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Singular angular magnetoresistance and sharp resonant features in a high-mobility
metal with open orbits, ReO3

Nicholas P. Quirk1, Loi T. Nguyen2, Jiayi Hu1, R. J. Cava2, N. P. Ong1

Department of Physics1 and Department of Chemistry2, Princeton University, Princeton, NJ 08544

We report high-resolution angular magnetoresistance (AMR) experiments performed on crystals
of ReO3 with high mobility (>100,000 cm2/Vs at 2 K) and extremely low residual resistivity (5-8
nΩcm). The Fermi surface, comprised of intersecting cylinders, supports open orbits. The resistivity
ρxx in a magnetic field B = 9 T displays a singular pattern of behavior. With E ‖ x̂ and B initially
‖ ẑ, tilting B in the longitudinal kz-kx plane leads to a steep decrease in ρxx by a factor of 40.
However, if B is tilted in the transverse ky-kz plane, ρxx increases steeply by a factor of 8. Using
the Shockley-Chambers tube integral approach, we show that, in ReO3, the singular behavior results
from the rapid conversion of closed to open orbits, resulting in opposite signs for AMR in orthogonal
planes. The floor values of ρxx in both AMR scans are identified with specific sets of open and closed
orbits. Also, the “completion angle” γc detected in the AMR is shown to be an intrinsic geometric
feature that provides a new way to measure the Fermi radius kF . However, additional sharp resonant
features which appear at very small tilt angles in the longitudinal AMR scans are not explained by
the tube integral approach.

I. INTRODUCTION1

The past decade has witnessed renewed interest in2

semimetals and metals that exhibit unusually high car-3

rier mobilities. In the Dirac semimetal Cd3As2, the4

mobility µ can attain 107 cm2/Vs [1]. The large-µ5

semimetal WTe2 displays non-saturating magnetoresis-6

tance in magnetic fields up to 60 T [2]. The Weyl7

semimetals TaAs, NbAs and NbP have mobilities exceed-8

ing 150,000 cm2/Vs. These enhanced µ may result from9

a very small effective mass in the vicinity of avoided band10

crossings and protection from carrier scattering. In met-11

als, the Fermi energy is remote from such band crossings,12

but high-mobility candidates have also been identified,13

e.g. PdCoO2, PtCoO2 [3–6] and Pd3Pb [7]. For Fermi14

surfaces that are mutliply connected, angular magnetore-15

sistance (AMR) is a powerful tool for unravelling how16

connectivity affects transport. Although AMR is most17

frequently employed to map the angular variation of the18

Shubnikov de Haas (SdH) period, for e.g., in Sr2RuO4 [8]19

and the Bechgaard salts, it can also uncover surprising20

features unrelated to SdH oscillations. The Yamaji angle21

detected in the Bechgaard salts is a well-known exam-22

ple [9, 10]. A more recent example is the existence of23

ultra-narrow peaks in the AMR of the magnetic Weyl24

semimetal CeAlGe when B is aligned with symmetry25

axes [11].26

Here we report novel features observed in the AMR of27

crystals of ReO3 that exhibit extremely low residual re-28

sistivities. ReO3 is the archetypal example of a metal in29

which the Fermi surface (FS) forms a three-dimensional30

(3D) jungle-gym network of intersecting cylinders plus31

two small closed surfaces [12–14]. Early experiments32

on ReO3 are reported in Refs. [15–19]. A recent angle-33

resolved photoemission experiment obtains close agree-34

ment of the observed Fermi surface with ab initio calcula-35

tions employing WIEN2K within the generalized gradient36

approximation (GGA) [20]. From a modern viewpoint,37

ReO3 has some interesting features. The lattice struc-38

ture, comprised of a Re ion surrounded by six nearest39

neighbor O ions, is the simplest expression of a 3D Lieb40

lattice [21]. A hallmark of Lieb lattices is the existence of41

flat bands caused by wave-function interference [22, 23].42

In ReO3, flat bands are prominent along X-M , but they43

lie too far from the Fermi level (by 1 eV) to affect trans-44

port directly.45

We have grown crystals in which the residual resistiv-46

ity ρ00 is 5 to 8 nΩcm at 2 K ( comparable to that in47

PdCoO2 [3] and 6-10 times lower than in ultra-pure Au).48

At 2 K, µ is estimated to be >100,000 cm2/Vs. This49

corresponds to a transport mean free path of 25 µm. In50

these crystals we have uncovered a singular feature in the51

AMR. With axes x, y and z fixed parallel to the cylinders’52

axes, and the electric field E ‖ x̂ (Fig. 1), we observe the53

longitudinal resistivity ρxx to decrease by a factor of ∼4054

when B (fixed at 9 T) is tilted towards E. However, if55

B is tilted in the plane orthogonal to E, ρxx exhibits a56

10-fold increase. The extreme anisotropy in the response57

of ρ to slight angular deviations from the singular point58

(θ, χ) = (0, 0) (B ‖ ẑ) has not been reported previously59

in any metal to our knowledge. All the AMR curves in-60

vestigated (as well as the Hall response) display a sharp61

discontinuity at a characteristic angle γc ' 29◦. More-62

over, we observe weak features in the scans vs. θ (sharp63

resonances) suggestive of enhanced scattering at specific64

tilt angles 1.1◦ and 2.2◦.65

We describe a semiclassical model based on open orbits66

on the jungle-gym Fermi surface (FS) that emphasizes67

the connectivity of the orbits in tilted B and the key role68

of orbital links that convert closed to open orbits. The69

model accounts for the opposite signs of the AMR vs. θ70

and χ, as well as the physical meaning of γc which we71

call the “completion” angle. However, it is inadequate72

for explaining the cusp-like sensitivity at very small tilt73

angles or the appearance of sharp resonances.74
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II. EXPERIMENTAL RESULTS75

Crystals of ReO3 were grown by double-pass chemi-76

cal vapor transport. A silica tube of inner diameter 1477

mm and length 30 cm was loaded with 1 g of ReO3 pow-78

der and 25 mg of iodine flakes and sealed under vacuum.79

The tube was inserted into a 3-zone horizontal tube fur-80

nace in which the temperature was slowly raised over 681

h to 500◦C (hot end) and 450◦C (cool end). After 482

days of vapor transport, the furnace was cooled over 1083

h to 290 K. Vapor transport, again using iodine, was84

then repeated to enhance the crystal purity. Large, red,85

plate-like crystals up to 1 cm on a side were harvested86

at the cold end (Fig. 1a). The phase purity and crystal87

structure of ground crystals were determined by powder88

x-ray diffraction using a Bruker D8 Advance Eco with89

Cu K radiation and a LynxEye-XE detector. The cubic90

cell parameter a is 3.748 Å.91

Figure 1b shows a sketch of the jungle gym FS, using92

the value of the Fermi radius kF = 0.386 Å−1 derived93

from Refs. [15–17]. In the profile of the zero-B resistivity94

ρ vs. T (Fig. 1c), ρ maintains its ultra-low residual value95

ρ00 (inset) to an unusually high T ∼ 20 K, implying that96

phonon scattering is suppressed until T exceeds ∼ 20 K.97

The residual resistivity ratio ρ(300 K)/ρ00 is 1,500. The98

T -dependent part ∆ρ(T ) = ρ(T )− ρ00 fits well to T η up99

to 80 K (Fig. 1d) with an exponent η ' 3.1± 0.2, much100

reduced from that in the Bloch law (T 3 vs. T 5). See the101

case of PdCoO2 [3] as well.102

We selected crystals with optimal rectangular shape103

(1.0 × 0.5 mm2 in area) and mechanically polished the104

broad faces with fine sandpaper to reduce the thicknesses105

to 80-100 μm. The edges of the broad face are aligned106

(to a precision of ±1◦) with kx and ky of the lattice. In107

all field-tilt measurements, we define the x, y, and z axes108

to be anchored to the kx, ky and kz axes of the lattice,109

respectively (Fig. 1b). Both the electric field E and the110

(spatially averaged) current density 〈J〉 are ‖ x̂. The111

contact resistances of the Ag paint contacts were under112

2 Ω.113

We estimated the carrier mobility (≈ 105 cm2/Vs at 2114

K) by measuring the field dependence of the resistivity115

tensor up to 9 T at zero tilt angle and inverting it to116

produce σxx(B) and σxy(B). The average carrier mobility117

may be estimated by the inverse of the field at which118

σxy(B) exhibits a sharp peak (Fig. S3). In two samples,119

this value was 0.16 T (corresponding to a mobility of120

60,000 cm2/Vs) and 0.08 T (125,000 cm2/Vs). In section121

III, we use the zero-field conductivity (1/ρ00) and the122

Fermi surface dimensions reported by Refs. [15–19] to123

calculate the electron mobility as µ = 90,000 cm2/Vs.124

The sample platform was tilted using a horizontal ro-125

tator in a Quantum Design PPMS equipped with a 9-126

Tesla magnet. The field tilt angles, θ and χ defined in127

Fig. 1b were measured with a transverse Hall sensor128

(Lakeshore HGT 2101-10) to a resolution of ±0.03◦. The129

4-probe measurements of resistances were performed us-130

ing a Keithley 6221 DC current source and 2182a nano-131

voltmeter in Delta mode using current pulses of 5-10 mA.132

When B is tilted by θ in the longitudinal x-z plane133

with χ fixed at 0, ρxx(θ, 0) displays sharp maxima at134

θ = 0 and 180◦. Figure 2a plots ρxx(θ, 0) vs. θ measured135

at T = 1.9 K (red curve). We call this the longitudinal136

AMR (LAMR) curve. In the polar plot, the LAMR curve137

describes two very narrow plumes directed along θ = 0138

and 180◦ (red curves in Fig. 2b). An expanded view of139

the LAMR curve is shown in semilog scale in Fig. 2c.140

As θ increases from 0, ρxx decreases steeply by a factor141

of ∼ 40 (semilog plot in Fig. 2c). A characteristic an-142

gle γc ∼ 29◦ (which we call the “completion” angle) is143

prominently seen in all AMR curves investigated. In the144

LAMR scan, ρxx(θ, 0) displays a rounded step-drop to145

the “floor” value ρL,fl, where it remains until θ → 150◦.146

We have ρL,fl ' 20× ρ00.147

The transverse AMR (TAMR) curve plotting ρxx(0, χ)148

vs. χ with B lying in the transverse y-z plane, are rad-149

ically different (blue curve in Fig. 2a). At small tilt150

angle (|χ| < 15◦), ρxx increases steeply to a peak value151

8-10× higher than at χ = 0. Further increase of χ to152

γc leads to a steep decrease to a resistivity floor value153

ρT,fl that is 10× larger than the floor value ρL,fl in the154

LAMR (see the semilog plot in Fig. 2c). We estimate155

ρT,fl = 4.5 × ρL,fl � ρ00. The polar plot of the TAMR156

curve (blue curve in Fig. 2b) shows an 8-petal floral pat-157

tern with C4 symmetry weakly broken by misalignment.158

In principle, the sharp maximum in ρxx at θ = 0 in the159

LAMR curve must equal the minimum in the TAMR at160

χ = 0. In our experiment, however, a residual misalign-161

ment leads to a difference of a factor of 4. The singular162

behavior in the vicinity of (θ, χ) = (0, 0) amplifies errors163

caused by angular misalignments of ±1◦ (the difficulty is164

roughly similar to aligning the tips of two sharp needles).165

The traces in Fig. 2 result from progressive alignment166

improvements in repeated scans. The misalignment also167

accounts for slight deviations from C4 symmetry in the168

polar plot of the TAMR curve.169

Returning to the LAMR curve, we resolve weak, ultra-170

narrow resonant features at small θ. The expanded view171

in Fig. 2d displays three LAMR scans measured at 1.9 K172

with |B| fixed at 6, 7.5 and 9 T. In each curve, ρxx dis-173

plays distinct peaks with ultra-narrow widths (∼ 0.1◦)174

centered at θ = 0, ±1.1◦ and ±2.2◦. The peak ampli-175

tudes are strongest at 0◦ and ±2.2◦. Because their an-176

gular positions are independent of B, they are unrelated177

to quantization of the magnetic flux. We discuss their178

origin below.179

To complement the longitudinal resistivity, we have180

also performed Hall measurements. In Fig. 3a, the green181

curve plots the angular Hall resistivity ρyx(θ, 0) vs. θ182

in the LAMR experiment (ρyx depends on B cos θ so it183

is even in θ). At the angle γc, ρyx displays a remark-184

able step-decrease that involves a sign change. Inverting185

the resistivity matrix ρij(θ, 0), we obtain the conductiv-186

ity matrix σij(θ, 0). The curves of σxx (red) and σxy187

(green) are plotted in Fig. 3b. As θ increases from 0,188

the conductivity σxx(θ, 0) increases monotonically up to189
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γc, above which it becomes nearly independent of θ. The190

more interesting Hall curve σxy(θ, 0) is initially negative191

at θ = 0. It displays a broad minimum near 12◦ and192

then increases steeply to positive values above 16◦. At193

γc, however, σxy suffers a giant discontinuity, ending back194

at a large negative value that slowly increases in magni-195

tude as θ → 45◦.196

In our analysis (next section), we have focused on un-197

derstanding the diagonal conductivity element σxx. The198

Hall conductivity σxy is more difficult to analyze because199

the competing hole-like and electron-like contributions200

demand better estimates of the Hall currents. The inter-201

esting Hall behavior is deferred for further investigation.202

III. SEMICLASSICAL MODEL203

Given the C4 symmetry of the lattice, the sign differ-204

ence of the AMR scans vs. θ and χ and their steep vari-205

ations are unexpected at first glance. We show that the206

Shockley-Chambers tube-integral approach [24] can ac-207

count qualitatively for the sign difference and floor val-208

ues observed. Although AMR curves are usually difficult209

to calculate, there are several mitigating factors in this210

material. Ab initio calculations [12–14] reveal that the211

cylinders have uniform cross-sections which simplifies the212

evaluation of the tube integral. Moreover, the condition213

µB � 1 ensures that the cylinders dominate the conduc-214

tivity matrix element σxx. (As discussed later, the sharp215

“resonant” features appearing in LAMR seem to require216

a more sophisticated treatment.)217

In a magnetic field, σab is given by the Shockley-218

Chambers tube integral (see Appendix)219

σab =
2e2

(2π)3~2

∫
m∗

ωc
Cab dkH , (1)

with the velocity-velocity correlator Cab given by220

Cab =

(
~kF
m0

)2
1

(1− e−2πα)
×∫ 2π

0

dφ

∫ 2π

0

dφ′ va(φ)vb(φ− φ′) e−αφ
′
. (2)

where v(k) is the group velocity, m0 the band mass, and221

α = (ωcτ)−1.222

We approximate the FS as three intersecting cylinders223

(radius kF ), Cx, Cy and Cz, with axes along x̂, ŷ and ẑ,224

respectively (Fig. 4a).225

We assume E ‖ x̂ throughout. It is convenient to de-226

note the conductivity of an isolated cylinder in zero B227

as228

σ
(1)
0 = n(1)eµ, (3)

where n(1), the carrier density enclosed within the cylin-229

der, is given by230

n(1) = 2
πk2F
(2π)3

(K − 2kF ), (4)

where kF is the radius of the cylinder, K = 2π/a and a231

is the primitive lattice spacing. In a tilted B, Eq. 16 in232

the Appendix gives for Cy (in isolation) the conductivity233

σCyxx = σ
(1)
0 /(1 + (µBy)2).234

Including both Cy and Cz, the measured residual resis-235

tivity at B = 0 is then 1/ρ00 = 2n(1)eµ. With K ' 4kF ,236

we find n(1) ' 0.75×1022 cm−3, which yields µ = 90, 000237

cm2/Vs. This estimate agrees with the low-field peak in238

the Hall conductivity σxy, which occurs at B = 0.08 T239

at 2 K (Fig. S3). The inferred transport mean free path240

is then lmfp = ~kFµ/e = 25 µm.241

We next consider open orbits. In a tilted B, a wave242

packet on the FS moves along an orbit (red curves in243

Fig. 4a) defined by the intersection of a plane nor-244

mal to B (pale blue plane) and the FS. As drawn, the245

right-moving wave packet on cylinder Cy, loops under Cx246

(dashed curve) before resuming its straight-line path on247

Cy, whereas the left-moving wave packet in the compan-248

ion orbit loops over Cx. In the high-field limit, such open249

orbits, with non-vanishing vx, dominate the conductivity250

σxx.251

With B strictly ‖ ẑ, the orbits on the cylinder Cz are252

closed and electron-like. The orbits on cylinders Cx and253

Cy are also closed (apart from a negligible subset at the254

top and bottom of Cx and Cy for which vx = 0). How-255

ever, they are hole-like (comprised of alternating straight256

segments on Cx and Cy). Because of the high mobility,257

the contributions of the closed hole orbits on cylinders258

Cx and Cy to σxx decrease as 1/B2 when µB � 1. The259

absence of open orbits causes the resistivity to increase260

monotonically in the large-B regime, as observed. Our261

analysis focuses on the conversion of closed to open or-262

bits for states on Cx and Cy. The cylinder Cz is less263

important for the AMR. However, it plays the dominant264

role in the angular Hall conductivity σxy(θ, 0) (Fig. 3b),265

which we leave for a future study.266

A. LAMR267

In the LAMR experiment, we observe a dramatic in-268

crease in σxx when B is tilted, even slightly, in the lon-269

gitudinal kx-kz plane. To show that this results from270

a sharp increase in the fraction of open-orbit states,271

we consider the set of planes normal to B. Figure 4b272

shows cross-sections of three Cy cylinders separated by273

K = 2π/a in the repeated zone scheme, together with two274

planes at the tilt angle θ. The planes that are tangential275

to the outer cylinders (blue lines) intersect the middle276

cylinder to define two FS arcs hosting open-orbit states277

(thick green arcs in Fig. 4b). A wavepacket prepared278

initially on the left green arc on Cy loops under Cx (as a279

“looped segment”) then alternates between straight-line280

segments on Cy and looped segments on Cx (thick red281

curves in Fig. 4a). Conversely, if the initial state lies282

outside the green arcs, the wavepacket runs into a neigh-283

boring Cy before it can complete a loop on Cx. These284

states, lying in the “shadow” cast by adjacent cylinders,285
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remain trapped in closed hole-like orbits.286

The looped segments on Cx are crucial for linking287

straight segments on Cy into open orbits even though288

they themselves do not contribute to σxx. Increasing θ289

converts more of the states on Cx to looped segments (as290

the fraction in the shadow decreases). This results in a291

sharp increase in the fraction of states on Cy that become292

open orbits. Hence σxx increases rapidly with θ.293

B. Completion Angle294

The increase in σxx ends abruptly when the blue line295

becomes the inner tangent to adjacent cylinders (red296

dashed line in Fig. 4b) at the “completion angle” γc297

given by298

sin γc =
2kF
K

. (5)

The completion angle provides a direct way to measure299

kF .300

As mentioned, ρxx abruptly drops to its “floor” value301

at γc ∼ 29◦ and stays there until θ exceeds 150◦ (Fig.302

2c). Using Eq. 5, we find that kF /K = 0.25, in good303

agreement with de-Haas-van Alphen experiments [15–304

17] which reported kF /K = 0.23. The negative LAMR305

profile provides a new way to measure kF in ReO3. In306

both the Hall scan and the TAMR experiment, the step-307

changes at γc are much more pronounced.308

In the floor interval γc < θ < π − γc, nearly all the309

states on Cy belong to open orbits (the green arcs in310

Fig. 4b cover the entire cross section). As noted in311

the Appendix (line below Eq. 16), B has no effect on312

open orbits. Hence the conductivity contribution from313

Cy reverts to its zero-B value σ
(1)
0 . In the same in-314

terval γc < θ < π − γc, all the states on Cz execute315

closed cyclotron orbits driven by the field component316

Bz = B cos θ. By Eq. 16, the conductivity contribu-317

tion from Cz is then σ
(1)
0 /(1 + (µB cos θ)2). As a result,318

the total conductivity in the floor interval is319

σL,fl = σ
(1)
0

[
1 +

1

1 + (µB cos θ)2

]
. (6)

This conclusion is in accord with our experiment. Al-320

though ρxx in the floor interval is indeed very low (red321

curve for |θ| > 30◦ in Fig. 2a), it is still nearly twice the322

residual resistivity (measured in zero B) ρ00 = 1/(2σ
(1)
0 ).323

C. TAMR324

We turn next to the TAMR experiment with B tilted in325

the plane ky-kz transverse to E (Fig. 4c). Now, the con-326

version of states on Cy into looped segments directly sup-327

presses their conductivity. Initially, with χ = 0 (B ‖ ẑ),328

the states k on Cy contribute strongly to σxx despite329

being parts of hole-type closed orbits. At finite χ, a sub-330

set of the planes normal to B intersect Cy to define the331

surface of a conical wedge (inset in Fig. 4c). As dis-332

cussed above, the orbits covering the wedge are looped333

segments that link straight segments on Cx to form open334

orbits. At the extrema of the loop, the x-component of335

v(k) vanishes. Since v appears squared in Cab (Eq. 2),336

this results in a strong suppression of the conductance.337

In effect, a finite χ converts high-conductance states on338

Cy to ones with vanishing conductivity. With increasing339

χ, the conversion proceeds until it consumes all the high-340

conduction states on Cy. This occurs at the completion341

angle γc ∼ 29◦ (Eq. 5).342

Using the tube integral, we have calculated the sup-343

pression of σxx in the wedge as a function of χ. For the344

cylinder Cy, the elliptical orbit on the tilted plane can be345

projected onto a circular orbit P in the cross-section of346

the cylinder (inset in Fig. 4c). On P, the phase variable347

φ then becomes just the azimuthal angle ϕ, which greatly348

simplifies the calculation of Cab.349

As a wavepacket traverses a looped segment, its orbit350

projects onto an arc of angular length 2β on P. As shown,351

the angular half-length β0 of the longest loop segment is352

given by353

1− cosβ0 =

(
K

kF
− 1

)
tanχ. (7)

We have integrated 0 < β < β0 numerically to determine354

the value of the conductivity σloop at each χ (Fig. S1).355

The maximum net conductivity from Cy (attained when356

χ = γc) is under 0.5% of that at χ = 0.357

Finally, once χ exceeds γc, the states on Cy abruptly358

disconnect from open orbits to execute closed cyclotron359

orbits driven by the field component By = B sinχ. By360

contrast, the closed orbits in Cz are driven by the comple-361

mentary component Bz = B cosχ. With all states in Cy362

and Cz in closed orbits (Eq. 16), the total conductivity363

in the interval γc < χ < π/2− γc is364

σT,fl = σ
(1)
0

[
1

1 + (µB sinχ)2
+

1

1 + (µB cosχ)2

]
. (8)

As σT,fl � σL,fl, Eq. 8 implies that the observed re-365

sistivity within this interval (blue curve in Fig. 1a in366

interval 29◦ < χ < 65◦) is much larger than the floor367

value in the LAMR scan (red curve), again in agreement368

with experiment.369

This holds until χ increases beyond π/2 − γc. Then370

the looped segments wrap around Cz instead of Cx, and371

ρxx rises steeply.372

In both LAMR and TAMR scans, these large-angle373

features are qualitatively consistent with the experiment.374

A quantitative comparison with ρxx requires a more in-375

volved calculation of σxy (which can be larger than σxx).376
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IV. SHARP RESONANT FEATURES377

To investigate the highly unusual LAMR behavior in378

the limit of small tilt angles, we have performed high-379

resolution measurements of ρxx vs. θ at fixed B. As380

shown in Fig. 3c, the profile of ρxx vs. θ displays a381

sharp cusp in the limit θ → 0. This implies that ρxx382

deviates from its value at (0, 0) in a non-analytical way.383

More interestingly, we observe weak peaks at θ = 1.1◦384

and 2.2◦. Above the angle 2.2◦, ρxx steepens its decrease385

with θ, displaying a sharp break in slope. Because the386

angular positions of the resonances are independent of B,387

they are unrelated to Landau quantization effects. The388

tiny B-independent angles suggest to us that the fea-389

tures are geometric in origin, arising resonantly at small390

θ from very large orbits that extend over multiple Bril-391

louin zones.392

A conceptual difficulty in analyzing the small tilt393

regime is the appearance of quasiperiodic orbits. In Fig.394

S2 (Appendix), we plot numerical simulations of the com-395

bination of closed and open orbits that appear at small396

tilt angles θ = 1◦, 5◦ and 10◦ in the LAMR experiment.397

In each panel, the plot extends over 25 Brillouin Zones.398

The orbits are subtly quasiperiodic despite the nominal399

repetition. As it stands, the tube-integral approach lacks400

the formalism to handle quasiperiodic orbit patterns.401

V. CONCLUSION402

High-resolution angular magnetoresistance performed403

in the regime µB � 1 in high-mobility metals can un-404

cover novel features that are not evident in conventional405

Shubnikov de Haas oscillations. In ReO3 with µ ∼ 90,000406

cm2/Vs, we observe a singular variation of the resistivity:407

ρxx decreases steeply by a factor of 40 when B is tilted408

in the longitudinal plane containing E. However, it rises409

steeply by a factor of 8-10 when B is tilted in the plane410

orthogonal to E. Using the tube integral approach, we411

show that this previously unreported singular variation412

is inherent to the jungle-gym FS geometry. The AMR413

profiles display a rounded shoulder at a completion414

angle γc that is an intrinsic feature of the FS topology.415

In addition to explaining γc, the tube-integral approach416

accounts for the relative magnitudes of the floor values417

in both the LAMR and TAMR scans. However, the418

semiclassical model fails to explain the series of sharp419

resonant features observed in the LAMR scans (or the420

cuspy variations as θ and χ approach zero). These421

features, which may involve orbit patterns extending422

over multiple Brillouin zones, invite further investigation.423

424

* * *

Appendix: Shockley-Chambers tube integral425

In general, the semiclassical conductivity in a strong426

magnetic field B can be computed using the Shockley-427

Chambers tube integral [10, 24]428

σab =
2e2

(2π)3~2

∫
m∗

ωc
Cab dkH , (9)

where Cab is the velocity-velocity correlator discussed be-429

low. The states in k space are divided into a set of paral-430

lel planes normal to n̂ and indexed by kH = k · n̂, where431

n̂ = B/|B|. In Eq. 9, ωc is the angular frequency of a432

cyclotron orbit confined to a plane with m∗ the cyclotron433

mass. We may express m∗ as the derivative with respect434

to the energy ε of the area A enclosed by the cyclotron435

orbit, i.e.436

m∗ =
~2

2π

∂A
∂ε

. (10)

The velocity-velocity correlator Cab is given by437

Cab =

∫ 2π

0

dφ

∫ ∞
0

dφ′va(φ)vb(φ− φ′) e−αφ
′
. (11)

Here v(φ) is the group velocity at the phase coordinate438

φ = (ωc/eB)
∫ k

dk/v⊥ in a cyclotron orbit, with v⊥ =439

|v × n̂|.440

Equation 9 is derived using the Green’s function of441

the high-B Boltzmann equation [24]. The contribution442

to σab of a state at the phase coordinate φ is the sum443

of wave packets created with velocity vb by a train of444

E-field δ-function pulses applied at all earlier times cor-445

responding to the phase coordinate φ − φ′. The wave446

packets advance along the cyclotron trajectory at the447

rate φ̇′ = ωc while decaying exponentially with the decay448

constant α = (ωcτ)−1 where τ is the lifetime.449

By segmenting the interval 0 < φ′ < ∞ into finite450

segments, we simplify Cab to451

Cab =

(
~kF
m0

)2
1

(1− e−2πα)
×∫ 2π

0

dφ

∫ 2π

0

dφ′ va(φ)vb(φ− φ′) e−αφ
′
. (12)

Our goal is to find σxx of the cylinder Cy in a field452

B tilted at angle π/2 − χ to its axis. If we assume the453

quadratic dispersion ε(k) = ~2(k2x + k2y)/2m0 with band454

mass m0, Eq. 10 gives455

m∗ = m0/ sinχ, α = (ωcτ)−1 = (µ|B| sinχ)−1. (13)

With µ ' 90,000 cm2/Vs, we have µB ' 81 at 9 T.456

For the cylinder, the cyclotron period in tilted B is457

identical to that of a circular orbit P projected onto458

the cross-section in the kx-kz plane and driven by the459

field component along ŷ, By = B sinχ (inset, Fig. 4c).460

Moreover, we can replace the phase variable φ with461

the azimuthal angle ϕ in P (inset in Fig. 4c). The462

cylindrical geometry enables each k and its velocity v(k)463

to be mapped one-to-one to corresponding vectors on464

P. The mapping greatly simplifies the calculation of σxx.465

466
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Isolated cylinder467

We first consider an isolated cylinder with axis ‖ ŷ in a468

field B tilted at an angle χ to ẑ in the y-z plane (E ‖ x̂).469

The cylinder accommodates an electron density470

n` =
2

(2π)3
πk2FK`, (14)

where K` is its length. The orbits are closed ellipses with471

m∗ and α given by Eq. 13. Integrating ϕ and ϕ′ over472

(0, 2π) in Eq. 12 gives for both Cxx and Czx:473

Cxx =

(
~kF
m0

)2
πα

1 + α2
, Czx =

(
~kF
m0

)2
π

1 + α2
(15)

Using these expressions in Eq. 9, the conductivity σxx474

and the Hall conductivity σxy are475

σxx =
n`eµ

[1 + (µB sinχ)2]
, σzx =

n`eµ
2B sinχ

[1 + (µB sinχ)2]
,

(16)
where µ = eτ/m0 is the mobility.476

In the limit χ → 0 (B ⊥ axis), σxx recovers its477

zero-B value n`eµ. This is the simplest example of478

an open-orbit conductivity that is B-independent even479

when µB � 1.480

481

Jungle gym FS482

Next, we apply the tube integral to address the TAMR483

experiment in the jungle-gym FS with intersecting cylin-484

ders (Fig. 4c). Tilting of B in the kx-kz plane causes a485

fraction of the hole-like closed orbits to become looped486

segments that belong to open orbits. The loops are shown487

as red curves on the curved area of the conical wedge488

shown in white in inset of Fig. 4c. In the open orbit, the489

wave packets traverse alternatingly straight segments on490

Cx and looped segments on Cy until they damp out.491

As vx = 0 on the former, only the looped segments492

contribute to σxx. Projecting the loop to the circular493

orbit P on the cross-section (inset in Fig. 4c), the az-494

imuthal angle ϕ on P runs from π/2 − β to π/2 + β to495

describe an arc of angular length 2β. Since the planes496

are indexed by kH , dβ and dkH are related by497

dkH = kF cosχ sinβdβ. (17)

Evaluating the integrals over ϕ and ϕ′ in Cxx between498

the limits (π/2− β, π/2 + β), we have499

Cxx(β) =

(
~kF
m0

)2
1

(1− e−2πα)

2e−απ/2

(1 + α2)
(β − 1

2
sin 2β)×

[α sinβ coshαβ − cosβ sinhαβ] . (18)

As mentioned, the looped segments cover the curved500

area of the conical wedge (inset of Fig. 4c). The longest501

orbit, corresponding to the maximum angle β0, is fixed502

by the plane tangential to the neighboring Cy. Hence β0503

is determined by504

1− cosβ0 = (∆K/kF ) tanχ, (19)
where ∆K = K − kF . Integrating over all the orbits505

covering the wedge and using Eq. 4, we obtain the con-506

ductivity σloop507

σloop(χ) = n(1)eµ
kF

K − 2kF
G(χ), (20)

where G(χ) is the dimensionless integral508

G(χ) =
2

π

e−απ/2

(1− e−2πα)

α cotχ

(1 + α2)

∫ β0

0

(β − 1

2
sin 2β)×

[α sinβ coshαβ − cosβ sinhαβ] sinβ dβ. (21)

509

G(χ) is plotted in Fig. S1. As shown, σloop is strongly510

suppressed. Even when χ→ γc (all states on Cy are open511

orbits), σloop is < 0.015×σ(1). The suppression accounts512

for the observed increase in ρxx when B is tilted away513

from ẑ in the TAMR experiment.514
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FIG. 1. (a) Crystals of ReO3 showing characteristic brilliant pink hue in reflected light. The cubic cell parameter a is 3.748
Å. (b) Sketch of the jungle-gym FS sheet in extended zone scheme with 8 Brillouin zones (BZ) shown. The reciprocal lattice
vector K = 2π/a denotes the size of the cubic BZ and kf = 0.23K is the cylinder radius. With B ‖ z, closed cyclotron orbits
form around the cross-sections of the FS in the kx − ky plane. At different kz, the orbits change from closed and electron-like
(4 yellow loops) to closed and hole-like (green loop). The inset shows the field tilt-angles θ and χ relative to axes (x, y, z). (c)
Plot of the resistivity ρ vs. T with B = 0. The residual value ρ00, measured in 4 crystals, is 5-8 nΩcm (inset). (d) Log-log plot
of ∆ρ vs. T where ∆ρ(T ) = ρ(T )− ρ00. A linear fit (red line) over 20 < T < 80 K gives ∆ρ = T η with η = 3.1± 0.2.
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FIG. 2. Panel (a): The singular, anisotropic angular magnetoresistance ρxx(θ, χ) measured at T = 1.9 K with E ‖ x̂ and |B|
fixed at 9 T. The LAMR curve (in red) plots ρxx(θ, 0) vs. θ with B lying in the (longitudinal) x-z plane at angle θ = ∠(B, ẑ).
The TAMR curve (blue) plots ρ(0, χ) vs. χ with B in the transverse y-z plane at angle χ = ∠(B, ẑ). A slight misalignment
causes a weak breaking of mirror symmetry about χ = 0 or θ = 0 (see text). The singular AMR complicates determination of
ρxx(θ, χ) at (θ, χ) = (0, 0). Panel (b) shows the polar plot of the TAMR and LAMR curves. The TAMR curve (blue) displays
C4 symmetry. However, the LAMR curve (red) exhibits C2 symmetry because, with E fixed ‖ x̂, ρxx(0, 0)� ρxx(π/2, 0) (the
latter is equal to ρzz(0, 0)). Panel (c) is an expanded view of the curves of LAMR (red) and TAMR (blue) in semi-log plot.
The TAMR curve shows a steep decrease at the completion angle γc. The step decrease in the LAMR curve is milder but still
well resolved. Panel (a): Expanded view of the LAMR curve ρxx(θ, 0) at 1.9 K with |B| fixed at 6 T (blue curve), 7.5 T (red)
and 9 T (grey). In all three curves, sharp resonant features are observed at θ = 0, ±1.1◦ and ±2.2◦.
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(pale blue). Intersections of the FS with the normal planes define possible orbits of a wave packet. In the LAMR experiment,
when B is tilted by θ relative to ẑ, an open orbit can emerge (thick curves). A right-moving wave packet on Cy loops under
Cx (dashed curve) before resuming its orbit on Cy. The left-moving partner loops over Cx. In the high-B limit, these open
orbits contribute strongly to σxx. Panel (b) shows end-on views of 3 cylinders Cy in the repeated zone scheme with K = 2π/a.
The planes normal to B that are tangential to the outer cylinders (blue lines) define the FS portion hosting open orbits on the
middle cylinder (thick green arcs). States outside the green arcs remain in closed orbits. The green arcs lengthen rapidly as
θ → γc, the completion angle defined by the inner tangent (red dashed line). Panel (c): Sketch of open orbits in the TAMR
experiment. With B tilted by angle χ relative to ẑ in the plane transverse to E, the open orbits are straight-line segments on Cx
alternating with looped segments on Cy. The inset on the right shows the conical wedge (white area) on Cy. Cyclotron orbits
on the wedge (red ellipses) project onto circular orbits P on the cross-section (front end-face of Cy). Each orbit subtends an
angle 2β on P, while the longest one subtends angle 2β0. The conductivity arising from states on the entire wedge is obtained
by integrating the orbits over the white area (Eq. 21).
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FIG. S1. Variation of the dimensionless integral G (Eq. 21)
vs. tilt angle χ. Even when χ → γc, G is <0.015. This
implies that the when all the states on Cy are converted to
open orbits, its conductivity is suppressed to less than 1.5%
of the value at χ= 0 (see Eq. 20).
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FIG. S2. Numerical simulation of the pattern of open and
closed orbits at three selected values of θ (1◦, 5◦, 10◦) with
χ = 0 in the LAMR experiment. The cross-section displayed
is centered on the intersection of the cylinders. The array
extends over 25 Brillouin Zones in the extended zone scheme.
The orbits lie in a plane normal to B with the horizontal axis
kx/ cos θ measured in the direction ẑ×B. In each panel, the
orbits are quasiperiodic despite the appearance of nominal
periodicity.

FIG. S3. Plot of the Hall conductivity σxy/σ0 vs. B at 2
K and zero tilt angle. The low-field dependence was fit to a
semiclassical model; peaks in σxy(B) occur at |µB∗| = 1. For
two different samples this yielded µ = 59,000 cm2/Vs (M1)
and 126,000 cm2/Vs (F1).


