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Electronic structure of van der Waals ferromagnet CrI3 from self consistent vertex
corrected GW approaches
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Electronic structure of layered van der Waals ferromagnet CrI3 is studied with self consistent
diagrammatic approaches beyond GW approximation. Considerable improvement in the calculated
band gap as compared to the non-self-consistent G0W0 results has been found. Certain spectral
features in the valence bands discovered recently by the angle resolved photoemission spectroscopy,
are reproduced better when we use full frequency dependent self energy. Density functional theory
and quasiparticle self-consistent GW method which are based on frequency-independent self energy
are unable to resolve these features. Non-locality effects in the diagrams beyond GW approximation
are large for both polarizability and self energy. This finding can potentially have an impact on the
development of methods like GW+DMFT.

PACS numbers:

Introduction

Magnetic van der Waals material CrI3 represents con-
siderable interest in view of its promising applications
in spintronics. It possesses some remarkable properties
which include, for instance, the preservation of mag-
netic order down to a single layer.1,2 The bi-layer of
this material shows anti-ferromagnetic ordering whereas
its mono-layer, three-layer and bulk are all ordered
ferromagnetically.1 It is important to understand these
(and other) properties from the theoretical point of view
in order to be able to explain already known properties
or even to predict new ones in this class of materials. The
key to understand them is their electronic structure.

Electronic structure of CrI3 was studied both
experimentally3,4 and theoretically.5–10 As it seems, there
is a general consensus that basic features of it (such as
band gap) are similar in bulk material and in thin film.3,6

However, there is still no consensus on the reasons of ap-
parent inconsistency between experimental and theoret-
ical values of the band gap in CrI3.

In the bulk CrI3, optical measurement4 resulted in
the optical gap of 1.24 eV. Recent ARPES (angle re-
solved photoemission spectroscopy) measurements3 re-
ported the electronic band gap of about 1.3 eV. Normally,
one would think that optical gap should be a bit smaller
than electronic because of the excitonic effects. There-
fore, the above two values are consistent if we assume
that the exciton binding energies are on the scale of 0.1
eV. In theory, there are issues on the larger scale. In den-
sity functional theory (DFT) calculations, the band gap
is 0.78 eV.10 This value corresponds exactly to what one
would expect from DFT: underestimation of the gap by
30-50%. The problem reveals itself when we try to im-
prove DFT band gap. Routinely, it is done by applying
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the so called one-shot (non self consistent) GW approx-
imation (G0W0). In a vast majority of semiconductors,
G0W0 improves the DFT band gap considerably11 with
remaining small underestimation up to 10-15%. How-
ever, when applied to the mono-layer of CrI3, G0W0 re-
sults in the band gap 2.59–2.76 eV.9,12 It is important to
note that reported G0W0 calculations of CrI3 monolayer
used DFT+U as a starting point. If we assume that bulk
and mono-layer band gaps of CrI3 are not very differ-
ent, the reported G0W0 results for the mono-layer ex-
ceed considerably the experimental value. Which, most
likely, is the case because authors of both works also re-
ported very strong excitonic effects with exciton binding
energies up to 1.5 eV. Formally, the presence of strong
excitons could explain the value of the optical gap but it
doesn’t explain the value of the electronic gap. Nor, does
it explain the small difference between optical and elec-
tronic gaps in experiments. However, it suggests that the
electronic gap obtained in G0W0 calculations should be
a subject of a strong renormalization if one includes dia-
grams beyond GW approximation in the evaluation of the
electronic gap. For instance, if one uses Bethe-Salpeter
equation (BSE) instead of random phase approximation
(RPA) in the evaluation of polarizability and then applies
the corresponding screened interaction W in the evalua-
tion of the GW diagram, G0W0 band gap might be much
smaller. Thus, the results obtained in Refs. [9,12] sug-
gest to study the effect of higher order diagrams (vertex
corrections) on the electronic structure of CrI3.

An important step forward in elucidating the electronic
structure of CrI3 (and related materials) was done by Lee
et al.10 In their work, the hybrid method QSGW8013

was used. The QSGW80 approach consists in empirical
mixing of QSGW (quasiparticle self-consistent GW) self
energy and LDA (local density approximation) exchange-
correlation potential: ΣQSGW80 = 0.8ΣQSGW +0.2V xcLDA.
As authors of Ref. [10] argue, the mixing effectively cor-
rects the underestimation of screening in QSGW method.
Formally, the QSGW80 approach should be considered
as a semiempirical one but it allows to improve the
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calculated electronic structure of simple semiconductors
considerably.13,14 For CrI3, application of QSGW80 with-
out spin-orbit coupling (SOC) resulted in the band gap
2.23 eV,10 whereas calculations with perturbative (after
the self-consistency was reached) inclusion of SOC re-
sulted in the band gap 1.68 eV. Thus, SOC renormal-
ization of the electronic structure of CrI3 is noticeable.
Unfortunately, authors of Ref. [10] do not report the
gap value obtained with standard QSGW, i.e. without
admixture of LDA exchange-correlation potential. So, it
is hard to say about the actual effect of it. QSGW80
is constructed in such a way that it empirically enhances
the screening which is underestimated by QSGW. So, the
mere fact that Lee et al. use QSGW80 instead of QSGW
suggests an importance of higher order diagrams which
would directly (instead of empirically) address the issue
of insufficient screening in QSGW.

Authors of Ref. [10] also make an interesting research
into the importance of nonlocality of self energy. Namely,
by direct comparison of DFT+U and QSGW80 calcula-
tions they observe that DFT+U approach cannot mimic
the QSGW80 results because of single-site approximation
inherent to DFT+U. Obviously, this analysis of nonlocal-
ity of self energy in CrI3 (and related materials) makes
direct impact on the validity of other methods based on
the single site approximation (like DFT plus dynamical
mean field theory (DMFT)) when applied to this class of
materials.

Motivated by the above cited works, this study focuses
on application of the diagrammatic approaches which
go beyond GW approximation, i.e. directly (and self-
consistently) include vertex corrections. In this way, we
estimate step by step the effect of the first order ver-
tex correction and then the effect of replacing the first
order diagram for polarizability by solving BSE for it.
We also apply QSGW and, by doing this, we answer
the question (though using different codes) on the dif-
ference between QSGW and QSGW80. Also, the effect
of the SOC is studied directly. Namely, fully relativis-
tic (FR) approach (Dirac’s equation based) is used along
with the scalar-relativistic (SR) approach in order to esti-
mate SOC effect directly and compare it with the pertur-
bative estimate made in Ref. [10]. We extend the study
of non-local effects conducted by Lee et al. in [10] by
investigating non-local contribution of the diagrams be-
yond GW. It is done by directly evaluating them using a
full setup (all functions are k-dependent) and a simplified
setup where we assume the local (single site) approxima-
tion. Our study, therefore, has an explicit impact on the
development of the methods like GW+DMFT15–21 where
one assumes the single site approximation for the DMFT
part.

The paper begins with a brief discussion of the distinc-
tive features of the methods used in this work and the
setup parameters for the calculations (the first section).
The second section provides principal results obtained
for the electronic structure of CrI3. The third section
presents the results of the investigation into the impor-
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FIG. 1: Diagrammatic representation of Ψ-functional which
includes the simplest non-trivial vertex. First diagram on the
right hand side stands for scGW approximation, whereas total
expression corresponds to sc(GW+G3W2) approximation.

P = −

FIG. 2: Diagrammatic representation of irreducible
polarizability in the simplest vertex corrected scheme
sc(GW+G3W2).

tance of non-local effects for higher order diagrams. The
conclusions are given afterwards.

Methods and calculation setups

All calculations in this work were performed us-
ing code FlapwMBPT.22 Recently, a few updates were
implemented in the code.23,24 For DFT calculations,
we used the local density approximation (LDA) as
parametrized by Perdew and Wang.25 In this study we
use scGW method and two self-consistent vertex cor-
rected schemes (see below). They are based on the L.
Hedin’s theory.26 ScGW and one of the vertex corrected
schemes, sc(GW+G3W2)27, can also be defined using Ψ-
functional formalism of Almbladh et al.28 Corresponding
Ψ-functional which includes vertex corrections is shown
in Fig. 1. In Fig. 1, the first diagram corresponds to GW
approximation, whereas the sum of the first and the sec-
ond diagram represents sc(GW+G3W2) approximation.
Diagrammatic representations for irreducible polarizabil-
ity (Fig. 2) and for self energy (Fig. 3) in scGW and in
sc(GW+G3W2) follow from the chosen approximation
for Ψ-functional.

The second vertex corrected scheme which we use
in this work is the scheme G according to the classi-
fication introduced in Ref. [29]. This scheme differs
from sc(GW+G3W2) in the evaluation of polarizability:
Bethe-Salpeter equation is used in the scheme G. In this
case, the second term on the right hand side of Fig. 2
is replaced with an infinite sequence of diagrams (ladder
diagrams) so that the vertex correction to polarizability
can be represented as in Fig. 4. Diagrammatic repre-
sentation of self energy is the same in both vertex cor-
rected schemes used in this work. For convenience, let
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Σ = - +

FIG. 3: Diagrammatic representation of self energy in the
simplest vertex corrected scheme sc(GW+G3W2).

∆P = + + +...

FIG. 4: Ladder sequence of diagrams for the vertex correction
to polarizability in sc(BSE:P@GW+G3W2) approach.

us here introduce a new abbreviation for the scheme G:
sc(BSE:P@GW+G3W2). In this abbreviation, the part
after the symbol @ stands for diagrammatic representa-
tion of self energy, whereas the part before the symbol @
says that polarizability is evaluated from BSE. The ratio-
nal of using sc(BSE:P@GW+G3W2) is to directly check
the relative importance of excitonic effects on the evalu-
ated electronic band structure. It is important to men-
tion that our implementation29 of BSE uses full frequency
dependence of screened interaction W opposite to a com-
mon approximation30,31 where one uses static (frequency
independent and taken at zero frequency) screened in-
teraction W. As one can deduce from its construction,
scheme sc(BSE:P@GW+G3W2) is not Ψ-derivable (as
opposed to scGW or sc(GW+G3W2)) and, therefore,
is not conserving. However, evaluation of polarizabil-
ity in sc(BSE:P@GW+G3W2) follows (at least approxi-
mately) its definition as being a functional derivative of
electronic density with respect to full electrostatic poten-
tial, which is the foundation of BSE. Therefore, scheme
sc(BSE:P@GW+G3W2) also has certain strong princi-
ple built in its construction. As it is evidenced in Ref.
[32] it usually results in better band gaps as compared to
sc(GW+G3W2). More details about properties of vertex
corrected schemes one can find in Refs. [29,33].

Technical details of the GW part were described in
Refs. [34,35]. Detailed account of the algorithms for
sc(GW+G3W2), sc(BSE:P@GW+G3W2), and also for
other vertex corrected schemes can be found in Refs.
[27,29,32,33]. Brief account of the implementation of
BSE also is provided in Appendix A. Figure 5 presents
the flowchart of the calculations which gives a general
idea of how the calculations are organized. The diagram-
matic (GW and the diagramms beyond GW) parts of the
FlapwMBPT code take full advantage of the fact that
certain diagrams can more efficiently be evaluated in re-
ciprocal (and frequency) space whereas other diagrams
are easier to evaluate in real (and time) space. As a re-

FIG. 5: Flowchart of scGW, sc(GW+G3W2), and
sc(BSE:P@GW+G3W2) calculations. All equations are pre-
sented using symbolic notations. In the expressions for
polarizability, first equation corresponds to scGW, second
equation is used in sc(GW+G3W2), and the third one in
sc(BSE:P@GW+G3W2). In the expressions for self energy,
first equation corresponds to scGW, and the second one
to both sc(GW+G3W2) and sc(BSE:P@GW+G3W2). G0

stands for Green’s function in Hartree approximation. Any
calculation begins with self-consistent DFT iterations where
the basis set is formed and the initial approach for G is gen-
erated. Iterations of scGW method use this initial Green’s
function as an input in order to start. During scGW iter-
ations, G is updated and screened interaction W is gener-
ated. Both G and W serve as an input to start iterations
of sc(GW+G3W2) or sc(BSE:P@GW+G3W2) approaches.
sc(BSE:P@GW+G3W2), being computationally most de-
manding, can be run after a few iterations of sc(GW+G3W2),
which can save computer time. In spin-polarized calculations,
an external magnetic field is applied at the first iteration to
create initial spin splitting.

sult, GW part of the code scales as NkNωN
3
b where Nk

is the number of k-points in the Brillouin zone, Nω is the
number of Matsubara frequencies, and Nb stands for the
size of the basis set. The vertex part of the code scales
as N2

kN
2
ωN

4
b . For comparison, if one uses naive (all in re-

ciprocal space and frequency) implementation then GW
part scales as N2

kN
2
ωN

4
b (i.e. exactly as the vertex part

when the implementation is efficient), and the vertex part
scales as N3

kN
3
ωN

5
b . Besides of efficiency of the implemen-

tation, we have to mention two more factors which make
the use of the diagrams beyond GW feasible. First is the
fact that the higher order diagrams converge much faster
than the GW diagram with respect to the basis set size
and to the number of k-points.29,32 Second is that the
higher order diagrams are very well suited for massive
parallelization.

We also use quasiparticle self consistent GW (QSGW)
approach. Similar to scGW, sc(GW+G3W2), and
sc(BSE:P@GW+G3W2) approaches, it is based on the
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finite temperature (Matsubara) formalism and in this re-
spect it is different from the well known QSGW imple-
mentation by Kotani et al.36 Quasiparticle approxima-
tion includes linearization of self energy near the zero fre-
quency (see for details Refs. [34,35]) and, therefore, the
method is reliable only not very far from the Fermi level
- usually within a few electron-volts. Effective self energy
is static (frequency independent) and the method is not
diagrammatic. However, as it was explained by Kotani et
al.36, QSGW satisfies the zero frequency and long wave
limit of the Ward Identity (WI) because of the so called
Z-factor cancellation. This fact makes it often quite ac-
curate, especially in simple metals and semiconductors
where the above mentioned limit is important. Consid-
ering the differences between QSGW and the above in-
troduced approaches, together they represent a good set
of methods to study new materials.

Principal difference between fully relativistic calcula-
tions (FR) ans scalar relativistic (SR) calculations con-
sists in the fact that we use Dirac-Kohn-Sham equations
to generate LAPW+LO basis set in the FR case (see Ref.
[23] for the implementation in the FlapwMBPT code) in-
stead of scalar-relativistic Kohn-Sham equations.37 Gen-
eralization of the evaluation of diagrams to the FR case is
relatively straightforward: one just replaces the SR ba-
sis functions with FR basis functions in the evaluation
of matrix elements (see for instance the generalization
of scGW and QSGW to fully relativistic variant in Ref.
[34]).

Let us now specify the setup parameters used in the
calculations. In order to make presentation more com-
pact, principal structural parameters for the studied
solids have been collected in Table I and the most impor-
tant set up parameters have been collected in Table II.
All calculations have been performed for the electronic
temperature 600K. In all calculations we assumed the
ferromagnetic (FM) ordering. The calculations (exclud-
ing the vertex part) were performed with the 4 × 4 × 4
mesh of k-points in the Brillouin zone. 500 band states
(1000 in the FR case) were used to expand Green’s func-
tion and self energy. Product basis (PB) consisted of ap-
proximately 3100 functions (depending on k-point). The
diagrams beyond GW approximation were evaluated us-
ing 2× 2× 2 mesh of k-points in the Brillouin zone and
with about 40 (80 in the FR case) bands (closest to the
Fermi level). With the above mentioned faster conver-
gence of higher order diagrams with respect to these pa-
rameters, this choice represented a reasonable compro-
mise between the accuracy and the computational cost.
Most important convergence tests are presented in Tables
III, IV, and V. As one can deduce from the convergence
tests, the remaining uncertainty of the band gap obtained
in fully relativistic sc(BSE:P@GW+G3W2) calculations
could be at the level of 0.1–0.2 eV. Also, most likely ef-
fect of further refining of the computational setup would
be a reduction of the calculated band gap.

TABLE I: Structural parameters of the solids studied in this
work. Lattice parameters are in Angstroms, MT radii are in
atomic units (1 Bohr radius), and atomic positions are given
relative to the three primitive translation vectors. Experi-
mental structural data from Ref. [38] are used.

Space Atomic
Solid group a c positions RMT

CrI3 148 6.867 19.807 Cr: 1/3;2/3;0.33299 2.471

I: 0.31677;0.33453;0.4123 2.667

TABLE II: Principal setup parameters of the studied solids
are given. The following abbreviations are introduced: Ψ is
for wave functions, ρ is for the electronic density, V is for
Kohn-Sham potential, and PB is for the product basis.

Core Lmax Lmax

Solid states Semicore Ψ/ρ, V PB RKmax

CrI3 Cr: [Ne] 3s,3p 6/6 6 6.0

I: [Kr] 5s,4d 6/6 6

Results

We begin the presentation of results by showing in
Table VI the band gaps and magnetic moments (on
chromium sites) obtained using different approximations.
Magnetic moments do not show any noticeable depen-
dence on the method and are in accordance with other
calculations.7 They also depend slightly on the choice of
the muffin-tin radii and, correspondingly, are given here
just for the reference. Calculated band gaps, however,
show remarkable dependence on the approximation used.
As usual, LDA underestimates the band gap by about
30-50% depending on how one approximates the rela-
tivistic effects. Both QSGW and scGW seriously over-
estimate the experimental band gap (by about factor of
two). QSGW does not show improvement in the calcu-
lated band gap of CrI3 as compared to scGW, which one
would expect in small gap sp semiconductors.40 From this
fact, one can conclude that the presence of Cr 3d elec-
trons makes this material somewhat different from the
simple semiconductors. Noticeable improvement in the
evaluated band gap happens when we include first or-
der vertex correction, i.e. when we switch from scGW
to sc(GW+G3W2). Further improvement, i.e. when we
switch from sc(GW+G3W2) to sc(BSE:P@GW+G3W2),
is a bit smaller. The effect of inclusion/neglecting the
SOC is approximately of the same amplitude as the ef-
fect of using BSE when we consider the SOC effect at
sc(BSE:P@GW+G3W2) level. At this level it is about
twice smaller than in Ref. [10] which means that the
self-consistent inclusion of the SOC makes some differ-
ence. At the level of scGW/QSGW, however, the effect
of SOC is somewhat larger. It is interesting that the best
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TABLE III: Convergence of the band gaps obtained in scalar
relativistic G0W0 calculations with respect to the num-
ber of high energy local orbitals (HELO) included in the
LAPW+LO basis set. Local orbitals associated with semi-
core states are not included. Numbers after orbital character
indicate how many LO’s are included with a given orbital
character. The results presented in the main text correspond
to the second row (i.e. s2p1d2/s1p2d1).

High energy LO

Cr I Band gap (eV)

s1d1 p1 2.09

s2p1d2 s1p2d1 2.07

s2p1d2f1 s1p2d1f1 2.07

s3p2d3f2 s2p3d2f2 2.09

s3p3d4f3 s3p4d3f3 2.10

TABLE IV: Dependence of the calculated band gap of CrI3
on the k-grid Nk in G0W0 calculations. Scalar relativistic
approach has been used.

Nk Band gap

23 2.31

33 2.16

43 2.07

53 2.09

63 2.06

(and the most sophisticated) result for the band gap in
our study (1.57 eV) is quite close to the result 1.68 eV ob-
tained in [10] using empirical enhancement of the screen-
ing. Thus, if we assume that there is no big differences
in QSGW between this study and Ref. [10], we can state
that QSGW80 works rather well for this material.

Our final result for the band gap (1.57 eV) still is a bit
larger as compared to the experimental 1.3 eV obtained
in ARPES studies.3 One can name a few possible reasons
for this remaining disagreement: i) numerical cutoffs (es-
pecially in the vertex part); ii)higher order diagrams not
included in this study; iii) electroh-phonon interaction.
All three reasons, normally, should result in some reduc-
tion of the calculated band gap bringing it in even better
agreement with the experiment. But even at the present
level, the error is already small enough and allows us to
state that this material is a weakly correlated one and
can be described using ab-initio diagrammatic methods.

In Fig. 7 we show partial density of states (atom and
orbital resolved) of CrI3 obtained in LDA calculations.
Besides a little shrinkage of the band gap in fully rela-
tivistic case, there is very little difference between scalar
relativistic and fully relativistic results. As one can see,
principal spectral features around the Fermi level are al-
most completely defined by Cr 3d and I 5p states. In

TABLE V: Dependence of the calculated band gap of CrI3 on
the calculation setup for the diagrams beyond GW . Scalar
relativistic sc(GW+G3W2) approach has been used. Nvrt

bnd

means the number of band states included in the evaluation
of the beyond-GW diagrams. Nvrt

k means the k-grid used for
the evaluation of the beyond-GW diagrams. Dependence on
the Nvrt

bnd was studied with fixed grid of k-points: 4 × 4 × 4
for GW part and 2 × 2 × 2 for vertex part. Dependence on
the Nvrt

k was studied with fixed grid of k-points 6× 6× 6 for
GW part and with Nvrt

bnd = 40. ”Saturation” of the band gap
when Nvrt

bnd reaches 40 is related to the fact that all important
band states, i.e. Cr 3d and I 5p bands, are included.

Parameter Setup Band gap

Nvrt
bnd 20 2.91

30 2.72

40 2.25

50 2.19

60 2.16

Nvrt
k 13 2.49

23 2.25

33 2.27

TABLE VI: Band gaps (eV) and magnetic moments (µB ,
Chromium site) of CrI3 obtained at different levels of the-
ory. SR stands for scalar-relativistic approximation, and FR
is for fully relativistic approach. The positions of the peaks in
k-resolved spectral functions have been used to measure the
band gaps. This is demonstarted in Fig. 6. Two variants of
G0W0 differ by starting point: PerdewBurkeErnzerhof (PBE)
functional39 and Hartree-Fock (HF) approximation.

Band gap Moment

Approximation SR FR SR FR

LDA 0.85 0.66 2.95 3.06

G0W0(PBE) 2.07 1.99 NA NA

G0W0(HF) 4.22 3.74 NA NA

QSGW 3.11 2.64 3.08 3.11

scGW 3.03 2.51 3.23 3.35

sc(GW+G3W2) 2.25 1.97 3.21 3.32

sc(BSE:P@GW+G3W2) 1.86 1.57 3.20 3.31

Experiment:

Optical gap [4] 1.24

ARPES [3] 1.3

this respect, one can point out to a certain disagreement
with the experimental ARPES data obtained by Kundu
et al.3 Namely, in experiments, valence band maximum
(VBM) is formed by I 5p states only and Cr 3d states
are shifted downward by about 0.6 eV. However, there
is no such separation between I 5p and Cr 3d states in
LDA calculations. Thus, we can conclude that LDA not
only underestimates the band gap by almost 50% but
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FIG. 6: Spectral function of CrI3 at Γ and T points
in the Brillouin zone as obtained in fully relativistic
sc(BSE:P@GW+G3W2) approach. The value of the band gap
defined as the difference in the positions of peaks is shown.

also predicts incorrect distribution of the orbital charac-
ter among the valence bands.

In Fig. 8 we present partial spectral functions for
Green’s function based methods as obtained in scalar
relativistic approximation. Similar results obtained in
fully relativistic approach are shown in Fig. 9. Simi-
lar to the DFT case, there is no considerable difference
between SR and FR results. So, our discussion is rele-
vant to both figures equally. Firstly, we point out that
QSGW approximation does not show a shift between Cr
3d and I 5p states. In this respect it is in a disagreement
with the ARPES (as LDA is). Its difference with LDA
is only in the considerable overestimation of the band
gap. The rest of methods (scGW, sc(GW+G3W2), and
sc(BSE:P@GW+G3W2)) clearly show the separation be-
tween Cr 3d and I 5p states. In these three methods VBM
is formed solely by I 5p orbitals (as in experiments) and
the onset of Cr 3d states is shifted downward from the
VBM by 0.5–1.0 eV in agreement with the separation 0.6
eV found in the ARPES measurements.3 The difference
between QSGW and other three methods is that self en-
ergy is static (frequency independent) in QSGW whereas
three other methods take full frequency dependence of
self energy into account. Obviously, this frequency de-
pendence is crucial for CrI3. Another qualitative feature
missing in QSGW consists in breaking the Cr 3d states
in the conduction bands into two groups. Figures 8 and
9 also show gradual reduction of the band gap, but this
was already discussed above.

Important comment about second order (in W) vertex
correction to self energy has to be given. The problem
of negative spectral weight appearance (when one uses
this correction) was discussed and certain measures were
taken to circumvent the issue.43–45 Particularly, it was
stated that it is impossible to perform self-consistent cal-
culations which include G3W2 correction.43 However, as
it appears, sc(GW+G3W2) calculations can definitely be
performed for CrI3. They were also performed for a num-
ber of other systems27,32,46 and also for electron gas33

where sufficiently high convergence can be achieved. Be-
sides of considerable increase in computer time needed,
sc(GW+G3W2) calculations did not show any additional
problems as compared to scGW calculations. Author of
this work does not know the explanation of why the is-
sue does not reveal itself. May be the reason is that all
sc(GW+G3W2) (as well as scGW) calculations are per-
formed using Matsubara’s frequency axis and this fact
somehow conceals the problem. Or, may be the self
consistence itself, in fact, cures the problem because the
sc(GW+G3W2) approach is Ψ-derivable and therefore is
conserving.

As it follows from the above discussion, basic features
of the electronic structure known from experiments (the
band gap and Cr 3d/I 5p separation) can quite accu-
rately be described using ab-initio diagrammatic meth-
ods. Thus, there is no need to apply the methods with ad-
justable parameters (DFT+U or DFT+DMFT) to study
CrI3 and, most likely, other materials from this class.

Nonlocal effects

In order to check the quality of the local (single site)
approximation we also performed simplified calculations
at sc(GW+G3W2) level (scalar relativistic) and com-
pared the results with the corresponding calculations
which, however, take full non-locality into account. In-
stead of the k-dependent band states as a basis set in full
calculations, we used a set of orbitals confined inside their
muffin tin spheres as a basis in our simplified calculations.
We have to point out that our simplified (single site) ba-
sis set was still slightly extended as compared to what
normally would be used in, for instance, GW+DMFT
study. Namely, for Cr sites, we included in the basis set
not only 3d orbitals but also their energy derivatives as
they naturally appear in the linearized augmented plane
wave (LAPW) method. We also included 5p and their
energy derivatives in the basis set on I sites. Single site
approximation makes drastic effect on the performance:
vertex corrections in this case take practically zero time
to be evaluated. However, as we discuss below, the cal-
culations performed with the single site approximation
are not free from some issues.

Quite predictably, the most problematic for the local
approximation quantity is the ”head” of polarizability
Pq
G=G′=0, where vectors G and G’ represent reciprocal

lattice translations. Polarizability is an intrinsically non-
local function in real space. In reciprocal space, the mo-
mentum dependence of its ”head” at small momenta is
Pq
G=G′=0 = Bq2 in exact theory. This behavior can-

cels the 1/q2 divergence of the bare Coulomb potential
at small momenta. In self consistent diagrammatic ap-
proaches we normally have Pq

G=G′=0 = A+ Bq2 with A
being small and negative. Its absolute value is normally
much smaller than the absolute value of the ”head” at
all q-points on our q-mesh with non-zero momenta. In
practice, we evaluate (by fitting) the coefficients A and
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was used to get Green’s function on the real frequency axis. The curves become smoother in the sequence QSGW-scGW-
sc(GW+G3W2)-sc(BSE:P@GW+G3W2) primarily because of increase in the many-body effects (incoherence).

B and use only the Bq2 part to proceed. The A coeffi-
cient becomes smaller when the number of the diagrams
is increased (order by order or by using the BSE). To
a certain degree its value also depends on the numeri-
cal approximations (cutoffs) within the same diagram-
matic approach. In this respect, it is important to use
q-dependent functions in the evaluation of polarizability.
If, however, we accept the local approximation for the
vertex part, the ”head” of the correction to polarizabil-
ity becomes momentum independent with very large A
coefficient for total polarizability.

Figure 10 illustrates the above discussion. In the full
calculation, the ”head” is slightly positive at q = 0 which
is to compensate the negative value obtained from the
first diagram in Fig. 2 (GG part). As one can see from
the right window of Fig. 10 where the ”head” of total
polarizability is shown, the compensation is not complete
because of the numerical approximations and the limited
number of diagrams. The correction to the ”head” of
polarizability obtained in local approximation is essen-
tially a constant (momentum independent) and it looks
as if it approximates the average over the Brillouin zone
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value. It is large compared to the GG part which makes
total polarizability a poor approximation to the correct
function.

Another important function for comparison is self en-
ergy. An example of it for the VBM is shown in Fig. 11.
In the full calculation, the effects of interference make the
vertex correction to self energy relatively small and very
well localized in frequency space. It approximates zero
when frequency is about 100 eV. The vertex correction to
self energy obtained in local approximation looks quite
differently. It is larger in absolute value and it is very
slowly decaying function in frequency space. One can

speculate that slow diminishing of the amplitude of self
energy (local approximation) at high frequencies is some-
how related to the truncation of screened interaction W.
Truncation of W is most dangerous at high frequencies
when it approaches bare Coulomb interaction and, there-
fore, is of long ranged nature. Thus, at least for CrI3,
the interference effects which are neglected in local ap-
proximation are quite important. Total self energy (right
window in Fig. 11) shows that differences in the vertex
correction part make the total functions also quite differ-
ent. It is important to point out that the difference in
total self energy is a combined effect of the difference in
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vertex correction to self energy and the self-consistency
effect which affects also the GW part of it.

In the evaluation of the band gap, the issues with the
local approximation become hidden to a certain degree,
as we integrate over the Brillouin zone a few times during
every self-consistency iteration. Still, the band gap eval-
uated in the single site approximation (1.87 eV), tells
us that the corresponding correction to the GW value
is almost 25% larger than the correction obtained with-
out using the local approximation (where the gap is 2.25
eV). The effect of the vertex correction is smaller in the
full case because of the interference effects which are ne-
glected in the local approximation. If we forget for a mo-
ment about the issues with polarizability and self energy
detailed above, the final band gap obtained in the single
site approximation might seem reasonable. Partial and
total spectral functions obtained with local approxima-
tion and shown in Fig. 12 show some differences with the
corresponding spectral functions obtained without using
the local approximation (Fig. 8, upper right window)
but those differences are not dramatic. However, consid-
ering the problems with this approximation at the inter-

mediate steps of the calculation, one can conclude that
the local approximation (even for the diagrams beyond
GW level) represents a poor alternative to the methods
which treat the non-local effects systematically. Whereas
the quantitative effects are, most likely, material depen-
dent, there is no reason to think that this conclusion
will be different for the majority of materials. Consider-
ing the importance of this conclusion for GW+DMFT
(and related) method, more studies of this kind are
needed. As a remedy for the most problematic situa-
tions, where both the non-locality effects beyond GW
and the strong correlations beyond sc(GW+G3W2) are
important, one can suggest an extension of GW+DMFT,
for instance sc(GW+G3W2)+DMFT method, which, at
least formally, can be implemented along the same lines
as GW+DMFT. In this method, DMFT would only
be used for evaluation of the diagrams not included in
sc(GW+G3W2) approach.

Conclusions

In conclusion, we have applied two self consistent di-
agrammatic approaches beyond GW approximation to
study the electronic structure of the layered van der
Waals ferromagnet CrI3. Considerable overestimation of
the band gap obtained in other works when using G0W0
approach was shown to be remedied by applying the ver-
tex corrections. The important correction comes from
the first order vertex function used in both polarizability
and self energy. Application of Bethe-Salpeter equation
for polarizability further improves the band gap. Inclu-
sion of SOC is important, but its effect is smaller than
the effect of vertex corrections.

We also studied the non-locality effects in the dia-
grams beyond GW approximation and found them as
sufficiently large. This can have an impact on develop-
ment of the methods like GW+DMFT.

As an interesting venue for future work on the sub-
ject one can consider studying optical properties of CrI3
and other materials using vertex-corrected GW calcula-
tions as a starting point for a standard implementation
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of BSE. ”Standard implementation” here means using
static (taken at zero frequency) screened interaction W
in the kernel of BSE. In standard implementation, one
casts BSE in an effective eigen value problem from which
the exciton spectra can be directly obtained. Recently,
it was shown how it can be done in the context of self-
consistent QSGW calculations.47
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Appendix A: Details of the Bethe-Salpeter Equation
implementation

As it was mentioned in section , our implementation of
BSE uses full frequency dependence of screened interac-
tion W opposite to a common approximation30,31 where
one uses static (frequency independent and taken at zero
frequency) screened interaction W. As a result, BSE is
solved iteratively in this study. Each iteration adds one
more diagram from an infinite sequence shown in Fig. 4
into the vertex correction to polarizability ∆P . In this
Appendix we give the steps of iterations with some details
on how frequency/time dependence is handled. Full (and
rather lengthy) account of the implementation was pub-
lished in Ref. [29] which includes the details of the basis
sets, k-dependencies, and handling of time-to-frequency
and frequency-to-time transformations. In this brief ac-
count, space arguments of all functions are represented
by digits. Integration over repeated space arguments (if
they are only on the right hand side of equations) is as-
sumed. Below we use auxiliary functions K0, K, 4K
and 4Γ which are defined by the corresponding equa-
tions. Before the iterations we evaluate K0:

K0(123;ω, ν) = −G(13;ω)G(32;ω − ν), (A1)

and assign 4K = 0. ω and ν are fermionic and bosonic
Matsubara’s frequencies correspondingly. Also we trans-
form K0(123; τ, ν) = 1

β

∑
ω e

−iωτK0(123;ω, ν) where τ is

Matsubara’s time and β = 1/T .

During each iteration we perform the following steps
(A2-A6):

K(123; τ, ν) = K0(123; τ, ν) +4K(123; τ, ν), (A2)

4Γ(123; τ, ν) = W (21; τ)K(123; τ, ν), (A3)

4Γ(123;ω, ν) =

∫
dτeiωτ4Γ(123; τ, ν), (A4)

4K(123;ω, ν) =

−G(14;ω)4Γ(453;ω, ν)G(52;ω − ν), (A5)

4K(123; τ, ν) =
1

β

∑
ω

e−iωτ4K(123;ω, ν). (A6)

The above steps are repeated a specific number of times
(iterations). In the end of iterations we evaluate vertex
correction to polarizability:

4P (12; ν) = −4K(112; τ = 0, ν). (A7)

For weakly correlated semicondictors the iterations
(A2-A6) converge very fast (see for instance Fig. 7 in
Ref. [32]). In case of CrI3 we also found that 4 iterations
were quite sufficient.
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