 12, which is quantified by the diagonal elements of the covariance matrices in

the bottom right panels.
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A recent study by Pei et al. [54] computed solute segregation energies for the two different

sites in the (101̄2) and the (101̄1) twin boundaries (corresponding to sites 1 and 2 in the current

study) for 23 different solute species. Among the solutes they considered, Al, Be, La, Li, Os, Pr,

Y, and Zn are common to our study. For these common solutes, our DFT-computed interaction

energies for the (101̄2) agree with their DFT values to within 30 meV. Pei et al. also developed

an approximation for solute-twin boundary interactions based on the solute size misfits and the

local volumetric strain at each site in the boundaries computed using Voronoi volumes. Their

model is linear in the size misfit, in contrast to our empirical models that contains terms that are

linear and quadratic in the size misfit. In general, our predicted energies agree better with the

direct DFT values due to the extra degree of freedom in our interaction models, compared with the

approximation of Pei et al.

D. Solute-dislocation interactions from direct first-principles calculations

The interaction of solutes with the 〈c+a〉 edge dislocation can be described with an approximate

geometric model, and validated against direct substitution of a Ca solute, as shown in Fig. 5. We

substitute a single Ca solute into one of 24 different sites in the 〈c+a〉 dislocation core and compute

the total energy of the system using DFT. We subtract a reference energy for a solute far from the

dislocation cores from each of these energies to determine the interaction energy at each site.

The geometric model of Eqn. S7 expresses the energy as the sum of a volumetric energy (up to

quadratic in size misfit) and a slip energy (linear in pyramidal 2 chemical misfit). The site-by-site

analysis of the geometry is shown in Fig. 5, where we also investigate changes induced by the Ca

solute; we find that there are only small changes in both the volumetric strain and local slip at each

site, despite the large size misfit of a Ca atom, which suggests that using the pure Mg dislocation

geometry is reliable. The bottom panel of Fig. 6 shows the agreement between the geometric and

direct energy values, with a standard error of 70 meV. The effect of this error on the estimate of

the solute strengthening in the Labusch model is shown below for Ca, and it is negligible.

We take a similar approach to the (101̄1) compression twinning edge dislocations, following

the work of Ghazisaeidi et al. on the (101̄2) tension twinning edge dislocation[7]. The geometric

model Eqn. S8 is a sum of a volumetric strain term and chemical twinning misfit energy, with nu-

merical values shown in Table II. The chemical twinning misfit energy is extracted from the solute

interactions with pure twin boundaries, shown in Figs. 3 and 4; it, too, can be well-approximated
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FIG. 5. (color online). Local volumetric strain eV and slip energy Eslip distributions in the 〈c + a〉 edge

dislocation core (sorted by strain). The figures on the left show the distributions for the pure Mg dislocation

core and label 24 different sites in the core for direct solute substitution. The bar charts on the right show

there are minimal changes in the strain and slip energy distributions after substituting a Ca solute at the sites

in the equilibrium core.

as a quadratic function of the size misfit of different solutes, similar to Eqn. 12. For the (101̄1)

compression twinning edge dislocations, we substitute a single Ca solute into one of 12 different

sites and compute the total energy of the system using DFT. We subtract a reference energy for

a solute far from the dislocation cores from each of these energies to determine the interaction

energy at each site. The top panel of Fig. 6 shows the agreement between the geometric and direct

energy values, with a standard error of 45 meV. The effect of this error on the estimate of the solute

strengthening in the Labusch model is shown below for Ca, and it is negligible.

E. Solid-solution strengthening predictions for individual deformation modes

Fig. 7 shows the accuracy of a simple model of strengthening for both twins and prismatic

deformation with size misfit. We combine all of our interaction models—size and prismatic 2
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CT1 edge dislocation

𝑐 + 𝑎 edge dislocation

FIG. 6. Comparison of directly computed and geometric model interaction energies of a Ca solute with the

(101̄1) compression twinning edge dislocation (top) and the 〈c+a〉 edge dislocation (bottom). We computed

the interactions Udirect at 12 different sites in the twinning dislocation core and at 24 different sites in the

〈c + a〉 dislocation core by direct substitution of a Ca solute into the different sites. We also compute these

interactions using the geometric models for the twinning and 〈c + a〉 dislocations, Eqn. S8 and Eqn. S7.

The two sets of values agree well in each case, with variances of σU = 45 meV for the twinning dislocation

and σU = 70 meV for the 〈c + a〉 dislocation.

chemical misfit, solute interactions with twin boundaries, and dislocation core interactions—with

the Labusch strengthening of Eqns. 4 and 6 to predict the effect of solute chemistry and concentra-

tion on strength as a function of temperature and strain rate. In the end, due to the strong empirical

correlation between size misfit and all of the interactions, the strength models can be ultimately

reduced to a simple quadratic function of size misfit. The accuracy of this approximation can be

seen clearly both in the fit (cf. Fig. 7) as well as the estimated variances, which give reasonable

estimates of the errors. Our final empirical strengthening relations are

(∆τs
y)TT1 =

606cs/at.%

(T/300K)
{

ln
[
108] − ln

[
ε̇/

(
10−3s−1)] }ε s

V
2 MPa, (13)
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TABLE II. Chemical twinning misfit energies for 63 substitutional solutes in the (101̄2) tension twinning

(TT1) and (101̄1) compression twinning (CT1) dislocation cores in Mg. The misfits are used to efficiently

compute solute interactions with the twinning dislocations, which ultimately lead to solid solution strength-

ening (see Fig. 7)

(∆τs
y)CT1 =

1649cs/at.%

(T/300K)
{

ln
[
108] − ln

[
ε̇/

(
10−3s−1)] }ε s

V
2 MPa, (14)

(∆τs
y)〈c+a〉 =

{
113(cs/at.%)2/3−1.84(T/300K)2/3(cs/at.%)4/9

(
ln

[
108

]
− ln

[
ε̇/

(
10−3s−1

)])2/3 }
ε s

V
2 MPa,

(15)

where T is the temperature and ε̇ is the strain rate. The variances, from Eqn. 10, in each quan-

tity also scale quadratically with the size misfit, and correspond to a less than 10% error for all

predictions over the range of physically realizable size misfits.

F. Strength and ductility predictions for Mg alloys

Now with models of basal and non-basal strengths as functions of temperature and composi-

tion, we can reach our ultimate goal to suggest possible alloys with the lowest possible plastic

anisotropy, for improved ductility and formability. In magnesium alloys, basal slip is easiest, and

all additional modes of plastic deformation require higher stresses; at 300K in pure magnesium,

basal slip requires 1/6 of the stress to activate (101̄2) tension twinning, 1/124 of the stress to ac-

tivate 〈c + a〉 slip, and 1/200 of the stress to activate (101̄1) compression twinning. The addition
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FIG. 7. (color online). Solute-induced change in τy for the (101̄2) tension twinning, (101̄1) compression

twinning, and 〈c + a〉 edge dislocations for T = 300 K and ε̇ = 10−3 s−1. The red squares are Labusch

theory predictions for ∆τy using directly computed solute-twin boundary interactions for the twinning dis-

locations, or direct solute-dislocation interactions for the 〈c + a〉 dislocation. The black points are Labusch

predictions using fitted twin boundary interactions or geometric model interactions. As all of the interac-

tions have been found to be well-approximated in terms of the size misfit, we find a simple quadratic scaling

with the volumetric solute size misfit ε s
V . The black curves are quadratic fits to the black points, and the

shading corresponds to the predicted variance in ∆τy computed from the variances in the solute-dislocation

interaction energies (see Section II C). Like ∆τy, the variances also scale quadratically with the solute size

misfit. The twinning strengthening is linear in concentration, while the 〈c + a〉 strengthening is evaluated

for cs = 1 at.%. All non-basal modes show the largest strengthening for the largest magnitude size misfits.
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of solute elements strengthens all of these modes; however, as basal slip is an extremely easy

deformation mode, adding solute elements can help reduce the plastic anisotropy associated with

non-basal deformation modes, which in turn improves the ductility of magnesium alloys while in-

creasing strength. We look to strike an important balance where we strengthen basal deformation

significantly (to reduce plastic anisotropy) while not overly strengthening non-basal deformation

(which would increase plastic anisotropy). As we saw in Section III E, strengthening increases

quadratically with size misfits, but the modes respond quantitatively differently. However, as has

been known since Hume-Rothery[62], solubility decreases with differences in atomic sizes; thus,

we need to identify solutes with both a good balance of strengthening and solubility in magnesium

that can aid in the design of improved alloys. Rather than rely on simple empirical relations for

solubility, we turn to CALPHAD modeling, using the cost507 database[63] with the pycalphad

code[64] to find the maximum solubility for 47 solutes (out of our 63) in magnesium; this often oc-

curs at the solidus temperature, so quenching may be required to achieve this maximum. It should

be noted that there are elements where the optimal concentration—defined as the concentration

with the lowest ratio between (101̄1) compression twinning and basal slip—is actually below the

maximum solubility; this needs to be identified on a case-by-case basis.

Table III tabulates the best solutes for improving ductility, based on their possible reduction in

plastic anisotropy (measured by plastic anisotropy ratios). In that table, we report the maximum

solubility for each solute found in the cost507 database, as well as the optimal concentration; the

optimal concentration is at the lowest possible ratio of compression twinning strength to basal

strength at 300K or the maximum solubility, whichever is lowest. For each solute, we also report

the change in strength at the optimal concentration for the three non-basal modes and basal defor-

mation, as well the ratio of strengths. We have ordered the table from lowest ratio of τCT1
y /τbasal

y

to largest with the rare earth solutes first, followed by the other solutes, to find the best 20 solutes

for which we have solubility data. We choose to use the compression twinning to basal strength

ratio to guide our selection as it is the largest anisotropy ratio at room temperature; moreover, we

find that generally, this ratio remains larger than the pyramidal deformation or tension twin ratios.

Thus, the solutes that reduce the τCT1
y /τbasal

y ratio also reduce the other non-basal anisotropy ra-

tios. Not surprisingly, rare earth additions—well-known to improve the ductility and formability

of magnesium alloys—are near the top. It should be noted that Y, Mn, Sc, Pb, and Ca are all com-

petitive with rare earth solutes. We note that the solubilities of Sc, Tl, Li, and Al are large, which

may result in less accurate quantitative strength predictions compared to elements with lower sol-
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TABLE III. Solubilities, changes in yield stress ∆τy for compression twinning (CT1), pyramidal deforma-

tion (〈c + a〉), tension twinning (TT1), and basal deformation, and yield stress ratios for the 20 best solute

species in Mg. The solubilities cmax
s are determined from the HCP boundaries of binary phase diagrams,

and the optimal concentrations copt
s minimize the ratio τCT1

y /τbasal
y . The solutes are divided into two groups:

rare earth elements (upper group) and non-rare earth elements (lower group). The ∆τy and τnon−basal
y /τbasal

y

values are evaluated at copt
s , T = 300 K and ε̇ = 10−3 s−1.

[at.%] [MPa]

solute cmax
s copt

s ∆τCT1
y ∆τ〈c+a〉

y ∆τTT1
y ∆τbasal

y τCT1
y /τbasal

y τ〈c+a〉
y /τbasal

y τTT1
y /τbasal

y

pure Mg − − − − − − 200 124 6

Gd 4.37 4.32 95.7 114.3 52.0 22.8 8.4 7.6 2.4

Tb 4.60 4.60 91.7 107.5 49.5 20.5 9.1 8.1 2.5

Dy 6.00 5.34 95.3 107.1 51.2 20.3 9.4 8.1 2.6

Nd 0.70 0.70 25.0 49.9 14.0 12.6 9.5 8.6 1.3

Ho 5.43 5.43 87.2 97.4 46.6 18.5 9.8 8.4 2.6

Er 6.05 6.05 87.2 94.4 46.4 18.3 10.0 8.3 2.6

Tm 2.31 2.31 30.1 42.1 15.9 11.9 10.5 8.4 1.5

Yb 0.67 0.67 21.3 42.7 11.8 8.4 13.7 11.8 1.7

Y 4.11 3.50 94.6 81.4 34.7 17.1 11.1 8.2 2.1

Mn 1.00 1.00 28.0 31.4 10.3 10.2 12.0 8.7 1.2

Sc 21.46 21.46 10.4 6.1 4.4 7.4 14.0 8.7 0.9

Pb 7.69 7.69 46.3 46.6 23.8 8.9 15.5 11.5 2.8

Ca 0.40 0.40 18.8 19.7 6.9 6.8 16.3 11.2 1.4

Ag 6.08 4.61 90.5 83.5 38.1 9.5 19.1 14.6 4.1

Bi 0.95 0.95 9.2 15.8 4.8 5.1 19.6 13.9 1.4

Tl 16.10 16.10 34.1 27.5 16.9 5.1 24.0 16.0 3.6

Zn 2.92 2.92 56.3 45.5 18.3 5.5 26.1 18.0 3.6

Li 17.70 17.70 56.4 27.0 17.0 4.9 28.7 16.3 3.7

Ga 3.24 3.24 27.8 29.0 11.9 3.7 30.1 21.5 3.5

Al 11.60 7.18 84.9 54.3 27.4 5.6 30.1 19.0 4.9
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ubilities, as the strengthening models do not account for the effects of solute-solute interactions

on the motion of the dislocation cores. Note also that Ce is not on our list; while Ce additions

as little as 0.2 wt.% are known to randomize Mg texture [46], which favors formability, all three

anisotropy ratios are essentially unchanged relative to pure Mg because of extremely low solubility

in Mg up to 600◦C [65]. Our predictions are all predicated on a comparison of room temperature

anisotropies; as temperature is raised, the strength of the non-basal modes all decreases faster,

permitting forming at very elevated temperatures, such as 300◦C. However, the solutes suggested

by Table III should promote ductility and formability at lower temperatures, while also imparting

increased strength to magnesium alloys. Combined with randomized texture, and possible pre-

cipitate strengthening, our results suggest possible paths to stronger and more ductile magnesium

alloys.

IV. DISCUSSION AND CONCLUSION

Anisotropy ratios for three non-basal deformation modes in Mg relative to the basal deforma-

tion mode were computed for 63 potential strengthening solutes across the periodic table based

upon Labusch-type solid solution strengthening models parameterized with DFT-computed solute-

dislocation interaction energies. The three non-basal deformation modes were characterized by the

〈c + a〉 edge, (101̄2) tension twinning edge, and the (101̄1) compression twinning edge. The core

structure of each dislocation optimized to its equilibrium geometry with DFT and the flexible

boundary condition approach. Due to the large computational cost of directly computing the in-

teractions by directly substituting solutes into sites in the dislocation geometries, we developed

computationally efficient approximations for the interactions that use geometric information from

the geometries in pure Mg and solute size and chemical misfits. The size misfit quantifies the size

mismatch between a solute and an HCP Mg atom, and the chemical misfit quantifies the interac-

tions between solutes and stacking faults or twin boundaries. Both types of misfits were computed

in supercells that are small compared to the dislocation supercells, providing a substantial compu-

tational savings compared to direct interaction calculations. We validated the approximate interac-

tion energy models by comparing the energy predictions to a selected set of direct calculations for

several different solute species. We find that both the interaction energies and the solute-induced

changes in yield stress for the different non-basal dislocations scale as second order polynomials

in the solute size misfit. These scaling relations provide a simple way to predict the strengthening
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potencies for a large number of different solute species in Mg. Strengthening potencies, which re-

late the solute-induced change in the CRSS to solute concentration, solute volumetric size misfit,

temperature, and strain rate, were first computed. The solute-induced change in the CRSS predicts

the increase in the energy barrier a dislocation must overcome to move under an applied load due

to the balance between solute-dislocation interactions and the elastic energy of the dislocation,

ultimately leading to an increase in yield stress to move the dislocations compared to in pure Mg.

We also combine our solution strengthening predictions with CALPHAD predictions of solubility

limits to suggest promising candidate solutes for improving the strength and ductility of Mg alloys.

Solutes with the greatest potential for improving the mechanical properties of Mg alloys should

strengthen the individual deformation modes, while reducing the plastic anisotropy of Mg by low-

ering the ratios of non-basal to basal yield stresses. We used the cost507 database for light metals

and the pycalphad code to compute the solubility limits in the HCP phase for twelve binary Mg al-

loys, and take the solubility limits of 35 other binary Mg alloys from literature. Our strengthening

predictions show that solutes with large positive or large negative size misfits are most effective at

increasing the yield stress of the different deformation modes. However, these solutes generally

have low solubilities in HCP Mg so their overall effectiveness at improving the mechanical prop-

erties of Mg alloys is limited in practice. Solutes with small size misfits can have large solubilities

in HCP Mg, but their strengthening potencies are small so they are also ineffective at improving

mechanical properties. So a compromise that includes optimal solubility is needed. Any extra

solute additions that lead to increased solubility of mid-sized solutes should also lead to improved

Mg alloys. Further studies combining our solution strengthening data with phase diagram calcu-

lations using comprehensive databases on alloy thermodynamics could be performed to search for

new multi-component Mg systems with enhanced solubilities.

The major conclusions from this study are

1. The 8 rare earth solutes that our method suggests as the best, ordered by the increasing

anisotropy ratios at their optimal concentrations, are: Gd, Tb, Dy, Nd, Ho, Er, Tm, and Yb.

Of these, Gd, Nd, Er, Yb are used in commercial alloys[66].

2. The smallest and hence most favorable τCT1
y /τbasal

y anisotropy ratio for the rare earth solutes

is 8.4 for Gd, while the largest is 13.7 for Yb. These represent considerable improvements

in ductility relative to the value of 200 for pure Mg.

3. The 12 non-rare solutes that our method suggests as the best, ordered by increasing
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anisotropy ratios, at their optimal concentrations, are: Y, Mn, Sc, Pb, Ca, Ag, Bi, Tl, Zn, Li,

Ga, and Al. Of these, Y, Mn, Ca, Zn, Li, and Al are used in commercial Mg alloys[66].

4. The smallest and hence most favorable τCT1
y /τbasal

y anisotropy ratio for then non-rare earth

solutes is 11.1 for Y, while the largest is 30.1. These represent considerable improvements

relative to the value of 200 for pure Mg. These also represent considerable improvements in

ductility relative to the value of 200 for pure Mg.

5. There is no need to exclusively use the computationally more expensive DFT to compute the

solute/dislocation interaction energies when examining a large number of solutes. Rather,

computationally efficient approximations for the interactions that use geometric information

from the geometries in pure Mg and solute size and chemical misfits can be used at far less

computational expense.

V. DATA AVAILABILITY

The vasp input and output files, along with all direct calculations for solute interactions are

available to download at the LightMat DataHub [67].
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