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Experiments on asymmetric diblock copolymers at temperatures slightly above the order-disorder
transition (ODT) indicate the existence of a dense fluid of micelles. Molecular dynamics simulations
are used here to identify a higher critical micelle temperature below which micelles appear. The
onset of micellization occurs very near where self-consistent field theory predicts an ODT.

In melts of highly asymmetric diblock copolymers at
temperatures slightly above the order disorder tempera-
ture (ODT), the disordered phase contains a dense liq-
uid of spherical micelles [1–7]. At the ODT, these mi-
celles crystallize. Simple analogies to the theory of bi-
nary surfactant-solvent mixtures, which exhibit a critical
micelle concentration [8], suggest that a micelle forming
one-component system should exhibit a critical micelle
temperature (CMT) at which micelles appear with de-
creasing temperature over a rather narrow range of tem-
peratures [9, 10]. The ODT is clearly identifiable in scat-
tering experiments by the appearance of Bragg peaks.
Clear experimental identification of a CMT has, however,
remained elusive.

In this work, we study the appearance of micelles
in large-scale simulations of a coarse-grained simulation
model of AB diblock copolymers with well characterized
thermodynamic properties and an experimentally rele-
vant chain length. Simulations allow access to informa-
tion about molecular clusters that is not easily accessi-
ble in experiments. We confirm that spherical micelles
do indeed appear and proliferate over a narrow range of
temperatures, and show that this occurs very near where
self-consistent field theory (SCFT) predicts the simulta-
neous emergence and crystallization of micelles.

Micelle formation in compositionally asymmetric block
copolymers above bears similarities to the formation of a
disordered bicontinuous morphology above the ODT in
symmetric block copolymers. Both are manifestations of
strong correlations in the disordered phase, which criti-
cally influence order-disorder transitions in finite molec-
ular weight systems [11–15], although many aspects of
both structure and dynamics are qualitatively different.
Whereas the bicontinuous state has recently been de-
scribed theoretically [16–18] and imaged using electron
microscopy [19–22], micelle formation, and the existence
of a CMT, remains largely unexplored notwithstand-
ing publication of several provocative TEM images two
decades ago [5, 6]. The importance of this ubiquitous
state of condensed matter has become increasingly evi-
dent with the discovery of dodecagonal quasicrystals and
numerous Frank-Kasper phases in a host of soft materials
[13, 23–30]. Recent reports of metastable particle-based

phases that evolve from the quenched disordered liquid
[31–33] underscore the significance of this unique, and
poorly understood state, motivating the work described
here.

Experimental evidence for the existence of micelles in
the disordered phase comes primarily from microscopy
and scattering experiments. The most direct evidence
is from transmission electron micrographs showing dis-
ordered arrangments of spherical micelles [5, 6]. Results
of small angle X-ray (SAXS) and neutron (SANS) scat-
tering from the disordered phase near the ODT exhibit
a secondary shoulder in plots of scattered intensity I(q)
vs. wavenumber q, at a wavenumber well above the pri-
mary peak wavenumber q∗. This secondary feature is
believed to be a consequence of liquid-like correlations
in micelle positions, and has been successfully modelled
using liquid-state theories for hard spheres [1–4, 7].

Quantitative understanding of self-assembly in sphere
forming systems relies heavily on predictions of self-
consistent field theory (SCFT) [13, 31, 34–38]. Consider
a melt of AB diblock copolymers with a volume fraction
f < 0.2 for the minority B block, an overall degree of
polymerization N , Flory-Huggins parameter χ, monomer
concentration c and statistical segment length b for both
A and B monomers. SCFT predicts that micelles should
both appear and crystallize at a transition value of χN ,
denoted here by (χN)scfodt. SCFT is believed to be exact
in the limit of infinite invariant degree of polymerization
N = N(cb3)2 [11, 16, 17, 39], but ignores the existence
of strong correlations in the disordered phase in systems
with experimentally relevant molecular weights.

Wang et al. [10] have used SCFT to compute the
free energy of formation for an isolated spherical micelle
within a disordered phase, denoted by Wm. SCFT yields

a prediction of the form Wm = kBTN
1/2
W̃m(χN, f),

where W̃m is a dimensionless function of χN and f .
The value of χN above which Wm < 0 at a given f ,
denoted here by (χN)scfm , is found to be very near but
slightly greater than (χN)scfodt. For example, for f = 0.1,
(χN)scfodt = 47.95 and (χN)scfm = 48.14 [10]. This small
difference is a result of a weak attraction between micelles
in a crystal, but is negligible for purposes of the analy-
sis given here. SCFT predicts the existence of strongly
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segregated micelle cores even at (χN)scfodt, with a minor-
ity volume fraction near 90 % at the center of the mi-
celle for f ' 0.1. Upon allowing for micelle translational
entropy, Wang et al. predict a micelle volume fraction
proportional to e−Wm/kBT and a rapid increase in mi-
celle concentration over a narrow range of values of χN

of width N
−1/2

near (χN)scfm . These conclusions are con-
sistent with those of an earlier analysis by Dormidontova
and Lodge [9] that relied on a less accurate strong seg-
regation model for Wm, but that allowed for effects of
micelle interactions that Wang et al. neglected. While
these theoretical predictions are enticing, neither exper-
iments nor simulations have thus far allowed a definitive
identification of a CMT in compositionally asymmetric
diblock copolymers.

Recent progress in the interpretation of coarse-grained
molecular simulations has enabled increasingly precise
comparisons of simulations to SCFT, and thereby sharp-
ened our understanding of the strengths and weaknesses
of SCFT. The comparison to SCFT predictions given
here was enabled by this prior work. Glaser, Medapuram,
Morse and coworkers introduced a method of calibrating
the dependence of the effective χ parameter on simula-
tion input parameters that has allowed consistent results
to be obtained from a variety of different coarse-grained
models [16, 17, 40–43]. Their analysis showed that strong
correlations appear within the disordered phase when χN
exceeds (χN)scfodt, while the actual ODT occurs at an el-
evated value (χN)odt that exhibits a universal depen-
dence on N . Notably, SCFT was found to yield rather
accurate predictions for properties of ordered lamellar
and hexagonal phases [16, 17, 43]. These results thus
provided evidence for the accuracy of SCFT predictions
for self-assembled structures such as lamellae or micelles,
while also emphasizing the failure of a random-mixing
description of the disordered phase near the ODT. The
assumption that SCFT accurately predicts the free en-
ergy required to form an isolated micelle also suggests a
hypothesis that micelles should first appear at a value of
χN very near (χN)scfodt.

In this work, we study the appearance of micelles in
molecular dynamics (MD) simulations of an AB diblock
copolymer melt. Simulations are performed in constant
pressure, constant temperature ensemble. Quantitative
comparison to theoretical predictions is enabled by using
a simulation model for which the relationship between
χ and simulation parameters has been established pre-
viously [16, 17]. The model used here is referred to as
model S2 in Refs. 16, 17 or model D3 in Ref. 42, for
which N/N = (cb3)2 = 59.7. In all work reported here,
each chain has N = 64 beads, with 8 B beads and 56 A
beads, giving f = 1/8 and N = 3820. SCFT predicts
(χN)scfodt = 36.6 for f = 1/8. A harmonic bond potential
acts between adjacent beads within each chain. A non-
bonded pair potential of the form V (r) = 1

2εij(1− r/σ)2
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FIG. 1. Main plot: Non-dimensional inverse peak intensity
cNS−1(q∗)/2 vs. χN . The dashed line shows the RPA pre-
diction. The dotted vertical line indicates (χN)scfodt = 36.6.
Inset: Structure factor S(q) vs. qRg0 at three nearby values

of χN , where Rg0 = b
√
N/6. Solid lines show a fit to the

RPA functional form.

acts between beads of types i and j that are separated
by a distance r less than a cutoff σ, with V (r) = 0 for
r > σ. The parameter α = (εAB − εAA)/kBT is varied
to modify the effective χ parameter, while the pressure,
temperature, bond spring constant and εAA = εBB are
held at constant values chosen in previous work. Simula-
tions were performed on systems of approximately 5×105

beads. Further simulation details are given in Supple-
mental Material [44].

Fig. 1 shows the behavior of the structure factor S(q),
akin to the scattering intensity measured in SAXS and
SANS experiments. We define S(q) = V −1〈|ψ(q)|2〉,
where ψ(q) =

∫
dr ψ(r)eiq·r, ψ(r) = [cA(r) − cB(r)]/2,

ci(r) is the concentration of i monomers, V is system
volume, and q = |q|. All values of χN reported in this
paper were calculated using a calibration of χ obtained
in previous work [16, 17] (see Table S1).

The inset of Fig. 1 shows S(q) vs. q at three values of
χN near (χN)scfodt = 36.6. Solid lines show fits of S(q) to
a functional form S(q) = KSRPA(q), in which SRPA(q) is
the random-phase approximation (RPA) prediction, and
in which Rg, χ and the prefactor K have all been treated
as adjustable parameters. Comparison to this fit helps
emphasize the existence at χN = 46.5 and 41.9 of a weak
shoulder in S(q) at qRg0 ' 3.4, which we identify here by
the failure of an attempted fit to the RPA. This feature is
absent for all χN < (χN)scfodt, for which S(q) is fit well by
the RPA functional form. An analogous feature has been
observed in scattering scattering experiments performed
at temperatures slightly above the ODT [1–3, 6, 7], which
appears at wavenumbers with approximately the same
relationship to the peak wavenumber as that found here,
though the magnitude of this secondary feature varies in
experiments depending on proximity to the ODT and N .

The main plot in Fig. 1 shows the behavior of the
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normalized inverse of the peak intensity cNS−1(q∗)/2
vs. χN . The dashed line shows the RPA prediction
for this quantity, computed without adjustable param-
eters. The actual dependence of S−1(q∗) on χN shows
a falling point of inflection near (χN)scfodt that separates
a region of slight negative curvature at lower χN from a
region of positive curvature at higher χN . Notably, this
behavior is different from that found in symmetric and
modestly asymmetric copolymers, for which this plot in-
stead exhibits a uniformly positive curvature, reflecting
the tendency of S(q∗) to increase more slowly with in-
creasing χN than predicted by the RPA. The behavior
seen here instead indicates a tendency for the S(q∗) to
increase more rapidly than predicted by the RPA for χN
near (χN)scfodt. An alternative view of these data is shown
in Fig. S1 by plotting S(q∗)/SRPA(q∗) vs. χN , which
shows a rapid increase near (χN)scfodt. We show below that
this increased scattering coincides with the appearance of
micelles.

In an MD simulation, potential micelles may be iden-
tified by finding clusters of molecules with minority B
block beads in close contact. We identify such clusters
using a criterion in which two molecules are taken to be-
long to the same cluster if the distance between any two
B beads on these different molecules is less than 0.8σ.
Let n denote the number of molecules in such a cluster.

Fig. 2 shows the fraction xn of chains within clusters
of aggregation number n plotted vs. n at several values
of χN . At χN = 0, geometrical clusters exist only as a
result of random intermolecular minority block contacts.
In this limit, xn decreases monotonically with increas-
ing n but still includes a non-negligible value for clusters
with tens of molecules. The distribution evolves slowly
with increasing χN up to the next displayed value of
χN = 34.8, which is slightly less than (χN)scfodt = 36.6.
At this value, xn remains monotonically decreasing but
shows enhanced frequency for larger n as a result of in-
creasingly strong composition fluctuations. For χN ≥
37.2, however, the distribution develops a local maximum
at a most-probable aggregation number n∗ ' 80 − 140
that grows larger and more distinct with increasing χN ,
signalling the appearance of proper micelles. We will
show in a future paper that the secondary maximum at
n ' 2n∗ ' 280 at χN = 46.5 is due to clusters containing
two micelles with cores joined by a narrow throat.

Fig. 3 describes the spatial structure of clusters with
aggregation numbers within a range chosen to correspond
to potential micelles. At values of χN for which the plot
of xn vs. n from Fig. 2 shows a local maximum, proper-
ties in Fig. 3 are computed by considering clusters with
n ranging from the least probable value (the minimum
in Fig. 2) to 1.6 times the most probable value. A range
of n = 30− 160 is instead used at lower values of χN for
which no local maximum exists.

Fig. 3a shows the average φB(r) of the effective vol-
ume fraction φB(r) of B (minority) beads that belong to

FIG. 2. Average mole fraction xn of chains within clusters
of aggregation number n, vs. n. The inset shows a cluster
snapshot, with B (core) beads in translucent red, with one
chain highlighted with blue A beads and red B beads.

a cluster as a function of distance r from the center of
mass (COM) of all B beads in the cluster. We define the
value of φB within a small region of volume ∆V to be
equal to a ratio φB = mB/c∆V , where mB is the number
of B beads in that region that belong to molecules in a
cluster, where c ' 1.5σ−3 is the macroscopic bead num-
ber concentration and c∆V is the average total number
of beads in a region of volume ∆V . The quantity φB(r)
is an average of φB for a thin spherical annulus centered
around the COM, averaged over time and over clusters
with n in the chosen range.

Consider the increase of φB(r = 0) at the cluster
COM with increasing χN shown in Fig. 3a. Note that
the displayed values of χN are not evenly spaced. At
χN = 0, the value of φB(r = 0) ' 0.19 is only slightly
greater than spatial average value of f = 0.125, indicat-
ing the diffuse nature of these purely geometrical clus-
ters. Upon increasing χN , φB(r = 0) increases slowly
for χN < (χN)scfodt, reaching approximately 0.4 at the
next displayed value of χN = 34.8. The value φB(r = 0)
then increases much more rapidly from 0.4 to 0.8 over a
much narrower range χN = 34.8 to 39.2 that includes
(χN)scfodt = 36.6.

The average value φB(r) shown in Fig. 3a presum-
ably contain contributions both from diffuse geometrical
clusters and from proper micelles with nearly pure B-rich
cores. To distinguish these subpopulations, we have com-
puted the probability distribution for the value of φB de-
fined within a small spherical region of radius rc around
the COM. We refer to this quantity as the core volume

fraction, denoted by φ
(c)
B . We use a value rc = 1.5σ, indi-

cated by the vertical line in Fig. 3a, giving c∆V = 21.2.

The probability distribution for φ
(c)
B is shown in Fig.

3b at several values of χN . At values of χN = 0 and 34.8
that are less than (χN)scfodt, we obtain a broad mono-
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FIG. 3. (a) Local volume fraction φB(r) of B (minority) block beads belonging to the cluster vs. distance r from the center of

mass of these beads, at χN = 0, 34.8, 39.6, and 46.5. (b) Probability distribution for the core volume fraction φ
(c)
B at the same

χN values. The micelle schematic in plot (a) shows the inner core region of radius rc = 1.5σ used to define φ
(c)
B .

tonically decreasing distribution that is very small at

φ
(c)
B ' 1, characteristic of diffuse geometrical clusters.

At values of χN > (χN)scfodt, however, we observe a local

maximum at a most probable value of φ
(c)
B that rapidly

approaches 1 with increasing χN , indicating the appear-
ance of proper micelles with a nearly pure core. Note that
our definition of φB = mB/c∆V leads to some instanta-

neous values φ
(c)
B > 1, when the total number of beads in

the sampled volume is less than the average c∆V .

Figure 4 shows the evolution of the mean and most

probable values of the core volume fraction φ
(c)
B with χN .

The discontinuous jump in the most probable value of

φ
(c)
B from zero to a large nonzero value signals the ap-

pearance of a distinct population of proper micelles with
a very B-rich core. Note that this jump in the most prob-
able value with increasing χN occurs very near the value
χN = (χN)scfodt, indicated by a vertical line.

We focus in this article primarily on the onset of mi-
cellization, rather than micelle crystallization. We have,
however, attempted to place bounds on the ODT by
running simulations of systems with χN = 41.9, 46.5
and 50.9 from disordered and artificially ordered initial
states while monitoring for spontaneous crystallization
and spontaneous melting, respectively. These simula-
tions were performed using periodic simulation unit cells
designed accomodate 2 × 2 × 2 or 3 × 3 × 3 cubic unit
cells of a BCC lattice (16 or 54 micelles), assuming a
BCC unit cell length commensurate with the value of q∗

measured in the disordered state at the same value of
χN . In simulations designed for 3 × 3 × 3 unit cells, we
observed spontaneous melting for χN = 41.9 but never
observed spontaneous crystallization. In simulations de-
signed for 2 × 2 × 2 unit cells, we observed spontaneous
melting for χN ≤ 41.9 and spontaneous crystallization
for χN = 46.5 and 50.9. The evidence indicates an ODT

FIG. 4. Most probable (diamonds) and mean (square) values

of the core volume fraction φ
(c)
B vs. χN . The vertical dotted

line indicates χN = (χN)scfodt = 36.6. The dashed blue line
shows SCFT predictions for φB(r = 0) for χN > (χN)scfodt.

value (χN)odt > 41.9, though the exact value remains
uncertain, and may be susceptible to finite size effects.
Further details of this study are given in the Supplemen-
tal Material [44].

The results presented here provide a clear picture of
the appearance of disordered micelles within a model
melt of asymmetric diblock copolymers. The most di-
rect evidence for the appearance of micelles comes from
a cluster analysis in which micelles are identified as ge-
ometrical clusters that contain a nearly pure core of mi-
nority block beads. The results indicate that such mi-
celles appear over a rather narrow range of values of χN
centered very near the SCFT ODT value. This conclu-
sion is consistent both with the predictions of Wang and
coworkers [10], who assumed the validity of SCFT pre-
dictions for the free energy of an isolated micelle, and
with the results of previous simulation studies that have
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shown the somewhat surprising quantitative accuracy of
SCFT predictions for properties of ordered phases and
individual aggregates [16, 17, 43]. Our ability to make
meaningful comparisons of simulations to SCFT predic-
tions relied critically on relatively recent development of
improved methods for calibrating χ in simulation models
[16, 17]. To a very good approximation, it thus appears
that the CMT in a melt of long, sphere-forming diblock
copolymers corresponds to the SCFT ODT, and that the
actual ODT occurs at a somewhat greater value of χN .
We expect the onset of micellization at χN ' (χN)scfodt to
become more sudden with increasing N , and for (χN)odt
to decrease with increasing N , but further study would
be required to test these hypotheses.

Our computational results have several important im-
plications for experiments. Our data for S(q) provide
new insights into the interpretation of SAXS and SANS
experiments [2, 3, 7], which indicate that identification
of a CMT by scattering alone may be difficult in sys-
tems with experimentally relevant values of N . In the
systems studied here, for which the value of N = 3820
is greater than in many experiments, onset of micelliza-
tion is signalled by the appearance of an initially small
secondary shoulder in S(q) and by an inflection in a plot
S−1(q∗) vs. χN , both of which arise from increased scat-
tering associated with the appearance of micelles. Sim-
ulations of systems with lower N , which we will report
elsewhere, indicate that both features become less dis-
tinct with decreasing N . Our comparison of results for
S(q) to cluster analysis will aid interpretation of future
experiments. Our results are also consistent with ex-
perimental evidence for the existence of micelles over a
significant range of temperatures, despite remaining un-
certainty regarding the location of the ODT for this sim-
ulation model. Our results establish that (χN)odt for
this model exceeds (χN)scfodt by at least 14%, and possi-
bly much more, since we were only able to establish a
lower bound on (χN)odt. Theory, experience with more
symmetric diblock copoolymers, and our own preliminary
results for systems with lower N (to be presented else-
where) all suggest that the difference (χN)odt− (χN)scfodt

increases with decreasing N . Further work is needed to
determine the precise dependence of (χN)odt on N , and
to study dynamical processes in the disordered phase
near the ODT, which are directly relevant to the re-
markable history dependence seen in recent studies of
phase transformations in sphere-forming diblock copoly-
mers [31–33]. The present contribution provides a corner-
stone for more detailed study of the disordered micellar
state by simulation.
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