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We theoretically investigate the electronic band structures and magnetic properties of ilmenites
with edge-sharing IrO6 honeycomb layers, AIrO3 with A = Mg, Zn, and Mn, in comparison with a
collinear antiferromagnet MnTiO3. The compounds with A = Mg and Zn were recently reported in
Y. Haraguchi et al., Phys. Rev. Materials 2, 054411 (2018), while MnIrO3 has not been synthesized
yet but the honeycomb stacking structure was elaborated in a superlattice with MnTiO3 in K. Miura
et al., Commun. Mater. 1, 55 (2020). We find that, in contrast to MnTiO3, where an energy gap
opens in the Ti 3d bands by antiferromagnetic ordering of the high-spin S = 5/2 moments, MgIrO3

and ZnIrO3 have a gap in the Ir 5d bands under the influence of both spin-orbit coupling and
electron correlation. Their electronic structures are similar to those in the spin-orbit coupled Mott
insulators with the jeff = 1/2 pseudospin degree of freedom, as found in monoclinic A2IrO3 with
A = Na and Li which have been studied as candidates for the Kitaev spin liquid. Indeed, we find
that the effective exchange interactions between the jeff = 1/2 pseudospins are dominated by the
Kitaev-type bond-dependent interaction and the symmetric off-diagonal interactions. On the other
hand, for MnIrO3, we show that the local lattice structure is largely deformed, and both Mn 3d and
Ir 5d bands appear near the Fermi level in a complicated manner, which makes the electronic and
magnetic properties qualitatively different from MgIrO3 and ZnIrO3. Our results indicate that the
IrO6 honeycomb network in the ilmenites AIrO3 with A = Mg and Zn would offer a good platform
for exotic magnetism by the spin-orbital entangled moments like the Kitaev spin liquid.

I. INTRODUCTION

Ilmenite, whose chemical formula is given by ABO3,
crystalizes in a trigonal structure with the space group
R3̄ similar to corundum A2O3. Both ilmenite and corun-
dum share the layered structure with a honeycomb net-
work of edge-sharing octahedra, but a difference lies in
the stacking manner; corundum is composed of a stack-
ing of isostructural AO6 honeycomb layers, but ilmenite
is made of an alternative stacking of AO6 and BO6 hon-
eycomb layers, as shown in Fig. 1. While ilmenite is origi-
nally the name for a titanium-iron oxide mineral FeTiO3,
its relatives, such as NiTiO3, CoTiO3, and MnTiO3, have
been studied for a long time as a good playground for
two-dimensional magnetism [1–11]. Mixed compounds
like (Ni,Mn)TiO3 were also investigated as they exhibit
interesting spin glass behavior [11–15]. Later, the tita-
nium antiferromagnets have also attracted the interest
from their multiferroics behavior [16, 17] and magne-
tochiral dichroism [18].

Recently, a new series of ilmenite with B=Ir has been
synthesized as MgIrO3, ZnIrO3, and CdIrO3 [19, 20].
These compounds are of particular interest from a dif-
ferent perspective than ATiO3: they have a honeycomb
network of edge-sharing IrO6 octahedra similar to mon-
oclinic A2IrO3 with A = Na and Li which have been
intensively studied as candidates for realizing a quan-
tum spin liquid in the honeycomb Kitaev model [21–31].
In A2IrO3, the 5d levels in Ir4+ ions are split by the
strong spin-orbit coupling (SOC) into quartet and dou-
blet, and the half-filled doublet is further split by the
Coulomb interaction to realize the so-called spin-orbit
Mott insulator [32]. Then, the low-energy physics is
described by the pseudospin degree of freedom for the

Kramers doublet with the effective magnetic moment of
jeff = 1/2 [33, 34]. Owing to the edge-sharing geometry,
the dominant interaction between neighboring jeff = 1/2
moments can be highly anisotropic, which gives a real-
ization of the bond-dependent Ising interaction in the
Kitaev model [24–27, 35, 36]. Since the iridium ilmenites
have a similar honeycomb network, they potentially serve
as another candidates for the Kitaev spin liquid. Powder
samples of these compounds, however, were shown to ex-
hibit magnetic phase transitions at 31.8 K for MgIrO3,
46.6 K for ZnIrO3 [19], and 90.9 K in CdIrO3 [20], which
are higher than ∼ 15 K for AIrO3 [22, 23, 37–39]. The
susceptibility measurements for the A = Mg and Zn indi-
cate that they have in-plane magnetic anisotropy, while
Na2IrO3 and Li2IrO3 show the out-of-plane and in-plane
anisotropy, respectively [22, 28]. The estimates of the
magnetic moments are consistent with the jeff = 1/2 pic-
ture, except for CdIrO3 [20]. Despite these interesting
aspects, the electronic and magnetic properties of the
iridium ilmenites have not been theoretically studied thus
far.
In this paper, we investigate the electronic band struc-

tures of MgIrO3 and ZnIrO3 by using the first-principles
calculations with the fully-relativistic local density ap-
proximation including effective onsite Coulomb interac-
tions, called the LDA+SOC+U method. For compari-
son, we study the well-known antiferromagnetic insula-
tor MnTiO3 and a fictitious crystal MnIrO3 whose lo-
cal stacking structure was recently elaborated in a su-
perlattice with MnTiO3 [40]. We find that MgIrO3

and ZnIrO3 have similar band structures near the Fermi
level to the Kitaev candidates Na2IrO3 and Li2IrO3;
the SOC and Coulomb interactions act cooperatively
to realize the spin-orbit coupled Mott insulating state
whose low-energy physics is well described by the pseu-
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FIG. 1. (a) and (b) Lattice structure of ilmenite ABO3. The
orange and yellow octahedra denote AO6 and BO6, each of
which form a two-dimensional honeycomb network with edge
sharing. The adjacent AO6 and BO6 honeycomb layers are
stacked with face and corner sharing. (a) Bird’s-eye view and
(b) projection from the c axis. The black lines in (a) denote
the conventional unit cell with the lattice constants, a and
c. (c) The first Brillouin zone. The red lines denote the
symmetric lines used in the plots of the band structures in
Sec. III and Appendix B.

dospin with effective magnetic moment jeff = 1/2. This
is in contrast to the antiferromagnetic insulating state
in MnTiO3, where (3d)5 electrons form the high-spin

S = 5/2 state by the Hund’s-rule coupling and the energy
gap is opened by the exchange splitting in the antiferro-
magnetic state. In MgIrO3 and ZnIrO3, we show that
the antiferromagnetic solution has a lower energy than
the paramagnetic and ferromagnetic ones, but the anti-
ferromagnetic moment is very small ∼ 0.1 µB, implying
that the jeff = 1/2 moments suffer from frustration. Fur-
thermore, by constructing a multiorbital Hubbard model
from the maximally-localized Wannier functions (ML-
WFs) [41, 42] and performing the perturbation expansion
from the atomic limit, we show that the exchange inter-
actions between the jeff = 1/2 pseudospins are described
by the dominant Kitaev-type bond-dependent one and
the subdominant symmetric off-diagonal ones. The re-
sults indicate that the edge-sharing honeycomb network
of IrO3 octahedra in MgIrO3 and ZnIrO3 would offer a
good playground for spin-orbital entangled magnetism
toward the Kitaev spin liquid. On the other hand, we
find that the optimized lattice structure of MnIrO3 is
largely deformed from those for MnTiO3, and the band
structure near the Fermi level is complicated including
both Mn 3d and Ir 5d contributions.
The structure of this paper is as follows. In Sec. II,

we describe the details of the LDA+SOC+U calculations
and the method to estimate the effective exchange cou-
pling constants. In Sec. III, we present our results for
MnTiO3 (Sec. III A), MgIrO3 and ZnIrO3 (Sec. III B),
and MnIrO3 (Sec. III C). In Sec. III B, we discuss the
electronic band structure in Sec. III B 1, the transfer in-
tegrals in Sec. III B 2, and the effective magnetic interac-
tions in Sec. III B 3. For comparison, we also study the
electronic band structure for MgIrO3 by using the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional approach in
Appendix A [43]. The results for ZnIrO3 are qualitatively
similar to those for MgIrO3, and detailed in Appendix B.
Section IV is devoted to the summary.

II. METHOD

The ab initio calculations are performed by using
Quantum ESPRESSO [44]. We adopt the fully-relativistic
and non-relativistic projector-augmented-wave-method
Perdew-Zunger type pseudopotentials for the A and
B-site ions and the O ligands, respectively [45–47].
While we employ the experimental structural data for
MnTiO3 [48] and for MgIrO3 and ZnIrO3 [19], we per-
form structural optimization for the fictitious compound
MnIrO3 starting from the experimental structure for
MnTiO3 with replacement of Ti by Ir; we relax not
only the atomic positions within the primitive unit cell
but also the lattice translation vectors. In the opti-
mization, we set the minimum ionic displacement to
0.001 Å in the Broyden-Fletcher-Goldfarb-Shanno itera-
tion scheme [49]. Afterwards, we symmetrize the optimal
structure within the trigonal space group R3̄, where the
residual stress is less than 30 kbar. In all the calculations,
we take the primitive unit cell, and 4×4×4 and 8×8×8
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Monkhorst-Pack k-grids for self-consistent field and non
self-consistent field calculations, respectively [50]. We set
the convergence threshold for the self-consistent field cal-
culations to 10−10 Ry. The kinetic energy cutoff is set to
200 Ry for all the cases. In the LDA+SOC+U calcula-
tions, we include the Hubbard correction to the Mn 3d
and Ir 5d orbitals with the Coulomb repulsion U = UMn

and UIr, respectively, together with the Hund’s-rule cou-
pling JH, by assuming JH/U = 0.1 in the rotationally
invariant scheme [51]. For comparison, we also perform
the calculations for MgIrO3 by using HSE hybrid func-
tional; see Appendix A for the details.
We construct the MLWFs of Ir 5d t2g and O 2p orbitals

for MgIrO3 and of Zn 3d, Ir 5d t2g, and O 2p orbitals for
ZnIrO3 for the obtained electronic band structures by
using WANNIER90 [42]. Note that, in most of the pre-
vious studies for other Kitaev candidate materials, the
MLWF analyses were performed only for the 5d or 4d t2g
orbitals [24, 26, 27, 52, 53]. In the present study, how-
ever, we include O 2p for both MgIrO3 and ZnIrO3 and
also Zn 3d, since we find that they overlap with Ir 5d
t2g (see Sec. III B and Appendix B). From the results,
we calculate the projected density of states (DOS) for
each MLWF orbital. For the Ir 5d t2g orbitals, we also
compute the DOS projected onto the spin-orbital cou-
pled bases labelled by the effective angular momentum
jeff .
Then, we estimate the effective transfer integrals be-

tween the Ir t2g orbitals by using the MLWFs for the
UIr = 0 case; the effective transfer integral between d or-
bital u with spin σ at site i and d orbital v with spin σ′

at the neighboring site i′ is calculated as

t̃iuσ,i′vσ′ = tiuσ,i′vσ′ +
∑

o,p,σp

tiuσ,opσp
t∗i′vσ′,opσp

∆uv-p + Up

, (1)

where the first term tiuσ,i′vσ′ denotes the d-d direct hop-
ping, and the second term describes the d-p-d indirect
hoppings via oxygen 2p orbitals with spin σp at ligand
site o between i and i′ in the second-order perturbation
manner. ∆uv-p denotes the harmonic mean of the ener-
gies of orbitals u and v measured from that of p, and
Up represents the Coulomb interaction in the 2p orbitals.
Here, Up is taken into account, considering less screening
in the present MLWF analyses including the O 2p orbitals
(see Sec. III B 3). For the further-neighbor transfers, we
add d-p-p-d indirect hoppings in the third-order pertur-
bation manner.
Finally, we construct the multiorbital Hubbard mod-

els for the Ir t2g orbitals, which are composed of the ki-
netic hopping term, the crystal-field splitting, the SOC
coupling, and the Coulomb interactions, as discussed in
detail in Ref. [27], and perform the perturbation expan-
sion from the strong limit of the Coulomb interactions
in terms of the effective transfer integrals to derive the
effective Hamiltonian for the jeff = 1/2 pseudospins of
the Ir ions. Only the difference from Ref. [27] lies in the
computation of the effective transfer integrals where we

(a)

(b)

FIG. 2. (a) The energy gap and (b) the antiferromagnetic
moment at the Mn site in the c-AFM state in MnTiO3 as
functions of the Coulomb repulsion at the Mn site, UMn, ob-
tained by the LDA+SOC+U calculations.

take into account the oxygen 2p orbitals explicitly. Note
that a similar scheme was used for the f -electron cases
of Refs. 54 and 55.

III. RESULT

A. MnTiO3

Before going into the iridium ilmenites, we start with
the well-known MnTiO3 as a reference. This compound
is an antiferromagnetic insulator with a collinear Néel or-
der along the c axis, which we call the c-AFM state here-
after [4]. The energy gap is estimated as ≃ 3.18 eV [56],
and the magnetic moment is estimated as ≃ 4.55 µB [4],
which is consistent with the high-spin state of Mn2+ ions
with S = 5/2 under the strong Hund’s-rule coupling. The
electronic band structure was studied by the ab initio cal-
culations with the generalized gradient approximation,
and the AFM nature was reproduced [57].
We here perform the LDA+SOC+U method while

changing the Coulomb repulsion at the Mn site, UMn.
We find that the antiferromagnetic state has a lower en-
ergy compared to the paramagnetic and ferromagnetic
solutions, while the energy does not depend so much on
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FIG. 3. Electronic band structure of MnTiO3 obtained by the
LDA+SOC+U calculations for the c-AFM state at UMn =
6 eV. The right panels display the projected DOS for the
relevant orbitals in each ion. The Fermi level is set to zero.

the direction of the antiferromagnetic moments; the en-
ergy difference between the states with in-plane and out-
of-plane moments is smaller than 0.1 meV per unit cell
for all UMn (Here and hereafter, all the energies are mea-
sured per unit cell.). Hence, in the following calculations,
we assume the c-AFM state which is observed experi-
mentally [4]. The c-AFM state is insulating even in the
absence of UMn; the energy gap Eg and the magnitude
of the antiferromagnetic moment |mMn| are estimated as
≃ 1.4 eV and ≃ 3.9 µB, respectively, at UMn = 0. Both
Eg and |mMn| increase with UMn, as plotted in Fig. 2.
We note that both values of Eg and |mMn| are slightly
smaller than the experimental estimates but approach
them for large UMn. The large value of |mMn| indicates
that the antiferromagnetic moment is composed of the
high-spin S = 5/2 state of the Mn ions under the strong
Hund’s-rule coupling, consistent with the experiment.

Figure 3 shows the electronic band structure of
MnTiO3 in the c-AFM state with UMn = 6 eV. The en-
ergy gap opens between the occupied states dominated
by the Mn 3d and O 2p hybridized bands and the un-
occupied states dominated by the Ti 3d bands. See the
projected DOS in the right panels of Fig. 3. The Mn 3d
bands are largely split by the exchange energy from the
c-AFM order.

(a)

(b)

(c)

ab-FM
c-FM c-AFM

FIG. 4. (a) Energy measured from the ab-AFM state in
MgIrO3 as a function of the Coulomb repulsion at the Ir site,
UIr, obtained by the LDA+SOC+U calculations. (b) The en-
ergy gap and (c) the antiferromagnetic moment at the Ir site
in the ab-AFM state.

B. MgIrO3 and ZnIrO3

1. Electronic structure

Let us turn to the iridium ilmenites MgIrO3 and
ZnIrO3. Since the two compounds have similar electronic
band structures, we focus on MgIrO3 in this section and
present the results for ZnIrO3 in Appendix B.

In MgIrO3, the lowest-energy state among the different
magnetic states which we calculated is the antiferromag-
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netic state whose moments lie in the ab plane. In princi-
ple, the energy depends on the direction of the magnetic
moments within the plane, but we do not find any signif-
icant energy change by rotating the direction (the energy
difference between the states whose moments are paral-
lel and perpendicular to one of the Ir-Ir bond directions
is less than 0.2 meV for all values of the Coulomb in-
teraction at the Ir site, UIr, calculated here). Hence, we
measure the energy from the state with moments parallel
to the bonds, which we call the ab-AFM state, and plot
the result in Fig. 4(a). We find that the ab-AFM state
has the lowest energy in the whole range of UIr, except
for UIr = 0 where the system is a paramagnetic metal
(see below). The result is consistent with the experiment
where the magnetic susceptibility shows the easy-plane
anisotropy [19]. We note, however, that the energy differ-
ence between the ab-AFM and c-AFM state is not large
and becomes smaller for larger UIr.

In Figs. 4(b) and 4(c), we show the results of the energy
gap Eg and the magnitude of the magnetic moment of
the Ir ion, |mIr|, as functions of UIr. When UIr = 0, we
obtain Eg = 0 and |mIr| = 0, indicating that the system
is a paramagnetic metal. The band structure is shown
in Fig. 5. The relevant bands near the Fermi level are
dominated by the Ir 5d states, which are composed of
the lower-energy jeff = 3/2 and higher-energy jeff = 1/2
states split by the SOC, as shown in the projected DOS
in the right panels of Fig. 5. The Fermi level lies in the
jeff = 1/2 bands; the two bands in the jeff = 1/2 manifold
overlap slightly near the Fermi level, forming the metallic
state, as shown in the enlarged plot in Fig. 5(b).

When we switch on UIr, the system turns into the ab-
AFM insulating state, as shown in Figs. 4(b) and 4(c).
While Eg increases almost linearly with UIr, the gap value
is relatively small compared to that for the 3d compound
MnTiO3 in Fig. 2(a). In addition, |mIr| grows slowly
with UIr and has a small value of |mIr| ≃ 0.1 µB. The
band structure of the ab-AFM insulating state is shown in
Fig. 6 at UIr = 3 eV. In the ab-AFM state, the energy gap
is opened by UIr between the two jeff = 1/2 bands, while
the jeff = 3/2 bands slightly hybridize with them. This
is a typical electronic band structure of the spin-orbit
coupled Mott insulator, common to the Kitaev candidate
materials like A2IrO3 (A = Na and Li) and α-RuCl3 [24,
29, 33, 34, 58–61]. The results suggest that the small
magnetic moment in the ab-AFM state arises from the
spin-orbit entangled moments described by the jeff = 1/2
pseudospin degree of freedom.

For comparison, we also study the electronic band
structure by using the HSE hybrid functional, which
includes the electron correlations in a different manner
from the LDA+SOC+U method; see Appendix A. The
band structure and the projected DOS are similar to the
results for UIr = 2-3 eV obtained the LDA+SOC+U cal-
culation. This supports our conclusion on the electronic
state discussed above.

ZnIrO3 shows similar behaviors; see Appendix B. A

difference from MgIrO3 observed in our calculations is
(a)

(b)

Ir O
jeff=1/2

jeff=3/2

2p

T H2/H0
L � S0/S2

F � T 
' H 

'2/H
 
'0 L' � S 

'0/S
 
'2 F 

' ��

FIG. 5. The electronic band structure of MgIrO3 obtained by
the LDA calculations (UIr = 0) for the paramagnetic metal-
lic state. The black curves denote the LDA results and the
red dashed ones represent the band dispersions obtained by
tight-binding parameters estimated by the MLWFs. The right
panels display the projected DOS for each orbital. The Fermi
level is set to zero.

that the ab-AFM state has a slightly higher energy than
the c-AFM state, which is not compatible with the exper-
iment [19]. Nonetheless, the electronic band structure in-
dicates that this compound is also categorized into a spin-
orbit coupled Mott insulator with the active jeff = 1/2
pseudospins, similar to MgIrO3.

2. Transfer integrals
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FIG. 6. The electronic band structure of MgIrO3 obtained
by the LDA+SOC+U calculations for the ab-AFM state with
UIr = 3 eV. The notations are common to those in Fig. 5.

To examine whether the iridium ilmenites have dom-
inant Kitaev-type bond-dependent interactions between
the jeff = 1/2 pseudospins, we first perform the MLWF
analysis for the case of MgIrO3 by using the band struc-
ture at UIr = 0 in Fig. 5. We find that the tight-binding
model obtained from the MLWF analysis well reproduce
the ab initio results, as shown in Fig. 5. Then, follow-
ing the procedures in Sec. II, we estimate the effective
transfer integrals between the Ir t2g orbitals, including
both direct and indirect contributions. We present the
results for the nearest-neighbor z bond, where the effec-
tive Kitaev interaction takes the form of Sz

i S
z
j [see Eq. (2)

below], in Table I. Here, we show the estimates obtained

by assuming Up = 0.0, 0.5, and 1.0 eV. The values on
the x and y bonds are obtained by cyclic permutations
of {xyz}.

As shown in Table I, we find that the most dominant
transfer integral is the one between the yz and zx or-
bitals, which plays an important role in generating the
Kitaev-type interaction [62]. We note that the value
at Up = 0 is considerably larger compared to those in
A2IrO3 (A = Na and Li) and α-RuCl3 [26, 27, 52], but
it is rapidly reduced by Up and becomes comparable to
those for Up = 1.0 eV. This appears to justify the inclu-
sion of Up to compensate the less screening in the present
MLWF analysis including the O 2p orbitals. The d-p en-
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TABLE I. Transfer integrals between the Ir t2g orbitals on the nearest-neighbor z bond for MgIrO3. The values represent the
effective transfer integrals from the orbital and spin in the column to those in the row, which are estimated from the MLWF
analysis for the band structure at UIr = 0 in Fig. 5. In each matrix element, we display three values by assuming Up = 0.0,
0.5, and 1.0 eV from top to bottom; see the text for details. The unit is in meV. The upper-right half of the table is omitted
as the matrix is Hermite conjugate.

yz ↑ yz ↓ zx ↑ zx ↑ xy ↑ xy ↑

yz ↑

101
126
138

yz ↓

0.00
0.00
0.00

101
126
138

zx ↑

1450-13.3i
904-12.0i
646-11.1i

2.73i
2.13i
1.72i

101
126
138

zx ↓

2.73i
2.13i
1.72i

1450+13.3i
904+12.0i
646+11.1i

0.00
0.00
0.00

101
126
138

xy ↑

28.0+11.4i
27.3+7.18i
24.5+5.09i

-85.2i
-65.6i
-54.5i

28.0+11.4i
27.3+7.18i
24.5+5.09i

85.2i
65.6i
54.5i

-423
-438
-450

xy ↓

-85.2i
-65.6i
-54.5i

28.0-11.4i
27.3-7.18i
24.5-5.09i

85.2i
65.6i
54.5i

28.0-11.4i
27.3-7.18i
24.5-5.09i

0.00
0.00
0.00

-423
-438
-450

ergy differences are estimated as ∆d−px,y
≃ 2.75 eV and

∆d−pz
≃ 0.92 eV for the px,y and pz orbitals (almost in-

dependent of the t2g orbitals), respectively. We note that
∆d−pz

is rather small and in a similar energy scale of the
d-p transfers, which might hamper the perturbation the-
ory, but the inclusion of Up reconciles this situation. In
addition, the small ∆d−pz

suggests that further-neighbor
transfers can be relevant through the indirect transfers.
Indeed, our MLWF analyses find that the second- and
third-neighbor transfer integrals, which arise dominantly
from the d-p-p-d indirect transfers, include the matrix el-
ements whose magnitudes are comparable to the nearest-
neighbor ones at Up = 0. Note, however, that the values
are more rapidly reduced by Up than the nearest-neighbor
ones, as they are higher-order contributions in the per-
turbation theory.

We obtain similar results for ZnIrO3. The results are
summarized in Appendix B. It is noted that the nearest-
neighbor xy-yz transfer is one order of magnitude larger
for ZnIrO3 compared to that for MgIrO3. This is pre-
sumably due to the larger buckling of the Ir honeycomb
planes in ZnIrO3.

3. Effective interaction between jeff = 1/2 pseudospins

Using the perturbation expansion from the atomic
limit of the multiorbital Hubbard model based on the
MLWF analysis in Table I, we derive an effective model
for the jeff = 1/2 pseudospin degree of freedom (see
Sec. II). The effective pseudospin Hamiltonian on the

nearest-neighbor z bond is summarized as

H
(z)
ij = S

T
i





J Γ Γ′

Γ J Γ′

Γ′ Γ′ J +K



Sj , (2)

where Si = (Sx
i , S

y
i , S

z
i )

T denotes the pseudospin oper-
ator at site i; J , K, Γ, and Γ′ denote the coupling con-
stants for the Heisenberg, the Kitaev, and the two differ-
ent types of symmetric off-diagonal interactions, respec-
tively.
The coupling constants estimated for MgIrO3 are plot-

ted in Fig. 7 as functions of UIr with JH/UIr = 0.1 and
the spin-orbit coupling coefficient λ = 0.4 eV [26]. The
three lines for each coupling constant display the results
for Up = 0.0, 0.5, and 1.0 eV. We find that the ferromag-
netic Kitaev interaction K is always predominant, and
the symmetric off-diagonal interaction Γ is subdominant;
the Heisenberg interaction J and the other symmetric off-
diagonal interaction Γ′ are vanishingly small. This means
that the low-energy magnetic property of the spin-orbit
coupled Mott insulating state in MgIrO3 is well described
by the model with K and Γ for the nearest-neighbor sites.
The model is called the K-Γ model and has been studied
in the context of the Kitaev spin liquid, especially for one
of the candidates α-RuCl3 [63, 64].
We note that the magnitude of K is significantly large

compared to those for A2IrO3 (A = Na and Li) [25–
27, 38, 65, 66] when we assume Up = 0, mainly due to
the contributions from the large yz-zx transfer in Table I.
However, all the coupling constants are substantially re-
duced by taking into account Up, as shown in Fig. 7, ac-
cording to the reduction of the effective transfer integrals.
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K

�
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J

FIG. 7. Coupling constants for the nearest-neighbor pseu-
dospins in MgIrO3 as functions of the Coulomb repulsion at
the Ir site, UIr; see Eq. (2). The Hund’s-rule coupling JH and
the spin-orbit coupling coefficient λ are set to JH/UIr = 0.1
and λ = 0.4 eV, respectively. The data connected by the
blue, red, green, and yellow lines represent the Heisenberg
J , Kitaev K, and symmetric off-diagonal couplings Γ and Γ′,
respectively; the dotted, dashed, and solid lines indicate the
data obtained by taking Up = 0.0, 0.5, and 1.0 eV, respec-
tively.

For instance, for Up = 1 eV and UIr = 3 eV, the value of
K is reduced to −27.1 meV, which is comparable to that
for A2IrO3. Although the proper values of Up and UIr are
unknown, the important conclusion is that the nearest-
neighbor magnetic interactions in MgIrO3 can be well
described by the K-Γ model irrespective of Up and UIr.

As discussed in Sec. III B 2, there are substantial
further-neighbor transfers through the indirect contribu-
tions via the O 2p orbitals. They give rise to sizable
further-neighbor exchange interactions, while the cou-
pling constants are reduced by Up more quickly than the
nearest-neighbor ones as they are higher-order processes.
For instance, assuming UIr = 3 eV and Up = 1 eV,
the dominant second-neighbor contributions within the
same honeycomb layer are the antiferromagnetic K ≃
10.3 meV and the ferromagnetic J ≃ −8.05 meV, while
the dominant third-neighbor one is the antiferromagnetic
J ≃ 9.06 meV. We note that the second-neighbor bonds
do not have the inversion centers, and hence, include the
subdominant Dzyaloshinskii-Moriya interaction, whose
energy scale is estimated as ≃ 5.76 meV. In addition,
we expect contributions from the interlayer couplings
through the TiO6 layer. We speculate that the rather
small value of the Curie-Weiss temperature −67.1 K in
MgIrO3 could be accounted for by a balance among the
exchange couplings including such further-neighbor con-
tributions [19]. While the magnetic structure in the or-
dered phase is experimentally unknown thus far, it will
also be determined under the competing exchange inter-
actions; it is left for future study to precisely construct
the effective pseudospin model by determining the values
of UIr, JH, and Up, and to investigate the stable magnetic

K

�

�'

J

FIG. 8. Coupling constants for the nearest-neighbor pseu-
dospins in ZnIrO3 as functions of UIr with JH/UIr = 0.1 and
λ = 0.4 eV. The notations are common to those in Fig. 7.

TABLE II. Structural parameters of the optimized lattice
structure of MnIrO3 with the trigonal R3̄ symmetry: the lat-
tice constants a and c for the conventional unit cell shown in
Fig. 1(a), the Wyckoff positions of the Mn, Ir, and O ions,
and the bond distances d and angles θ for neighboring ions
within the same honeycomb layer.

a (Å) 4.9979
c (Å) 13.159

Mn (6c) (0, 0, 0.34535)
Ir (6c) (0, 0, 0.15473)
O (18f) (0.35348, 0.010833, 0.077788)

dMn−Mn (Å) 2.9028
dMn−O (Å) 1.8828, 1.9803

θMn−O−Mn (◦) 97.398

dIr−Ir (Å) 2.9026
dIr−O (Å) 2.0133, 2.0700
θIr−O−Ir (◦) 90.596

structure in the ground state.
In the case of ZnIrO3, we plot the effective coupling

constants in Fig. 8. The result indicates that, similar to
MgIrO3, the magnetic exchange interactions between the
neighboring pseudospins are well described by the domi-
nant K and the subdominant Γ, while the other symmet-
ric off-diagonal interaction Γ′ has a small but nonnegligi-
ble value, in contrast to the case of MgIrO3. This is due
to the contribution from the xy-yz transfer discussed in
Sec. III B 2.

C. MnIrO3

Finally, we discuss the fictitious compound MnIrO3.
Since this compound has not been synthesized thus far,
we perform the structural optimization starting from the
lattice structure of MnTiO3, as described in Sec. II. The
optimal structural data are shown in Table II. We find
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FIG. 9. The electronic band structure of MnIrO3 obtained
by the LDA+SOC+U calculations for the state with c-FM
for Mn and ab-FM for Ir with UMn = 6 eV and UIr = 3 eV.
The right panels display the projected DOS for each orbital.
The Fermi level is set to zero.

that the structure of MnIrO3 is significantly distorted
from that of MnTiO3. In particular, the Mn-O bond
lengths dMn−O are largely contracted from dMn−O =
2.1060 Å and 2.3026 Å for MnTiO3 to 1.8828 Å and
1.9803 Å, and the Mn-O-Mn bond angle θMn−O−Mn is
largely widened from θMn−O−Mn = 87.956◦ for MnTiO3

to 97.398◦, as shown in Table II. We speculate that the
significant deformation could be related to the difficulty
in the bulk synthesis of MnIrO3.

We study the electronic band structure for the optimal
lattice structure by the LDA+SOC+U calculation. We
assume UMn = 6 eV and UIr = 3 eV. From energy com-
parison between different magnetic states for Mn and Ir
sites, we find that the state with c-FM for Mn and ab-
FM for Ir has the lowest energy, while the magnetic mo-
ments are reduced from the MnTiO3 and MgIrO3 cases:
|mMn| ≃ 3.4 µB and |mIr| ≃ 0.008 µB. The second lowest
energy is the state with c-AFM for Mn (|mMn| ≃ 3.4 µB)
and ab-AFM for Ir (|mIr| ≃ 0.005 µB), whose energy is
higher by ∼69 meV.

The electronic structure for MnIrO3 with c-FM for Mn
and ab-FM for Ir is shown in Fig. 9. We find that, in
contrast to MnTiO3, MgIrO3, and ZnIrO3, the system
is metallic and the relevant bands near the Fermi level
are composed of the hybridized ones between the Mn
3d, Ir 5d, and O 2p orbitals. Notably, we find that the

valence of Ir ions is considerably different from those for
MgIrO3 and ZnIrO3. By integrating the projected DOS
below the Fermi level, we obtain Ir2.02+ (6.98 5d electrons
per Ir ion) for MnIrO3, which is far from Ir3.66+ (5.34
5d electrons) for MgIrO3 and ZnIrO3 at UIr = 3 eV.
These results suggest that the low-energy physics of the Ir
honeycomb network in MnIrO3 is not properly described
by the effective jeff = 1/2 pseudospins which are expected
for Ir4+. On the other hand, we find that the valence
of Mn ions in MnIrO3 is similar to that for MnTiO3:
Mn2.05+ for MnIrO3 and Mn1.89+ for MnTiO3, both of
which are close to Mn2+. Such unusual valence states
could also be related to the stability of MnIrO3.

IV. SUMMARY

To summarize, we have studied the electronic and mag-
netic properties of the iridium ilmenites MgIrO3 and
ZnIrO3, in comparison with the conventional antiferro-
magnetic insulator MnTiO3. From the ab initio calcu-
lations, we showed that both Ir compounds have typ-
ical electronic band structures of the spin-orbital cou-
pled Mott insulator: the low-energy Ir 5d bands are
split into the jeff = 1/2 doublet and the jeff = 3/2
quartet by the spin-orbit coupling, and the half-filled
jeff = 1/2 doublet is further split by the Coulomb in-
teraction. By using the multiorbital Hubbard model
obtained by the MLWF analysis of the band structure,
we found that the low-energy magnetic properties are
well described by the jeff = 1/2 pseudospins interact-
ing with the predominant Kitaev-type bond-dependent
interaction and the subdominant symmetric off-diagonal
interactions; more specifically, MgIrO3 and ZnIrO3 are
well approximated by the K-Γ and K-Γ-Γ′ models, re-
spectively, while further-neighbor contributions are ex-
pected to be relevant as well. In addition, we calculated
the electronic band structure for the fictitious compound
MnIrO3 with structural optimization, and showed that
it does not provide the jeff = 1/2 physics because of the
metallic nature and the different ionic state of Ir.
Our results indicate that the iridium ilmenites MgIrO3

and ZnIrO3 offer a good platform for exotic magnetism
described by the spin-orbital entangled jeff = 1/2 mo-
ments. The importance of Γ as well as Γ′ suggests a sim-
ilarity to α-RuCl3 rather than A2IrO3 (A = Na and Li),
probably due to structural similarity in the lack of cations
at the hexagon centers in the honeycomb layers. How-
ever, the magnitudes of the coupling constants would be
much larger than those for the 4d-electron compound α-
RuCl3 and comparable to those for the 5d-electron com-
pounds A2IrO3, due to the larger spatial extent of the
electron wave functions and the weaker Coulomb inter-
actions. Thus, the Ir ilmenites are the materials that
inherit the structural aspect from α-RuCl3 and the elec-
tronic aspect from A2IrO3. Our findings would not only
be helpful to understand the magnetism in these com-
pounds but also provide a guide toward the realization
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TABLE III. Transfer integrals between the Ir t2g orbitals on the nearest-neighbor z bond for ZnIrO3. The notations are common
to those in Table I.

yz ↑ yz ↓ zx ↑ zx ↑ xy ↑ xy ↑

yz ↑

41.9
77.0
94.7

yz ↓

0.00
0.00
0.00

41.9
77.0
94.7

zx ↑

1190-12.0i
765-11.2i
553-10.6i

-41.2i
-29.9i
-23.8i

41.9
77.0
94.7

zx ↓

-41.2i
-29.9i
-23.8i

1190+12.0i
765+11.2i
553+10.6i

0.00
0.00
0.00

41.9
77.0
94.7

xy ↑

-258+8.05i
-198+5.29i
-166+3.84i

-72.6i
-58.6i
-49.9i

-258+8.05i
-198+5.29i
-166+3.84i

72.6i
58.6i
49.9i

-312
-344
-366

xy ↓

-72.6i
-58.6i
-49.9i

-258-8.05i
-198-5.29i
-166-3.84i

72.6i
58.6i
49.9i

-258-8.05i
-198-5.29i
-166-3.84i

0.00
0.00
0.00

-312
-344
-366

of the Kitaev spin liquid by designing the magnetic in-
teractions.
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Appendix A: HSE approach for MgIrO3

In this Appendix, we present the electronic band struc-
ture for the paramagnetic insulating state of MgIrO3

by using the HSE hybrid functional [43]. We adopt
the norm-conserving fully-relativistic Perdew-Burke-
Ernzerhof type pseudopotentials for all the atoms [69–
71] and 8 × 8 × 8 Monkhorst-Pack k-grids [50] for self-
consistent field calculation without the Hubbard correc-
tion. In the HSE treatment, we set the Hartree-Fock mix-
ing parameter to α = 0.05, which was adopted in the pre-
vious calculations for Na2IrO3 [72]. The result is shown
in Fig. 10. We find that the overall band structure is qual-

itatively similar to that obtained by the LDA+SOC+U
method for a moderate value of UIr in Sec. III B 1. In
particular, there is an energy gap of Eg ≃ 0.3 eV be-
tween the two jeff = 1/2 bands, indicating that the sys-
tem is a spin-orbit coupled Mott insulator, similar to the
LDA+SOC+U results. The comparison suggests that it
is reasonable to take UIr = 2-3 eV in the LDA+SOC+U
calculations.

Appendix B: Results for ZnIrO3

In this Appendix, we present the results for ZnIrO3.
Figure 11(a) shows the energy comparison between dif-
ferent magnetic states. Similar to MgIrO3 in Sec. III B,
ZnIrO3 is a paramagnetic metal at UIr = 0, whose elec-
tronic band structure is similar to that for MgIrO3 as
shown in Fig. 12. Upon introducing UIr, however, the
lowest-energy state is the c-AFM state in contrast to
the ab-AFM in MgIrO3, while the energy difference ∆E
to the second-lowest state, the ab-AFM, is not so large
(less than 0.01 eV), as shown in Fig. 11(a). The re-
sult indicates that ZnIrO3 has an out-of-plane magnetic
anisotropy, although the experiment shows an easy-plane
anisotropy [19]. Nonetheless, the behaviors of the en-
ergy gap and the antiferromagnetic moment are similar
to those for MgIrO3, as shown in Figs. 11(b) and 11(c),
respectively.

Figure 13 shows the electronic band structure of the
c-AFM insulating state for ZnIrO3. Again, the result is

similar to that for MgIrO3: the energy gap opens be-
tween the two jeff = 1/2 bands, realizing the spin-orbit



11

(a)

(b)

Ir O
jeff=1/2

jeff=3/2

2p

T H2/H0
L Γ S0/S2

F Γ T 
' H 

'2/H
 
'0 L' Γ S 

'0/S
 
'2 F 

' ΓΓ

FIG. 10. The electronic band structure for the paramagnetic
state of MgIrO3 obtained by using the HSE hybrid functional
with the Hartree-Fock mixing parameter α = 0.05. The no-
tations are common to those in Fig. 6.

coupled Mott insulating state. In this case, we per-
form the MLWF analysis including the Zn 3d orbitals
as mentioned in Sec. II, since the energy levels overlap
with those for the O 2p orbitals. We plot the obtained
tight-binding band structure in Fig. 12, which well re-
produce the ab initio result. In Table III, we show the
effective transfer integrals for the Ir t2g orbitals on the
nearest-neighbor z bond estimated from the MLWF anal-
ysis. In the calculations, we use ∆d−px,y

≃ 3.09 eV and
∆d−pz

≃ 1.02 eV estimated from the MLWF analysis.
Similar to the case of MgIrO3, the dominant effective
transfer is between the yz and zx orbitals. Meanwhile,
the xy-yz transfer has much larger value than that for

ab-FM ab-AFM

c-FM

(a)

(b)

(��

FIG. 11. (a) Energy measured from the c-AFM state in
ZnIrO3 as a function of the Coulomb repulsion at the Ir site,
UIr, obtained by the LDA+SOC+U calculations. (b) The en-
ergy gap and (c) the antiferromagnetic moment at the Ir site
in the c-AFM state.

MgIrO3, presumably due to the larger buckling of the Ir
honeycomb planes, as mentioned in the main text; the
height difference in the c direction between two neigh-
boring Ir sites is 1.3341 × 10−2c for ZnIrO3, while it is
1.5734×10−3c for MgIrO3. The estimates of the effective
coupling constants between the pseudospins are shown in
Fig. 8.
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FIG. 12. The electronic band structure of ZnIrO3 obtained by
the LDA calculations (UIr = 0) for the paramagnetic metallic
state. The notations are common to those in Fig. 5.
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FIG. 13. The electronic band structure of ZnIrO3 obtained
by the LDA+SOC+U calculations for the c-AFM state with
UIr = 3 eV. The notations are common to those in Fig. 6.
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