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We present a novel formulation for calculating the transversal flexoelectric coefficient of nanos-
tructures at finite deformations from first principles. Specifically, we introduce the concept of radial
polarization to make the coefficient a well-defined quantity for uniform bending deformations. We
use the framework to calculate the flexoelectric coefficient for group IV atomic monolayers using
density functional theory. We find that graphene’s coefficient is significantly larger than previously
reported, with a charge transfer mechanism that differs from other members of its group.

Introduction. Flexoelectricity [1–7] is an electrome-
chanical property common to insulating systems that
represents a two-way coupling between strain gradients
and polarization. In contrast to piezoelectricity, it is
not restricted to materials with a specific symmetry, and
in contrast to electrostriction, it permits reversal of the
strain by reversal of the electric field. Due to the possi-
bility of large strain gradients, the flexoelectric effect is
particularly significant in nanostructures, making them
ideal candidates for a number of applications, including
energy harvesting, sensing and actuating.

A fundamental obstacle in characterizing and exploit-
ing the flexoelectric effect is the significant disagreement
between theory and experiment, with coefficients differ-
ing by up to three orders of magnitude, and sometimes
even in the sign [2, 3, 8]. In view of this, perturbative
approaches in the framework of Kohn-Sham density func-
tional theory (DFT) [9] have been developed for calcu-
lating the flexoelectric tensor components from first prin-
ciples [10–15]. However, the coefficients so computed,
of which the transversal component µT is particularly
important for nanostructures, correspond to the asymp-
totic zero strain gradient limit. Therefore, they are re-
stricted to linear response, likely not representative at
the relatively large curvatures commonly encountered in
experimental investigations involving bending deforma-
tions [16–19].

Kohn-Sham DFT calculations for µT at finite bending
curvatures are perhaps simpler than their zero-curvature
counterparts, since perturbation theory can be circum-
vented [20–22]. However, as illustrated in Fig. 1, a fun-
damental issue in this context is that µT becomes an ill-
defined quantity on employing the standard definition of
polarization. In particular, considering a structure that
is extended in the X1-direction, the value for µT is de-
pendent on the choice of the unit cell in that direction. In
fact, in the limiting case of the deformed unit cell encom-
passing the complete circle, µT = 0 for any charge distri-
bution, a result that is clearly incorrect. Even for struc-
tures that are finite along the X1-direction, µT has an

artificial dependence—not attributable to edge-related
effects—on the corresponding dimension of the structure,
i.e., on the angle subtended by the bent structure. Note
that the calculation of µT requires only the transversal
component of the polarization, which can be determined
without the need for the Berry phase formulation, since
the structure is finite along this direction, with the corre-
sponding reciprocal lattice vector being orthogonal to the
reciprocal lattice vectors associated with the extended di-
rections.

FIG. 1. Illustration depicting the ill-defined nature of the
transversal flexoelectric coefficient when the standard defini-
tion for the polarization is employed for a structure that is
extended in the X1-direction. The arrows indicate the com-
ponent of polarization that needs to be computed.

In this work, we introduce the concept of radial polar-
ization to overcome the ill-defined nature of transversal
flexoelectric coefficient µT at finite bending deformations.
In particular, we show that µT is naturally defined in
terms of the radial polarization at large deformations,
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which is the setting for a number of experimental [16–19]
and theoretical studies [20–22]. Indeed, this definition
reduces to the standard one in the zero strain gradient
limit. We then use this formulation to calculate µT for
group IV atomic monolayers along both the armchair and
zigzag directions from ab initio DFT simulations.

Formulation. Consider a deformation x = χ(X),
where the map χ : Ω0 7→ Ω transforms a point with
coordinates X = [X1, X2, X3]T in the undeformed con-
figuration Ω0 to the coordinates x = [x1, x2, x3]T in the
deformed configuration Ω. The associated deformation
gradient tensor F(X) is defined as FiI := ∂χi/∂XI ,
whose Jacobian J := det(F). The corresponding Green-
Lagrange strain gradient tensor G(X) is defined as
GIJK := 1

2∂ (FkIFkJ) /∂XK , where the repeated index
implies summation, a notation adopted henceforth. In
this finite-deformation setting, the polarization p(x) can
be expressed as [23]:

pl = (ε0χeEL + µLIJKGIJK)F−1
Ll , (1)

where the electric field E(X) is defined as the negative
gradient of the electrostatic potential in the undeformed
configuration, and µ the fourth-order (form II) bulk flex-
oelectric tensor. It can therefore be inferred that:

µLIJK =
∂ (plFlL)

∂GIJK

∣∣∣∣
E

. (2)

The above definition, which suggests that the flexo-
electric tensor is the rate of change of (p · F) with re-
spect to the strain gradients, represents a key depar-
ture from literature. In particular, though previous non-
perturbative works employ configurations that essentially
correspond to finite bending deformations [20–22], they
neglect the contribution from the deformation gradient
F, which causes the aforedescribed ill-defined nature of
the transversal flexoelectric coefficient. The need for the
deformation gradient becomes apparent by noticing that
the polarization field is over the deformed configuration,
whereas the flexoelectric tensor must be defined in the
undeformed one [23]. The definition in Eq. 2 also differs
from that proposed in curvilinear coordinates [24, 25],
where the rate of change of (JF−1 · p) with respect to
strain gradients is instead considered. While this defi-
nition is a priori correct, the one proposed here is more
convenient since the computation of the geometrical term
suggested in Refs. [24, 25] is not required. Moreover, re-
sults from follow-up work [26] for systems not studied
here are in significantly better agreement with experi-
ments than other theoretical predictions [21, 25], suggest-
ing the practical applicability of the proposed definition.

Though the definition in Eq. 2 is valid for any arbi-
trary deformation, we restrict ourselves to pure bending
deformations, since they are sufficient to characterize the
transversal flexoelectric coefficient, as shown below. On
identifying Ω0 with a slab in the X1-X3 plane and with

some thickness in the X2 direction (Fig. 1), pure bending
around the X3 axis can be represented using the defor-
mation:x1

x2

x3

 = χ

X1

X2

X3

 =

(R+X2) cosϑ
(R+X2) sinϑ

λ3X3

 , (3)

where R is the radius of curvature, ϑ = π/2−X1/R, and
λ3 is the axial stretch. The deformation gradient and
strain gradient tensors then take the form:

F =

+(J/λ3) sinϑ cosϑ 0
−(J/λ3) cosϑ sinϑ 0

0 0 λ3

 , (4)

G =
J

λ3

0 0 0
0 0 0
0 0 0

1/R 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

 , (5)

where J/λ3 = (1 +X2/R) ≈ 1, assuming that R is large
relative to the thickness of the system, which generally
holds true for nanostructures. The only component of G
that does not vanish is G112 ≈ 1/R = κ, where κ is the
curvature. It therefore follows from Eq. 2 that the trans-
verse flexoelectric coefficient µT := µ2112 = ∂ (plFl2) /∂κ,
which can be rewritten using Eq. 4 as:

µT =
∂ (p · n)

∂κ
=
∂pr
∂κ

, (6)

where pr := p ·n is defined to be the radial polarization,
with n = [cos(ϑ), sin(ϑ), 0]T representing the unit vector
normal to the uniformly bent structure.

The above formulation reveals the fundamental differ-
ence between the standard and proposed definitions for
the transverse flexoelectric coefficient µT. Specifically,
the current work suggests that µT is the rate at which
the radial polarization pr changes with curvature [27],
instead of the x2-component of the polarization, as as-
sumed previously [20, 21]. In particular, the definition
presented here can be viewed as a generalization of the
standard one to finite bending deformations, agreeing in
the limit κ→ 0. Indeed, the proposed formulation is ap-
plicable even to the nonlinear regime, overcoming a key
limitation of the standard definition.

In electronic structure calculations such as DFT, the
radial polarization takes the form:

pr =
1

‖Ω‖

∫
Ω

(r −Reff)ρ(x) dΩ, (7)

where ‖Ω‖ denotes the volume of Ω, and the integral can
be interpreted as the radial dipole moment. Specifically,
r := x · n = R + X2 signifies the radial component of
x, Reff = Xeff · n = R + Xeff

2 is the radial centroid of
the ions, with Xeff being the centroid of the ions relative
to the undeformed configuration, and ρ is the electron
density. In obtaining the above expression, it has been
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assumed that the total (i.e., electrons+ions) density is
charge neutral, thereby also ensuring the invariance with
respect to translations of the coordinate system. Note
that pr and therefore µT are independent of the choice
of unit cell for structures extended in the X1-direction,
and do not display an artificial dependence on the corre-
sponding width for finite structures, thereby overcoming
a fundamental limitation of the standard definition.

Interestingly, the radial polarization takes the follow-
ing form in the undeformed configuration:

pr =
1

‖Ω‖

∫
Ω0

(X2 −Xeff
2 )ρ0(X) dΩ0, (8)

where ρ0 = Jρ is the nominal electron density. There-
fore, the radial dipole moment in the deformed config-
uration Ω corresponds to the standard dipole moment
along the X2-direction in the undeformed configuration
Ω0, confirming the Lagrangian nature of the flexoelec-
tricity tensor µ [23].

Implementation. The calculation of the transversal
flexoelectric coefficient µT requires the derivative of the
radial polarization pr with respect to curvature κ, the
direct evaluation of which necessitates the use of density
functional perturbation theory (DFPT) [28, 29]. Given
the complexities and challenges associated with such an
approach, we instead employ a numerical approximation
for the derivative, which requires computing pr at multi-
ple curvatures in the vicinity of the curvature κ at which
µT is desired.

The proposed formulation for pr is not restricted by the
solution scheme for the Kohn-Sham problem, including
the choice of coordinate system. It is however desirable
for the chosen approach to efficiently simulate bending
deformations commensurate with those found in experi-
ments [16–19]. Given the large system sizes encountered,
for extended structures in particular, ab initio simulation
of bending deformations is particularly challenging, even
with state-of-the-art DFT codes [30–32]. This is because
DFT calculations are highly expensive, scaling cubically
with system size and possessing a large prefactor, par-
ticularly when systematically improvable discretizations
are used.

The calculation of pr for structures that are extended
in the X1-direction requires that edge-related effects be
avoided. One option is to consider a large enough struc-
ture in this direction, and use the nearsightedness princi-
ple [33, 34] to restrict the evaluation of pr from Eq. 7 to
a unit cell sufficiently far from the edges. A simpler and
significantly more efficient alternative, which is employed
in this work, is to instead consider the complete circle for
the deformed structure and exploit the cyclic symmetry
present in the system [35–37], as illustrated in Fig. 2.

The cyclic symmetry-adapted method reduces the
computations to the unit cell in the angular direction—
analogous to the periodic unit cell for translational
symmetry—while solving the Kohn-Sham equations

in cylindrical coordinates using the real-space finite-
difference method [30, 38]. In so doing, the computa-
tional cost scales linearly with radius of curvature, en-
abling tremendous savings, particularly considering the
highly parallelizable nature of such calculations. This
makes it the ideal tool for the study of the flexoelectric
effect [36, 37, 39]. Note that standard periodic bound-
ary conditions are employed along the x3−direction to
account for the translational symmetry in that direction.

+

Cyclic-Bloch boundary condition

Cyclic Kohn-Sham

: Group order

FIG. 2. Overview of the cyclic symmetry-adapted formula-
tion for the Kohn-Sham eigenproblem [36, 37]. The Hamil-
tonian and Kohn-Sham orbitals are denoted by Hν and ψνn,
respectively.

Results and discussion. We compute the transversal
flexoelectric coefficient µT in both armchair and zigzag
directions for the group IV atomic monolayers: graphene,
silicene, germanene, and stanene. This is done for two
choices of exchange-correlation functional: local density
approximation (LDA) [40] and Perdew-Burke-Ernzerhof
(PBE) [41] generalized gradient approximation (GGA).
Optimized norm-conserving Vanderbilt (ONCV) pseu-
dopotentials [42, 43] are employed, whose transferabil-
ity for the chosen systems has been verified by ensuring
that the equilibrium monolayer structures—determined
using the planewave DFT code ABINIT [44]—are in
good agreement with literature [45, 46]. Curvatures of
κ ∼ 0.19 − 0.75 nm−1 are considered, representative of
those encountered in practice [16–19]. Structural and
atomic relaxations are performed, ensuring that the final
configuration corresponds to a pure bending deformation.
All numerical parameters are chosen so that the µT are
computed with an accuracy of 0.01e. Additional infor-
mation regarding the simulations and the accuracy of the
results presented below can be found in the Supplemen-
tary Material.

The variation of radial polarization with curvature for
the group IV monolayers is presented in Fig. 3, and
the corresponding values for µT are listed in Table I.
Due to the disagreement in literature over the thick-
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ness of atomic monolayers [47], the radial dipole mo-
ments are normalized with respect to the area instead
of volume while computing the radial polarization us-
ing Eq. 7, i.e., the units of µT here are [e], rather than
the conventionally used [e/bohr]. In addition, the dipole
moments/polarization are calculated using the standard
sign convention used in ab initio calculations, i.e., elec-
trons are positive and ions are negative, which makes
the sign of the reported flexoelectric coefficients oppo-
site of continuum theories. Note that a single curvature-
independent value is listed for each entry in the table
since the flexoelectric coefficients have been found to be
essentially constant for the bending deformations consid-
ered here, signaling linear response for the chosen curva-
tures. Therefore, the values of µT reported here can also
be interpreted as those corresponding to the asymptotic
limit of κ→ 0.
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FIG. 3. Radial polarization pr as a function of curvature κ
for the group IV atomic monolayers. The error bars are used
to denote variations corresponding to the different bending di-
rections (i.e., zigzag and armchair) and exchange-correlation
functionals (i.e., LDA and PBE).

Zigzag Armchair
LDA PBE LDA PBE

Graphene 0.22 0.22 0.22 0.22

Silicene 0.19 0.19 0.19 0.19

Germanene 0.28 0.28 0.28 0.27

Stanene 0.27 0.26 0.27 0.26

TABLE I. Transversal flexoelectric coefficient µT [e] for group
IV atomic monolayers.

Notably, the results for the atomic monolayers studied
in this work are independent of the exchange-correlation
functional, the key approximation within DFT. In ad-
dition, the nearly identical values in the zigzag and
armchair directions indicate that group IV monolayers
are transversely isotropic with regards to flexoelectricity.
The flexoelectric coefficients between the different ma-
terials are comparable, with germanene/stanene having
the largest value (µT ∼ 0.27e), silicene having the small-
est (µT ∼ 0.19e), and graphene towards the lower end

(µT = 0.22e).
The value for graphene is twice as large as that re-

ported by Ref. [20], also computed using DFT, but with
the standard definition of polarization. To confirm that
this is not a consequence of edge-related effects that are
absent in our calculations, in Fig. 4, we present µT as
a function of the angle subtended by graphene strips of
different widths, as computed using the different formu-
lations, i.e., standard polarization, radial polarization,
and atomic dipole model [22]. The results for the ra-
dial polarization and atomic dipole clearly indicate that
edge effects are negligible. Interestingly, the standard
polarization results in values for µT that are opposite
to those reported here and in other theoretical works
[22, 25]. This can be attributed to the the standard
definition of the flexoelectric coefficient having an arti-
ficial dependence on the width, as discussed previously.
Note that the value for µT computed using the atomic
dipole model, which is in good agreement with that re-
ported previously using this method [22], is more than
two times smaller than the value predicted here. This
is a consequence of the atomic dipole model requiring
an artificial partitioning of the electron density within
DFT. It is worth noting that though these results can-
not be compared with experiments due to lack of data for
the monolayers studied here, our follow-up work for other
monolayers [26] demonstrates that the proposed formula-
tion has significantly better agreement with experiments
than other theoretical works [21, 25].
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FIG. 4. Variation in flexoelectric coefficient µT as a function
of the angle subtended by graphene strips of different widths
subject to a bending deformation with curvature κ = 0.04
bohr−1, as computed by the different formulations.

A comparison of the flexoelectric coefficients for atomic
monolayers with their bulk counterparts is likely to pro-
vide fundamental insights into the effect of the dimen-
sionality of the system on this material property. How-
ever, a systematic comparison is hindered by the lack
of a well-defined thickness for the 2D materials [47]. If
we were to assume a thickness of 10 bohr — commen-
surate with the typical out-of-plane extent of atomic or-
bitals — the corresponding flexoelectric coefficients for
graphene and silicene would be 0.022 and 0.019 e/bohr,
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FIG. 5. Contours of nominal electron density difference (e/bohr3) between the armchair bent (κ = 0.19 nm−1) and flat atomic
monolayers. The contours are in the X1 −X2 plane passing through the two fundamental atoms.

respectively, while the values for their bulk counterparts,
i.e., graphite and silicon, have been reported to be 0.10
and 0.13 e/bohr, respectively [12]. Indeed, the structural
thickness so defined can differ from the effective thick-
ness of the monolayer [47]. In particular, the effective
thickness can be many fold smaller, which would trans-
late to comparable values for the flexoelectric coefficients
of monolayers and their bulk counterparts.

To get insights into the underlying nature of the flex-
oelectric effect for the chosen monolayers, we plot in
Fig. 5 the nominal electronic charge redistribution on
the X1 − X2 plane passing through the two fundamen-
tal atoms. For all materials, there is a net radial charge
transfer that occurs from below the neutral axis to above
it. However, the plots indicate that there is a fundamen-
tal difference between graphene and the other members
in its group. For graphene, bending introduces an asym-
metry in the p-orbital overlap, leading to a rehybridiza-
tion from sp2 to some intermediate state between sp2 and
sp3 [22, 48, 49]. However, the charge transfer in the other
monolayers occurs between the two atoms and not due
to the rehybridization of the orbitals within each atom.

Concluding remarks. In summary, we have presented
a novel formulation for calculating the transversal flex-
oelectric coefficient of nanostructures at finite deforma-
tions from first principles. Specifically, we have intro-
duced the concept of radial polarization to redefine the
flexoelectric coefficient, making it a well-defined quantity
for uniform bending deformations. The proposed frame-
work has been used to calculate the coefficients for group
IV atomic monolayers using DFT simulations. We have
found that graphene’s flexoelectric coefficient is signifi-
cantly larger than that reported previously, with a charge
transfer mechanism that fundamentally differs from the
other members of its group.

The framework developed here is general and not re-
stricted to the linear response of atomic monolayers.
Therefore, it can be used to compute the transversal
flexoelectric coefficients for interesting and more com-
plex systems, including multilayer materials such as fer-

roelectric perovskites, making it a worthy subject for fu-
ture research. Additionally, by considering deformations
other than pure bending, the framework can be extended
to compute other components of the flexoelectric tensor,
making it another worthy subject for future research.
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