

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Singular angular magnetoresistance and sharp resonant features in a high-mobility metal with open orbits, math xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms ub>="http://www.w3.org/1998/Math/MathML">mrow>ms ub>mi>ReO/mi>mn>3/mn>/msub>/mrow>/math> Nicholas P. Quirk, Loi T. Nguyen, Jiayi Hu, R. J. Cava, and N. P. Ong Phys. Rev. Materials 5, 105004 — Published 27 October 2021 DOI: 10.1103/PhysRevMaterials.5.105004

Singular angular magnetoresistance and sharp resonant features in a high-mobility metal with open orbits, ReO₃

Nicholas P. Quirk¹, Loi T. Nguyen², Jiayi Hu¹, R. J. Cava², N. P. Ong¹

Department of Physics¹ and Department of Chemistry², Princeton University, Princeton, NJ 08544

We report high-resolution angular magnetoresistance (AMR) experiments performed on crystals of ReO₃ with high mobility (>100,000 cm²/Vs at 2 K) and extremely low residual resistivity (5-8 n\Omegacm). The Fermi surface, comprised of intersecting cylinders, supports open orbits. The resistivity ρ_{xx} in a magnetic field B = 9 T displays a singular pattern of behavior. With **E** || $\hat{\mathbf{x}}$ and **B** initially || $\hat{\mathbf{z}}$, tilting **B** in the longitudinal $k_z \cdot k_x$ plane leads to a steep decrease in ρ_{xx} by a factor of 40. However, if **B** is tilted in the transverse $k_y \cdot k_z$ plane, ρ_{xx} increases steeply by a factor of 8. Using the Shockley-Chambers tube integral approach, we show that, in ReO₃, the singular behavior results from the rapid conversion of closed to open orbits, resulting in opposite signs for AMR in orthogonal planes. The floor values of ρ_{xx} in both AMR scans are identified with specific sets of open and closed orbits. Also, the "completion angle" γ_c detected in the AMR is shown to be an intrinsic geometric feature that provides a new way to measure the Fermi radius k_F . However, additional sharp resonant features which appear at very small tilt angles in the longitudinal AMR scans are not explained by the tube integral approach.

30

I. INTRODUCTION

1

The past decade has witnessed renewed interest in 2 semimetals and metals that exhibit unusually high car- $_{_{42}}$ 3 rier mobilities. In the Dirac semimetal Cd_3As_2 , the $\frac{1}{43}$ 4 mobility μ can attain 10⁷ cm²/Vs [1]. The large- μ_{44} 5 semimetal WTe₂ displays non-saturating magnetoresis-6 tance in magnetic fields up to 60 T [2]. The Weyl semimetals TaAs, NbAs and NbP have mobilities exceed-8 ing 150,000 cm²/Vs. These enhanced μ may result from 9 a very small effective mass in the vicinity of avoided band $_{_{48}}$ 10 crossings and protection from carrier scattering. In met- $_{49}$ 11 als, the Fermi energy is remote from such band crossings, $_{50}$ 12 but high-mobility candidates have also been identified, 13 e.g. PdCoO₂, PtCoO₂ [3–6] and Pd₃Pb [7]. For Fermi 14 surfaces that are multiply connected, angular magnetore-15 sistance (AMR) is a powerful tool for unravelling how $\frac{3}{54}$ 16 connectivity affects transport. Although AMR is most 17 frequently employed to map the angular variation of the 18 Shubnikov de Haas (SdH) period, for e.g., in Sr_2RuO_4 [8] $_{57}$ 19 and the Bechgaard salts, it can also uncover surprising $_{58}$ 20 features unrelated to SdH oscillations. The Yamaji angle 21 detected in the Bechgaard salts is a well-known exam-22 60 ple [9, 10]. A more recent example is the existence of 23 ultra-narrow peaks in the AMR of the magnetic Weyl 24 semimetal CeAlGe when **B** is aligned with symmetry $\frac{1}{63}$ 25 axes [11]. 26 64

Here we report novel features observed in the AMR of 65 27 crystals of ReO₃ that exhibit extremely low residual re-28 sistivities. ReO₃ is the archetypal example of a metal in $_{66}$ 29 which the Fermi surface (FS) forms a three-dimensional 67 30 (3D) jungle-gym network of intersecting cylinders plus 68 31 two small closed surfaces [12–14]. Early experiments 69 32 on ReO₃ are reported in Refs. [15–19]. A recent angle- 70 33 resolved photoemission experiment obtains close agree-71 34 ment of the observed Fermi surface with *ab initio* calcula- 72 35 tions employing WIEN2K within the generalized gradient 73 36 approximation (GGA) [20]. From a modern viewpoint, 74 37

ReO₃ has some interesting features. The lattice structure, comprised of a Re ion surrounded by six nearest neighbor O ions, is the simplest expression of a 3D Lieb lattice [21]. A hallmark of Lieb lattices is the existence of flat bands caused by wave-function interference [22, 23]. In ReO₃, flat bands are prominent along X-M, but they lie too far from the Fermi level (by 1 eV) to affect transport directly.

We have grown crystals in which the residual resistivity ρ_{00} is 5 to 8 n Ω cm at 2 K (comparable to that in $PdCoO_2$ [3] and 6-10 times lower than in ultra-pure Au). At 2 K, μ is estimated to be >100,000 cm²/Vs. This corresponds to a transport mean free path of 25 μ m. In these crystals we have uncovered a singular feature in the AMR. With axes x, y and z fixed parallel to the cylinders' axes, and the electric field $\mathbf{E} \parallel \hat{\mathbf{x}}$ (Fig. 1), we observe the longitudinal resistivity ρ_{xx} to decrease by a factor of ~40 when \mathbf{B} (fixed at 9 T) is tilted towards \mathbf{E} . However, if **B** is tilted in the plane orthogonal to **E**, ρ_{xx} exhibits a 10-fold increase. The extreme anisotropy in the response of ρ to slight angular deviations from the singular point $(\theta, \chi) = (0, 0)$ (**B** || $\hat{\mathbf{z}}$) has not been reported previously in any metal to our knowledge. All the AMR curves investigated (as well as the Hall response) display a sharp discontinuity at a characteristic angle $\gamma_c \simeq 29^{\circ}$. Moreover, we observe weak features in the scans vs. θ (sharp resonances) suggestive of enhanced scattering at specific tilt angles 1.1° and 2.2° .

We describe a semiclassical model based on open orbits on the jungle-gym Fermi surface (FS) that emphasizes the connectivity of the orbits in tilted **B** and the key role of orbital links that convert closed to open orbits. The model accounts for the opposite signs of the AMR vs. θ and χ , as well as the physical meaning of γ_c which we call the "completion" angle. However, it is inadequate for explaining the cusp-like sensitivity at very small tilt angles or the appearance of sharp resonances. 75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

II. EXPERIMENTAL RESULTS

132

133 Crystals of ReO₃ were grown by double-pass chemi-¹³⁴ cal vapor transport. A silica tube of inner diameter 14¹³⁵ mm and length 30 cm was loaded with 1 g of ReO_3 pow-¹³⁶ der and 25 mg of iodine flakes and sealed under vacuum.¹³⁷ The tube was inserted into a 3-zone horizontal tube fur-138 nace in which the temperature was slowly raised over 6¹³⁹ h to 500°C (hot end) and 450°C (cool end). After 4^{140} days of vapor transport, the furnace was cooled over 10^{141} h to 290 K. Vapor transport, again using iodine, was¹⁴² then repeated to enhance the crystal purity. Large, red,¹⁴³ plate-like crystals up to 1 cm on a side were harvested¹⁴⁴ at the cold end (Fig. 1a). The phase purity and crystal¹⁴⁵ structure of ground crystals were determined by powder¹⁴⁶ x-ray diffraction using a Bruker D8 Advance Eco with147 Cu K radiation and a LynxEye-XE detector. The cubic¹⁴⁸ cell parameter a is 3.748 Å. 149

91 Figure 1b shows a sketch of the jungle gym FS, using¹⁵⁰ 92 the value of the Fermi radius $k_F = 0.386$ Å⁻¹ derived¹⁵¹ 93 from Refs. [15–17]. In the profile of the zero-B resistivity¹⁵² 94 ρ vs. T (Fig. 1c), ρ maintains its ultra-low residual value¹⁵³ 95 ρ_{00} (inset) to an unusually high $T \sim 20$ K, implying that¹⁵⁴ 96 phonon scattering is suppressed until T exceeds ~ 20 K.¹⁵⁵ 97 The residual resistivity ratio $\rho(300 \text{ K})/\rho_{00}$ is 1,500. The¹⁵⁶ 98 T-dependent part $\Delta \rho(T) = \rho(T) - \rho_{00}$ fits well to T^{η} up¹⁵⁷ 99 to 80 K (Fig. 1d) with an exponent $\eta \simeq 3.1 \pm 0.2$, much¹⁵⁸ 100 reduced from that in the Bloch law $(T^3 \text{ vs. } T^5)$. See the¹⁵⁹ 101 case of $PdCoO_2$ [3] as well. 102 160

We selected crystals with optimal rectangular shape¹⁶¹ 103 $(1.0 \times 0.5 \text{ mm}^2 \text{ in area})$ and mechanically polished the¹⁶² 104 broad faces with fine sandpaper to reduce the thicknesses¹⁶³ 105 to 80-100 μ m. The edges of the broad face are aligned¹⁶⁴ 106 (to a precision of $\pm 1^{\circ}$) with k_x and k_y of the lattice. In¹⁶⁵ 107 all field-tilt measurements, we define the x, y, and z axes¹⁶⁶ 108 to be anchored to the k_x , k_y and k_z axes of the lattice,¹⁶⁷ 109 respectively (Fig. 1b). Both the electric field \mathbf{E} and the¹⁶⁸ 110 (spatially averaged) current density $\langle \mathbf{J} \rangle$ are $\parallel \hat{\mathbf{x}}$. The¹⁶⁹ 111 contact resistances of the Ag paint contacts were under170 112 2Ω . 113

We estimated the carrier mobility ($\approx 10^5 \text{ cm}^2/\text{Vs}$ at 2_{172} 114 K) by measuring the field dependence of the resistivity¹⁷³ 115 tensor up to 9 T at zero tilt angle and inverting it to¹⁷⁴ 116 produce $\sigma_{xx}(B)$ and $\sigma_{xy}(B)$. The average carrier mobility¹⁷⁵ 117 may be estimated by the inverse of the field at which176 118 $\sigma_{xy}(B)$ exhibits a sharp peak (Fig. S3). In two samples,¹⁷⁷ 119 this value was 0.16 T (corresponding to a mobility of 178120 $60,000 \text{ cm}^2/\text{Vs}$) and 0.08 T (125,000 cm²/Vs). In section¹⁷⁹ 121 III, we use the zero-field conductivity $(1/\rho_{00})$ and the₁₈₀ 122 Fermi surface dimensions reported by Refs. [15–19] to₁₃₁ 123 calculate the electron mobility as $\mu = 90,000 \text{ cm}^2/\text{Vs}$. 124

The sample platform was tilted using a horizontal ro-183 tator in a Quantum Design PPMS equipped with a 9-184 Tesla magnet. The field tilt angles, θ and χ defined in Fig. 1b were measured with a transverse Hall sensor (Lakeshore HGT 2101-10) to a resolution of $\pm 0.03^{\circ}$. The -robe measurements of resistances were performed us-188 ing a Keithley 6221 DC current source and 2182a nano-189 voltmeter in Delta mode using current pulses of 5-10 mA.

When **B** is tilted by θ in the longitudinal x-z plane with χ fixed at 0, $\rho_{xx}(\theta, 0)$ displays sharp maxima at $\theta = 0$ and 180°. Figure 2a plots $\rho_{xx}(\theta, 0)$ vs. θ measured at T = 1.9 K (red curve). We call this the longitudinal AMR (LAMR) curve. In the polar plot, the LAMR curve describes two very narrow plumes directed along $\theta = 0$ and 180° (red curves in Fig. 2b). An expanded view of the LAMR curve is shown in semilog scale in Fig. 2c. As θ increases from 0, ρ_{xx} decreases steeply by a factor of ~ 40 (semilog plot in Fig. 2c). A characteristic angle $\gamma_c \sim 29^\circ$ (which we call the "completion" angle) is prominently seen in all AMR curves investigated. In the LAMR scan, $\rho_{xx}(\theta, 0)$ displays a rounded step-drop to the "floor" value $\rho^{L,fl}$, where it remains until $\theta \to 150^\circ$. We have $\rho^{L,fl} \simeq 20 \times \rho_{00}$.

The transverse AMR (TAMR) curve plotting $\rho_{xx}(0, \chi)$ vs. χ with **B** lying in the transverse *y*-*z* plane, are radically different (blue curve in Fig. 2a). At small tilt angle ($|\chi| < 15^{\circ}$), ρ_{xx} increases steeply to a peak value 8-10× higher than at $\chi = 0$. Further increase of χ to γ_c leads to a steep decrease to a resistivity floor value $\rho^{T,fl}$ that is 10× larger than the floor value $\rho^{L,fl}$ in the LAMR (see the semilog plot in Fig. 2c). We estimate $\rho^{T,fl} = 4.5 \times \rho^{L,fl} \gg \rho_{00}$. The polar plot of the TAMR curve (blue curve in Fig. 2b) shows an 8-petal floral pattern with C_4 symmetry weakly broken by misalignment.

In principle, the sharp maximum in ρ_{xx} at $\theta = 0$ in the LAMR curve must equal the minimum in the TAMR at $\chi = 0$. In our experiment, however, a residual misalignment leads to a difference of a factor of 4. The singular behavior in the vicinity of $(\theta, \chi) = (0, 0)$ amplifies errors caused by angular misalignments of $\pm 1^{\circ}$ (the difficulty is roughly similar to aligning the tips of two sharp needles). The traces in Fig. 2 result from progressive alignment also accounts for slight deviations from C_4 symmetry in the polar plot of the TAMR curve.

Returning to the LAMR curve, we resolve weak, ultranarrow resonant features at small θ . The expanded view in Fig. 2d displays three LAMR scans measured at 1.9 K with $|\mathbf{B}|$ fixed at 6, 7.5 and 9 T. In each curve, ρ_{xx} displays distinct peaks with ultra-narrow widths (~ 0.1°) centered at $\theta = 0, \pm 1.1^{\circ}$ and $\pm 2.2^{\circ}$. The peak amplitudes are strongest at 0° and $\pm 2.2^{\circ}$. Because their angular positions are independent of B, they are unrelated to quantization of the magnetic flux. We discuss their origin below.

To complement the longitudinal resistivity, we have also performed Hall measurements. In Fig. 3a, the green curve plots the angular Hall resistivity $\rho_{yx}(\theta, 0)$ vs. θ in the LAMR experiment (ρ_{yx} depends on $B \cos \theta$ so it is even in θ). At the angle γ_c , ρ_{yx} displays a remarkable step-decrease that involves a sign change. Inverting the resistivity matrix $\rho_{ij}(\theta, 0)$, we obtain the conductivity matrix $\sigma_{ij}(\theta, 0)$. The curves of σ_{xx} (red) and σ_{xy} (green) are plotted in Fig. 3b. As θ increases from 0, the conductivity $\sigma_{xx}(\theta, 0)$ increases monotonically up to ¹⁹⁰ γ_c , above which it becomes nearly independent of θ . The²³¹ ¹⁹¹ more interesting Hall curve $\sigma_{xy}(\theta, 0)$ is initially negative²³² ¹⁹² at $\theta = 0$. It displays a broad minimum near 12° and²³³ ¹⁹³ then increases steeply to positive values above 16°. At²³⁴ ¹⁹⁴ γ_c , however, σ_{xy} suffers a giant discontinuity, ending back²³⁵ ¹⁹⁵ at a large negative value that slowly increases in magni-²³⁶ ¹⁹⁶ tude as $\theta \to 45^{\circ}$.

¹⁹⁷ In our analysis (next section), we have focused on un-²³⁸₂₃₈ derstanding the diagonal conductivity element σ_{xx} . The²⁹⁹₂₉₉ Hall conductivity σ_{xy} is more difficult to analyze because²⁴⁰₂₄₁ the competing hole-like and electron-like contributions²⁴¹₂₄₂ demand better estimates of the Hall currents. The inter-²⁴²₂₄₂ esting Hall behavior is deferred for further investigation.²⁴³₂₄₃

> 244 245

> 246

203

III. SEMICLASSICAL MODEL

247 Given the C_4 symmetry of the lattice, the sign differ-₂₄₈ 204 ence of the AMR scans vs. θ and χ and their steep vari-₂₄₉ 205 ations are unexpected at first glance. We show that the $_{250}$ 206 Shockley-Chambers tube-integral approach [24] can ac- $_{\scriptscriptstyle 251}$ 207 count qualitatively for the sign difference and floor val- $_{\scriptscriptstyle 252}$ 208 ues observed. Although AMR curves are usually difficult₂₅₃ 209 to calculate, there are several mitigating factors in this_{254} 210 material. Ab initio calculations [12-14] reveal that the₂₅₅ 211 cylinders have uniform cross-sections which simplifies the $_{256}$ 212 evaluation of the tube integral. Moreover, the condition₂₅₇ 213 $\mu B \gg 1$ ensures that the cylinders dominate the conduc-₂₅₈ 214 tivity matrix element σ_{xx} . (As discussed later, the sharp₂₅₉ 215 "resonant" features appearing in LAMR seem to $\operatorname{require}_{\scriptscriptstyle 260}$ 216 a more sophisticated treatment.) 217 261

²¹⁸ In a magnetic field, σ_{ab} is given by the Shockley-²⁶² ²¹⁹ Chambers tube integral (see Appendix) ²⁶³

$$\sigma_{ab} = \frac{2e^2}{(2\pi)^3\hbar^2} \int \frac{m^*}{\omega_c} \mathcal{C}_{ab} \, dk_H, \qquad (1)_{265}^{264}$$

with the velocity-velocity correlator C_{ab} given by

where $\mathbf{v}(\mathbf{k})$ is the group velocity, m_0 the band mass, and $\alpha = (\omega_c \tau)^{-1}$.

We approximate the FS as three intersecting cylinders₂₇₃ (radius k_F), C_x , C_y and C_z , with axes along $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$,₂₇₄ respectively (Fig. 4a).

We assume $\mathbf{E} \parallel \mathbf{\hat{x}}$ throughout. It is convenient to denote the conductivity of an isolated cylinder in zero B_{277} as

$$\sigma_0^{(1)} = n^{(1)} e \mu, \qquad (3)_{_{280}}^{_{279}}$$

283

where $n^{(1)}$, the carrier density enclosed within the cylin-²⁸¹ der, is given by 282

$$n^{(1)} = 2\frac{\pi k_F^2}{(2\pi)^3} (K - 2k_F), \qquad (4)_{_{285}}^{_{284}}$$

where k_F is the radius of the cylinder, $K = 2\pi/a$ and a is the primitive lattice spacing. In a tilted **B**, Eq. 16 in the Appendix gives for C_y (in isolation) the conductivity $\sigma_{xx}^{Cy} = \sigma_0^{(1)}/(1 + (\mu B_y)^2)$. Including both C_y and C_z , the measured residual resis-

Including both C_y and C_z , the measured residual resistivity at B = 0 is then $1/\rho_{00} = 2n^{(1)}e\mu$. With $K \simeq 4k_F$, we find $n^{(1)} \simeq 0.75 \times 10^{22}$ cm⁻³, which yields $\mu = 90,000$ cm²/Vs. This estimate agrees with the low-field peak in the Hall conductivity σ_{xy} , which occurs at B = 0.08 T at 2 K (Fig. S3). The inferred transport mean free path is then $l_{mfp} = \hbar k_F \mu/e = 25 \ \mu$ m.

We next consider open orbits. In a tilted **B**, a wave packet on the FS moves along an orbit (red curves in Fig. 4a) defined by the intersection of a plane normal to **B** (pale blue plane) and the FS. As drawn, the right-moving wave packet on cylinder C_y , loops under C_x (dashed curve) before resuming its straight-line path on C_y , whereas the left-moving wave packet in the companion orbit loops over C_x . In the high-field limit, such open orbits, with non-vanishing v_x , dominate the conductivity σ_{xx} .

With **B** strictly $\parallel \hat{\mathbf{z}}$, the orbits on the cylinder C_z are closed and electron-like. The orbits on cylinders C_x and C_y are also closed (apart from a negligible subset at the top and bottom of C_x and C_y for which $v_x = 0$). However, they are hole-like (comprised of alternating straight segments on C_x and C_y). Because of the high mobility, the contributions of the closed hole orbits on cylinders C_x and C_y to σ_{xx} decrease as $1/B^2$ when $\mu B \gg 1$. The absence of open orbits causes the resistivity to increase monotonically in the large-*B* regime, as observed. Our analysis focuses on the conversion of closed to open orbits for states on C_x and C_y . The cylinder C_z is less important for the AMR. However, it plays the dominant role in the angular Hall conductivity $\sigma_{xy}(\theta, 0)$ (Fig. 3b), which we leave for a future study.

A. LAMR

In the LAMR experiment, we observe a dramatic increase in σ_{xx} when **B** is tilted, even slightly, in the longitudinal $k_x \cdot k_z$ plane. To show that this results from a sharp increase in the fraction of open-orbit states, we consider the set of planes normal to **B**. Figure 4b shows cross-sections of three C_y cylinders separated by $K = 2\pi/a$ in the repeated zone scheme, together with two planes at the tilt angle θ . The planes that are tangential to the outer cylinders (blue lines) intersect the middle cylinder to define two FS arcs hosting open-orbit states (thick green arcs in Fig. 4b). A wavepacket prepared initially on the left green arc on C_y loops under C_x (as a "looped segment") then alternates between straight-line segments on C_y and looped segments on C_x (thick red curves in Fig. 4a). Conversely, if the initial state lies outside the green arcs, the wavepacket runs into a neighboring C_y before it can complete a loop on C_x . These states, lying in the "shadow" cast by adjacent cylinders,

²⁸⁶ remain trapped in closed hole-like orbits.

The looped segments on C_x are crucial for linking³³¹ straight segments on C_y into open orbits even though³³² they themselves do not contribute to σ_{xx} . Increasing θ_{333} converts more of the states on C_x to looped segments (as³³⁴ the fraction in the shadow decreases). This results in a³³⁵ sharp increase in the fraction of states on C_y that become³³⁶ open orbits. Hence σ_{xx} increases rapidly with θ . ³³⁷

294

B. Completion Angle

²⁹⁵ The increase in σ_{xx} ends abruptly when the blue line³⁴² ²⁹⁶ becomes the inner tangent to adjacent cylinders (red₃₄₃ ²⁹⁷ dashed line in Fig. 4b) at the "completion angle" $\gamma_{c^{344}}$ ²⁹⁸ given by ³⁴⁵

$$\sin \gamma_c = \frac{2k_F}{K}.$$
 (5)³⁴⁷₃₄₈

330

338

339

340

341

346

369

371

²⁹⁹ The completion angle provides a direct way to measure k_F .

As mentioned, ρ_{xx} abruptly drops to its "floor" value³⁵¹ 301 at $\gamma_c \sim 29^\circ$ and stays there until θ exceeds 150° (Fig.³⁵² 302 2c). Using Eq. 5, we find that $k_F/K = 0.25$, in good³⁵³ 303 agreement with de-Haas-van Alphen experiments [15-304 17] which reported $k_F/K = 0.23$. The negative LAMR 305 profile provides a new way to measure k_F in ReO₃. In 306 both the Hall scan and the TAMR experiment, the step-307 changes at γ_c are much more pronounced. 308

In the floor interval $\gamma_c < \theta < \pi - \gamma_c$, nearly all the³⁵⁴ 309 states on C_y belong to open orbits (the green arcs in³⁵⁵ 310 Fig. 4b cover the entire cross section). As noted in³⁵⁶ 311 the Appendix (line below Eq. 16), \mathbf{B} has no effect on³⁵⁷ 312 open orbits. Hence the conductivity contribution from 358 313 C_y reverts to its zero-B value $\sigma_0^{(1)}$. In the same in-³⁵⁹ 314 terval $\gamma_c < \theta < \pi - \gamma_c$, all the states on C_z execute³⁶⁰ 315 closed cyclotron orbits driven by the field component³⁶¹ 316 $B_z = B \cos \theta$. By Eq. 16, the conductivity contribu-³⁶² tion from C_z is then $\sigma_0^{(1)}/(1 + (\mu B \cos \theta)^2)$. As a result,³⁶³ the total conductivity in the floor interval is 317 318 the total conductivity in the floor interval is 319

$$\sigma^{L,fl} = \sigma_0^{(1)} \left[1 + \frac{1}{1 + (\mu B \cos \theta)^2} \right].$$
 (6)

This conclusion is in accord with our experiment. Although ρ_{xx} in the floor interval is indeed very low (red³⁶⁵ curve for $|\theta| > 30^{\circ}$ in Fig. 2a), it is still nearly twice the³⁶⁶ residual resistivity (measured in zero *B*) $\rho_{00} = 1/(2\sigma_0^{(1)})$.

324 C. TAMR 370

We turn next to the TAMR experiment with **B** tilted in³⁷² the plane k_y - k_z transverse to **E** (Fig. 4c). Now, the con-³⁷³ version of states on C_y into looped segments directly sup-³⁷⁴ presses their conductivity. Initially, with $\chi = 0$ (**B** $\parallel \hat{z}$),³⁷⁵ the states **k** on C_y contribute strongly to σ_{xx} despite³⁷⁶

being parts of hole-type closed orbits. At finite χ , a subset of the planes normal to **B** intersect C_y to define the surface of a conical wedge (inset in Fig. 4c). As discussed above, the orbits covering the wedge are looped segments that link straight segments on C_x to form open orbits. At the extrema of the loop, the *x*-component of $\mathbf{v}(\mathbf{k})$ vanishes. Since \mathbf{v} appears squared in C_{ab} (Eq. 2), this results in a strong suppression of the conductance. In effect, a finite χ converts high-conductance states on C_y to ones with vanishing conductivity. With increasing χ , the conversion proceeds until it consumes all the high-conduction states on C_y . This occurs at the completion angle $\gamma_c \sim 29^\circ$ (Eq. 5).

Using the tube integral, we have calculated the suppression of σ_{xx} in the wedge as a function of χ . For the cylinder C_y , the elliptical orbit on the tilted plane can be projected onto a circular orbit \mathcal{P} in the cross-section of the cylinder (inset in Fig. 4c). On \mathcal{P} , the phase variable ϕ then becomes just the azimuthal angle φ , which greatly simplifies the calculation of \mathcal{C}_{ab} .

As a wavepacket traverses a looped segment, its orbit projects onto an arc of angular length 2β on \mathcal{P} . As shown, the angular half-length β_0 of the longest loop segment is given by

$$1 - \cos \beta_0 = \left(\frac{K}{k_F} - 1\right) \tan \chi. \tag{7}$$

We have integrated $0 < \beta < \beta_0$ numerically to determine the value of the conductivity σ_{loop} at each χ (Fig. S1). The maximum net conductivity from C_y (attained when $\chi = \gamma_c$) is under 0.5% of that at $\chi = 0$.

Finally, once χ exceeds γ_c , the states on C_y abruptly disconnect from open orbits to execute closed cyclotron orbits driven by the field component $B_y = B \sin \chi$. By contrast, the closed orbits in C_z are driven by the complementary component $B_z = B \cos \chi$. With all states in C_y and C_z in closed orbits (Eq. 16), the total conductivity in the interval $\gamma_c < \chi < \pi/2 - \gamma_c$ is

$$\sigma^{T,fl} = \sigma_0^{(1)} \left[\frac{1}{1 + (\mu B \sin \chi)^2} + \frac{1}{1 + (\mu B \cos \chi)^2} \right].$$
(8)

As $\sigma^{T,fl} \ll \sigma^{L,fl}$, Eq. 8 implies that the observed resistivity within this interval (blue curve in Fig. 1a in interval 29° < χ < 65°) is much larger than the floor value in the LAMR scan (red curve), again in agreement with experiment.

This holds until χ increases beyond $\pi/2 - \gamma_c$. Then the looped segments wrap around C_z instead of C_x , and ρ_{xx} rises steeply.

In both LAMR and TAMR scans, these large-angle features are qualitatively consistent with the experiment. A quantitative comparison with ρ_{xx} requires a more involved calculation of σ_{xy} (which can be larger than σ_{xx}).

IV. SHARP RESONANT FEATURES

To investigate the highly unusual LAMR behavior in 378 the limit of small tilt angles, we have performed high-379 resolution measurements of ρ_{xx} vs. θ at fixed B. As₄₂₉ 380 shown in Fig. 3c, the profile of ρ_{xx} vs. θ displays $a_{_{430}}$ 381 sharp cusp in the limit $\theta \to 0$. This implies that $\rho_{xx_{431}}$ 382 deviates from its value at (0,0) in a non-analytical way. 383 More interestingly, we observe weak peaks at θ = $1.1^{\circ}_{_{433}}$ 384 and 2.2°. Above the angle 2.2°, ρ_{xx} steepens its decrease₄₃₄ 385 with θ , displaying a sharp break in slope. Because the₄₃₅ 386 angular positions of the resonances are independent of $B_{,_{436}}$ 387 they are unrelated to Landau quantization effects. The 388 tiny B-independent angles suggest to us that the fea-389 tures are geometric in origin, arising resonantly at small 390 θ from very large orbits that extend over multiple Bril-391 437 louin zones. 392

A conceptual difficulty in analyzing the small tilt 393 regime is the appearance of quasiperiodic orbits. In Fig. 394 S2 (Appendix), we plot numerical simulations of the com-395 bination of closed and open orbits that appear at $\text{small}_{_{438}}$ 396 tilt angles $\theta = 1^{\circ}, 5^{\circ}$ and 10° in the LAMR experiment. 397 In each panel, the plot extends over 25 Brillouin Zones. 398 The orbits are subtly quasiperiodic despite the nominal⁴⁴⁰ 399 repetition. As it stands, the tube-integral approach lacks 400 442 the formalism to handle quasiperiodic orbit patterns. 401 443

402

377

V. CONCLUSION

448 High-resolution angular magnetoresistance $performed_{449}$ 403 in the regime $\mu B \gg 1$ in high-mobility metals can un-404 cover novel features that are not evident in conventional 405 451 Shubnikov de Haas oscillations. In ReO₃ with $\mu \sim 90,000$ 406 cm^2/Vs , we observe a singular variation of the resistivity: 407 ρ_{xx} decreases steeply by a factor of 40 when **B** is tilted 408 in the longitudinal plane containing E. However, it rises 409 steeply by a factor of 8-10 when \mathbf{B} is tilted in the plane 410 orthogonal to **E**. Using the tube integral approach, we 411 show that this previously unreported singular variation 412 is inherent to the jungle-gym FS geometry. The AMR_{453} 413 profiles display a rounded shoulder at a completion $_{\scriptscriptstyle\!\!\!\!\!_{454}}$ 414 angle γ_c that is an intrinsic feature of the FS topology. 415 In addition to explaining γ_c , the tube-integral approach 416 accounts for the relative magnitudes of the floor values 417 in both the LAMR and TAMR scans. However, the 418 semiclassical model fails to explain the series of sharp456 419 resonant features observed in the LAMR scans (or the457 420 cuspy variations as θ and χ approach zero). These458 421 features, which may involve orbit patterns extending⁴⁵⁹ 422 over multiple Brillouin zones, invite further investigation.⁴⁶⁰ 423 461 424

425 Appendix: Shockley-Chambers tube integral

 $_{426}$ In general, the semiclassical conductivity in a strong $_{457}$ magnetic field **B** can be computed using the Shockley- $_{466}$

* * *

Chambers tube integral [10, 24]

128

444

445

446

447

462

463

464

$$\sigma_{ab} = \frac{2e^2}{(2\pi)^3\hbar^2} \int \frac{m^*}{\omega_c} \mathcal{C}_{ab} \, dk_H, \tag{9}$$

where C_{ab} is the velocity-velocity correlator discussed below. The states in **k** space are divided into a set of parallel planes normal to $\hat{\mathbf{n}}$ and indexed by $k_H = \mathbf{k} \cdot \hat{\mathbf{n}}$, where $\hat{\mathbf{n}} = \mathbf{B}/|\mathbf{B}|$. In Eq. 9, ω_c is the angular frequency of a cyclotron orbit confined to a plane with m^* the cyclotron mass. We may express m^* as the derivative with respect to the energy ε of the area \mathcal{A} enclosed by the cyclotron orbit, i.e.

$$m^* = \frac{\hbar^2}{2\pi} \frac{\partial \mathcal{A}}{\partial \varepsilon}.$$
 (10)

The velocity-velocity correlator C_{ab} is given by

$$\mathcal{C}_{ab} = \int_0^{2\pi} d\phi \int_0^\infty d\phi' v_a(\phi) v_b(\phi - \phi') \ e^{-\alpha \phi'}.$$
 (11)

Here $\mathbf{v}(\phi)$ is the group velocity at the phase coordinate $\phi = (\omega_c/eB) \int^{\mathbf{k}} dk/v_{\perp}$ in a cyclotron orbit, with $v_{\perp} = |\mathbf{v} \times \hat{\mathbf{n}}|$.

Equation 9 is derived using the Green's function of the high-*B* Boltzmann equation [24]. The contribution to σ_{ab} of a state at the phase coordinate ϕ is the sum of wave packets created with velocity v_b by a train of *E*-field δ -function pulses applied at all earlier times corresponding to the phase coordinate $\phi - \phi'$. The wave packets advance along the cyclotron trajectory at the rate $\dot{\phi}' = \omega_c$ while decaying exponentially with the decay constant $\alpha = (\omega_c \tau)^{-1}$ where τ is the lifetime.

By segmenting the interval $0 < \phi' < \infty$ into finite segments, we simplify \mathcal{C}_{ab} to

$$\mathcal{C}_{ab} = \left(\frac{\hbar k_F}{m_0}\right)^2 \frac{1}{(1 - e^{-2\pi\alpha})} \times \int_0^{2\pi} d\phi \int_0^{2\pi} d\phi' \, v_a(\phi) v_b(\phi - \phi') \, e^{-\alpha\phi'}.$$
 (12)

Our goal is to find σ_{xx} of the cylinder C_y in a field **B** tilted at angle $\pi/2 - \chi$ to its axis. If we assume the quadratic dispersion $\varepsilon(\mathbf{k}) = \hbar^2 (k_x^2 + k_y^2)/2m_0$ with band mass m_0 , Eq. 10 gives

$$m^* = m_0 / \sin \chi, \quad \alpha = (\omega_c \tau)^{-1} = (\mu |\mathbf{B}| \sin \chi)^{-1}.$$
 (13)

With $\mu \simeq 90,000 \text{ cm}^2/\text{Vs}$, we have $\mu B \simeq 81$ at 9 T.

For the cylinder, the cyclotron period in tilted **B** is identical to that of a circular orbit \mathcal{P} projected onto the cross-section in the $k_x \cdot k_z$ plane and driven by the field component along $\hat{\mathbf{y}}$, $B_y = B \sin \chi$ (inset, Fig. 4c). Moreover, we can replace the phase variable ϕ with the azimuthal angle φ in \mathcal{P} (inset in Fig. 4c). The cylindrical geometry enables each **k** and its velocity $\mathbf{v}(\mathbf{k})$ to be mapped one-to-one to corresponding vectors on \mathcal{P} . The mapping greatly simplifies the calculation of σ_{xx} .

- 467 Isolated cylinder
- 468 We first consider an isolated cylinder with axis $\parallel \hat{\mathbf{y}}$ in a₄₉₇
- field **B** tilted at an angle χ to $\hat{\mathbf{z}}$ in the *y*-*z* plane (**E** $\parallel \hat{\mathbf{x}}$).
- ⁴⁷⁰ The cylinder accommodates an electron density

$$n_{\ell} = \frac{2}{(2\pi)^3} \pi k_F^2 K_{\ell}, \qquad (14)_{_{496}}$$

496

505

where K_{ℓ} is its length. The orbits are closed ellipses with m^* and α given by Eq. 13. Integrating φ and φ' over

472 *m* and a given by Eq. 15. Integrating φ and φ over 473 $(0, 2\pi)$ in Eq. 12 gives for both \mathcal{C}_{xx} and \mathcal{C}_{zx} :

$$\mathcal{C}_{xx} = \left(\frac{\hbar k_F}{m_0}\right)^2 \frac{\pi \alpha}{1 + \alpha^2}, \quad \mathcal{C}_{zx} = \left(\frac{\hbar k_F}{m_0}\right)^2 \frac{\pi}{1 + \alpha^2} \quad (15)_{5}$$

474 Using these expressions in Eq. 9, the conductivity σ_{xx}^{501} 475 and the Hall conductivity σ_{xy} are

$$\sigma_{xx} = \frac{n_{\ell} e\mu}{[1 + (\mu B \sin \chi)^2]}, \quad \sigma_{zx} = \frac{n_{\ell} e\mu^2 B \sin \chi}{[1 + (\mu B \sin \chi)^2]}, \tag{16}$$

476 where $\mu = e \tau / m_0$ is the mobility.

In the limit $\chi \to 0$ (**B** \perp axis), σ_{xx} recovers its⁵⁰⁶ zero-*B* value $n_{\ell}e\mu$. This is the simplest example of⁵⁰⁷ an open-orbit conductivity that is *B*-independent even when $\mu B \gg 1$.

481

495

482 Jungle gym FS

Next, we apply the tube integral to address the $TAMR_{508}$ 483 experiment in the jungle-gym FS with intersecting cylin-484 ders (Fig. 4c). Tilting of **B** in the k_x - k_z plane causes a 485 fraction of the hole-like closed orbits to become looped 486 segments that belong to open orbits. The loops are shown 487 as red curves on the curved area of the conical wedge 488 shown in white in inset of Fig. 4c. In the open orbit, the 489 wave packets traverse alternatingly straight segments on⁵⁰⁹ 490 C_x and looped segments on C_y until they damp out. 510 491 As $v_x = 0$ on the former, only the looped segments⁵¹¹ 492 contribute to σ_{xx} . Projecting the loop to the circular⁵¹² 493 orbit \mathcal{P} on the cross-section (inset in Fig. 4c), the az-513 494

describe an arc of angular length 2β . Since the planes are indexed by k_H , $d\beta$ and dk_H are related by

$$dk_H = k_F \cos \chi \sin \beta d\beta. \tag{17}$$

Evaluating the integrals over φ and φ' in C_{xx} between the limits $(\pi/2 - \beta, \pi/2 + \beta)$, we have

$$\mathcal{L}_{xx}(\beta) = \left(\frac{\hbar k_F}{m_0}\right)^2 \frac{1}{(1 - e^{-2\pi\alpha})} \frac{2e^{-\alpha\pi/2}}{(1 + \alpha^2)} (\beta - \frac{1}{2}\sin 2\beta) \times [\alpha\sin\beta\cosh\alpha\beta - \cos\beta\sinh\alpha\beta].$$
(18)

As mentioned, the looped segments cover the curved area of the conical wedge (inset of Fig. 4c). The longest orbit, corresponding to the maximum angle β_0 , is fixed by the plane tangential to the neighboring C_y . Hence β_0 is determined by

$$1 - \cos \beta_0 = (\Delta K/k_F) \tan \chi, \tag{19}$$

where $\Delta K = K - k_F$. Integrating over all the orbits covering the wedge and using Eq. 4, we obtain the conductivity σ^{loop}

$$\sigma^{loop}(\chi) = n^{(1)} e \mu \frac{k_F}{K - 2k_F} \mathcal{G}(\chi), \qquad (20)$$

where $\mathcal{G}(\chi)$ is the dimensionless integral

$$\mathcal{G}(\chi) = \frac{2}{\pi} \frac{e^{-\alpha \pi/2}}{(1 - e^{-2\pi\alpha})} \frac{\alpha \cot \chi}{(1 + \alpha^2)} \int_0^{\beta_0} (\beta - \frac{1}{2}\sin 2\beta) \times [\alpha \sin \beta \cosh \alpha \beta - \cos \beta \sinh \alpha \beta] \sin \beta \ d\beta.$$
(21)

 $\mathcal{G}(\chi)$ is plotted in Fig. S1. As shown, σ^{loop} is strongly suppressed. Even when $\chi \to \gamma_c$ (all states on C_y are open orbits), σ^{loop} is $< 0.015 \times \sigma^{(1)}$. The suppression accounts for the observed increase in ρ_{xx} when **B** is tilted away from $\hat{\mathbf{z}}$ in the TAMR experiment.

[1] T. Liang, Q. Gibson, M. N. Liu, R. J. Cava and N. P.530
Ong, Ultrahigh mobility and giant magnetoresistance in531
the Dirac semimetal Cd₃As₂, *Nat. Mater.* 14, 280-284532
(2015). 533

imuthal angle φ on \mathcal{P} runs from $\pi/2 - \beta$ to $\pi/2 + \beta$ to⁵¹⁴

- M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L.M.⁵³⁴
 Schoop, T. Liang, N. Haldolarachchige, M. Hirschberger,⁵³⁵
 N. P. Ong and R. J. Cava, Large, non-saturating magne-⁵³⁶
 toresistance in WTe₂, *Nature* **514**, 205-208 (2014).
- [3] C. W. Hicks, A. S. Gibbs, A. P. Mackenzie, H. Takatsu,538
 Y. Maeno, and E. A. Yelland, Quantum Oscillations539
 and High Carrier Mobility in the Delafossite PdCoO₂,540 *Phys. Rev. Lett.* **109**, 116401 (2012). DOI: 10.1103/Phys-541
 RevLett.109.116401
 542
- F. Kushwaha et. al., Nearly-free electrons in a 5d delafos-543
 site oxide metal, Science Advances 1, 1-7 (2015). DOI:544

10.1126/sciadv.1500692

- [5] N. Nandi *et al.*, Unconventional magneto-transport in ultrapure PdCoO₂ and PtCoO₂, *NPJ Quant. Mat.* 3, 66 (2018).
- [6] J. C. A. Prentice and A. I. Coldea, Modeling the angledependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry, *Phys. Rev. B* **93**, 245105 (2016). DOI: 10.1103/PhysRevB.93.245105
- [7] N. J. Ghimire, M. A. Khan, A. S. Botana, J. S. Jiang, and J. F. Mitchell, Anisotropic angular magnetoresistance and Fermi surface topology of the candidate novel topological metal Pd₃Pb, *Phys. Rev. Mater.* 2, 081201(R) (2018). DOI: 10.1103/PhysRevMaterials.2.081201
- [8] C. Bergemann, S. R. Julian, A. P. Mackenzie, S. Nishizaki, and Y. Maeno, Detailed Topography of the

- 545
 Fermi Surface of Sr₂RuO₄, Phys. Rev. Lett. 84, 2662-573

 546
 2665 (2000). DOI: 10.1103/PhysRevLett.84.2662
 574
- 547 [9] K. Yamaji, On the angle dependence of the magnetoresis-575
 548 tance in quasi-two-dimensional organic superconductors,576
 549 J. Phys. Soc. Jpn. 58, 1520-1523 (1989). 577
- [10] R. Yagi, Y. Iye, T. Osada and S. Kagoshima, Semiclas-578
 sical interpretation of the angular-dependent oscillatory579
 magnetoresistance in quasi-two-dimensional systems, J.580
 Phys. Soc. Jpn. 59, 3069-3072 (1990). 581
- T. Suzuki, L. Savary, J.-P. Liu, J. W. Lynn, L. Balents, J.582
 G. Checkelsky, Singular angular magnetoresistance in a583
 magnetic nodal semimetal, *Science* 365, 377-381 (2019).584
 10.1126/science.aat0348
- L. F. Matthiess, Band structure and Fermi surface of 586
 ReO₃, *Phys. Rev.* 181, 987 (1969). 587
- F. Cora, M. G. Stachiotti, and C. R. A. Catlow, Transi-588
 tion Metal Oxide Chemistry. Electronic Structure Study589
 of WO₃, ReO₃, and NaWO₃, *J. Phys. Chem. B* **101**,590
 3945-3952 (1997).
- [14] M. G. Stachiotti, F. Cora, C. R. A. Catlow and C. O.⁵⁹²
 Rodriguez, First-principles investigation of ReO₃ and re-⁵⁹³
 lated oxides, *Phys. Rev. B* **55** 7508-7514 (1997).
- [15] J. E. Graebner and E.S. Greiner, Magnetothermal oscillations and the Fermi Surface of ReO₃, *Phys. Rev.* 185, 992 (1969).
- 570 [16] S. M. Marcus, Measurement of the de Haas van Alphen⁵⁹⁵
- effect in the transition metal oxide ReO₃, *Phys. Lett.*⁵⁹⁶
 27A, 584-585 (1968).

598

- [17] R. A. Phillips and H. R. Shanks, de Haas van Alphen effect in ReO₃, *Phys. Rev. B* 4, 4601 (1971).
- [18] F. S. Razavi and W. R. Datars, Cyclotron masses in ReO₃ measured by the de Haas van Alphen effect, *Can. J. Phys.* 54, 845 (1976).
- [19] T. P. Pearsall and C. A. Lee, Electronic transport in ReO₃: DC conductivity and Hall effect, *Phys. Rev. B* 10, 2190 (1974).
- [20] J. Falke *et. al.*, Electronic structure of the metallic oxide ReO₃, *Phys. Rev. B* **103**, 115125 (2021). DOI: 10.1103/PhysRevB.103.115125
- [21] E. H. Lieb, Two theorems on the Hubbard model, *Phys. Rev. Lett.* 62, 1201 1204 (1989). DOI: 10.1103/Phys-RevLett.62.1201
- [22] Z. Liu, F. Liu and Y.-S. Wu, Exotic electronic states in the world of flat bands: From theory to material, *Chin. Phys. B* 23, 077308 (2014). DOI: 10.1088/1674-1056/23/7/077308
- [23] N. Regnault *et al.*, Catalogue of Flat Band Stoichiometric Materials, cond-mat arXiv: 2106.05287.
- [24] Principles of the Theory of Solids, J. M. Ziman (Cambridge Univ. Press 1972), Ch. 9.

Acknowledgement We have benefitted from discussions with E. Lieb, B. A. Bernevig and N. Regnault. RJC and NPO acknowledge support by the U.S. National Science Foundation under award DMR 2011750.

FIG. 1. (a) Crystals of ReO₃ showing characteristic brilliant pink hue in reflected light. The cubic cell parameter a is 3.748 Å. (b) Sketch of the jungle-gym FS sheet in extended zone scheme with 8 Brillouin zones (BZ) shown. The reciprocal lattice vector $K = 2\pi/a$ denotes the size of the cubic BZ and $k_f = 0.23$ K is the cylinder radius. With **B** || **z**, closed cyclotron orbits form around the cross-sections of the FS in the $k_x - k_y$ plane. At different k_z , the orbits change from closed and electron-like (4 yellow loops) to closed and hole-like (green loop). The inset shows the field tilt-angles θ and χ relative to axes (x, y, z). (c) Plot of the resistivity ρ vs. T with B = 0. The residual value ρ_{00} , measured in 4 crystals, is 5-8 nΩcm (inset). (d) Log-log plot of $\Delta\rho$ vs. T where $\Delta\rho(T) = \rho(T) - \rho_{00}$. A linear fit (red line) over 20 < T < 80 K gives $\Delta\rho = T^{\eta}$ with $\eta = 3.1 \pm 0.2$.

FIG. 2. Panel (a): The singular, anisotropic angular magnetoresistance $\rho_{xx}(\theta, \chi)$ measured at T = 1.9 K with $\mathbf{E} \parallel \hat{\mathbf{x}}$ and $|\mathbf{B}|$ fixed at 9 T. The LAMR curve (in red) plots $\rho_{xx}(\theta, 0)$ vs. θ with \mathbf{B} lying in the (longitudinal) x-z plane at angle $\theta = \angle(\mathbf{B}, \hat{\mathbf{z}})$. The TAMR curve (blue) plots $\rho(0, \chi)$ vs. χ with \mathbf{B} in the transverse y-z plane at angle $\chi = \angle(\mathbf{B}, \hat{\mathbf{z}})$. A slight misalignment causes a weak breaking of mirror symmetry about $\chi = 0$ or $\theta = 0$ (see text). The singular AMR complicates determination of $\rho_{xx}(\theta, \chi)$ at $(\theta, \chi) = (0, 0)$. Panel (b) shows the polar plot of the TAMR and LAMR curves. The TAMR curve (blue) displays C_4 symmetry. However, the LAMR curve (red) exhibits C_2 symmetry because, with \mathbf{E} fixed $\parallel \hat{\mathbf{x}}, \rho_{xx}(0, 0) \gg \rho_{xx}(\pi/2, 0)$ (the latter is equal to $\rho_{zz}(0, 0)$). Panel (c) is an expanded view of the curves of LAMR (red) and TAMR (blue) in semi-log plot. The TAMR curve shows a steep decrease at the completion angle γ_c . The step decrease in the LAMR curve is milder but still well resolved. Panel (a): Expanded view of the LAMR curve $\rho_{xx}(\theta, 0)$ at 1.9 K with $|\mathbf{B}|$ fixed at 6 T (blue curve), 7.5 T (red) and 9 T (grey). In all three curves, sharp resonant features are observed at $\theta = 0, \pm 1.1^{\circ}$ and $\pm 2.2^{\circ}$.

FIG. 3. Panel (a): Comparison of the angular Hall resistivity $\rho_{yx}(\theta, 0)$ (green curve) and $\rho_{xx}(\theta, 0)$ (red curve) measured vs. θ (setting $\chi = 0$) at 1.9 K with $|\mathbf{B}|$ fixed at 9 T. Initially, ρ_{yx} is electron-type at $\theta = 0$, but changes to hole-like near 16°. At γ_c , ρ_{yx} undergoes a step-wise change, involving a second sign-change. The curves for the inferred conductivity σ_{xx} (red curve) and Hall conductivity σ_{xy} (green) are plotted in Panel (b). At small θ , σ_{xy} is negative. Near 16°, it changes sign and increases steeply before suffering a large discontinuous jump at γ_c to return to negative values.

FIG. 4. Sketch of open orbits. Panel (a) shows the three FS cylinders C_x , C_y and C_z (grey tubes) and a plane normal to **B** (pale blue). Intersections of the FS with the normal planes define possible orbits of a wave packet. In the LAMR experiment, when **B** is tilted by θ relative to $\hat{\mathbf{z}}$, an open orbit can emerge (thick curves). A right-moving wave packet on C_y loops under C_x (dashed curve) before resuming its orbit on C_y . The left-moving partner loops over C_x . In the high-*B* limit, these open orbits contribute strongly to σ_{xx} . Panel (b) shows end-on views of 3 cylinders C_y in the repeated zone scheme with $K = 2\pi/a$. The planes normal to **B** that are tangential to the outer cylinders (blue lines) define the FS portion hosting open orbits on the middle cylinder (thick green arcs). States outside the green arcs remain in closed orbits. The green arcs lengthen rapidly as $\theta \to \gamma_c$, the completion angle defined by the inner tangent (red dashed line). Panel (c): Sketch of open orbits in the TAMR experiment. With **B** tilted by angle χ relative to $\hat{\mathbf{z}}$ in the plane transverse to **E**, the open orbits are straight-line segments on C_x alternating with looped segments on C_y . The inset on the right shows the conical wedge (white area) on C_y . Cyclotron orbits on the wedge (red ellipses) project onto circular orbits \mathcal{P} on the cross-section (front end-face of C_y). Each orbit subtends an angle 2β on \mathcal{P} , while the longest one subtends angle $2\beta_0$. The conductivity arising from states on the entire wedge is obtained by integrating the orbits over the white area (Eq. 21).

FIG. S1. Variation of the dimensionless integral \mathcal{G} (Eq. 21) vs. tilt angle χ . Even when $\chi \to \gamma_c$, \mathcal{G} is <0.015. This implies that the when all the states on C_y are converted to open orbits, its conductivity is suppressed to less than 1.5% of the value at $\chi = 0$ (see Eq. 20).

FIG. S2. Numerical simulation of the pattern of open and closed orbits at three selected values of θ (1°, 5°, 10°) with $\chi = 0$ in the LAMR experiment. The cross-section displayed is centered on the intersection of the cylinders. The array extends over 25 Brillouin Zones in the extended zone scheme. The orbits lie in a plane normal to **B** with the horizontal axis $k_x/\cos\theta$ measured in the direction $\hat{\mathbf{z}} \times \mathbf{B}$. In each panel, the orbits are quasiperiodic despite the appearance of nominal periodicity.

FIG. S3. Plot of the Hall conductivity σ_{xy}/σ_0 vs. *B* at 2 K and zero tilt angle. The low-field dependence was fit to a semiclassical model; peaks in $\sigma_{xy}(B)$ occur at $|\mu B^*| = 1$. For two different samples this yielded $\mu = 59,000 \text{ cm}^2/\text{Vs}$ (M1) and 126,000 cm²/Vs (F1).