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ABSTRACT 

 Magnetic-field-dependent unpolarized small-angle neutron scattering (SANS) experiments demonstrate 

that high-pressure torsion (HPT) straining induces spin misalignments in pure Ni, which persist in magnetic 

fields up to 4 T. The spin-misalignment scattering patterns are elongated perpendicular to the applied 

magnetic field due to an unusual predominant longitudinal sin2-type angular anisotropy. Such a 

contribution cannot be explained by the conventional second order (in spin misalignment amplitude) 

micromagnetic SANS theory in the approach-to-saturation regime, nor can its magnitude relative to the 

other features of the cross sections by the third order micromagnetic SANS theory. This indicates that the 

high-density of crystal defects induced via HPT straining in Ni makes such higher-order effects in the 

micromagnetic SANS cross sections observable.  

 

I. INTRODUCTION 

 High-pressure torsion (HPT) is one of the well-known severe plastic deformation techniques used for the 

synthesis of ultrafine-grained and nanocrystalline materials [1-5]. This method attracts attention because it 

drastically changes the microstructure of materials by significant grain refinement and by inducing a 

high-density of crystal defects. While it is well known in metallurgy that HPT microstructures can exhibit 

improved mechanical properties such as tensile strength, the HPT process also gives rise to fascinating 
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effects in magnetism. For example, previous studies have reported the formation of novel magnetic 

materials [6,7] and the onset of ferromagnetism in otherwise nonmagnetic elements [8,9]. The 

characteristic microstructures produced by HPT can also affect the magnetic properties via the pinning of 

magnetic domain walls at defect sites, changes in magnetocrystalline anisotropy by the distortion of 

crystallographic symmetries, or via the modification of the exchange coupling between the refined grains 

[10-12]; however, such effects of HPT on the magnetic properties still need to be further clarified. 

 Several researchers have approached this issue using pure Ni processed via HPT straining (HPT-Ni) 

[13-17]. Nickel is one of the simplest ferromagnets at room temperature with a stable face-centered cubic 

crystal structure and suitable as a model system to investigate the fundamentals of the effects induced via 

HPT straining. In addition, the change in the microstructure in Ni often brings about unique magnetic 

properties, e.g., a lower Curie temperature and a smaller saturation magnetization in amorphous Ni and 

enhanced magnetic anisotropy in nanocrystalline Ni [18,19]. Scheriau et al. and Mulyukov et al. reported 

an increase of the coercivity as well as a decrease of the saturation magnetization in HPT-Ni [13,14,17]. 

These results were interpreted as possible effects of the crystal defects. On the other hand, Lorentz electron 

microscopy confirmed the presence of large magnetic domains, expanding over a large number of grains in 

HPT-Ni [15,16]. Although the magnetic domain structure was chaotically composed of domain walls 

passing along grain boundaries and across grains, no difference was observed between HPT-Ni and 

coarse-grained Ni. 

 Previous investigations suggest that the effect of defects on the spin texture may be the key to understand 

the effects of HPT straining on the magnetic properties. Here, we employ magnetic-field-dependent 

unpolarized small-angle neutron scattering (SANS) to clarify the role played by the defects in HPT-Ni. 

SANS is a powerful technique to characterize, on the mesoscopic length scale (1-500 nm), the crystalline 

as well as the magnetic microstructure of bulk magnetic materials [19-26]. In a very recent unpolarized 

SANS study on HPT-Ni [26], we have analyzed the field dependence of real-space magnetic correlations 

and found that the characteristic sizes of the spin disorder vary on a scale between about 10-30 nm. From 

the field-variation of the magnetic correlation length, the defect size and an increased effective magnetic 

anisotropy (relative to the single-crystalline reference state) could be estimated. While the data analysis in 

[26] is based on the model-independent computation of the magnetic correlation function, in the present 

paper, we focus on the analysis of the angular anisotropy of the two-dimensional scattering pattern. We 

report on the observation of an unusual sin2-type angular anisotropy of the spin-misalignment SANS cross 

section (following subtraction of nuclear and magnetic SANS at saturation) in the approach-to-saturation 

regime. The magnetic SANS data analysis and the discussion in the present paper is based on the 

micromagnetic SANS theory developed in Refs. [20-23]. 

 

II. EXPERIMENT 

 A sheet of Ni was cut into disks with a diameter of 10 or 20 mm. The HPT process was conducted under 

standard conditions at a pressure of 5 GPa, with a rotation number of 5, and a rotational speed of 0.2 rpm 

[3]. After the HPT process, both sides of the disks were mechanically polished to adjust the sample 



thickness to 0.5 mm. Disks of non-deformed (nd) Ni with the same dimensions were also prepared for 

comparison. Magnetization curves were measured using a Cryogenic Ltd. vibrating sample magnetometer 

(VSM) equipped with a 14 T superconducting magnet. 

 The SANS experiments were carried out using the QUOKKA instrument of the Australian Nuclear 

Science and Technology Organisation (ANSTO) [27]. Four 20-mm-diameter disks were stacked together 

for measurements resulting in a total sample thickness of 2.0 mm. A superconducting magnet was used to 

apply a magnetic field between 1 and 10 T to the samples. The direction of the applied magnetic field H 

was perpendicular to the incident neutron beam and parallel to the disk surface, which corresponds to the 

so-called perpendicular scattering geometry (compare Fig. 1) [21]. The measurements were performed 

using equal source-to-sample and sample-to-detector distances of 20 m and 8 m. The average neutron 

wavelength was set to 0.5 nm with 10 % wavelength resolution (FWHM). These conditions allowed one 

to measure a q-range from 0.03 nm-1 to 1.0 nm-1, where q denotes the magnitude of the scattering vector, 

which for elastic scattering is given by q = 4/sin(/2) with  being the scattering angle. The obtained 

scattering patterns were corrected for background scattering, sample transmission and detector sensitivity 

[28]. 

 Additional SANS experiments under similar conditions were performed at the instrument D33 at the 

Institut Laue-Langevin (ILL) [29]. Two disks of 10 mm diameter were stacked together (total sample 

thickness: 1.0 mm). The applied magnetic field to the sample was varied between 0.1 T and 6.7 T. In 

addition to the perpendicular scattering geometry, SANS measurements were also conducted in the 

so-called parallel scattering geometry, where the direction of the applied magnetic field is parallel to the 

incident neutron beam and normal to the disk surface (Fig. 1) [21]. The values of and / were 0.46 nm 

and 10 %, respectively. The samples were held at room temperature in all the SANS measurements. The 

D33 data were corrected for background scattering, sample transmission, and detector efficiency using the 

GRASP software package [30]. 

 The experimental (field-independent) transmissions are T = 66 % for the 2-mm-thick sample ( = 0.50 

nm) and T = 86 % for the 1-mm-thick sample ( = 0.46 nm). The latter, relatively high transmission value 

suggests that multiple scattering contributions are demonstrated to be insignificant [25]. We emphasize that 

practically all of the data shown in the present paper originate from the beamtime at the ILL (with T = 

86 %). The neutron data of the non-deformed Ni sample (Fig. 4) are taken from the ANSTO beamtime. 

 

III. MICROMAGNETIC SMALL-ANGLE NEUTRON SCATTERING THEORY 

 Based on micromagnetic SANS theory, the unpolarized elastic SANS cross section in the perpendicular 

scattering geometry can be written as [21-23]: 
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represents the nuclear and magnetic residual scattering contribution, which is measured at complete 

magnetic saturation. In Eqs. (1) and (2), V is the sample volume, bH = 2.70 × 10-15 m/µB (µB: Bohr 

magneton), 𝑁̃(𝐪) denotes the Fourier transform of the nuclear scattering length density function N(r), 

𝑀̃s(𝐪) is the Fourier transform of the spatially-dependent saturation magnetization Ms(r), and  is the 

azimuthal angle on the two-dimensional (2D) detector [ = (q, H)], where q and H are the scattering 

vector and applied magnetic field (compare Fig. 1). The magnetic field (H) dependence of the scattering 

intensity is included in dΣ dΩSM,⊥⁄ (𝐪, 𝐻), which corresponds to the purely magnetic SANS cross section 

due to transversal spin misalignment. This quantity can be expressed as: 
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where 
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and 𝐌̃ = (𝑀̃𝑥, 𝑀̃𝑦, 𝑀̃𝑧) is the Fourier transform of the magnetization vector field M = (Mx, My, Mz). Note 

that 𝑀̃𝑧  𝑀̃s in the approach-to-saturation regime, so that the third term on the right side of Eq. (3) 

vanishes and 𝑀̃𝑧 is regarded as field-independent in this field range [31,32]. In Eq. (3), SH(q)RH,(q,,H) 

and SM(q)RM(q,,H) denote the spin-misalignment scattering contributions due to perturbing magnetic 

anisotropy fields and magnetostatic fields, respectively. The former term is composed of the anisotropy 

field scattering function SH(q) and of the micromagnetic response function RH,(q,,H) as follows: 
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where 𝐻̃𝑝(𝐪) is the Fourier coefficient of the magnetic anisotropy field, p(q,H) is a dimensionless function, 

and lH(H) denotes the exchange length of the field. The parameter A is the exchange-stiffness constant and 

Ms the macroscopic saturation magnetization of the sample. Similarly, SM(q)RM(q,,H) is separated into the 

scattering function of the longitudinal magnetization SM(q) and into the corresponding micromagnetic 

response function RM(q,,H); more specifically, 
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These expressions reveal that, in the approach-to-saturation regime, the behavior of the spin-misalignment 

SANS cross section is determined by the applied magnetic field, the magnetic anisotropy field, the 

magnetostatic field and the exchange field. 

 The spin-misalignment scattering for the parallel scattering geometry can be similarly decomposed as 

[21-23]: 
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where RH,||(q,H) denotes the micromagnetic response function of the perturbing magnetic anisotropy field. 

Since RH,||(q,H) is independent of  in this scattering geometry, the orientation distribution of the magnetic 

anisotropy field 𝑆H(𝐪)  and of the function ∆𝑀̃𝑧
2

(𝐪)  may be directly reflected in the azimuthal 

anisotropy of the scattering pattern. 

 

IV. RESULTS AND DISCUSSION 

 Figure 2 shows the magnetization curves of HPT-Ni and nd-Ni normalized by the saturation 

magnetization of bulk Ni (Ms = 55.5 Am2/kg [33]). The value of Ms in nd-Ni, determined by extrapolating 

M(1/H) to infinite field, is in agreement with that of bulk Ni, whereas HPT-Ni has a 2.3 % smaller Ms. This 

is consistent with a previous study which reports that the decrease of Ms is due to a grain-boundary phase 

with lower crystal symmetry [14]. 

 The upper row in Fig. 3 shows the typical 2D total (nuclear + magnetic) SANS cross section of HPT-Ni 

measured in the perpendicular geometry at several applied magnetic fields H (between 0.1 and 6.7 T). The 

patterns are (at all H) predominantly elongated perpendicular to the magnetic field and, as our analysis of 

the angular anisotropy reveals (see below), also show lobes of higher intensity roughly along the detector 



diagonals at the intermediate H between 0.4 and 4 T. With increasing H up to 4 T, the scattering intensity 

drastically decreases, whereas the perpendicular elongation and diagonal lobes remain. At larger fields, the 

scattering intensity changes only slightly. These results are significantly different from the scattering 

patterns of nd-Ni, which are isotropic and show no magnetic field dependence for applied fields of 1 T and 

2 T (see Fig. 4). This implies that the SANS cross section of nd-Ni is, in that field regime, dominated by 

isotropic nuclear scattering and that the magnetic SANS cannot be resolved by the conventional SANS 

technique. Since the magnetic-field dependence of the total SANS cross section can result only from the 

spin-misalignment scattering contribution [compare Eqs. (1)– 4)], our SANS results indicate that the HPT 

process induces significant spin misalignment, which persists for applied fields between 0.1 T and 4 T. 

Despite the significant change in the SANS cross section, the magnetization of HPT-Ni is already 93.3 % 

and 99.7 % of Ms at 0.1 T and 1 T, respectively. These results indicate that only a small fraction of the 

misaligned spins contributes to the field-dependent SANS cross section and the remaining majority of 

magnetic moments is in magnetic saturation. This is similar to previous theoretical and experimental results 

of the spin-misalignment scattering [21]. 

 Since in general the nuclear SANS cross section is field-independent, we determined the 

spin-misalignment scattering contribution by subtracting the total SANS cross section at the highest 

available fields (6.7 T for the ILL data and 10 T for the ANSTO data) from the ones at lower fields. The 

subtraction procedure has a negligible influence on the data analysis featured in the present paper, in 

particular, at the smallest fields and momentum transfers q. This can be seen by inspecting Fig. 2 in Ref. 

[26], which shows the field dependence of the total radially-averaged SANS cross section of HPT-Ni and 

demonstrates that the dominant scattering contribution is magnetic in origin (almost three orders of 

magnitude change in response to the applied field). This specific neutron data analysis procedure has 

already been employed to extract the purely spin-misalignment SANS cross section in several other 

systems (e.g., [34,35]). The bottom row in Fig. 3 depicts the corresponding 2D magnetic SANS cross 

sections. The vertical elongation and the diagonal lobes remain after the subtraction procedure and thus are 

attributed to the spin-misalignment scattering. This is different from previous reports of magnetic SANS 

from nanostructured magnetic materials, where the spin-misalignment scattering contributions feature a 

flying-saucer-type scattering pattern [due to the term RH,(q,,H)] and a clover-leaf-type pattern [due to 

RM(q,,H)] represented as Eqs. (6) and (10), respectively [36-39]. 

 Figure 5 displays the magnetic SANS cross sections of HPT-Ni (radially-averaged over 2) at applied 

fields between 0.1 T and 4 T. The cross sections for fields higher than 4 T manifest only negligible 

intensities within experimental error. With increasing H between 0.1 and 4 T, the scattering intensities 

monotonically decrease by more than three orders of magnitude at q = 0.04 nm-1. The slope in the high-q 

region is steeper than q-4, which is a typical feature of the spin-misalignment scattering contribution and 

confirmed by our previous study [26]. We also emphasize that the majority of the SANS measurements 

reported here fall into the approach-to-saturation regime (compare to the magnetization curve in Fig. 2). 

 In the perpendicular scattering geometry, a vertically elongated scattering pattern can be explained from 

having (at least) two possible origins. The first one is a strong uniaxial magnetic anisotropy (texture) with 



the easy axis along the horizontal in-plane direction. To investigate this possibility, we performed a series 

of field-dependent SANS measurements in the parallel scattering geometry. Here, it is important to 

remember that for a statistically-isotropic material, the parallel SANS cross section [Eq. (11)] is expected to 

be isotropic (-independent) for symmetry reasons. Figure 6 displays the 2D magnetic SANS cross section 

of HPT-Ni in the parallel geometry. The magnetic SANS patterns are isotropic at all H investigated, which 

suggests that no significant uniaxial in-plane magnetic texture exists in HPT-Ni, which might be expected 

due to the HPT treatment. Therefore, this possibility is excluded as the origin of the vertical elongation of 

the SANS pattern seen in the perpendicular geometry. 

 The other possible reason for a vertically elongated scattering pattern resides in the third term in Eq. (3) 

with a sin2 dependence. In the approach-to-saturation regime, where the spin misalignment from the 

direction of the applied field is small, the micromagnetic SANS theory rigorously predicts ∆𝑀̃𝑧
2

= 0 up 

to the second order of the small spin-misalignment amplitude. [Note that first-order in 𝐌̃ corresponds to a 

second-order contribution in dSM/d.] It is, however, entirely possible that in highly inhomogeneous 

materials the higher-order terms become non-negligible, breaking this property. This was already explored 

theoretically in [22] and experimentally in [40] by considering the following combination of cross section 

values at  = 0° (d/dSM,0°) and at  = 90° (d/dSM,90°) measured in the perpendicular geometry: 
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𝑑ΩSM,0°
(𝑞, 𝐻) − 2

𝑑Σ
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(𝑞, 𝐻), (13) 

 

which is identically zero in the second-order SANS theory [compare Eqs. (3) – (10)] and contains a leading 

third-order contribution in the amplitude of spin misalignment. Figures 7(a) and (b) show d/dSM,0° and 

d/dSM,90° of HPT-Ni at applied fields between 0.1 T and 4 T. Similarly to the corresponding 

2-radially-averaged spin-misalignment SANS cross sections themselves (Fig. 5), the intensities drastically 

decrease with increasing H for both  directions. Figure 7(c) shows SM computed using Eq. (13). Its 

magnitude decreases with increasing H consistently with the reduction of the average spin misalignment. 

The values of SM are of the order of 103 cm-1 at 0.1 T and q = 0.04 nm-1, which is similar to the previous 

experimental results on NANOPERM as well as to the micromagnetic simulations of nanoporous Fe [40]. 

However, SM in HPT-Ni turns out to be negative in the whole range of the applied fields between 0.1 T 

and 4 T. Theory [22] predicts that the third-order contribution to SM may have negative values at some 

intermediate q-range. The existence of such a range is corroborated by the experimental study of 

NANOPERM [40], while in the micromagnetic simulations on nanoporous Fe, SM at 0.6 T is positive for 

q < 0.6 nm-1. Further extension of the third-order effect theory is therefore needed to fully explain the 

negative values of SM for all q as observed in HPT-Ni, in other words, the strong vertical elongation of 

the cross section so that its values at  = 90° consistently exceed the values at  = 0°. 

 The angular () dependences of the scattering intensities for two selected fields, 0.2 T (far from the 

saturation regime) and 1.0 T (within the saturation regime), are shown in Figs. 8(a) and (b), respectively. 



The scattering profiles exhibit two peaks centered at  = 90° and  = 270°. This agrees with the 

characteristics of a sine squared function. However, with increasing q and H, additional shoulders appear 

on both sides of the peaks. Further, although the profiles have minima at  = 0° and 180°, the intensities at 

the minima are non-zero. The relative intensities at the minima compared to the intensities at the peaks tend 

to decrease at higher fields. These features indicate that the profiles are different from just a simple sine 

squared behavior. The shoulders are probably attributed to the clover-leaf contribution, while the intensities 

at  = 0° and 180° resemble the flying-saucer contribution. Hence, the magnetic scattering patterns of 

HPT-Ni are very likely composed of the clover-leaf and flying-saucer contributions as well as the sin2 

contribution. 

 To quantify these contributions to Eq. (3) we have fitted the magnetic cross sections using the function 

SH(q)RH,(q,,H) + SM(q)RM(q,,H) + Ssin(q,H)sin2 with fixed values of A = 8.2 pJ/m [19] and 0Ms = 0.6 

T. The fits, conducted for the azimuthal-angle () dependences from q = 0.06 nm-1 to 0.2 nm-1 at fields 

between 0.1 T and 1 T, are displayed as solid lines in Fig. 8 and are in good agreement with the data. This 

confirms that the presence of the sin2 term can describe the vertical elongation of the observed cross 

sections well. Figure 9(a) shows the resultant Ssin(q,H) curves at fixed values of the magnetic field. Their 

functional q-dependencies are similar to the corresponding spin-misalignment scattering cross sections 

shown in Fig. 5. This means that Ssin(q,H) represents the dominant contribution to the spin-misalignment 

scattering cross section. Figure 9(b) depicts the magnetic field dependences of Ssin(q,H) at selected q-values. 

These reveal a plateau in the low-field region which transitions to a power-law behavior in the high-field 

region. The exponent of the power law is – (1.62  0.02 ) at q = 0.06 nm-1. The transition point between the 

plateau and the power-law region shifts to higher field with increasing q. 

 At the moment, micromagnetic SANS theory can provide analytical solutions of the third-order effects for 

a few cases such as the contribution to the cross section along the  = 0° and 90° directions, sufficient to 

compute SM, but not the complete angular dependence [22]. However, since the Ssin(q,H) contribution to 

Eq. (3) is related to ∆𝑀̃𝑧
2

(𝐪, 𝐻), its field dependence can be qualitatively interpreted using the law of 

approach to ferromagnetic saturation (LAFS) [41-46]. The LAFS describes the approach of the average 

𝑀̃𝑧(𝐪, 𝐻)|𝑞=0 to the average saturation magnetization Ms as the field increases which, at large fields H  

, is usually represented as a power law 𝑀𝑆 − 𝑀̃𝑧(𝐪, 𝐻)|𝑞=0~𝐻−𝑛 or ∆𝑀̃𝑍
2(𝐪, 𝐻)|𝑞=0~𝐻−2𝑛, with n = 

1/2, 1, 3/2, 2, and 3 [41-46]. Several studies have also reported the transition to a plateau region in the 

low-field part for H < Ms [42-44]. The field dependence of Ssin(q,H) is consistent with those previous 

studies. Thus, the observed exponent of -1.6 [Fig. 9(b)] can be explained by a LAFS with H-0.8 and suggests 

that the misaligned spins in HPT-Ni are related to contributions with n = 1/2 and/or 1, which corresponds to 

the LAFS of amorphous ferromagnets, spherical defects, and dislocation dipoles [46]. The shift of the 

transition field may result from the q-dependence of the saturation magnetization. 

 A non-zero value of Ssin and the negative sign of SM may be attributed to differences in the 

microstructures and magnetic properties between HPT-Ni and the other investigated systems, which break 

the assumptions of the original micromagnetic SANS theory both in the second and in the third order. One 



possibility is the large amplitude of the variations in the material constants such as Ms and A, which amplify 

the truncation errors of the Taylor series expansion in these theories, similar to that in the 

approach-to-saturation theory [22] in the case of nonmagnetic inclusions. In HPT-Ni there is a reduction of 

Ms after the deformation of the sample, which Mulyukov et al. [14] attribute to the substantial distortion of 

the crystalline lattice near grain boundaries. The concomitant change in the interatomic spacing results in 

broken bonds, which produce magnetic defects with sharp boundaries. Using the correlation function 

analysis, it is possible to estimate the defect size and the penetration depth in HPT-Ni to be 11 nm and 22 

nm, respectively [26], while the crystallite size is 60 nm. Together with the small (below 20 nm) value of 

the field-dependent exchange lH [Eq. (8)] at fields above 0.1 T, this indicates the presence of large gradients 

in the magnetization distribution around the defects, generating a contrast for magnetic SANS. The shape 

of the inclusions (defects) also plays an important role. Previous studies pointed out that the third-order 

contribution is larger for layer-like inhomogeneities compared to spherical ones [32,40]. In HPT-Ni, spin 

misalignments probably originate from the grain-boundary phase as determined from the magnetic 

measurements and other possible defects [26], which generally have a two-dimensional structure and no 

particular shape, respectively. By contrast, the inclusions are approximately spherical both in NANOPERM 

and in nanoporous Fe [40]. Hence, the two-dimensional nature of the grain-boundary phase in HPT-Ni 

could be the reason for the enhancement of the higher-order contribution to the cross section with a 

characteristic sin2 angular dependence. Since the cross-section along the  = 90° direction is subtracted in 

Eq. (13), this makes the whole SM negative. 

 

V. CONCLUSION 

 We have performed magnetic-field-dependent unpolarized SANS experiments to investigate the role 

played by artificially-created crystal defects on the spin texture of HPT-Ni. The analysis of the 

field-dependent magnetic SANS data reveals that the magnetic neutron scattering cross section is 

dominated by the spin-misalignment contribution. Whereas the standard micromagnetic SANS theory in 

the second order predicts clover-leaf-type and flying-saucer-type scattering patterns, the spin-misalignment 

scattering in HPT-Ni exhibits a predominant sin2 contribution, which remains visible in applied fields up 

to 4 T. The presence of this contribution cannot be explained by second-order micromagnetic SANS theory, 

while its strength relatively to the rest of the cross section is also beyond of what can be explained by 

third-order micromagnetic SANS theory [22]. Just like in the approach-to-saturation theory [32], the reason 

behind the significance of higher-order effects lies, probably, in the presence of a high-density of 

high-amplitude fluctuations of the material parameters induced via HPT straining. We hope that our 

experimental results will fuel the further development of the theory of higher-order magnetic SANS. 

 

ACKNOWLEDGMENTS 

The authors acknowledge the Australian Nuclear Science and Technology Organisation (ANSTO), Lucas 

Heights, Australia (proposal No. P5264), and the Institut Laue-Langevin (ILL), Grenoble, France, for the 

provision of neutron beamtime. The authors are grateful to Mr. K. Yamamoto, Dr. N. Sato, the Sample 



Environment groups, particularly Dr. Norman Booth (ANSTO) and Dr. Robert Cubitt (ILL) for their help in 

the experiment. K. L. Metlov acknowledges the support of the Russian Science Foundation under the 

project RSF 21-11-00325. This work was financially supported by KAKENHI Grant Number 19K05102, 

Japan Science and Technology Agency (JST) under Collaborative Research Based on Industrial Demand 

“Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials” 

(Grant No. JPMJSK1511), the General User Program for Neutron Scattering Experiments, Institute for 

Solid State Physics, the University of Tokyo (proposal Nos. 15563, 16554, and 16566).  

 

REFERENCES 

[1] R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and 

Applications (John Wiley & Sons, Somerset, 2013). 

[2] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. Zhu, JOM 68, 1216 (2016).  

[3] M. Tane, Y. Okuda, Y. Todaka, H. Ogi, and A. Nagakubo, Acta Mater. 61, 7543 (2013). 

[4] A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008). 

[5] K. Edalati and Z. Horita, Mater. Sci. Eng. A 652, 325 (2016). 

[6] W. Li, L. Li, Y. Nan, Z. Xu, X. Zhang, A. G. Popov, D. V. Gunderov, and V. V. Stolyarov, J. Appl. Phys. 

104, 023912 (2008). 

[7] S. Lee, K. Edalati, H. Iwaoka, Z. Horita, T. Ohtsuki, and T. Ohkochi, Philos. Mag. Lett. 94, 639 (2014). 
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FIG. 1 Sketch of the small-angle neutron scattering geometry. The wavevectors of the incoming and 

scattered neutrons are, respectively, k0 and k1, whereas q denotes the momentum-transfer vector. The 

applied magnetic field H is perpendicular or parallel to the incoming neutron beam, and the angle  

specifies the angular anisotropy of the scattering pattern on the two-dimensional detector. Note that in our 

notation the applied field H always defines the z-direction of a Cartesian coordinate system, so that for the 

two scattering geometries considered two xyz frames are required (see inset). 

 

 

 
FIG. 2 Room-temperature magnetization curves of HPT-Ni and nd-Ni normalized by the saturation 

magnetization of bulk Ni (Ms = 55.5 Am2/kg [33]) (only the upper right quadrant is shown). Filled and open 

circles denote, respectively, the magnetizations of HPT-Ni and nd-Ni (semi-log scale). 

 



 

 

FIG. 3 Top panel: two-dimensional (2D) total (nuclear + magnetic) SANS cross section of HPT-Ni 

measured at (a) 0.1 T, (b) 0.4 T, (c) 1.0 T, and (d) 6.7 T. The magnetic field is applied horizontally in the 

detector plane and perpendicular to the incoming neutron beam (perpendicular scattering geometry). 

Bottom panel: corresponding purely 2D magnetic SANS cross section determined at (e) 0.1 T, (f) 0.4 T, and 

(g) 1.0 T. 
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FIG. 4 Two-dimensional total (nuclear + magnetic) SANS cross sections of non-deformed Ni (nd-Ni) at the 

selected fields of (a) 1 T and at (b) 2 T (applied field is perpendicular to the incident neutron beam 

direction). Panel (c) displays the 2-radially-averaged scattering profiles of nd-Ni (log-log plot). Filled 

circles and open diamonds denote the profiles at 1 T and 2 T, respectively. (d) Illustration of the different 

angular anisotropies of nd-Ni and HPT-Ni. Shown are 15° angular averages along the horizontal ( = 0°) 

and vertical ( = 90°) directions at a field of 1T (log-log plot). 
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FIG. 5 Field dependence of the 2-radially-averaged spin-misalignment scattering cross section. Field 

values are specified in the inset (log-log plot). Solid line (dashed line) is a visual guide for a q-4 (q-6.8) 

dependency (compare also to Fig. 2 in [26]). 

 

 

 

 

FIG. 6 Two-dimensional magnetic SANS cross section of HPT-Ni at (a) 0.7 T, (b) 1.2 T, and (c) 1.6 T. The 

total nuclear and magnetic SANS signal at 6.7 T has been subtracted. The magnetic field is applied parallel 

to the neutron beam and is normal to the detector plane (parallel scattering geometry). 

 

 

 

 

 

 

 

10
-2

10
-1

10
0

10
1

10
2

10
3

In
te

n
s
it
y
 (

c
m

-1
)

10
-1

q (nm
-1

)

 0.1 T  0.8 T
 0.2 T  1.0 T
 0.4 T  2.0 T
 0.6 T  4.0 T

q
-4

q
-6.8

-0.3

0

0.3

q
y
 (

n
m

-1
)

-0.3 0 0.3

qx (nm
-1

)

(a) 0.7 T

-0.3

0

0.3

-0.3 0 0.3

qx (nm
-1

)

(b) 1.2 T

-0.3

0

0.3

-0.3 0 0.3

qx (nm
-1

)

(c) 1.6 T

10
3

10
4

10
5

10
6

10
7



 

   

 

FIG. 7 Field-dependence of the spin-misalignment scattering cross section (a) parallel ( = 0°) and (b) 

perpendicular ( = 90°) to the applied magnetic field. Field values (in T) are specified in the inset. (c) ΣSM 

evaluated according to Eq. (15) from the parallel and perpendicular scattering profiles (log-log plots). 

 

 

 

   

 

FIG. 8 Azimuthal-angle dependence of magnetic scattering intensities at the selected fields of (a) 0.2 T (far 

from the saturation regime) and at (b) 1.0 T (within the saturation regime). Shown is the magnetic SANS 

cross section (highest-field data subtracted). Values of q (in nm-1) increase from top to bottom (see inset). 

Solid lines: fit curves using the function SH(q)RH,(q,,H) + SM(q)RM(q,,H) + Ssin(q,H)sin2 (semi-log 

plot). 
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FIG. 9 (a) Momentum-transfer dependence of the Ssin(q,H) contribution at magnetic fields of 0.1, 0.2, 0.4, 

0.6, 0.8, and 1 T (from top to bottom). (b) Field dependence of Ssin(q,H) at q = 0.06, 0.07, 0.08, 0.09, 0.10, 

0.12, 0.14, 0.16, 0.18, and 0.20 nm-1 (from top to bottom). Solid line is a power-law fit in H (shifted 

upwards for a better visibility) with an exponent of – (1.62  0.02) to the last 4 data points of the q = 0.06 

nm-1 data set (log-log scales). 

 


