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Abstract

Optically and magnetically active point defects in semiconductors are interesting platforms for

the development of solid-state quantum technologies. Their optical properties are usually probed

by measuring photoluminescence spectra, which provide information on excitation energies and

on the interaction of electrons with lattice vibrations. We present a combined computational and

experimental study of photoluminescence spectra of defects in diamond and SiC, aimed at assess-

ing the validity of theoretical and numerical approximations used in first principles calculations,

including the use of the Franck-Condon principle and the displaced harmonic oscillator approx-

imation. We focus on prototypical examples of solid-state qubits, the divacancy centers in SiC

and the nitrogen-vacancy in diamond, and we report computed photoluminescence spectra as a

function of temperature that are in very good agreement with the measured ones. As expected we

find that the use of hybrid functionals leads to more accurate results than semilocal functionals.

Interestingly our calculations show that constrained density functional theory (CDFT) and time-

dependent hybrid DFT perform equally well in describing the excited state potential energy surface

of triplet states; our findings indicate that CDFT, a relatively cheap computational approach, is

sufficiently accurate for the calculations of photoluminescence spectra of the defects studied here.

Finally, we find that only by correcting for finite-size effects and extrapolating to the dilute limit,

one can obtain a good agreement between theory and experiment. Our results provide a detailed

validation protocol of first principles calculations of photoluminescence spectra, necessary both for

the interpretation of experiments and for robust predictions of the electronic properties of point

defects in semiconductors.

I. INTRODUCTION

The last two decades have witnessed the rapid development of quantum information

technologies based on solid state platforms, in particular optically addressable spin-defects

in semiconductors and insulators [1–4]. The opto-electronic properties of point defects used

to realize qubits are most often probed by measuring photoluminescence (PL) spectra, which

yield information about excitation energies and the interaction of the excited electrons with
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lattice vibrations.

A PL experiment collects the photons emitted when an excited electron radiatively decays

to the ground state (GS), and PL spectra of defects usually exhibit a narrow zero-phonon

line (ZPL) and a broad phonon side band (PSB); the latter originates from decay processes

that involve structural relaxation and thus the coupling of electrons and phonons. The

strength of such coupling can be inferred from the DebyeWaller factor (DWF) [5] that is

proportional to the ratio between the emission intensity of the ZPL and that of the entire

spectrum. Applications that require photon coherence or interference benefit from points

defects whose PL signal exhibits a high DWF, indicating a weak coupling between phonons

and electrons. The average number of phonons emitted during an electronic transition is

instead quantified by the Huang-Rhys factor (HRF) [5, 6], which can be estimated from

measured spectra from the logarithm of the DWF.

As for many properties of condensed systems, Density Functional Theory (DFT) has

turned out to be a valuable tool to compute PL spectra, which are used to interpret experi-

ments as well as to provide predictions of the fingerprints of specific defects in materials [7–9].

For example, first principles spectra based on DFT have been recently reported for nitrides,

e.g., GaN [10, 11], AlN [12], and hexagonal born nitride (h-BN) [13–18], diamond [19–29], sil-

icon carbide (SiC) [30–33], and monolayers of transition metal dichalcogenides (TMDC) [34].

These studies have been performed with several useful computational approaches; however,

a systematic assessment of the theoretical and numerical approximations adopted in PL

calculations has not yet been conducted.

In this work, we present a joint theoretical and experimental study of the PL spectra of

prototypical spin-defects in diamond and SiC. We focus on the negatively charged nitrogen-

vacancy (NV−) in diamond [5, 35–39] and the neutral divacancy (VSiV
0
C, abbreviated as

VV0) centers in hexagonal 4H-SiC which have been recently suggested as promising plat-

forms for quantum sensors [40–43]. While the NV− center has just one possible geometrical

configuration in the GS, the VV0 centers may attain four different geometries due to the

layered structure of 4H-SiC, giving rise to different PL signals. We discuss the comparison

between theoretical and experimental PL spectra as a function of temperature, as well as

HRFs and DWFs, and we present a detailed assessment of the theoretical and numerical

approximations involved in first principles calculations. These approximations include the

choice of the density functional, the method adopted to describe excited state (ES) potential
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energy surfaces, finite supercell size and approximations based on the Franck-Condon (FC)

principle and the displaced harmonic oscillator (DHO) approximation.

We compare constrained DFT (CDFT) [44] calculations of ES potential energy surfaces of

triplet states with those carried out with time-dependent DFT (TDDFT), which enable the

description of the ES as a linear combination of multiple Slater determinants. In our TDDFT

calculations we use hybrid functionals with the fraction of exact exchange determined by the

dielectric constant of the system; based on recent studies, these calculations are expected to

yield results in good agreement with the solutions of the Bethe-Salpeter equation [45, 46]. So

far, TDDFT has only been employed to describe spin defects with cluster models and atomic

centered basis sets [26, 29, 47–49] and here we present a comparison between CDFT and

TDDFT calculations carried out for the same supercell and using the same plane-wave basis

sets and density functional. We also investigate finite size effects which affect defect-host

interactions and present results for PL line shapes converged to supercells with more than

10,000 atoms, following the approach proposed by Alkauskas et al. [19, 28, 50]. Finally, we

provide a qualitative assessment of the accuracy of the FC principle and the the displaced

harmonic oscillator (DHO) approximation. By conducting fully converged hybrid functional

calculations for the electronic properties, we obtain good agreement with measured spectra

over a wide temperature range, with small differences between PL line shapes obtained with

phonons computed with semilocal or hybrid functionals.

The rest of the paper is organized as follows. In Sec. II we discuss the methodology for

computing PL spectra using the Huang-Rhys (HR) theory within the generating function

formulation, highlighting all theoretical and numerical approximations. In Sec. III, we give

the details of first-principles calculations and experiments. In Sec. IV, results on the chosen

defects in SiC and diamond, including ZPLs, HRFs, DWFs and PL line shapes are discussed.

Conclusions are given in Sec. V.

II. THEORY AND COMPUTATIONAL METHODOLOGY

Based on Fermi’s golden rule and the FC principle, the PL spectrum generated by the

optical transitions from the ES to the GS potential energy surfaces, as a function of the
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FIG. 1. Schematic diagram illustrating optical processes leading to photoluminescence (PL) spec-

tra. For simplicity only one phonon mode is depicted in the diagram. Ground state (GS) and

excited state (ES) potential energy curves are approximated by harmonic functions with frequency

ωg and ωe, respectively. Vibrational energy levels and wavefunctions are shown as horizontal

dashed lines and gray areas, respectively. ∆Q is the mass-weighted displacement between the local

minimum of the GS and the ES energy curves. Colored arrows represent optical transitions at 0

K. The zero-phonon line (ZPL) originates from the transition between the 0-th vibrational level

of the ES to the 0-th vibrational level of the GS. All other transitions contribute to the phonon

sideband (PSB).

photon energy ~ω, is expressed as [19]:

L(~ω, T ) =
nω3

3πε0c3~
|µeg|2

∑
i

∑
j

Pej(T ) |〈Θej | Θgi〉|2 δ (EZPL + Eej − Egi − ~ω) , (1)

where µeg is the electronic transition dipole moment; n is the refractive index of the material;

|Θgi〉 (|Θej〉) is the i-th (j-th) nuclear wavefunction of the system in the GS (ES) with

vibrational energy Egi (Eej); EZPL is the energy of the ZPL (see Fig. 1). The thermal

distribution function of the vibrational energy in the ES is

Pej(T ) =
e
−
Eej
kBT∑

j e
−
Eej
kBT

, (2)

where kB is the Boltzmann constant. For an ordered solid, under the harmonic approxima-

tion we express the nuclear wavefunctions as products of vibrational wavefunctions:

|Θgi〉 =
∏
k

|φkngik 〉, |Θej〉 =
∏
k

|φknejk 〉, (3)

5



where ngik (nejk ) is the number of k-th phonons in the i-th (j-th) vibrational state of the GS

(ES), and |φkn〉 is the n-th excited state of the k-th phonon mode. The vibrational energies

in the GS and ES are:

Egi =
∑
k

ngik ~ω
g
k, Eej =

∑
k

nejk ~ω
e
k, (4)

where ωgk (ωek) is the frequency of k-th phonon in the GS (ES). Note that by definition Eq. 4

does not include the zero point energy which is included in the term EZPL.

A commonly used approximation is the so called displaced harmonic oscillator (DHO)

approximation, (or HR theory [6]), where Eq. 1 is simplified by assuming that the potential

energy surface of the ES and the GS are identical except for a rigid displacement due to the

difference in their equilibrium structures, i.e., ωgk = ωek (the superscript g and e will hence

be omitted), and:

|〈Θej | Θgi〉|2 =
∏
k

e−Sk(Sk)
ngik −n

ej
k

(
nejk !

ngik !

)[
L
ngik −n

ej
k

nejk
(Sk)

]2

, (5)

where Sk is the partial HRF and accounts for the average number of k-th phonons that

participate in the transition. Ln−mm are the associated Laguerre polynomials [51]. For the

calculations of PL line shapes, only the phonons of the GS are computed and used within the

DHO approximation. At zero temperature, Eq. 1 may be further approximated by setting

to zero the vibrational energy in the ES (i.e., we only consider j = 0, and ne0k = 0), namely:

L(~ω, T = 0) ∝ ω3
∑
i

[∏
k

e−Sk

ngik !
(Sk)

ngik

]
δ (EZPL − Egi − ~ω) . (6)

To avoid the evaluation of the overlap integrals entering Eq. 5 and the sum over all

vibrational states of the GS and the ES, we adopt the generating function approach [52, 53]

to compute PL spectra. In the DHO approximation Eq. 1 can be obtained as the Fourier

transform of the generating function G(t, T ):

L(~ω, T ) ∝ ω3

∫ ∞
−∞

dtG(t, T )eiωt−
λ
~ |t|−i

EZPL
~ t, (7)

where

G(t, T ) = exp

{
−
∑
k

Sk
[(

1− eiωkt
)

+ n̄k(T )
(
2− eiωkt − e−iωkt

)]}
, (8)

and λ accounts for the broadening of the line shape. n̄k(T ) is the average occupation number

of the k-th phonon mode:

n̄k(T ) =
1

e
~ωk
kBT − 1

. (9)
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In practice, one may write Eq. 8 as the following alternative expression:

G(t, T ) = eS(t)−S(0)+C(t,T )+C(−t,T )−2C(0,T ), (10)

where S(t) =
∑

k Ske
iωkt and C(t, T ) =

∑
k n̄k(T )Ske

iωkt are evaluated as the Fourier trans-

forms of the spectral densities:

S(~ω) =
∑
k

Skδ (~ω − ~ωk) , (11)

C(~ω, T ) =
∑
k

n̄k(T )Skδ(~ω − ~ωk). (12)

In Eqs. 11-12, the δ-functions are replaced by Gaussian functions with ω-dependent broad-

ening to account for a continuum of vibrational modes participating in the optical transition

(see Sec. IV B).

At zero temperature, we have n̄k(T = 0) ≈ 0 and C(~ω, T = 0) ≈ 0, and Eq. 7 is

equivalent to Eq. 6 with the δ-function replaced by a Lorentzian function with a broadening

λ. In order to evaluate Eq. 7, the partial HRF Sk, EZPL, and phonon frequencies ωk are

required as input. We compute Sk as:

Sk =
ωk∆Q

2
k

2~
, (13)

where ∆Qk is the mass-weighted displacement along the k-th mode, evaluated as:

∆Qk =
N∑
α=1

∑
i=x,y,z

√
Mα∆Rαiek,αi. (14)

In Eq. 14, ek,αi is the eigenvector of the k-th phonon mode on the α-th atom in the i-th

direction; Mα is the mass of the α-th atom, and ∆Rαi = (Rαi)e− (Rαi)g is the displacement

between the ES and the GS equilibrium atomic structures in the i-th direction. Within the

harmonic approximation, ∆Qk may be equivalently computed as [19]:

∆Qk =
1

ω2
k

N∑
α=1

∑
i=x,y,z

Fαi√
Mα

ek,αi. (15)

Here Fαi is the GS force on the α-th atom in the i-th direction evaluated at the ES equilib-

rium structure.

In this work, we simulate PL spectra at finite temperature using Eq. 7, with parameters

computed from first principles. In particular, we use DFT to obtain the GS equilibrium
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atomic structure, Rg, the GS forces, F, the phonon modes, e, and the phonon frequencies

ω; the ES equilibrium atomic structure, Re, is obtained with CDFT and, in some cases

validated by carrying out TDDFT calculations. The resulting PL line shapes are then com-

pared with measured PL spectra at finite temperature. Below, we report our results and we

systematically investigate the validity of the chosen theoretical and numerical approxima-

tions, including the use of the FC and the DHO approximations, which are at the core of

the HR theory.

III. TECHNICAL DETAILS

A. First principles calculations

The electronic structures of the defects in diamond and 4H-SiC are obtained using DFT

and the planewave pseudopotential method, as implemented in the Quantum Espresso

package [54–56]. The planewave energy cutoff was set to 80 Ry. We used SG15 ONCV

norm-conserving pseudopotentials [57, 58] and the semi-local functional by Perdew, Burke,

and Ernzerhof (PBE) [59], the dielectric dependent hybrid (DDH) functional [60] and the

screened hybrid functional by Heyd, Scuseria, and Ernzerhof (HSE) [61, 62]. The fraction of

exact exchange used in the DDH functional was determined by the inverse of the macroscopic

dielectric constant of the system, resulting in 18% and 15% of exact exchange for diamond

and 4H-SiC [60, 63], respectively. The macroscopic dielectric constants were computed by

including the full response of the electronic density to the perturbing external electric field

at the level of hybrid functional, and the fraction of exact exchange was self-consistently

determined from the dielectric constant [60].

We used a (4× 4× 4) supercell with 512 atomic sites and a (5× 5× 2) supercell with 400

atomic sites for the NV− center in diamond and VV0 centers in 4H-SiC, respectively. In the

cases of VV0 centers in 4H-SiC, convergence tests were carried out with large supercells (up

to (8 × 8 × 2)). We used the lattice constant optimized with each specific functional (see

Tab. S1 of the Supplementary Information (SI) [64]). The Brillouin zone was sampled with

the Γ point.

The paramagnetic ESs were computed using the CDFT (also called ∆SCF) method,

where one electron is promoted from the highest occupied to the lowest unoccupied state in
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the same spin channel (see Sec. II of the SI for details of CDFT calculations). The energy

EZPL was computed as the difference of the total energy of the relaxed ES (with CDFT)

and that of the GS. The CDFT method has been shown to yield reliable results for systems

with localized electronic states, e.g., the NV− center in diamond [44] and VV0 centers in

4H-SiC [33, 42, 65]. We also performed TDDFT calculations within the Tamm-Dancoff

approximation to assess the accuracy of our CDFT results. We obtained the ES low-lying

energies and eigenvectors by iteratively diagonalizing the linearized Liouville operator, as

implemented in the WEST code [66, 67]. Due to the higher computational cost of TDDFT

calculations, we used a (3×3×3) supercell and a (5×3
√

3×1) supercell for the NV− center

in diamond and VV0 centers in 4H-SiC, respectively.

Phonon modes of bulk and defective solids were computed using the frozen phonon ap-

proach, with configurations generated with the PHONOPY package [68] and a displacement

of 0.01 Å from equilibrium structures. Phonon calculations for pristine bulk systems were

carried out with the PBE, DDH and HSE functionals, but those for defective solids were

performed only with PBE due to the high computational cost of hybrid functionals. We

then approximated the values of hybrid-DFT phonons by using a scaling factor equal to

the ratio of hybrid-DFT and PBE phonon results in the pristine bulk systems. We verified

that this approximation yields accurate phonon frequencies for bulk systems (see Sec. IV

of the SI for details). We evaluated finite size effects on computed PL line shapes, HRFs

and spectral densities following the force constant matrix embedding approach proposed by

Alkauskas et al. [19, 28, 50] (see Sec. V of the SI).

B. Experiments

The SiC experiments were realized in a confocal microscopy setup (0.67 NA objective)

with the sample in a closed-cycle cryostat at 10 K, unless mentioned otherwise. The sample

was diced from a commercial high-purity semi-insulating 4H-SiC wafer (Cree) containing

intrinsic concentrations of VV0 (1015-1016 cm−3). The sample was excited within the VV0

absorption sideband with a 908 nm laser (QPhotonics, ∼100 mW), and the resulting PL

was filtered using several 1000 nm long-pass filters. The PL was then measured using a

spectrometer with a 300 g/mm grating blazed for 1.2 µm and an InGaAs camera (Teledyne

Princeton Instruments) with a spectral resolution of ∼0.3 nm. Careful calibration was
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performed to correct for the entire setup transmission and the camera response using a NIST

calibrated tungsten-halogen white light source (StellarNet). Optically-detected magnetic

resonance at a weak static magnetic field (<20 G) with microwave excitation delivered using

a printed circuit board was used to obtain independent contrast (i.e., the difference in PL

with and without microwave excitation) for the various VV0 sites. The DWF is calculated

as the ratio of the integrated intensity of the ZPL to the total integrated intensity. Though

most of the PL is within our detection bandwidth (900-1600 nm), the sideband may be very

slightly underestimated due to weak emission extending beyond this range.

Similarly, for the NV− center in diamond, the PL spectra were taken on an ensemble of

NV− centers using a home-built confocal microscope with a flow cryostat (Janis - LakeShore

Cryotronics) for temperature studies. The sample was a IB diamond (Sumitomo) with a

high nitrogen concentration synthesized via high-pressure / high-temperature growth. The

sample was electron irradiated (2 MeV, 1017 cm−2) and annealed (850 C, 2 hr) resulting

in a high density of NV− centers. The NV− center ensemble was photo-excited within the

absorption sideband using 532 nm light and the PL measurements were collected using a

high resolution spectrometer with a visible camera (Teledyne Princeton Instruments) with

∼0.1 nm spectral resolution. The spectrum intensity was also calibrated using a tungsten

halogen light source (Ocean Optics) to correct for transmission losses in the experimental

set-up.

IV. RESULTS AND DISCUSSION

A. Zero-phonon lines

The NV− center in diamond is composed of a nitrogen impurity and an adjacent carbon

vacancy (VC) with an additional electron, as shown in Fig. 2(a) [37, 38]. It has C3v symmetry,

and three defect orbitals are present within the band gap of diamond: the a1 orbital and the

two-fold degenerate e orbitals, as shown in Fig. 3(a). Defect orbitals are mainly localized

on three carbon atoms around the VC (see Fig. S1 of the SI).

The neutral divacancy center in 4H-SiC is composed of a silicon vacancy (VSi) and an ad-

jacent carbon vacancy (VC) and is denoted as VSiV
0
C [40, 41]. We consider the 4H polytype

of SiC, 4H-SiC, with ABCB stacking along the c-axis. 4H-SiC contains two nonequivalent
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hexagonal (h) and quasi-cubic (k) sites for each type of atom, as shown in Fig. 2(b). There-

fore, the VV0 center can occur in four distinct configurations (hh, kk, hk and kh), and the

experimentally measured PL ensemble is a mixture of contributions from all configurations.

Experimentally, we used microwave-assisted spectroscopy to separate the PL of different

configurations. In our computational study, we considered the hh, kk, and hk configu-

rations denoted as hh-VV0, kk-VV0 and hk-VV0. The first two c-axis orientated defects

(hh-VV0 and kk-VV0) have C3v symmetry, with an a1 state and two sets of degenerate e

states within the band gap of 4H-SiC (see Fig. 3(b)). The a1 orbital and lower e orbitals are

mainly localized on three carbon atoms around the VSi (see Fig. S1 of the SI). For NV−, hh-

VV0 and kk-VV0, we studied the optical transition between the a1 orbital and the (lower) e

orbitals, which corresponds to the transition between the 3A2 and the 3E many-body states.

For the hk configuration, which has C1h symmetry, we studied the a′ and the a′′ transition

accounting for the transition between the 3A′′ and the 3A′ state.

We computed EZPL using the PBE, DDH, and HSE functionals in the DHO approxima-

FIG. 2. Ball and stick representation of the defect centers studied in this work. (a) NV− center in

diamond. (b) Divacancy (VSiV
0
C) centers in 4H-SiC. The planes are labelled with h and k according

to the symmetry of lattice sites. Three non-equivalent configurations (hh, kk and hk) of the VSiV
0
C

centers are shown. The kh configuration was not investigated computationally, due to the lower

quality of the experimental spectrum for this configuration.
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FIG. 3. Ground state (GS) electronic structure of (a) NV− center in diamond and (b) VV0 centers

in 4H-SiC at the DDH level of theory. Displacements between the excited state (ES) and the GS

equilibrium structures of the NV− center in diamond and the VV0 centers in 4H-SiC are shown

in (c) and (d), respectively. The red arrows represent mass-weighted displacements (∆Q) of each

atom with the magnitude being amplified by a factor of 10. The ∆Q of the NV− center is mainly

localized on the nitrogen atom and three nearest neighbor carbon atoms around the carbon vacancy.

The ∆Q of the VV0 centers is mainly localized on three nearest neighbor carbon atoms and nine

next nearest neighbor silicon atoms around the silicon vacancy, as well as three nearest neighbor

silicon atoms around the carbon vacancy.

tion (note that the zero-point energy contributions of the GS and ES phonons cancel out

within the DHO approximation). Triplet ESs were computed using CDFT with electronic

configuration a1
1e

2
xe

1
y (see Sec. II of the SI for details of CDFT calculations). Results for all

defect systems at different levels of theory are summarized in Tab. I. The PBE functional

underestimates the measured EZPL of the NV− by 0.24 eV, while the DDH and HSE func-

tionals overestimate it by 0.26 eV. In the case of VV0 centers, particular attention must be

exercised to account for finite size effects. For small cells (e.g. (5 × 5 × 2) supercell), the

experimental order of the ZPL of the various defect configurations is not reproduced. Hence

we computed EZPL at the PBE level of theory for (5× 5× 2) and (8× 8× 2) supercells; we
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then used the difference between these two values to estimate the converged hybrid-DFT

EZPL starting from our results obtained with (5 × 5 × 2) supercells. The converged results

reproduce the experimental trend. Similar to our results for diamond, we find that the PBE

functional underestimates the measured EZPL of the VV0 centers by ∼0.16 eV, while the

DDH (HSE) yields an overestimate of ∼0.11 eV (∼0.12 eV). Tab. I summarizes our results

and previously reported theoretical predictions of EZPL. We note that although the EZPL

obtained with the HSE functional is generally in good agreement with experiments, theo-

retical results exhibit a variance up to 0.3 eV due to different choices of pseudopotentials,

supercell sizes and sampling of the reciprocal space.

To estimate the accuracy of CDFT for the ES potential energy surface, we compared

results obtained with CDFT and TDDFT for NV−, hh-VV0, and kk-VV0 at the DDH level of

theory. TDDFT enables the description of the ES as a linear combination of multiple Slater

determinants. In our TDDFT calculations we use hybrid functionals with the fraction of

exact exchange determined by the dielectric constant of the system; based on recent studies,

these calculations are expected to yield results in good agreement with the solutions of the

Bethe Salpeter equation [45, 46]. Previous TDDFT studies of these defect systems used

cluster models and atomic-centered basis sets [26, 47, 48]. Here we consistently compared

TDDFT and CDFT calculations performed with the same basis set and pseudopotential,

in the same cell and with the same functional. After obtaining the equilibrium structure

of the ES using the CDFT approach, we selected several configurations along the linear

path connecting equilibrium atomic structures of the GS and the ES, and carried out single-

point DFT, CDFT, and TDDFT calculations, from which configuration coordinate diagrams

were obtained, as shown in Fig. 4. The comparison between TDDFT and CDFT results

was carried out using the configuration a1
1e

1.5
x e1.5

y in CDFT because we could not converge

the conguration a1
1e

2
xe

1
y when using the DDH functional. The difference between CDFT

calculations at the PBE level using the a1
1e

2
xe

1
y and a1

1e
1.5
x e1.5

y electronic configurations is

∼0.04 eV; assuming an energy difference of the same order of magnitude at the DDH level, we

deemed the CDFT/TDDFT comparison with the a1
1e

1.5
x e1.5

y configuration to be a meaningful

one. We found that the TDDFT energies of the 3E states are 0.1 (0.04) eV smaller than

CDFT energies for NV− (VV0); the minimum of the TDDFT curve is close to that of the

CDFT curve, with a difference smaller than 6% for all three systems. An analysis of our

TDDFT results shows that the spin-conserving transition between the a1 and the e orbitals
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TABLE I. Energy of the zero-phonon line (EZPL, eV) for spin-conserving transitions computed

using different levels of theory and a (4 × 4 × 4) supercell for the NV− center in diamond, and a

(5× 5× 2) supercell for the VV0 centers in 4H-SiC. The extrapolation value of the EZPL with the

finite size corrections is reported in parentheses. The finite size corrections are calculated as the

difference of EZPL values between the (8× 8× 2) and the (5× 5× 2) supercell at the PBE level of

theory. Previous theoretical predictions on EZPL are also shown.

Hosts Defects This work Previous Theoretical Work Expt.

PBE DDH HSE PBE DDH HSE

Diamond NV− 1.706 2.205 2.205 1.72a, 2.22a 2.23a, 1.955b 1.945 [37]

1.706b

4H-SiC hh-VV0 1.086 (0.937) 1.346 (1.196) 1.371 (1.221) 1.03a, 1.30a 1.33a, 1.056c, 1.095

0.92c 1.13d, 1.14e

kk-VV0 1.105 (0.951) 1.355 (1.201) 1.372 (1.218) 0.94c 1.044c, 1.14d 1.096

hk-VV0 1.075 (0.979) 1.355 (1.259) 1.365 (1.269) 0.97c 1.103c, 1.21d 1.149

a Ref. [63]: Calculations were carried out using the Quantum Espresso package with ONCV

pseudopotentials (PPs). The planewave energy cutoff was set to 75 Ry. The Brillouin zone was sampled

with the Γ point. A (4× 4× 4) ((5× 3
√

3× 1)) supercell was used for NV− (hh-VV0).
b Ref. [44]: Calculations were carried out using the VASP code with PAW PPs. The planewave energy

cutoff was set to 420 eV. The Brillouin zone was sampled with the Γ point. A (4× 4× 4) supercell was

used for NV−.
c Ref. [42]: Calculations were carried out using the VASP code with PAW PPs. The Brillouin zone was

sampled with the Γ point. A (10× 10× 3) ((8× 8× 3)) supercell was used for PBE (HSE) calculations.

HSE EZPL was computed with PBE structure.
d Ref. [65]: Calculations were carried out using the VASP code with PAW PPs. The planewave energy

cutoff was set to 400 eV. The Brillouin zone was sampled using a 2× 2× 2 k-point mesh. A (4× 3× 1)

supercell was used for VV0.
e Ref. [33]: Calculations were carried out using the VASP code with PAW PPs. The planewave energy

cutoff was set to 400 eV. The Brillouin zone was sampled with the Γ point. A (5× 5× 2) supercell was

used for VV0. HSE EZPL was computed with PBEsol structure.
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contributes by more than 95% to the whole transition to the 3E state, indicating that the

3E state can be well-described by a single Slater determinant. This finding is in good

agreement with that of a previous TDDFT study using a cluster model, atom-centered basis

sets and the PBE0 functional [47]. We note that the quality of the agreement between

TDDFT and CDFT depends on the functional and the system. For example, we found

a difference of ∼0.2 eV in the excitation energy and a difference greater than 12% in the

configuration coordinate of the minimum between TDDFT and CDFT results when using

the PBE functional (see Fig. S3 of the SI). In addition, in the case of defect systems with

singlet GS and ES, we expect non-negligible differences between TDDFT and CDFT results,

since the accurate description of a singlet ES requires a linear combination of at least two

Slater determinants [14, 69]. In that case the use of quantum embedding theories (QDET),

should be preferable to describe strongly correlated states [70–72].

To understand the effect of lattice vibrations on optical transitions, we analyzed in detail

the mass-weighted displacement ∆Q computed at different levels of theory (see Sec. III of

the SI). The magnitude of the displacement follows the relation: HSE > DDH > PBE and

the difference of the results obtained with different functionals can be up to 10%. The same

trend can also be found for energies of bulk phonons, and can be understood by noting

that the bonds in the diamond and SiC crystals turn out to be stiffer with HSE than with

DDH, which are in turn stiffer than with PBE, as reflected in the difference of predicted

lattice constants (see Tab. S1 of the SI). ∆Q is localized on the neighboring atoms of the

defect center, as shown in Fig. 3(c) and (d), consistent with the localization of defect orbitals

involved in the optical transition. We also found that the symmetry of the ES is reduced

from C3v to C1h for NV−, hh-VV0 and kk-VV0, and hence in principle both a1 type and e

type phonons could participate in the optical process. Although the average symmetry of

the ES structure turns out to be C3v due to the dynamic Jahn-Teller effect [22, 73], here we

used the ES equilibrium structure with C1h symmetry to include the coupling with e type

phonons. Hence the ES configuration used is a1
1e

2
xe

1
y.

B. Huang-Rhys factor and spectral density of the electron-phonon coupling

Tab. II summarizes HRFs computed using Eq. 13 at different levels of theory and in-

cludes combinations of mass-weighted displacements, ∆Qk, computed with DDH or HSE

15



and phonons computed with PBE. We used a scaling factor (see Sec. IV of the SI) to ap-

proximate DDH (HSE) phonon frequencies using PBE results; the factor was evaluated from

the ratio of frequencies of bulk systems optical phonons computed at different levels of the-

ory, an approximation that introduces a root-mean-square error (RMSE) of only 0.4 meV

for bulk 4H-SiC.

We find that the HRFs computed with the PBE functional are smaller than those com-
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FIG. 4. Configuration coordinate diagrams describing the total energies of the 3A2 ground state

(GS) and the 3E excited state (ES) along the relaxation path resulting from CDFT with electronic

configuration a1
1e

1.5
x e1.5

y for the NV− center in diamond and the hh-VV0 and the kk-VV0 centers

in 4H-SiC. Calculations are performed at the DDH level of theory. Dashed vertical lines denote

the locations of the local minimum by fitting the energy curves with quadratic functions. The

energy of the effective phonon obtained from the fitting process is 66.4 meV for the 3A2 state and

72.0 (71.1) meV for the 3E state, when computed with CDFT (TDDFT) for NV−. The energy

of the effective phonon is 36.8 meV for the 3A2 state and 39.3 (38.6) meV for the 3E state, when

computed with CDFT (TDDFT) for hh-VV0. The energy of the effective phonon is 38.7 meV for

the 3A2 state and 41.7 (41.2) meV for the 3E state, when computed with CDFT (TDDFT) for

kk-VV0.
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TABLE II. Huang-Rhys factors (HRFs) for spin-conserving transitions computed using Eq. 13 with

different levels of theory. PBE−∆Q denotes that ∆Q used in Eq. 13 is computed using Eq. 15 with

forces and phonons computed at the PBE level. PBE−ph denotes that phonons used in Eq. 13

are computed at the PBE level. Similar notations are used for DDH and HSE. Only one digit was

kept for HRFs computed with the largest supercells considering the uncertainty introduced in the

extrapolation procedure (see Sec. V of the SI). Experimental HRFs for VV0 centers are estimated

as the negative logarithm of the Debye-Waller factor (DWF).

Hosts Defects Cell Size PBE−∆Q DDH−∆Q HSE−∆Q Expt.

PBE−ph PBE−ph DDH−ph PBE−ph HSE−ph

Diamond NV− (4× 4× 4) 2.94 3.20 3.32 3.46 3.64 3.49 [35]

(12× 12× 12) 3.0 3.2 3.3 3.5 3.7 3.49 [35]

4H-SiC hh-VV0 (5× 5× 2) 2.55 2.55 2.64 2.72 2.86 3.30

(16× 16× 5) 3.0 3.0 3.0 3.2 3.3 3.30

kk-VV0 (5× 5× 2) 2.51 2.53 2.62 2.68 2.81 2.80

(16× 16× 5) 2.6 2.6 2.7 2.8 2.9 2.80

hk-VV0 (5× 5× 2) 2.26 2.46 2.54 2.53 2.66 2.58

(16× 16× 5) 2.5 2.7 2.8 2.8 2.9 2.58

puted with hybrid functionals, consistent with the magnitude of the structural relaxations

upon optical excitation (see Tab. S2 of the SI). In addition, the HRFs computed with hybrid

functionals are larger when phonons are obtained at the DDH (HSE) level, consistent with

the fact that the phonon frequencies computed with hybrid functionals are higher than those

obtained at the PBE level of theory.

The spectral densities of electron-phonon coupling (Eq. 11) are computed with the (4×

4×4) supercell for NV− and the (5×5×2) supercell for VV0 centers and shown in Fig. 5(a)

and (c). The hybrid-DFT peak intensity is higher than that computed with PBE, consistent

with the values of the HRF. As for spectral densities at the level of hybrid functionals, we

find that peak positions are shifted to higher energies, compared with the PBE results, when

phonons are computed with hybrid functionals.

In order to evaluate finite size effects on the HRFs and spectral densities, we need to

compute ∆Qk for large supercells with either Eq. 14 or Eq. 15. For the smallest supercell,
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FIG. 5. Spectral densities of the electron-phonon coupling, S(~ω), for defect systems computed at

different levels of theory. The labels follow the same notation as in Tab. II. Gaussian functions

with varying standard deviation (σ) were used to broaden the δ-function in Eq. 11. For the NV−

center (VV0 centers), σ is chosen to vary linearly from 6 (3.5) meV for the lowest-energy phonon

to 1.5 (1.5) meV for the highest-energy phonon.

Eq. 14 and Eq. 15 yield results that differ by less than 3% (see Fig. S6 of the SI); hence for

larger supercells we used Eq. 15 which converges more rapidly as a function of the distance

from the defect center due to the fact that inter-atomic interactions in diamond and 4H-SiC

are short-ranged [19, 28, 50]. Previous work on NV− has shown that forces on atoms that are

separated from the defect by more than 5 Å yield a negligible contribution to the HRF [28].

For VV0 centers, we compared results for the HRF and spectral density using forces from

a (7 × 7 × 2) supercell and those from a (5 × 5 × 2) supercell (see Fig. S7 of the SI). We

found a difference less than 5% in the HRFs and the spectral densities are almost identical.

In order to obtain phonon frequencies and modes for large supercells, we employed the force

constant matrix embedding approach [19], and details can be found in Sec. V of the SI.

The HRFs computed in the dilute limit for NV− ((12×12×12) supercell) and VV0 centers

((16×16×5) supercell) differ by 2% and 5-15% respectively, relative to those obtained with

(4× 4× 4) and (5× 5× 2) supercells. Computed HRFs for NV− are in close agreement with
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previous theoretical predictions [19, 22, 28] and experiments [35]. Computed HRFs for VV0

centers are also in close agreement with our experiments. A previous theoretical work by

Hashemi et al. [33] reported a HRF of 2.75 for hh-VV0. This value falls in the range of our

results computed with the (5 × 5 × 2) supercell and is 15% smaller than our experimental

value likely due to finite size effects not being fully taken into account in Ref. [33]. In

the dilute limit, we found that the spectral densities are smoother and exhibit a linear tail

below 20 meV, reflecting the coupling with long-range acoustic phonons. Detailed analysis

of spectral densities and vibrational modes can be found in Sec. VI of the SI.

C. Photoluminescence line shapes and Debye-Waller factors

In Fig. 6 we show the PL line shapes computed using the generating function approach

(Eq. 7) with HRFs computed at different levels of theory and different supercell sizes, com-

pared with experiment. The spectra consist of a sharp ZPL and a structured PSB. The

broadening of the PSB is ∼500 meV for NV− and ∼300 meV for VV0 centers. Note that

PL line shapes computed with small supercells show sharper peaks and a gap of 5-10 meV

between the ZPL and the PSB. The peaks located at 30 (23) meV from the ZPL for NV−

(hk-VV0) also stem from finite size effects. In our calculations, the contribution of the e

type phonons is computed using the HR theory, which was shown to represent an accurate

approximation in the recent work by Razinkovas et al. [28]. These authors computed the

contribution of e type phonons to the PL and absorption line shapes for NV− by explicitly

solving the multi-mode E ⊗ e Jahn-Teller problem; they showed that if the HRF of e type

phonons lies between 0.5 and 1.0, then the HR theory yields reasonable results for the PL

line shape. For the NV− and VV0 centers, we find a HRF of e type phonons of about 0.5

and 1.0, respectively, indicating that the HR theory should be accurate.

We find that computed and measured line shapes agree well, both in terms of the peak

positions and intensity of line shapes, when calculations are performed with the largest

supercells ((12 × 12 × 12) for NV− and (16 × 16 × 5) supercell for VV0 centers). When

computing phonons with the PBE functional, we find that the PSB is clearly dominated by

coupling with the 63 meV phonon for NV−, close to the experimental value 64 meV [35]. The

PSB also shows peaks at 122 meV, 135 meV, 150 meV and 161 meV from the ZPL, in good

agreement with the experimental values 122 meV, 138 meV, 153 meV and 163 meV [35]. As
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FIG. 6. Photoluminescence (PL) line shapes computed at different levels of theory at low temper-

ature (8 K for the NV− center in diamond and 10 K for VV0 centers in 4H-SiC). The labels follow

the same notation as in Tab. II. We used λ = 0.3 (0.1) meV in Eq. 8 for the NV− center (VV0

centers) to reproduce the experimental broadening of the zero-phonon line. The experimental data

for the NV− center in diamond are from Ref. [19]. The small peak marked with a star ‘∗’ in

the experimental curve is the ZPL of another center and should be disregarded in the comparison

between theory and experiment presented here. The intensity of the experimental line shapes has

been scaled to match the peaks of the computed line shapes.

for the relative intensity of peaks, the best agreement with experiment is obtained using HSE

for the calculation of ∆Q and PBE phonons, respectively. When phonons are computed at

the DDH (HSE) level, the 63 meV peak is shifted to 66 (67) meV, and the 161 meV peak

to 168 (170) meV. Overall the agreement with experiment is good in all cases.

Similar conclusions can be drawn for the VV0 centers. When computing phonons with

PBE, we obtain peak positions at 34 meV and 72 meV from the ZPL in the PSB, in

good agreement with experiments. Calculated PSB also exhibits small peaks located at

90 meV from the ZPL, originating from the coupling with high energy phonons. As for
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the relative intensity of peaks, those computed with DDH ∆Q or HSE ∆Q are in slightly

better agreement with experiments than with PBE, but generalizations to other defects or

materials are difficult to make. When computing phonons with the DDH or HSE functionals,

the peaks are slightly shifted to lower energy by 1-3 meV, depending on the peak and the

agreement with experiments is improved, although again in all cases we find good agreement

with the measured spectra. We emphasize that the ability to resolve phonon side bands is

important in order to build predictive capabilities to identify fingerprints of defects using

first principle calculations.

From the PL line shape we can obtain the DWF, which is defined as the ratio of the

emitted light from the ZPL to the total emitted light. At very low temperature, the DWF

is computed as DWF = e−S = e−
∑
k Sk . In Tab. III we report the DWFs evaluated for

the largest supercells. The experimental and theoretical DWFs (see Sec. III B) are in good

agreement, and in the case of the VV0 centers, we find that the computed DWFs show the

trend hh-VV0 < kk-VV0, consistent with experiments. The relation kk-VV0 < hk-VV0 can

be reproduced at the PBE level of theory. The computed DWF for hh-VV0 ranges from

3.6% to 5.3%, smaller than that previously reported, 6.39% [33], likely due to an incomplete

finite size extrapolation in Ref. [33]. We also note that a recent experiment on VV0 centers

reported DWFs of 9% and 10% for kk-VV0 and hk-VV0 [74], which we consider here to be

overestimates, based on our computed and measured spectra. Overall, when using hybrid

functionals to compute the GS and ES electronic structure we obtain a good agreement

with experiments, with small differences between results for phonons obtained with PBE or

hybrid-functionals, provided an extrapolation to the dilute limit is performed.

D. Temperature dependent photoluminescence line shapes

In Fig. 7(a) we show PL line shapes as a function of temperature for NV−. We included

the temperature effect on the phonon population and the line shape broadening using Eq. 7.

We tuned the parameter λ to obtain the best agreement with experiment; this parameter

describes the broadening of the line shape, and is related to the lifetime of the ES and the

variation of the local environment of the defect in the experimental samples. The values

of λ obtained in our fit to experimental data are reported in the inset of Fig. 7(a). We

approximated λ with a quadratic function of T for NV−, consistent with the findings of
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TABLE III. Computed Debye-Waller factor (DWF) (%) for spin-conserving transitions using dif-

ferent levels of theory. Results computed with the (12 × 12 × 12) supercell for the NV− center

in diamond and (16 × 16 × 5) supercell for VV0 centers in 4H-SiC are shown. We used the same

notation as in Tab. II to denote different levels of theory.

Hosts Diamond 4H-SiC

Defects NV− hh-VV0 kk-VV0 hk-VV0

PBE−∆Q PBE−ph 5.0 5.2 7.1 8.5

DDH−∆Q PBE−ph 4.1 5.3 7.2 6.8

DDH−ph 3.7 4.8 6.6 6.1

HSE−∆Q PBE−ph 3.0 4.2 6.3 6.2

HSE−ph 2.5 3.6 5.5 5.4

Expt. 3.2 [19] 3.69 6.11 7.54

Ref. [75] for T ≥ 100 K. We note that the ZPL width was shown to depend on T 5 due to

the dynamic Jahn-Teller effect of the 3E ES for T ≤ 80 K [73, 76]. The T 5 temperature

dependence was not considered in our work due to the lack of experimental data.

Overall, the calculated temperature-dependent PL line shapes agree well with experi-

ments. As the temperature increases, the ZPL width increases due to the decrease of the

lifetime of the ES. The intensity of the PSB in the 30 meV range around the ZPL also

increases, indicating an increasing population of the higher vibrational levels of the ES long-

range modes. The increasing population causes the broadening and the small shift of the

first peak of the PSB (about 63 meV lower than ZPL) towards lower energies, as observed

both theoretically and experimentally. As for the PSB with energy higher than the ZPL, we

find that a shoulder peak at about 60 meV becomes increasingly more intense as the tem-

perature increases, due to the coupling with the quasi-local mode in the ES. Temperature

effects on the electronic structure, atomic structure and lattice parameters were neglected in

our calculations. These effects are assumed to be relatively small considering the ∼3 meV

shift of the ZPL from 8 K to 300 K observed in experiments.

The measured and computed temperature-dependent PL line shapes for kk-VV0 (Fig. 7(b))

are in general good agreement. Also in this case, we observe a broadening of the ZPL and

the PSB and the increase of the intensity around the ZPL as the temperature increases.
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FIG. 7. Computed photoluminescence (PL) line shapes (solid lines) of (a) the NV− center in

diamond and (b) the kk-VV0 center in 4H-SiC as a function of temperature. The best agreement

with experiments is obtained when Huang-Rhys factors (HRFs) are calculated with HSE−∆Q

and PBE−ph (DDH−∆Q and DDH−ph) for the NV− center (kk-VV0 center) (see Tab. II). The

experimental line shapes of the NV− center are averaged over twenty measurements at 8 K and 300

K and over two measurements at 150 K, 200 K and 250 K in (a). The 8 K data for the NV− center

in diamond in (a) is from Ref. [19]. The broadening parameter λ used in Eq. 8 for the theoretical

line shapes is shown in the insets as a function of temperature. The black arrow in (a) indicates a

shoulder at approximately 60 meV.

The chosen broadening parameter λ turns out to be a non-linear function of the tempera-

ture. Our temperature dependent results show that converged calculations can successfully

discern features in the PSB also as a function of T .

E. Displaced harmonic oscillator and the Franck-Condon approximations

We have presented results for PL line shapes obtained using the generating function

approach (Eq. 8), which in turn was derived using the FC and the DHO approximations.

The former assumes that the transition dipole moment |µeg| is independent of changes in

the atomic structure, and the latter assumes that the vibrational modes of the GS and the

ES are identical except for a displacement. We present below an analysis of the validity

of these two approximations using a one-dimensional (1D) model, where just one effective
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phonon mode is considered. Previous studies have shown that the 1D model provides an

accurate description of defect systems with strong electron-phonon coupling (HRF � 1)

and serves as a valuable approximation to cases with weak or intermediate electron-phonon

coupling [8, 10]. The systems considered in this work, e.g., NV− and kk-VV0, yield HRF ≈ 3

(intermediate electron-phonon coupling); hence the use of the 1D model appears to be

justified, although the Herzberg-Teller (HT) effect of symmetry forbidden vibrational modes

and the Duschinsky rotation effect between vibrational modes of the GS and the ES [77] are

not captured by the model.

In the 1D model, we considered one effective phonon mode which includes only vibrations

projected along the direction of the configuration coordinate Q, which connects the equilib-

rium atomic structures of the GS and the ES (see Fig. 1). The frequency of such effective

phonon mode is calculated as the weighted average over all phonon frequencies in either the

GS or the ES:

Ω{e,g} =

∑
k ω

2
{e,g};k∆Q

2
k∑

k ∆Q2
k

. (16)

At the PBE level of theory we obtain: for NV−, Ωg = 63.06 meV, Ωe = 66.38 meV, and

∆Q =
√∑

k ∆Q2
k = 0.653 amu0.5 Å; for kk-VV0, Ωg = 38.11 meV, Ωe = 43.45 meV, and

∆Q = 0.763 amu0.5 Å. With these parameters we can also compute the HRF for the 1D

model as HRF = Ωg∆Q2

2~ . We obtained 3.22 (2.65) for NV− (kk-VV0), close to the HRF from

the all-phonon calculation with the (4× 4× 4) ((5× 5× 2)) supercell, which is 2.94 (2.51).

Fig. 8(a) shows the PL spectra of NV− and kk-VV0 computed using the 1D model with

(i) actual Ωg different from Ωe, (ii) Ωg the same as Ωe and (iii) Ωe the same as Ωg. We

find that for the NV− center, the approximation (iii) yields 2.3% and 3.1% relative error

at T = 10 K and at T = 300 K relative to (i). This result agrees with those reported by

Razinkovas et al. [28]. In the case of the kk-VV0 center, the approximation (iii) yields a 6.0%

and 9.5% relative error at T = 10 K and at T = 300 K, respectively, arising from the greater

difference between Ωg and Ωe. The error caused by using (iii) increases as a function of T ,

since the number of excited vibrational states contributing to the PL spectrum increases.

Since excited vibrational states are more likely to be populated in kk-VV0 than in NV−,

due to the smaller effective phonon frequency, the error is larger for the former. The DHO

approximation used in the calculations of PL line shapes in Sec. IV C corresponds to case

(iii). Our analysis with the 1D model suggests that the DHO approximation used in our

calculations is fairly accurate. In general, we expect the DHO approximation to be valid
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FIG. 8. PL line shapes evaluated within the 1D model for the NV− center in diamond and the

kk-VV0 center in 4H-SiC at T = 10 K and T = 300 K. (a) Analysis of the the displaced harmonic

oscillator (DHO) approximation. Red lines denote the line shapes computed with both the ground

state (GS) and the excited state (ES) frequency. Blue (green) lines denote the line shapes computed

with DHO approximation using the ES (GS) frequency. (b) ‘FC’, ‘FCHT’, and ‘HT’ denote the

contribution to the PL given by the Franck-Condon, Franck-Condon Herzberg-Teller, and the

Herzberg-Teller terms, respectively. ‘Total’ denotes the sum of three terms. The zero-phonon

line is broadened using a Lorentzian function with scale parameter λ, and the phonon sideband is

broadened using a Gaussian function with standard deviation σ. For the NV− center, λ = 2 (10)

meV and σ = 25 (30) meV were used at T = 10 (300) K. For the kk-VV0 center, λ = 2 (8) meV

and σ = 15 (20) meV were used at T = 10 (300) K.

for defects in rigid materials with relatively small structural displacements upon optical

transitions at low temperature.

In order to use the 1D model to examine the validity of the FC approximation, we first

write Eq. 1 without using the FC principle:

L(~ω, T ) ∝ ω3
∑
i

∑
j

Pej(T )|〈Θej|µeg|Θgi〉|2δ (EZPL + Eej − Egi − ~ω) . (17)

Within the 1D effective phonon approximation we have:

〈Θej|µeg|Θgi〉 =

∫
dQφ∗nej(Q)µeg(Q)φngi(Q). (18)

Here we use the same notations for nuclear wavefunctions and vibrational states as in Eq. 3.

The quantity µeg(Q) = 〈ψe(Q)|µ̂|ψg(Q)〉 is the transition dipole moment between electronic
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wavefunctions obtained at fixed values of the configuration coordinate Q, where ψe (ψg) is

the electronic wavefunction of the system in the ES (GS). To first order in Q we can further

approximate Eq. 18 as:

〈Θej|µeg|Θgi〉 ≈ µeg(Q = 0)〈φnej |φngi〉+
dµeg
dQ

∣∣∣∣
Q=0

〈φnej |Q|φngi〉 (19)

We have numerically computed the electronic transition dipole moment as a function of Q,

and verified that the dependence is linear with a relative change of about 10% between the

equilibrium atomic structures of GS and ES for both NV− and kk-VV0 (see Fig. S12 of the

SI).

After introducing Eq. 19 in Eq. 17 we recognize the usual FC term, and the terms

beyond the FC approximation. The latter can be grouped into two categories: the Franck-

Condon Herzberg-Teller (FCHT), and the Herzberg-Teller (HT) term, depending on whether

one or two derivatives of the electronic transition dipole moment with respect to Q are

present, respectively (see Eq. S13-S15 of the SI). Fig. 8(b) shows the FC, FCHT, and HT

contributions to the PL line shape for both NV− and kk-VV0, at T = 10 K and T = 300 K.

We find that the FC term is the dominant one and that the FCHT and HT contributions

are smaller than 5% and 0.1% of the total intensity, respectively. These results indicate

that the FC approximation used in Sec. IV C is accurate. We note that the validity of the

FC approximation depends on the symmetry and the strength of electron-phonon coupling

of the defect center. For negatively-charged silicon vacancy centers in diamond, the HT

term may not be negligible [24, 50]. We suggest that computing the relative error caused by

neglecting FCHT and HT contributions using the 1D model is a useful first step in assessing

the validity of the FC approximation.

V. CONCLUSIONS

In summary, we presented a detailed comparison of measured and computed PL spectra

of defects in diamond and SiC, aimed at assessing the validity of theoretical and numerical

approximations used in first principles calculations. As expected, our results show that the

best agreement between theory and experiments is obtained when using hybrid functionals,

instead of PBE, although the qualitative differences between the PL line shapes of the

different configurations of the VV0 centers are reproduced with PBE as well. We find minor
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differences between the results obtained with the hybrid functionals HSE and DDH: the

values of the ZPL obtained with the two functionals are almost identical (note that our

HSE results slightly differ from previous ones reported in the literature for the case of the

NV−) and the values of the HRF differ by less than 10%. We also find minor differences

between spectral densities computed at the PBE and DDH level of theory, indicating that the

major improvement of hybrid functionals over PBE is in the determination of the electronic

structure of the system. Our findings show that results for the triplet ES obtained with

CDFT and TDDFT are similar at the DDH level of theory for NV− and VV0 centers,

suggesting that the relatively cheap CDFT method is accurate for the calculations of their

PL spectra. In addition, by using a 1D model, we provided a qualitative assessment of the

approximation arising from the use of the FC principle and of the DHO approximation,

finding that both of them are justified. Finally, we emphasize the importance of finite size

scaling to obtain theoretical results in agreement with experiments for HRFs and PL line

shapes, especially for the contribution of quasi-local and long-range acoustic phonon modes.

The protocol established in our work shows that accurate results for PL spectra may be

obtained at a given temperature using the generating function approach, with phonons

extrapolated to the dilute limit, and by using hybrid functionals to compute the GS and ES

potential energy surfaces of the defects, with the ES computed with constrained DFT. A

1D model can be used to evaluate the accuracy of the FC and DHO approximations. This

protocol, validated here for NV− and VV0 centers, leads to robust predictions of the overall

line shape, including PSBs, which can be used to aid the identification and characterization

of optically-active defects.
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