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Abstract.  Various industrial/commercial applications use Al-Mg alloys, yet, the Mg added to Al 
materials, to improve strength, is susceptible to surface segregation and oxidation, leaving behind 
a softer and Al-enriched bulk alloy.  To better understand this process and provide a systematic 
methodology for investigating dopants that can mitigate corrosion, we have developed a robust 
atomistic deep neural net potential (DNP) using a dataset generated with first-principles density 
functional theory (DFT). The potential, validated systematically against DFT values, has been 
shown to have a high fidelity in calculating different elemental and intermetallic Al-Mg systems' 
properties. Our calculations predict a linear trend in the formation energy of the Al-Mg alloy and 
its density as a function of temperature, consistent with experimental literature. Employing the 
DNP within a hybrid Monte Carlo and molecular dynamics (MC/MD) approach, we predict 
anisotropic surface segregation for Al-Mg alloys such that (111) < (100) < (110), with (111) 
surfaces displaying the lowest segregation enthalpies and Mg enrichment. Furthermore, we 
model the segregation tendencies by adapting a recently introduced isotherm model for grain 
boundary segregation. Our results show that this new model describes the MC/MD segregation 
profiles with higher fidelity than the McLean and Fowler-Guggenheim isotherm models. 
 
Keywords:  Aluminum Alloy, Magnesium Alloy, Machine Learning, Surface Segregation. 
 
1. Introduction 
Aluminum is the most abundant metal in the Earth's crust at ~8.3% by weight.[1,2] Homogeneous 
Al materials are relatively soft, limiting their use in most engineering applications where 
mechanical properties are required. Doping with Mg can strengthen Al-based alloys for light-mass 
applications[3].  Commercial and industrial applications, such as the automotive and aerospace 
industries[4-8], use these strain-hardened Al-Mg alloys with a high strength-to-weight ratio. 
 
As is true in many metal materials, corrosion mitigation is an issue of great importance; the U.S. 
spends a few percent of its gross national product per year to address corrosion issues.[9,10] 
Pure Al materials are resistive to corrosion due to the spontaneous formation of a slowly-growing, 
thermodynamically stable Al2O3 scale that acts as a surface diffusion barrier to prevent further 
oxidation[11]. However, this is not the case for the Al-Mg alloy as Mg segregates to the material's 
surface.   When this alloy is heated or exposed to the atmosphere, Mg preferentially oxidizes to 
MgO, which forms a poor barrier to further oxidation. MgO can readily be mechanically removed 
from the Al-Mg alloy's surface, leaving behind an enriched softer Al material[12,13]. Thus, it is 
crucial to understand Mg's segregation behavior in Al-Mg alloyed surfaces and whether 
segregation tendency varies with temperature, Mg concentration, and surface termination[14,15]. 
 
To date, the design of oxidation-resistant alloys and coatings has been a highly empirical process, 
where the chosen solution is often arrived at by a basic trial-and-error approach that is not 
optimum (e.g., the performance of commercial alloys can vary dramatically within a specification 
range). First-principles density functional theory (DFT) calculations are an attractive alternative 
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and have the potential of providing a robust and rigorous approach for accurately predicting 
protective oxidation. These DFT approaches' success has enormous technical impacts on the 
design, tuning, and optimization of Al-Mg for various applications[6-8,16,17]. However, the 
computational cost of standard DFT methods has limited the investigations of alloys to simplistic 
models that often differ from experiments, as environmentally specific parameters, which are often 
excluded from these calculations.[18,19] Previous studies have relied on classical atomistic 
potentials that can be applied to materials under various environmental conditions to model real-
world behavior.[20] The embedded-atom method (EAM) or modified EAM (MEAM) potentials are 
generally used to study the dynamics of Al-Mg binary systems[21-23]. These potentials are fitted 
to experimental data and a quantum mechanical database of atomic forces and energies at finite 
temperatures. While these classical potentials have been successful for studying simple 
elemental systems, the design of these potentials for alloys and complex interactions is non-trivial 
and relies on a laborious and user-intensive process.  
 
This work utilizes a machine learning (ML) based on deep neural networks to approach DFT 
accuracy but at a fraction of its computational cost, thus accelerating discovery[2,24-27]. The 
developed ML force-field's success shows that these methods have the flexibility and non-linearity 
necessary to describe complex potential energy surfaces.[28-34]  ML potentials suffer from 
transferability errors associated with atomic environments not included in the training, similar to 
traditional classical force fields. However, in contrast to most classical potentials, ML potentials 
can systematically learn and improve the potential for different properties and regions of the 
material's phase space.  In the present study, we develop a deep neural net potential (DNP) for 
the Al-Mg binary alloy system via DeepPot-SE approach[35] as implemented in DeePMD-
Kit[36,37], and DeepPot systematically analyze its fidelity describing a wide range of properties. 
We follow an adaptive iterative-learning approach to augment the training dataset to circumvent 
data extrapolation in regions of the phase space that are of interest and are not adequately 
sampled throughout the ML process.  We demonstrate that our DNP describes ordered and 
disordered Al-Mg systems with near DFT accuracy as we have observed in other bimetallic 
systems[38,39]. 
 
Further, we apply the potential to study the impact of temperature, Mg concentration, and surface 
termination on potential element segregation processes.  Due to the complexity of various types 
of surfaces (e.g., grain boundaries) present in physical alloys, it is infeasible to comprehensively 
evaluate each surface's effect on the degree of segregation and the fracture properties with 
presently available methods. A simple way to gain insight into this complicated problem is to study 
or simulate segregation at different low-index Al alloy surfaces such as (100), (110), and (111). 
We compare our predicted segregation results with previously reported EAM and experimental 
results to further demonstrate the predictive accuracy of this DNP. 
 
As a compliment to simulation-based analysis, thermodynamic modeling elicits a deeper 
understanding of first-principles physics and allows us to make surface solute concentration 
predictions.  The classic McLean model is the foundational equation for predicting an interface's 
solute concentration from the bulk solute concentration and average segregation energy.[40] 
Fowler and Guggenheim later improved this model by considering the effects of solute-solute 
interactions with the interaction term, ω.[41] A negative interaction term indicates that solutes 
interact repulsively, and thus their segregation will be reduced in highly concentrated regions. A 
positive term suggests that solutes will preferentially migrate toward other, nearby solutes. 
Recently, Wagih and Schuh have proposed further changes to the model for grain boundary 
solute segregation.[42] An assumption made in the classical approaches is that the bulk solute 
concentration is approximate to the total solute concentration. The new approach argues that this 
approximation is inaccurate for nanocrystalline systems, which contain a high share of boundary 



3 
 

positions relative to bulk positions.[42] They instead proposed a mixture rule, solved self-
consistently, to obtain the solute concentration. This new model also incorporates a piecewise 
function to represent solute interactions, which is needed to account for the absence of 
interactions when few nearby solute atoms[42]. Herein, we test the precision for each evolution 
of the solute segregation model by fitting them to solute concentration results from our MC/MD 
simulations. In adapting the Wagih-Schuh modeling method for surface solute segregation, we 
show that the revised isotherm yields the best surface concentration predictions in agreement 
with MC/MD data.  
 
2. Computational Methods 
2.1 DFT Calculations. The DFT database was generated using the Vienna Ab Initio Simulation 
Package (VASP)[43-46], employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlational 
functional[47] to solve the Kohn-Sham equations within periodic boundary conditions. The 
electron-nucleus interactions are described using the projector augmented wave (PAW) method 
as implemented in VASP[48,49]. In the PAW representation, Al is represented with a s2p1 valence 
configuration, while Mg is represented with s2p0. Single-particle orbitals are expanded in plane 
waves generated within a cutoff of 400 eV. We use a dense gamma-centered k-grid with a 0.24 
Å-1 spacing between k-points, equivalent to 8x8x8 mesh for bulk Al with a conventional four atom 
face-centered cubic (fcc) unit cell. To aid in the k-grid convergence, we use Methfessel-Paxton[50]  
of order 1 with a 0.15 eV smearing width. We terminate the electronic self-consistent loop using 
a 10-8 eV energy-change tolerance to ensure good convergence of energies and forces.  
 
2.2 DNP Training database.  Because we aim to build a DNP that can equally describe the 
crystalline and amorphous phases of Al-Mg alloys, we constructed a training database that 
includes bulk, surfaces, and amorphous phases.  The total number of configurations in the 
database amounts to ~250k configurations. Most configurations (~100 k) were obtained for the 
small Al-Mg ordered compounds with less than 10 atoms per unit cell after applying different 
distortions to the system. The total number of Al-Mg slab models was ~30k, primarily using (100), 
(111), and (110) orientations employing supercells with 20-80 atoms. The alloys' surface 
configurations are obtained using fcc lattice with an Al/Mg random occupancy.  The database was 
mainly populated from ab initio molecular dynamics (AIMD) trajectories within an NVT ensemble 
(fixed number of atoms, volume, and temperature) at a temperature that ranges between 100 and 
1000 K. We employed a relatively large 2-4 femtosecond (fs) timestep in the AIMD simulations to 
decrease the correlations in the configurations along the AIMD trajectory. Using the DFT 
database, the training dataset comprises all energies and atomic forces. 
 
2.3 Al-Mg DNP Model and Fitting. The DNP was developed with the DeepPot-SE approach[35] 
using DeePMD-Kit[36,37], as described in detail elsewhere[38,39]. We used a cutoff radius of 6.0 
Å for neighbor searching with 2.0 Å as the smooth cutoff.  The maximum number of neighbors 
within the cutoff radius was set at 180 though a smaller value of ~120 yielded similar accuracy 
potentials. The dimensions of the embedding and fitting nets are set at 25x50x100 and 
120x120x120, respectively. The neural net is trained using Adam stochastic gradient descent 
method with a learning rate that decreases exponentially from the starting value of 0.00, see 
Supporting Material (SM) for further detail[51].   The input data is split into training and testing 
sets where the testing data is not used for optimizing the weights of the network but rather 
employed as an independent test for cross-validation.   
 
2.4 Validation of Al-Mg DNP. The validation of the Al-Mg DNP potential is described below for 
selected figures of merit and, in greater detail, in the SM with comparisons to literature[21-
23,27,52-65] values. We utilized the Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS, 16 Mar 2018 version)[66]  for all of our atomic calculations with the DNP and initial 
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structures were created with Atomsk[67] unless otherwise noted.  Vaccany mobility energy 
barriers were determined using the nudged elastic band method[68]. 
 
2.5 Bulk Crystal Lattice Constant and Atomic Energy. Before investigating defects, optimized 
lattice constants, and cohesive energy (𝐸coh) are determined for the bulk crystal models. For 

elemental Al and Mg systems, we computed the cohesive energy per atom using 𝐸coh = 𝐸B −
𝐸atom, where 𝐸B is the bulk energy per atom and 𝐸atom is the energy of the corresponding isolated 

atom. Thus, with this definition, a negative 𝐸coh indicates that the system is thermodynamically 
stable.  
 
2.6 Elastic Constants. In the DFT and the atomistic calculations, the elastic constants are 
calculated by performing 12 distortions of the lattice and then fully relaxing the system's atomic 
coordinates. The elastic constants are then computed using strain-stress relationships. The bulk 
moduli (e.g., bulk, shear, Young's moduli, and Poisson's ratios) are computed using the crystal 
lattice specific equations detailed in the SM[51].   
 
2.7 Surface Energies and Planar Defects. The free surface formation energy, γs, is computed 

using γs = (𝐸 − 𝑁𝐸B) (2A)⁄    where 𝐸 is the energy of the slab model, and A is the surface area 
perpendicular to the slab direction.    The factor of 2 is included to account for the two different 
surfaces in the slab models. We calculated Al surface energy for all terminated surfaces with Miller 
indices less than 4.  The same approach was used for the planar defects; however, we used the 
DFT optimized structures from the material project database (MPDB), and compared them to the 
surface energies listed for these calculations. 
 
2.8 Molecular Dynamics Simulations. The molecular dynamics simulations are carried out using 
the large-scale atomistic/molecular massively parallel simulations (LAMMPS)[66]. First, models 
starting from an initial ideal fcc structures are equilibrated in the NPT ensemble (fixed number of 
atoms, pressure, and temperature) to allow the volume to change to minimize the pressure at a 
given temperature. After this equilibration, the lattice and lattice constants are fixed, and we 
carried simulations in the NVT ensemble for data collection (100 ps). We employed a 1 fs time 
step in all simulations. For the alloys, we attempted a Monte Carlo (MC) swap between Al and 
Mg at random sites every 20 MD steps, after which the swap is accepted with a Metropolis 
probability. In total 400 k MD steps were run. The bulk systems are represented using an 8x8x8 
supercell of the conventional unit cell corresponding to 2048 atoms with periodic boundary 
conditions. The surface models are constructed using a 6x6 surface supercell for the (100) and 
(110) surfaces and a 6x5 supercell for the (111) terminations. The number of layers in the slab 
models is 80, 64, and 96 for the (100), (110), and (111) slabs.  The resulting number of atoms is 
2880 for (100) and (111) and 2304 for (110).  
 
 
3. Results and Discussion 
 
We report the results of iteratively training Al-Mg DNP model, the DNP accuracy reproducing bulk 
Al and Mg figures of merit relative to DFT and description/comparison of Al-Mg surface 
segregation dynamics with DFT and experimental reference values.  The description and 
quantified accuracy of the DNP predictions, with reference DFT values, establish the general 
utility, flexibility and versatility of this DNP for use in modeling Al-Mg, Al or Mg materials in future 
works.           
 
3.1 Force Field Validation. The Al-Mg DNP was validated by comparing to commonly known 
physical properties based on our calculations using DFT or obtained from the literature.  For each 
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metal, we compared our DNP calculated values for lattice parameter and cohesive energy (fcc, 
bcc, sc, diamond, hcp), point defects (vacancies and interstitial atoms), elastic constants (bulk 
modulus, Young's modulus, shear modulus, and Poisson's ratio), surface energy to list a few in 
Tables I and II (see Tables SI and SII for entire list).  The DFT calculations are carried out using 
an equivalent computational setup as employed to generate the training dataset.  
 

Table I. Comparison of general bulk properties of Al. 

Property Experiment DNP DFT 

fcc a 4.05[53] 4.04 4.04 

fcc Ecoh -3.49[54] -3.75 -3.655[27] 

V0 16.5[55] 16.51 16.47 

C11 114.3[60] 118 104 

C12 61.9[60] 65 73 

C44 31.6[60] 38 32 

Bulk Modulus (KH) 79.4[60] 82 83 

Shear Modulus (GH) 29.4[60] 33 24 

Young’s Modulus (EH) 78.51[60] 88 68C 

Poisson’s Ratio (v) 0.33[61] 0.32 0.37 

All DFT values are from MPDB[52], mp-131 unless otherwise noted. Lattice parameters are in Å, 
V0 in Å3/atom, Cxx and elastic moduli in GPa. C calculated from literature reference values. 
 
 
Table II. Comparison of general bulk properties of Mg. 

Properties Experiment DNP DFT 

ahcp 3.209[69] 3.18 3.203 
chcp 5.211[69] 5.25 5.127 

hcp Ecoh -1.51[62] -1.50 −1.49[27] 

V0 23.24[63] 23.05 23.04 

C11 63.5[65] 78 58 

C12 25.9[65] 28 30 

C13 21.7[65] 20 22 

C33 66.5[65] 74 66 

C44 18.4[65] 15 20 

C66 18.8[65] 22 14 

Kv 36.9[65] 41 37 

KR  36 37 
Bulk Modulus (KH)  38 37 

Young's Modulus (EH) 45[65] 51 46C 

GV 19.4[65] 21 18 

GR  19 17 
Shear Modulus (GH)  20 18 
Poisson’s ratio (v) 0.295[61] 0.28 0.29 

All DFT values are from the MPDB [52], mp-153 unless otherwise noted. Lattice parameters are 
in Å, E0 in eV, V0 in Å3/atom, Cxx and elastic moduli in GPa. C calculated from literature reference 
values. 
 
The general bulk properties of Al and Mg agree well with the values found in MPDB[52] in addition 
to the elastic constants (see SM[51] for more details).  We also observe good agreement with 
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experimentally measured values in Tables I and II for Al and Mg with the DNP and literature DFT 
values.  Further, the high-fidelity reproduction of the elastic constants and associated moduli is a 
good indication of a potential's accuracy.[70]  We note that some of the DNP mechanical 
properties are over- or under-estimations of the DFT literature values.  These differences between 
the DNP and DFT results are likely due to differences in the computational setup employed by 
MPDB and in generating DNP training set (e.g., energy cutoff energies 520 and 400 eV, 
respectively). In addition, these differences could be in part due to inaccuracies of the DNP. 
Similar over and under-estimations in these values are noted when comparing the EAM and 
MEAM potentials (see Tables SI and SII).  
 
3.2 Surface Energies and Planar Defects. We used optimized DFT structures from the MPDB and 
their reported surface energies for comparison with DNP, EAM1[23], EAM2[21], EAM3[22], and 
literature values[27]  from a MEAM[71] potential.  The calculated EAM2 and EAM3 surface 
energies are reported in Table S1 but were excluded from Figure 1 due to their poor accuracy 
compared to DFT reference values.  Comparison of the surface energies for terminated Al 
surfaces with Miller indices less than 4 are in excellent agreement (<6% energy difference, using 
equations S1 and S2) with DFT values (Figure 1 and Table SI). In addition to the idealized 
surfaces listed in Figure 1 and Table SI, we also investigated a small set of grain boundaries 
defects that are commonly found in real-world materials.  
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Figure 1.  Al surface energies (eV/nm2) for terminations with Miller indices < 4 computed using 
optimized DFT structures (MPDB, mp-131) with DNP, EAM1, and MEAM literature values[27]. 
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Although we did not explicitly include these planar defect structures in the training dataset, the 
DNP predicts the expected DFT energies of these defects relatively well (Table IV).  We observe 
satisfactory agreement of the DNP with our DFT calculations for Al planar defects structures and 
the surfaces (Figure1 and Table IV).  We note that this current version of the DNP fails to 
accurately describe the Σ7(111) planar defect energy (~75.4 % difference) compared to DFT 
values.  Nevertheless, the DNP's accuracy is remarkable at reproducing DFT values not included 
in the training set. 
 
Table IV. Comparison of DNP bulk Al planar defects surfaces energies (eV/nm2) with DFT. N.B., 
this class of structures were not included in DNP training. 

Sigma 
Defect 
Plane 

Rotation 
Plane 

Rotation 
γs Al 

DNP DFT[52] % EDiff 

3 (111) (110) 180.0 206 193 6.45 

5  (013) (100) 53.13 310 300 3.33 

5  (021) (100) 36.87 345 331 4.34 

5 (100) (100) 36.87 213 237 10.3 

7 (111) (111) 36.87 142 811 75.4 

7  (321) (111) 38.21 322 312 3.20 

9 (110) (110) 38.94 427 443 3.66 

9  (221) (110) 38.94 285 268 6.05 

All DFT values are taken from the MPDB mp-131 dataset. 
 
Al-Mg DNP Validation Summary. Detailed descriptions of these bulk property calculations and 
corresponding DFT values can be found in the SM[51], a total of 46 properties for Al and Mg, 
respectively (Tables SI and SII, and Figure S1).  In general, our DNP agrees well with DFT values 
(%EDIFF) by 8.12 14.8, and 11.2 % for all Al, all Mg, and overall, respectively (see SM[51] for 
details).  We compared these benchmark properties to values calculated using three well-
described Al-Mg EAMs[21-23] and literature values calculated with a MEAM style[27] potentials.  
Overall of the examined properties, our DNP potential is more accurate than the EAM/MEAMs at 
reproducing the literature DFT results. This observation is not surprising as the EAM/MEAM 
potentials generally are optimized using both DFT structures and experimentally determined 
figures of merit, which results in a deviation from DFT-only calculations.  Additionally, EAMs 
generally do not have good accuracy outside of their training sets.[72]     
 
3.4 Bulk Properties of Al-Mg Alloy System. Before investigating Mg surface segregation, we 
calculated the formation energy of the Al-Mg alloy (Mg = 0, 4, 12, and 20% atomic ratio) and its 
density as a function of temperature (K) using a hybrid Monte Carlo/Molecular Dynamics (MC/MD) 
scheme via LAMMPS software package (Figure 2). Mg's cohesive energy is smaller than Al (see 
Tables I and II), which explains the decrease in the formation of the energy of Al-Mg with 
increasing Mg concentration.  The slope of the fitted lines increases non-linearly for 0, 4, 12, 20% 
Mg at 0.33±0.2, 0.33±0.2, 0.35±0.2, and 0.36±0.2 eV/K, respectively.  This observation could be 
related to physical phenomena such as reducing the alloy melting point[73].  Additionally, we 
observe a linear trend (Figure 2b, R2>0.991) [74] in the Al-Mg density as a function of temperature 
(Figure 2b) and also atomic Mg% (Figure 2c), both observations have negative slopes, a trend 
which is consistent with the experimental literature. [74,75] The alloy's density and its formation 
energy are also observed to decrease linearly (R2>0.998) as a function of %Mg for all the 
temperatures simulated (Figure 2b and 2c), which are also consistent with experimental 
observations in the literature[74,76].   
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Figure 2.  Bulk properties of the Al-Mg (Mg = 0, 4, 12, and 20%) alloy from DNP a) formation 
energy as a function of temperature b) density as a function of temperature (200 to 800 K) c) 
density as a function of Mg concentration. Error bars indicate twice the standard deviation (2σ). 
 
3.5 Surface Segregation.  The heat of segregation at T=0 K for Mg impurities in Al slabs is shown 
in Figure 3. The segregation energy is defined as the energy difference between placing an 
impurity atom in the bulk-like layers away from the surface versus top surface layers.  Here the 
lattice is fixed as in the bulk configuration. We have investigated surface segregation for all distinct 
surfaces with a Miller index of less than 4. Solute substitution at the top layer is the most favorable 
for all surfaces, indicating Mg's tendency to segregate to the top layers.  For example, Mg is 
favorable to substitute Al on the top layer by ~0.4 eV compared to that in a "bulk-like" environment 
away from the surface. Among the low index flat surfaces, (111) surface has the weakest 
segregation tendency though the energy difference is not significant. We find that Mg segregation 
prefers step edge for stepped surfaces while the terrace sites also show segregation tendency. 
However, regardless of the surface termination, the DFT results suggest that Mg segregates to 
the surface. The surface segregation tendency depends on several factors, including atomic size, 
cohesive energy, and surface energy.[77] Mg atomic size is ~12% larger than that of Al atom, and 
its cohesive energy is 60% smaller than that of Al. As a result, Mg prefers to segregate to the top 
surface layers. From geometrical inspection of the optimized structures, the larger Mg atoms are 
accommodated on the top surface layers by moving ~0.3 Å along the z-axis, while Mg atom from 
the subsurface or sub-subsurface layers shows a smaller ~0.1 Å outward movement.   
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Figure 3a compares the DFT segregation energies with the DNP results on the same surface 
models. As seen from the figure, we have an excellent agreement between DFT and DNP results. 
Because of the high computational cost of DFT simulations for large systems, all surface 
calculations in Figure 3a are done using a relatively small 2x2 surface supercell (see Table SIII). 
We carried out additional calculations using an 8x8 surface supercell utilizing our DNP to 
investigate the impact of finite size effects. Figure 3b shows an excellent agreement between the 
small and larger supercells suggesting relatively small finite-size effects. Our results compare well 
previous results by Liu et al., who reported energies of the Mg heat of segregation[21]. While 
Deng et al. modified analytic EAM (MAEAM) potential[78] observes a similar trend in heats of Mg 
segregation energies, the reported values are significantly different for all terminations.  Both Liu 
et al. and our DNP are similar to the experimentally calculated value of -0.21 eV for the (111) 
plane[79]. The values are distinct for predictions of Mg heat of segregation energy for (100) and 
(110) terminations due to these potentials' assumptions and training parameters.  Our DNP and 
DFT Mg surface segregation enthalpy results are consistent with each other and distinct from 
these EAM potentials.  
 

 
Figure 3.   Mg heat of segregation at 0 K (eV/atom) for Al surfaces with Miller indices less than 4.  
The solute's energies are shown to occupy layers of increasing depth from the surface from left 
to right for each surface.  (a) Comparison between DFT filled circles/solid line and DNP open 
circles/dashed line using 2x2 surface supercells.  (b) Comparison between DNP with 2x2 (open) 
circles dashed/line and 8x8 (open) squares dashed line surface supercells.  Lines are added to 
guide the eye. 
As a result, increasing Mg concentration on the top 
We have carried out hybrid MC/MD simulations based on energies and forces computed using 
the DNP to investigate the segregation at finite temperature and higher Mg substitutions. This 
scheme involves short molecular dynamics runs and random exchange between atoms at 
different locations, in which the last configuration is accepted or rejected using a standard 
Metropolis algorithm. MC/MD is advantageous as it automatically accounts for impurity-impurity 
or impurity-host interactions, temperature, configurational entropy, and atomic vibrations. Using 
the optimized lattice constants determined before, from the NPT simulations, we constructed slab 
models for the (100), (110), and (111) surfaces with thicknesses of 80, 64, and 96 layers, 
respectively. Following MC/MD simulations, we obtained the slabs' equilibrium structures at 
various temperatures and Mg compositions. 
 
As the simulation temperature is increased from 200 to 800 K, we observe decreased Mg 
concentrations at the top layers, as seen in Figure 4 and Figure 5. Mg surface segregation is 
observed to be the largest for (110) surfaces, for all temperatures and Mg compositions, and at 
temperatures below 800 K (Figures 4a, b, and c). Comparatively, surface segregation tendency 
is weakest for the (111) termination across all temperatures and Mg compositions (Figure 4c).  In 
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good agreement with literature reports obtained using EAM2[21], the termination-dependent 
segregation tendency follows the ordering: (111) < (100) < (110) (Figure 4a and b). We also 
observe expected decreases in Mg surface enrichment as the temperature increases from 200 to 
800 K for all surfaces (Figure 4d), with (111) and (100) showing the lowest and highest Mg 
enrichment, respectively.  Lastly, the surface enrichment results show that a significant proportion 
of solute atoms are in the surface layer at low total Mg compositions and low temperatures.    

 
Figure 4. Mg concentration in the surface layer computed using MC/MD simulations with the DNP 
at T = 200, 400, 600, 800K for a) (100), b) (110), and c) (111) surfaces, and d) Mg surface 
enrichment relative to the bulk (black/dots = (100), red/dash (110), and cyan/dots = (111)). Error 
bars indicate the standard deviation (σ).  
 
 
As expected, we observe a more significant mixing of Al and Mg in the slab's interior as 
temperature increases, and an increase in the interior Mg concentration occurs (Figure S2).  We 
also observe that Mg segregation is restricted to the 4-5 topmost layers.  Mg concentration in 
these subsurface layers increases linearly with increasing temperature relative to the interior, as 
is observed in the surface layers at each composition 4, 12, and 20% of all terminations (Figure 
S3).  Analysis of the slopes of these fitted lines from Figure S3 displays the overall changes in 
the interior Mg concentration of the Al-Mg slabs (Mg = 4, 12, 20%) surface termination dependent 
with the largest change observed in the order of (100) > (110) > (111) (Figure S4).  These 
observations, of the interior Mg concertation, further support that there is less of a driving force 
for Mg segregation in the (111) terminated slab as temperature and Mg concentration change 
e.g., internal Mg concentrations remain relatively high compared to (100) and (110) slabs.  
Interestingly, regardless of the Al-Mg slab % Mg concentration, the concentrations of the Mg 
surface (and subsurface) remain relatively consistent for each temperature for a given termination 
(Figure 5 and Figure S3).  To directly compare with Liu et al. (4% composition) results, we looked 
at the ratio of surface % Mg to the interior (Figure 4D).  We observe good agreement with Liu et 
al. for the (100) termination, but weaker agreement in the ratio is observed for the (111) 
termination. We also note that for the (110) termination, the subsurface (second layer) Mg 
concentration approaches surface concentration at 800K for all Al-Mg slabs examined.   
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Figure 5. Geometrical structures of Al-Mg alloy (111) surface with different Mg ratios (Mg = 4,12, 
and 20%) at 200, 400, 600, and 800 K using MC/MD and the DNP.  The blue circles are Mg, and 
the red circles are Al. 
 
Ideally, a further quantitative comparison to experimental results would support our computational 
models; however, this comparison is difficult because of experimental parameters that inhibit 
comparison at elevated temperatures. Auger electron spectroscopy (AES) investigations provide 
an excellent method for Mg surface segregations examination as the Auger electrons have lower 
penetration depth in a material compared to X-ray photoelectron spectroscopy.  An AES study of 
Al-0.88at%Mg alloy found a surface enrichment of Mg about 10.5at% at 473K[80].  Bloch et al. 
also found Mg's surface segregation for Al-1.45at%Mg alloys using optical second-harmonic 
generation, and Mg was observed to decrease beyond 510 K due to evaporation[81]. The Mg's 
evaporation is favorable under the ultrahigh vacuum (< 1x10-9 Torr) conditions required for AES; 
however, Mg evaporation is not included in our MC/MD models. Therefore, we do not expect to 
see consistent agreement between these types of high-temperature experimental data for Mg 
surface concentration.   
 
Nevertheless, these experimental challenges at elevated temperatures highlight the importance 
of theoretical models that can elucidate the temperature-dependent dynamics of Al-Mg alloys 
(and other materials), see Figure 4. The fraction of Mg (Figure S2) suggests that Al-Mg alloys with 
(111) exposed surfaces (visualized in Figure 4) are ideal for corrosion resistance as these have 
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the weakest tendency to segregate Mg to the surface and lower potential of Mg loss via oxidation 
to MgO.[23] A similar observation of the (111) Al-Mg surface using a modified analytic embedded 
atom method (MAEAM) potential was reported by Deng et al.[78] Therefore, we suggest that our 
hybrid MC/MD approach is qualitatively consistent with the experimental results. 
 
Figure 6 shows the pair distribution function (PDF) for the three alloy surfaces with 4% Mg doping 
concentration at three different temperatures (T=400, 600, and 800K). The PDF 𝑔(𝑟) =
〈∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)𝑗≠𝑖𝑖 〉MC/MD  is obtained from the ensemble average of the configurations generated 

using the MC/MD approach.  As seen from the figure, the Al-Al, Mg-Mg, and Al-Mg PDFs show a 
dominant first peak at r~2.85, 3.1, and 2.9 Å, respectively, which is consistent with the nearest 
neighbor distance in the fcc lattice. The larger values for Mg-Mg and Al-Mg are consistent with 
Mg's larger ionic size compared to Al. As shown in Figure 4, at low temperatures, Mg atoms 
mostly occupy the top surface layer. The Al-Mg increased intensity compared to Mg-Mg indicates 
that Mg is likely coordinated with Al (not Mg). Indeed, we have verified based on DFT calculations 
that two Mg atoms do not prefer to be nearest neighbors, likely because of the increase in the 
misfit strain. Expectantly, the temperature has a smoothening effect on the peaks that are most 
noted for the open (110) surface for Mg-Mg. The reduction of the peak intensities and boarding 
concerning temperature indicates a transition from the crystalline fcc state to a more disordered 
and likely a liquid state.[82]  Of all Al-Mg interactions, the (100) surface is the least impacted by 
temperature, presumably because most Mg has migrated to the surface, segregated, and the 
phase change is small.     

  
Figure 6.   The ensemble-averaged radial distribution function for (a) Al-Al, (b) Mg-Mg, and (c) Al-
Mg for the Al-4%Mg alloy surfaces at three different temperatures and the three different surfaces 
using MC/MD and the DNP.   
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The MC/MD surface segregation results are also valuable in developing a new thermodynamic 
model, which may provide superior predictions of the surface solute concentration over the 
standard literature methods. The traditional isotherm used to describe solute segregation, 
developed by McLean, utilizes statistical mechanics to relate the atomic fraction of solutes in a 
system's bulk and interface regions.[40] This method for obtaining solute concentrations post-
relaxation is applicable to surface interfaces, as presented in Eq. (1):  
 
 𝑋𝑠𝑢𝑟𝑓

1 − 𝑋𝑠𝑢𝑟𝑓
=

𝑋𝑏𝑢𝑙𝑘

1 − 𝑋𝑏𝑢𝑙𝑘
exp (−

∆�̅�𝑠𝑒𝑔

𝑘𝑇
). 

 

(1) 

The surface segregation concentration, Xsurf, is described as a function of the bulk solute 
concentration, Xbulk, Boltzmann's constant, k, and temperature, T. The isotherm incorporates an 
average segregation energy term, ΔĒseg, which is the energy difference between a single solute 
atom in the surface layer and a bulk layered solute atom. The segregation energy is highly 
dependent on the configurational energy and elastic strain energy changes during atom 
exchange.[83] A fundamental assumption made by McLean is that the total solute concentration 
of the system, Xtot, is equal to Xbulk, allowing one to produce Xsurf from Xtot. 
 
Fowler and Guggenheim[41] later adapted the McLean isotherm to account for the interaction 
between segregating solutes by adding a solute-solute interaction term ⍵. As solutes continue to 

segregate to the surface layers of a system, the energetic attraction or repulsion between them 
increases. In Al-Mg alloy, we verified that the segregation tendency declines in the case of a 
repulsive solute interaction. Adding the solute interaction term to the McLean isotherm, we arrive 
at Eq. (2): 
 
 𝑋𝑠𝑢𝑟𝑓

1 − 𝑋𝑠𝑢𝑟𝑓
=

𝑋𝑏𝑢𝑙𝑘

1 − 𝑋𝑏𝑢𝑙𝑘
exp (−

∆�̅�𝑠𝑒𝑔 + 𝜔 ∙ 𝑋𝑠𝑢𝑟𝑓

𝑘𝑇
). 

 

(2) 

Most recently, novel additions to the McLean-Fowler-Guggenheim model were proposed by 
Wagih and Schuh[42] for grain boundary segregation. In this model, the improvements to the 
Fowler-Guggenheim isotherm are seen in its superior ability to extend a single set of fitted 
parameters to a wide temperature and composition space. Although the Wagih-Schuh study is 
focused at decoupling the effects of grain boundary site spectrality from the model, their other 
innovations can be applied to surface solute segregation as well. Namely, relevant to our study  
are their suggestions to cast the Fowler-Guggenheim isotherm with a mixture rule and represent 
the solute interaction as a piecewise energy term, ΔE⍵, dependent on the dilute limit of the system.  
 
The mixture rule consideration is needed as a system with a low total solute concentration 
contains a significantly large proportion of solutes located within its surface layers after 
segregation. As a result, the earlier models' approximation, Xtot = Xbulk, is incorrect, and a 
substitution of the Xsurf, utilizing the surface site fraction, f, or ratio surface lattice positions to total 
lattice positions, should be applied. Our experimental results presented in Figure 4d show that 
the low temperature, 4% total Mg systems, contain significantly higher proportions of solutes in 
the surface layers than in the bulk, confirming this step's physical necessity. Poor predictions in 
the low total solute concentration region arise in the absence of this correction. Thus, we 
substitute out Xsurf in Eq. (2) using the mixture rule, Eq. (3), and rewrite, resulting in Eq. (4).  
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𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑠𝑢𝑟𝑓) 𝑋𝑏𝑢𝑙𝑘 + 𝑓𝑠𝑢𝑟𝑓 ⋅ 𝑋𝑠𝑢𝑟𝑓 (3) 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑠𝑢𝑟𝑓) 𝑋𝑏𝑢𝑙𝑘 + 𝑓𝑠𝑢𝑟𝑓 [1 +
1 − 𝑋𝑏𝑢𝑙𝑘

𝑋𝑏𝑢𝑙𝑘
∙ exp (

∆�̅�𝑠𝑒𝑔 + ∆𝐸𝜔

𝑘𝑇
)]

−1

 (4) 

 
 
Equation (4) is solved self-consistently to determine Xbulk from Xtot, which simultaneously solves 
Xsurf via Eq. (3). The segregation energy, ΔĒseg, and solute interaction energy, ΔEω, are 
determined by fitting the equations to experimental results.  

 
Further, adopting the Wagih-Schuh approach for surfaces is accomplished by evaluating the 
solute interaction energy as a piecewise function. As presented in Eq. (5), the interaction energy 
is 0 below the dilute limit, and a linear function above it, which is necessary as the solute 
interaction energy is negligible at low total concentrations (< 10% Xsurf) due to neighboring solute 
atoms being too distant to interact given the interatomic potential.[42] 
   
 

∆𝐸𝜔(𝑋𝑠𝑢𝑟𝑓) = {
          0                           𝑋𝑠𝑢𝑟𝑓 ≤ 𝑋0

  𝜔(𝑋𝑠𝑢𝑟𝑓 − 𝑋0)             𝑋𝑠𝑢𝑟𝑓 > 𝑋0
 

 

(5) 

The surface-adapted Wagih-Schuh model shows a significant improvement in its predictive 
capabilities over the Fowler-Guggenheim and McLean models. Average prediction errors, or the 
mean of differences between MC/MD data points and fitted isotherm predictions, are reduced, 
especially around the low total solute concentration region (≤ 2% Mg). Figure 7 displays one such 
fitting of each isotherm for the (100) surface at 200 K, in which the Wagih-Schuh model's 
prediction error is 50% that of the Fowler-Guggenheim model and 33.3% of the McLean model 
Figure 8.  
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Figure 7. MC/MD simulation data and fitted predictions of the McLean (Eq. 1)[40], Fowler-
Guggenheim (Eq. 2)[41], and Wagih-Schuh (Eqs. 3,4,5)[42] models for the (100) surface at 200 
K. Error bars indicate the standard deviation (σ).  
 
The average prediction errors for the entire temperature and surface termination space are 
presented in Figure 8. Overall, the Wagih-Schuh model displays the lowest errors, with the most 
noticeable differences in the (100) surface termination.  The improved predictive capabilities are 
attributed to the piecewise function accounting for the low concentration region where solutes do 
not interact, as instead, solutes separate beyond their interaction distance. The mixture rule 
casting of the Fowler-Guggenheim model also enables a better representation of the low surface 
concentration region since most solute atoms are in the surface layer. Full parameter fitting results 
from each isotherm are found in Table SIV.  
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Figure 8. Average prediction errors of each model with simulation results. The difference between 
each model's fitted curves and actual simulation points is averaged along with the entire 
composition range. The errors for each temperature and surface termination combination are 
labeled according to the colormap bar on the right. 
 
Consistent with our simulation results, the isotherm predictions of the (111) surface show the 
lowest concentrations and segregation energies. A possible explanation is that the higher packing 
density of (111) improves the likelihood that neighboring solute atoms fall within the interatomic 
potential's interaction distance.  A shorter average separation between solutes increases the 
likelihood that each solute atom will interact with more than one neighboring solute[42]. Given 
that the interaction's nature is repulsive, this limits solute migration to the highly concentrated 
surface. The radial distributions shown in Figure 6 support this correlation; the (111) surface 
contains the largest variance of solute pair radii and the largest solute separation. Additionally, 
the close packing of (111) may enhance the misfit strain between paired solutes, spreading 
energetically favorable surface positions. It remains unclear the relation between the dilute limit 
of the system and the surface termination. A variable dilute limit would affect the piecewise solute 
interaction energy term in determining which concentration solute interactions begin. Further 
testing of the thermodynamic model is needed to determine the dilute limit's physical nature, 
enabling more efficient parameter fitting. 
 
 
5. Conclusions.  We have developed a robust atomistic potential based on machine learning 
principles using the DeepPot-SE approach.  Our DNP was validated against DFT values in the 
literature or calculated by us, confirming that that the developed Al-Mg DNP has high fidelity for 
calculating Al and Mg's general bulk properties.  Furthermore, our DNP can reproduce DFT 
benchmarks for volume, density, and Al-Mg alloy systems' formation energy using a MC/MD 
approach.  Additionally, we can accurately model Mg surface segregation behavior in larger 
simulation cells (8x8x8) while maintaining DFT accuracy.  Our results suggest that the (111) 
surface is ideal for optimal corrosion resistance as Mg segregation is the lowest compared to the 
(100) and (110) surfaces.  Surprisingly, careful selection of the Al-Mg alloy's Mg composition also 
impacts the surface segregation where 12-20% total Mg concentration shows the weakest 
segregation at the surface and a more uniform Mg distribution throughout. A new thermodynamic 
model of Mg surface segregation in Al-Mg systems was developed, by adapting the isotherm by 
Wagih-Schuh to accurately predict surface solute concentrations in coordination with these 
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results, which was achieved by eliminating the bulk solute approximation made in earlier models 
and incorporating a piecewise solute interaction energy term. The new thermodynamic model's 
predictions also support the (111) surface having the lowest surface segregation energy of all 
studied terminations, which is explained by the higher packing density of (111), causing a smaller 
average separation between solute atoms and thus an increased misfit strain which spreads apart 
energetically favorable surface positions. Future work is needed to mathematically describe the 
termination dependency of the dilute limit to enable faster parameter fitting of the isotherm. This 
work will help accelerate the selection and real-world testing of Al-Mg alloys that are more 
resistant to corrosion by serving as the basis for developing of DNP to evaluate the addition of 
dopants, such as, beryllium[84].  
 
The training database and the potential are freely available at saidigroup.pitt.edu or by contacting 
the corresponding author.  
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