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At ambient pressure tin transforms from its ground-state, the semi-metal α-Sn (diamond structure), to metallic β-Sn at
13◦C (286K). There may be a further transition to the simple hexagonal γ-Sn above 450K. These relatively low transition
temperatures are due to the small energy differences between the structures, ≈ 20 meV/atom between α- and β-Sn, which
makes tin an exceptionally sensitive test of the accuracy of density functionals and computational methods used in calculating
electronic and vibrational energy, including zero-point energy. Here we use the high-throughput Automatic-FLOW (AFLOW)
method to study the energetics of tin in multiple structures using a variety of density functionals, and examine the vibrational
contributions to the free energy with the AFLOW Harmonic Phonon Library (APL). We look at the successes and deficiencies
of each functional. We also discuss the necessity of testing high-throughput calculations for convergence of systems with small
energy differences.

I. INTRODUCTION

It is said that the failure of Napoleon’s invasion of
Russia was caused, in part, by the disintegration of his
troops’ tin buttons during the cold winter of 1812-13.[1]
Tin has also been blamed for the failure of the 1910-13
Scott Expedition, as their caches of kerosene evaporated,
supposedly from a failure of the tin solder in the tanks.[2]

While both of these stories are apocryphal (indeed, the
Grande Armée’s buttons were most likely brass, not pure
tin), tin failure has been seen in nature. Fritzsche[3] re-
ported that in the Russian winter of 1687-1688 a stockpile
of tin transformed into rods and powder. In the winter of
1867-1868 tin pipes stored in the cold of St. Petersburg
also met the same fate. Shaum[4] also collected evidence
of the phase transition. In particular, he reported a sam-
ple of “white” tin which had been partially converted into
“gray” tin could be transformed back to white tin upon
heating. The low temperature gray tin structure was
eventually designated α-Sn, while the room temperature
structure is known as β-Sn.

Less interesting to historians, but of technological im-
portance to modern society, lead-free tin solders have also
failed by the same mechanism.[5–7]

This legendary and actual degradation of element 50
is known as tin-pest.[8] Below 286K metallic β-Sn trans-
forms into brittle, semi-metallic, α-Sn with a 20% in-
crease in volume.[9, 10] This transformation is slow but
dramatic[11] and leads to extensive damage to the tin
sample.

In addition to the well-known white and gray phases,
there is some evidence that tin can transform from β-Sn
to γ-Sn at 450K.[12] This phase is said to be a slight or-
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thorhombic distortion of the simple hexagonal lattice, a
structure not observed at ambient pressure in any other
element. The simple hexagonal structure has been ob-
served in samples of tin alloyed with either cadmium,
indium, lead, or mercury,[13–15] as well as tin-free alloys
such as In0.45Bi0.55.[16]

These relatively low temperature phase transitions im-
ply that the equilibrium structures of the three phases are
very close in energy. The static lattice energy difference
between α- and β-Sn has not been directly determined
by experiment, but it is estimated to be in the range 10-
40 meV/atom.[17, 18] This makes the prediction of the
the α-Sn ↔ β-Sn transition difficult for density func-
tional (DFT) calculations, which may not achieve the re-
quired accuracy.[17, 19–22] Tin is therefore an ideal test
case for assessing the accuracy of various density func-
tionals.

Since the tin phase transitions are thermal we can only
predict the transition temperature by finding the vibra-
tional free energy of the tin phases from their phonon
frequencies, which will be volume-dependent. This, in
turn, requires many calculations involving large super-
cells and is best handled by high-throughput methods.
High-throughput methods are generally optimized for
speed, so this introduces another source of error: the ba-
sis set and k-point mesh sizes set by default in these pro-
grams might not be accurate enough to find the correct
ordering of phases. Thorough testing of the predictive
capability of different functionals also requires testing of
convergence criteria in the programs that evaluate DFT
energies.

Here we determine the free energy of the three tin
phases for several DFTs. First we determine the static
lattice energy at multiple volumes in a variety of crystal
structures, looking for the static ground state of tin; next
we compute the phonon spectra for the α-, β-, and γ-Sn
phases at each volume; and finally we evaluate the free
energy for each phase as a function of temperature.
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The largest part of this work will be determining
phonon frequencies, which we do by extracting the
harmonic interatomic force constants (IFC) from first-
principles calculations of supercells involving 125-180
atoms. We do this using the high-throughput AFLOW
(Automatic FLOW) platform[23–28] and its Harmonic
Phonon Library (APL)[29, 30] to set up the supercells,
run the first-principles calculations to determine the
atomic forces, and interpret the results. AFLOW in turn
uses the Vienna Ab initio Simulation Package (VASP) to
perform its first-principles calculations.[31–34]

Our strategy is to use AFLOW and VASP to look
at possible crystal structures for elemental tin using
the local, generalized-gradient, and meta-GGA density
functionals available in VASP. While the hoped-for re-
sult is that all functionals give us the same result, it is
known that different functionals can predict quite differ-
ent ground state structures.[35] Here a successful func-
tional will predict that α-Sn is the ground state of tin,
the β-Sn phase is close enough in energy so that a room-
temperature thermal phase transition is possible, and the
γ-Sn phase (if it exists) will be just above β-Sn. In cases
where this is true, we can then compute the phonon spec-
tra of these phases as a function of volume, use this to
find the free energy as a function of temperature within
the quasi-harmonic approximation (QHA),[36] and de-
termine the functional’s prediction of the transition tem-
perature.

Since the energy differences involved here are so small,
we must check that the default settings for the VASP
calculations used by AFLOW are accurate. We therefore
study the effect of changing basis set size and k-point
meshes on the energy differences between the phases.

The paper is organized as follows: Section II describes
the crystal structures investigated in this paper, includ-
ing the many ways the structures are referred to in the lit-
erature. Section III gives a brief description of the density
functionals used in this study, with theoretical and com-
putational details provided in Section IV. Section V tests
the default convergence settings in AFLOW by compar-
ing those calculations with calculations involving larger
sets of basis functions and k-points. Section VI looks at
the static lattice (no phonon) energy-volume behavior of
tin using the LDA, GGA, and meta-GGA density func-
tionals available in VASP. Free energy calculations re-
quire calculation of the phonon spectra of each phase as
a function of volume. We discuss the convergence of these
calculations with supercell size and k-point mesh in Sec-
tion VII. Section VIII considers the thermal properties
of the α-, β-, and γ-Sn phases, including predictions of
phase transition temperatures for those functionals which
predict the correct ordering of the phases. Section IX es-
timates the previously neglected thermal contribution of
the electrons to the free energy, and discusses possible
changes to the phase transition temperatures. Finally,
we discuss the results in Section X.

FIG. 1: The three low-energy structures of tin, drawn ap-
proximately to scale. Top: α-Sn, Strukturbericht A4 (gray
tin, diamond structure), AFLOW Designation A cF8 227 a.
Middle: β-Sn, Strukturbericht A5 (white tin), AFLOW Des-
ignation A tI4 141 a. Bottom: simple hexagonal γ-Sn, Struk-
turbericht Af , AFLOW Designation A hP1 191 a. The con-
ventional cells are shown for the cubic α-Sn and tetragonal
β-Sn. The γ-Sn figure contains three primitive cells to show
the hexagonal structure.
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TABLE I: The elemental crystal structures investigated in this paper. As Lonsdaleite does not have a Strukturbericht des-
ignation we abbreviate it as “Lons.” In the electronic versions of this paper the AFLOW prototype column is linked to the
appropriate page in the Library of Crystallographic Prototypes.[37–39]

Common Name Strukturbericht Atoms/Cell Space Group AFLOW prototype

fcc (face-centered cubic) A1 1 Fm3m #225 A cF4 225 a

bcc (body-centered cubic) A2 1 Im3m #229 A cI2 229 a

hcp (hexagonal close-packed) A3 2 P63/mmc #194 A hP2 194 c

diamond (α-Sn) A4 2 Fd3m #227 A cF8 227 a

β-Sn A5 2 I41/amd #141 A tI4 141 a

In (body-centered tetragonal) A6 1 I4/mmm #139 A tI2 139 a.In

α-Pr (body-centered tetragonal) Aa 1 I4/mmm #139 A tI2 139 a.alpha-Pa

γ-Sn (simple hexagonal) Af 1 P6/mmm #191 A hP1 191 a

sc (simple cubic) Ah 1 Pm3m #221 A cP1 221 a

Lonsdaleite (hexagonal diamond) Lons. 4 P63/mmc #194 A hP4 194 f

II. CRYSTAL STRUCTURES

We determined the static lattice energy/volume be-
havior for tin using the crystal structures observed in
the group-IV elements, as well as some close-packed and
nearly close-packed elemental structures typical of met-
als. Some of the many notations for these structures are
summarized here:

• The common names of the structures (e.g., fcc, bcc,
diamond or α-Sn, β-Sn, simple hexagonal or γ-Sn,
etc.). In most cases we will refer to the structures
using this notation.

• Strukturbericht designations serve as a shorthand
designation of the structures. We use the des-
ignations provided in the original Strukturber-
icht volumes[40] and the extensions proposed by
Smithells.[41] Unfortunately Lonsdaleite,[42] the
hexagonal diamond structure, has no Strukturber-
icht entry. We will primarily use the Strukturber-
icht labels in graphs to avoid clutter, abbreviating
Lonsdaleite as “Lons.”

• For high-throughput calculations it is helpful to
have a label which allows both the user and the
computational algorithm to compactly specify the
structure. Since we are using AFLOW we use the
AFLOW prototype label,[37] which uniquely spec-
ifies the stoichiometry, space group, and Wyckoff
positions of the structure. Thus the diamond (A4,
α-Sn) structure is A cF8 227 a, as it has one type
of atom (A), a face-centered cubic primitive cell
with eight atoms in the conventional cell (Pearson
symbol cF8), and is in space group #227 (Fd3m)
with the atoms at the (8a) Wyckoff position.

More details about the structures, including the above
information and a full description of the primitive lat-
tice vectors and basis vectors can be found in the Li-
brary of Crystallographic Prototypes,[37–39] available
online at http://www.aflow.org/prototype-encyclopedia.

The Library also allows the user to generate structure
files for use as input in a wide variety of electronic
structure codes, including the POSCAR files for these
AFLOW/VASP calculations.

Table I describes all of the structures used here, in-
cluding the common name, Strukturbericht label, space
group and AFLOW prototype. The online version also
provides a link to the corresponding entry in the Library
of Crystallographic Prototypes.

The face-centered cubic (A1), body-centered cubic
(A2), and both body-centered tetragonal structures (A6,
Aa) can all be derived from one another by stretching or
compressing the primitive cell along the (001) direction,
with the A6 structure having a c/a ratio close to the A1
structure, and Aa near A2.

The structures of most interest in this work are α-
Sn (diamond structure, gray tin, or A4), β-Sn (white
tin or A5) and simple hexagonal γ-Sn (Af ) structures.
These are shown in Figure 1. The β-Sn structure can be
obtained from α-Sn by compressing along the (001) axis
of the diamond crystal.

A. The γ-Sn structure

While the α- and β-Sn structures are well known, the
γ-Sn structure is not. Smithells,[41] apparently referenc-
ing Raynor and Lee,[43] used HgSn10 as the prototype
for Strukturbericht designation Af with hexagonal space
group P6/mmm #191 and one atom per unit cell located
at the (1a) Wyckoff position. This can only be achieved
if the mercury and tin atoms are randomly placed on the
(1a) site. Alloys of tin with 5-20% cadmium, indium, lead
and mercury also exhibit this structure, which is gener-
ally referred to as the γ-phase.[13–15] Parthé et al.[16]
also list In0.45Bi0.55 under the Af designation.

Though it is not the ground state of any element,
the simple hexagonal phase (γ-Sn) is observed at high
pressures in silicon[44] and germanium.[45] Needs and
Martin[44] found that the simplest possible transition

http://www.aflow.org/prototype-encyclopedia/A_cF4_225_a.html
http://www.aflow.org/prototype-encyclopedia/A_cI2_229_a.html
http://www.aflow.org/prototype-encyclopedia/A_hP2_194_c.html
http://www.aflow.org/prototype-encyclopedia/A_cF8_227_a.html
http://www.aflow.org/prototype-encyclopedia/A_tI4_141_a.html
http://www.aflow.org/prototype-encyclopedia/A_tI2_139_a.In.html
http://www.aflow.org/prototype-encyclopedia/A_tI2_139_a.alpha-Pa.html
http://www.aflow.org/prototype-encyclopedia/A_hP1_191_a.html
http://www.aflow.org/prototype-encyclopedia/A_cP1_221_a.html
http://www.aflow.org/prototype-encyclopedia/A_hP4_194_f.html
http://www.aflow.org/prototype-encyclopedia
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between β-Sn and γ-Sn is described by distorting ei-
ther of the phases into a body-centered orthorhombic
crystal, space group Imma #74, with the atoms at the
(4e) Wyckoff position. This path can be described us-
ing a body-centered orthorhombic unit cell, space group
Imma, with atoms occupying the (4e) Wyckoff positions,
locating the atoms at

~b± = ±
(

1

4
b ŷ + z c ẑ

)
. (1)

When a = b and z = 1/8 this becomes the β-Sn structure.
One can change β-Sn into α-Sn simply by moving along
the Bain path[46] and setting c =

√
2a. The γ-Sn struc-

ture is found when z = 1/4, a = 2chex, b =
√

3ahex, and
c = ahex, where ahex and chex are the lattice constants
of the hexagonal structure. Note that in this case the
primitive cell (1) contains two of the hexagonal primitive
cells. This gives us a simple relationship between the α-,
β-, and γ-Sn structures.

An elemental γ-Sn phase, occurring above 435K, was
apparently described around 1960, “but it is no longer
mentioned [in] textbooks.”[12] In 1985 Kubiak[12] found
that a structure he called the γ phase appeared af-
ter heating single crystal β-Sn in air at 450K for one
week. He described this structure as having space
group Cmmm #65, with two atoms in the conven-
tional orthorhombic cell located on the (2a) Wyckoff posi-
tion, and lattice parameters (a, b, c) =(5.8308 Å, 3.181 Å,
2.9154 Å). This structure is extremely close to simple
hexagonal Af , and when we run electronic structure cal-
culations starting with Kubiak’s γ-Sn structure it always
relaxes to the simple hexagonal Af structure. Given this
we will only consider the hexagonal structure in our cal-
culations below, and refer to it as both γ-Sn and Af .

We should note that this γ-Sn phase is not the struc-
ture described by Donohue.[9] That structure, also known
as Sn-II, is a high pressure tetragonal structure which we
do not consider here.

Wehinger et al.[47] did a first-principles study of hexag-
onal γ-Sn using the LDA functional. They found that it
was energetically similar to β-Sn. They did not address
its thermal behavior, nor did they discuss the relation-
ship between β- and γ-Sn and the ground state α-Sn
structure.

The orthorhombic elemental γ-Sn phase also can be
stabilized in tin nanoparticles and nanowires.[48] We will
not address this work here.

III. DENSITY FUNCTIONALS USED TO
STUDY TIN

In our study of the the tungsten-nitrogen system[35]
we found that the predicted ground state structure of a
compound can change with the choice of density func-
tional. Given the small energy difference between tin
phases it is quite possible that different functionals will
give different ground state structures. In this section we

describe the density functionals we used in this study.
All are available in VASP.

• The Local Density Approximation (LDA),[49–51]
which determines the Kohn-Sham potential[52] at
a given point in space using only the charge density
at that point. It is well-known that this functional
underestimates equilibrium lattice volumes.

• Generalized-Gradient Approximation (GGA) func-
tionals, where the Kohn-Sham potential depends
on the local charge density and its local gradient.
These include

– Perdew-Burke-Ernzerhof (PBE),[53] perhaps
the most widely used GGA. This generally
overestimates equilibrium lattice volumes.

– Perdew-Burke-Ernzerhof revised for solids
(PBEsol),[54] a modification of PBE opti-
mized for solids rather than atoms.

– Armiento-Mattsson (AM05),[55] designed to
describe surfaces, but which has proved to be
very accurate for solids.[56]

• Meta-GGA functionals, which depend on the or-
bital kinetic energy density as well as the charge
density and its gradient. VASP provides

– Tao-Perdew-Staroverov-Scuseria (TPSS),[57]
designed to be correct for one- and two-
electron systems and systems with slowly
varying charge densities.

– “Revised” TPSS (revTPSS),[58] which in-
cludes the second-order gradient expansion for
exchange.

– “Made-simple” functionals (MS0, MS1,
MS2),[59, 60] which have empirical parame-
ters.

– M06-L,[61] optimized for main-group and
transition metal chemistry.

– “Strongly Constrained and Appropriately
Normed” (SCAN),[62] which satisfies all
known constraints on the exact density func-
tional with no adjustable parameters. Since
the SCAN functional properly describes both
covalent and metallic bonding in silicon,[63] it
may be able to describe similar behavior in
tin.

All of the meta-GGA functionals except SCAN give
similar results for the static energies for the structures
in Table I. Since metaGGA calculation is more time-
consuming than LDA or standard GGA we will use
revTPSS as the reference functional for these calcula-
tions.

The accuracy of these functionals have been tested
with a variety of datasets,[56, 64, 65] but to our knowl-
edge there is no systematic test of the ability of density
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functional theory to describe the tin phase transition.
Several papers[17–22] have discussed the α-β transition,
and Ivanov and coworkers [14, 15] have looked at the
γ-Sn phase. No one, however, has looked at the relation-
ship between all three phases, nor has there been any
work discussing the differences in the predictions made
by different density functionals.

IV. THEORY AND COMPUTATIONAL
DETAILS

All calculations were performed using the high-
throughput AFLOW (Automatic FLOW)[23–25] frame-
work. The first-principles calculations were done using
the Vienna Ab initio Simulation Package (VASP), version
5.4.4,[31–34] with VASP POTCAR files generated with
the Projector Augmented-Wave (PAW) method.[66, 67]
Calculations with the Perdew-Burke-Ernzerhof (PBE)
functional[53] used the VASP s2p2 “Sn” PBE POT-
CAR (dated 08Apr2002). Local Density Approximation
(LDA) and the other GGA functionals used the cor-
responding LDA POTCAR (03Oct2001), with the ap-
propriate choice of the GGA or METAGGA tag in the
INCAR file. Meta-GGA functional calculations require
kinetic energy information only available in POTCARs
available starting with VASP 5.4, so for those functionals
we used the s2p2 LDA POTCAR (also dated 03Oct2001).
In general we used the AFLOW defaults for energy cut-
offs (1.4 times the value of ENMAX given in the VASP
POTCAR file) and Γ-centered k-point meshes, with the
exceptions noted below.

Electronic densities of states (eDOS) were computed
by VASP using the eigenvalues determined in the self-
consistent energy runs. We did not do a separate tetra-
hedron method calculation, as we only want to show gen-
eral behavior of the eDOS.

Phonon spectra, vibrational free energy, and the ther-
mal expansion of α-, β-, and γ-Sn were found using the
Automatic Phonon Library (APL) module in AFLOW.
This method constructs a supercell of the original struc-
ture, displacing one or more atoms a distance of 0.015Å
from its equilibrium position. The forces generated by
this displacement are used to determine the harmonic
interatomic force constants (IFC), and these determine
the phonon spectra in the harmonic approximation. Ob-
viously the supercell must be large enough to minimize
the interaction between images of the displaced atom,
and the k-point mesh dense enough to map the intrica-
cies of the supercell’s electronic structure. We will discuss
this in detail in Section VII.

• For α-Sn we used the standard face-centered cubic
lattice vectors. APL calculations used a 4 × 4 × 4
(128 atom) supercell and a 3× 3× 3 Γ-centered k-
point mesh, yielding 10 k-points in the irreducible
part of the supercell’s Brillouin zone.

• β-Sn has a very small value for c/a (≈ 0.54), which

required some special handling. We did our calcu-
lations using the conventional tetragonal unit cell:

~a1 = a x̂

~a2 = a ŷ , and

~a3 = c ẑ (2)

which contains two primitive body-centered cubic
cells and four tin atoms. APL calculations used a
3× 3× 5 (180 atom) supercell, corresponding to a
nearly-cubic 3a×3a×5c tetragonal cell. A 3×3×3
Γ-centered k-point mesh was chosen, yielding 10
k-points in the irreducible part of the supercell’s
Brillouin zone.

• γ-Sn calculations used a 5×5×5 (125 atom) super-
cell of the simple hexagonal lattice. The phonon
spectra for this structure near Γ and the zone
boundary was extremely sensitive to the choice of
k-point mesh, and we finally settled on a 3× 3× 3
Γ-centered mesh with 10 k-points in the irreducible
part of the supercell’s Brillouin zone.

For a given unit cell volume V , we used VASP to find
the value of c/a which minimized the total static lattice
energy, U(V ). We then used the AFLOW APL module
to determine IFCs, the corresponding phonon spectrum
and the phonon density of states, g(V, ε) (pDOS).

With g(V, ε) in hand we can determine all of the ther-
modynamic properties of the system. In particular, the
energy due to the zero-point and thermal vibrations of
the phonons is given by

Uph(V, T ) =

∫ εmax

0

g(V, ε)

[
ε

2
+

ε

eβε − 1

]
dε , (3)

where εmax is the maximum phonon energy in the system.
The first term in (3) is, of course, the zero-point energy,
while the remainder is the thermal energy.

Since we are considering systems at volume V and tem-
perature T , we must determine the Helmholtz free energy
of the phonons,

Fph(V, T ) = Uph(V, T )− TSph(V, T ) . (4)

It is convenient to write this in the form[68]

Fph(V, T ) =
1

2

∫ εmax

0

dε g(V, ε) ε

+ kT

∫ εmax

0

dε g(V, ε) ln
(
1− e−βε

)
. (5)

Again the first term in (5) is the zero-point energy of the
phonons, while the remainder contains the temperature
dependent contributions due to the phonons’ vibrational
energy and entropy. The second term is intrinsically neg-
ative and its magnitude increases with temperature, so
Fph(V, T ) is continually decreasing with temperature. It
is weighted so that the lower frequency phonons make
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the largest contribution to the density of states, and this
becomes more pronounced as the temperature increases.
We can also see that the free energy is a weighted aver-
age over g(V, ε) and so it will be insensitive to the exact
behavior of the pDOS.

The free energy of the system as a function of volume
and temperature is then

F (V, T ) = U(V ) + Fph(V, T ) . (6)

The temperature-dependent free energy of the system,
F (T ), will be the minimum of (6) at temperature T . As
we only find F (V, T ) at a few fixed volumes Vn, we ap-
proximate it by fitting the points F (Vn, T ) to a fourth-
order Birch equation of state:[69, 70]

F (V, T ) = F (T ) +

4∑
n=2

γn

[(
V0(T )

V

)2/3

− 1

]n
, (7)

which gives us the system’s free energy F (T ) and equi-
librium volume V0(T ) as a function of temperature.

We only need the primitive cell volume V to completely
specify the structure of α-Sn. The β- and γ-Sn phases
require that we also know the value of c/a, the ratio of
the lattice constant in the z direction compared to the
lattice constant in the x − y plane. A static lattice cal-
culation will determine an energy U(V, c/a). Fixing V
and finding the minimum energy as a function of c/a will
determine the energy U(V ) at that volume. As the value
of c/a which minimizes (6) can change with tempera-
ture we should compute the corresponding free energy
F (V, c/a, T ) and determine the free energy by minimiz-
ing (6) in both V and c/a at fixed T . This would be an
enormous task. In practice the change in c/a with vol-
ume is so small during thermal expansion that this is not
necessary, so we use the value of c/a determined by the
static VASP calculation at all temperatures.

Visualizing and analyzing this data was accomplished
using third-party software. In particular,

• The crystal structures shown in the Section II were
plotted using Jmol.[71]

• Some of the experimental phonon frequencies ap-
pearing in the figures were taken from published
graphs. We used the Engauge Digitizer[72] to con-
vert this data into a form we could use. Any errors
in the process are ours.

V. HIGH-THROUGHPUT CALCULATIONS
AND CONVERGENCE

By their nature, high-throughput calculations rely on
a set of standard assumptions, in particular that the ba-
sis set size (kinetic energy cutoff in a plane-wave code)
and the density of the k-point mesh can be fixed with-
out regard to the crystal structure being studied. For

example, by default AFLOW sets the kinetic energy cut-
off (ENMAX in VASP) to 140% of the minimum value
recommended by VASP and the k-point mesh to give a
minimum of 10000 k-points per reciprocal atom in the
Brillouin zone,[73] equivalent to a 22 × 22 × 22 k-point
mesh for a cubic system. While these standard values are
usually sufficient, they may lead to errors when energy
differences between phases are small.

We tested the reliability of the default energy cutoff
and k-point size for tin by performing two sets of calcu-
lations to find the minimum energy configuration for the
α-, β-, and γ-Sn phases described in Section II, looking
at each of the functionals described in Section III. The
first runs used the AFLOW default values of the energy
cutoff and k-point mesh. The second set approximately
doubled the energy cutoff and increased the k-point den-
sity in the Brillouin zone. The results are shown in Ta-
ble II. There is little difference between the calculations’
equilibrium values of V0 and c/a with changing basis set
size/k-point mesh. There is a larger discrepancy in the
energy differences. The “worst case” seems to be the
revTPSS functional, where ∆U for the β-Sn phase shifts
by 3.7 meV/atom when we change basis sets. SCAN is
the “best” functional, as the largest shift in ∆U is only
0.43 meV/atom for β-Sn. Most shifts are on the order of
1-3 meV/atom, which will not be large enough to change
our conclusions.

There are some interesting anomalies in the last three
lines of Table II. As α-Sn is the ground state and γ-Sn is
the highest temperature state, we would expect Uγ−Sn >
Uβ−Sn > Uα−Sn, whence all of the ∆U values should
be positive. SCAN is the only functional to achieve this
in both the standard and higher precision calculations.
PBE correctly states that the ground state energies of
both β- and γ-Sn are well above that of α-Sn, but the
sign of the energy difference between those two phases
changes when we go from the lower accuracy calculation
to the higher. All other functionals predict β-Sn to have
the lowest energy of the three structures, and α-Sn the
largest.

While it is desirable to have highly converged results,
the calculation of thermal properties in tin requires a
large number of calculations, so we would like to keep
the energy cutoff and k-point mesh as small as possible to
speed up the calculations. For this reason we will use the
low energy cutoff (144.6 meV) and smaller k-point mesh
for all of our calculations. The only place this might cause
difficulties is when we use the PBE functional, which
switches the ordering of β- and γ-Sn when we switch
basis set size. As we shall see below, the change in the
vibrational free energy (5) between these phases will be
much larger than the change in static energy.
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TABLE III: Predicted equilibrium properties of α-, β-, and γ-Sn for the density functionals described in Section III using the
default AFLOW parameters for each structure from Table II. These calculations were made by allowing VASP to fully relax each
unit cell. ∆Uαβ and ∆Uαγ represent the equilibrium energy difference between β-Sn or γ-Sn and α-Sn, respectively. A positive
number indicates that α-Sn is lower in energy. We also include experimentally measured lattice constants for comparison, using
the alloy with stoichiometry Sn0.8In0.2.[14] as a stand-in for γ-Sn.

α-Sn β-Sn γ-Sn ∆Uαβ ∆Uαγ

a (Å) a (Å) c (Å) a (Å) c (Å) (eV/atom) (eV/atom)

Exp. (90K) 6.483[74]

Exp. (100K) 5.815[75] 3.164[75]

Exp. (296K) 6.491[19] 5.832[75] 3.183[75] 3.216[14] 2.998[14]

Exp. (300K) 5.8315[76] 3.1828[76]

LDA 6.4785 5.7905 3.1248 3.1762 3.0012 -22.739 -18.527

PBE 6.6524 5.9455 3.2089 3.2593 3.0847 39.442 40.033

PBEsol 6.5292 5.8293 3.1461 3.1968 3.0233 -28.896 -26.389

AM05 6.5451 5.8227 3.1463 3.1947 3.0208 -4.878 -2.547

revTPSS 6.5450 5.8139 3.1412 3.1897 3.0124 -85.814 -82.689

SCAN 6.5412 5.8845 3.1553 3.2163 3.0409 73.569 79.448
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FIG. 2: Electronic density of states for α-, β- and γ-Sn
computed using the LDA at the equilibrium structure of each
phase found in Table III.

VI. ELECTRONIC STRUCTURE AND
ENERGY

The first quantity needed to compute the free energy
(6) is the energy U(V ) of the static lattice. Here we dis-
cuss the results of the calculations for U(V ) for all of the
density functionals in Section III, using the default of
ENMAX and KMESH listed in Table II. The minimiza-
tion in energy versus c/a at fixed volume is controlled
by VASP. We also look at the electronic structure for
α-, β- and γ-Sn at the equilibrium structures shown in
Table III, confirming that α-Sn is a semi-metal and the
other two structures are metals. All of the calculations
use the smaller energy cutoff and k-point mesh listed in
Table II.
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FIG. 3: (Color online) Static lattice energy-volume curves
for the tin structures discussed in Section II as predicted by
AFLOW/VASP using the LDA functional. Structural nota-
tion is from Table I. We plot ∆U, the change in energy per
atom compared to the equilibrium energy of the α-Sn (A4)
structure. The lines labeled “A5 Exp.” and “A4 Exp.” rep-
resent the experimental volume of β-Sn (A5) at 298K[77] and
α-Sn (A4) at 90K[74] respectively.

A. The Local Density Approximation (LDA)

Figure 2 shows the electronic density of states (eDOS)
for tin in α-, β-, and γ-Sn at equilibrium (Table III)
within the Local Density Approximation (LDA). As we
expect, α-Sn is a semi-metal. Both β- and γ-Sn are met-
als with approximately the same density of states near
the Fermi level, an unsurprising result given the close
connection of the two structures discussed in Section II.

The predicted energy-volume curves are shown in Fig-
ure 3. As is usual with the LDA the predicted equilibrium
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FIG. 4: Electronic density of states for α-, β- and γ-Sn com-
puted using the PBE functional at the equilibrium structure
of each phase found in Table III.

volume for β-Sn is about 4% below the experimental vol-
ume. Somewhat surprisingly the equilibrium volume for
α-Sn is approximately equal to the low-temperature ex-
perimental volume.

As one expects there is a large equilibrium volume dif-
ference between α- and β-Sn, in agreement with exper-
iment. In addition, Lonsdaleite (“Lons.” in the figure),
the hexagonal diamond structure, is correctly above α-
Sn (A4), and γ-Sn (Af ) is above β-Sn (A5). We see that
the LDA overbinds both β-Sn and γ-Sn with respect to
α-Sn, contrary to experiment, predicting a β-Sn ground
state. In addition, γ-Sn is nearly degenerate with β-Sn,
in agreement with the calculations of Wehinger et al.[47]

Christensen and Methfessel[78] also found β-Sn as
the ground state within the LDA using the LMTO-
ASA method. Their equilibrium energy difference
was 5 meV/atom, substantially less than our value of
20 meV/atom, but neither result will support the exper-
imentally observed structural transition.

B. The Perdew-Burke-Ernzerhof Generalized
Gradient Functional (PBE)

Figure 4 shows the electronic density of states at equi-
librium for the three phases of interest. The results are
very similar to the LDA.

The PBE results for U(V ) are shown in Figure 5. As
is usual with the PBE the predicted equilibrium volumes
are 3-10% above the experimental values. The PBE is an
improvement over LDA as it finds that the equilibrium
energy of the β-Sn phase is almost 40 meV above the α-
Sn, in agreement with previous work.[21] As with LDA,
the β- and γ-Sn phases are nearly degenerate. Using the
small energy cutoff and k-point mesh found in Table II we
find β-Sn below γ-Sn, but this will reverse if we increase
the basis set size. As we will see below thermal effects
will dwarf this energy difference.
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FIG. 5: (Color online) Static lattice energy-volume curves
for the tin structures discussed in Section II as predicted by
AFLOW/VASP using the PBE functional. The notation is
identical to that in Figure 3.
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FIG. 6: Electronic density of states for α-, β- and γ-Sn com-
puted using the PBEsol functional at the equilibrium struc-
ture of each phase found in Table III.

C. The Perdew-Burke-Ernzerhof Generalized
Gradient Functional Revised for Solids (PBEsol)

The electronic density of states and energy volume
curves for the PBEsol functional are shown in Figures 6
and 7. Since this functional was designed to give better
equilibrium volumes than PBE, it is not surprising that
the equilibrium volumes for the α-, β-, and γ- phases are
between those predicted by the LDA and PBE function-
als. The eDOS curves are very similar to those of the
LDA.

In other respects the PBEsol results are slightly worse
than those found by the LDA. The β-Sn phase is even
more bound compared to the α- phase, and the β- and γ-
phases are closer together, though not as close as found
with the PBE.
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FIG. 7: (Color online) Static lattice energy-volume curves
for the tin structures discussed in Section II as predicted by
AFLOW/VASP using the PBEsol functional. The notation
is identical to that in Figure 3.
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FIG. 8: Electronic density of states for α-, β- and γ-Sn com-
puted using the AM05 functional at the equilibrium structure
of each phase found in Table III.

D. The Armiento-Mattsson Generalized Gradient
Functional (AM05)

The results for the AM05 functional are shown in Fig-
ures 8 and 9. Again the eDOS is similar to the LDA
and nearly identical to the PBEsol result. The equilib-
rium properties are also similar to PBEsol, except that
the β- and γ-Sn phases are closer to diamond than they
are in LDA or PBEsol calculations.

It is interesting to look at the close-packed (A1, A3)
and near close-packed (A2, A6, Aa) phases in this study.
The previous functionals predicted that these phases had
minimum energies 20-40 meV/atom above β- and γ-Sn.
Here the energy difference is only about 5 meV/atom.
Even ignoring the misplaced α-Sn phase, this small en-
ergy difference leads to a prediction of a transition from
β-Sn to body-centered cubic Sn at 1 GPa, far below the
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FIG. 9: (Color online) Static lattice energy-volume curves
for the tin structures discussed in Section II as predicted by
AFLOW/VASP using the AM05 functional. The notation is
identical to that in Figure 3.
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FIG. 10: Electronic density of states for α-, β- and γ-Sn
computed using the revTPSS functional at the equilibrium
volume for each structure found in Table III.

observed experimental transition at 35 GPa.[79]

E. Meta-GGA Functionals (except SCAN)

With the exception of the SCAN functional dis-
cussed below, all of the meta-GGA functionals (TPSS,
revTPSS, MS0/1/2, M06-L), significantly overbind the
close-packed fcc (A1) and hcp (A3) structures, as well
as the nearly close-packed bcc (A2) structure and the
tetragonal A6 and Aa structures.

Calculations using these functionals are significantly
more time-consuming than LDA or GGA calculations,
so once we realized this, we screened the functionals by
looking at the energy difference between the hcp (A3) and
α-Sn (A4) phases. To show the trend in these systems we
did a complete set of energy/volume calculations using
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FIG. 11: (Color online) Static lattice energy-volume curves
for most of the tin structures discussed in Section II as pre-
dicted by AFLOW/VASP using the revTPSS functional. The
notation is identical to that in Figure 3.
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FIG. 12: Electronic density of states for α-, β-, γ-Sn com-
puted using the SCAN functional at the equilibrium volume
for each structure found in Table III. We also include the
DOS of simple cubic tin at its SCAN equilibrium structure,
a = 3.0432Å.

the revTPSS functional, and show these results in Figures
10 and 11. The electronic density of states for the tin
phases are similar to those obtained by other functionals,
but all of the close-packed and nearly close packed phases
are well below the experimentally observed tin phases.
In addition, β- and γ-Sn are overbound by 70 meV/atom
compared to the experimental ground state, α-Sn.

These functionals have been optimized for non-covalent
interactions[61] so it is not surprising that they do not de-
scribe the energetics of the covalently-bonded α-Sn phase
particularly well.
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FIG. 13: (Color online) Static lattice energy-volume curves
for the tin structures discussed in Section II as predicted
by AFLOW/VASP using the SCAN functional. The nota-
tion is identical to that in Figure 3. Structures not shown
(A1, A2, A3, A6) are above the ∆U = 150 meV/atom limit of
the graph.

F. The Strongly Constrained and Appropriately
Normed (SCAN) meta-GGA

Unlike meta-GGAs such as M06-L, the SCAN func-
tional is non-empirical and is designed “to satisfy
all 17 exact constraints appropriate to a semilocal
functional.”[63] The SCAN electronic density of states,
Figure 12, correctly finds the semi-metallic behavior of α-
Sn and the metallic β- and γ-Sn. As shown in Figure 13,
SCAN predicts the correct ordering of the major tin
phases, Uα−Sn < Uβ−Sn < Uγ−Sn. The simple cubic (Ah)
phase is very low compared to other calculations, while
the close-packed and nearly close-packed phases barely
make the graph, with only the body-centered tetragonal
α-Pr (Aa) phase within 200 meV of α-Sn.

G. Summary of DFT calculations for the ground
state of tin

Table III provides a brief summary of the equilibrium
properties of the three tin phase for each choice of DFT,
along with the static energy difference between the three
phases. The SCAN functional is the only one which
correctly predicts the energy relationship U(α-Sn) <
U(β-Sn) < U(γ-Sn) for all choices of basis set and k-point
mesh. In that sense it is better than any of the other
functionals studied. Unfortunately the relative energy
U(β-Sn) − U(α-Sn) is approximately 80 meV/atom, sig-
nificantly larger than the 10-40 meV/atom suggested by
the 286K transition temperature,[17, 18] and like most of
the functionals discussed here it overestimates the equi-
librium volumes for both white and gray tin.
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FIG. 14: Phonon spectra of γ-Sn using the PBE functional
at equilibrium as given in Table II. The solid line shows the
results for the 125 atom supercell, while the dashed line shows
the 216 atom supercell. The high-symmetry paths through
the face-centered cubic Brillouin zone are defined by Setyawan
and Curtarolo.[80]
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FIG. 15: Phonon density of states for the same cell described
in Figure 14. The solid line shows the results for the 125 atom
supercell, while the dashed line shows the 216 atom supercell.
The density of phonon modes is normalized for one atom, so
the area under each curve is equal to three.

VII. PHONON CONVERGENCE AND
ACCURACY

When we determine the vibrational free energy Fph (5)
of the various phases of tin, we must consider both con-
vergence and accuracy. We will say that the calculations
are converged if the Fph(T ) is insensitive to the size of the
supercell and k-point mesh. By accuracy we mean that
our computed phonon frequencies agree with experiment.
Obviously we can never be perfectly converged nor per-
fectly accurate, but this perfection is not needed to obtain
a reasonable value of Fph. The zero-point and thermal
free energy integrals in (5) perform a weighted average
of the phonon density of states g(V, ε). The thermal con-
tribution to the free energy is weighted toward the low
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FIG. 16: Vibrational free energy (5) for the same cell de-
scribed in Figure 14. The left axis shows Fph for the 126
atom supercell (solid line) and the 216 cell (dashed line). The
dotted line is the difference between the cells, with the scale
on the right.

frequency end of the phonon spectrum, where the Debye
modes dominate. Small differences between the phonon
density of states calculated from two different supercells,
or between the computed and experimental pDOS, will
be minimized by the averaging process.

To see this, consider a calculation of the phonon fre-
quencies of γ-Sn. We will look at the phonons predicted
by the PBE functional, using the equilibrium structure
described in Table II. (In all of the following we will use
the default AFLOW energy cutoff, 144.6 meV.) In the
first case we consider a 5×5×5 supercell with 125 atoms,
and the second a 6× 6× 6 cell with 216 atoms. In both
cases we use a 3×3×3 Γ-centered k-point mesh, yielding
10 k-points in the Brillouin zone.

Figure 14 shows the phonon spectrum for both cells.
There are considerable differences, especially at the “A”
point (00 1

2 ), where the smaller cell finds the highest fre-
quency almost 0.5 THz greater than found for the larger
cell. Figure 15 shows the phonon density of states for
the two calculations. Now we see general agreement be-
tween the two calculations. Except for a disagreement in
the pDOS near 1 THz, the two curves are in agreement
up to nearly 2.5 THz. In Figure 16 even these differ-
ences are washed out as we compute the vibrational free
energy. The difference in the free energy of the two calcu-
lations only reaches 3 meV, a 0.5% difference, at 1000 K.
The zero point energy for the 126 atom cell is 13.67 meV,
while it is 13.50 meV for the 216 atom cell, a difference
of 1.3%.

We get even better results for α-Sn. Figure 17 shows
the vibrational free energy of α-Sn at equilibrium using
the PBE functional using 4×4×4 (128 atom) and 5×5×5
(250 atom) supercells. The agreement here is even better,
with less than 0.2% difference in the free energy at 1000K.
The zero point energy is 10.539 meV/atom for the smaller
cell and 10.544 meV for the larger, a 0.04% discrepancy.

Finally, the PBE vibrational free energy of β-Sn is
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FIG. 17: Vibrational free energy (5) for α-Sn using the PBE
functional at equilibrium (Table II). The left axis shows Fph
for the 128 atom supercell (solid line) and the 250 atom su-
percell (the barely distinguishable dashed line). The dotted
line is the difference between the cells, with the scale on the
right.
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FIG. 18: Vibrational free energy (5) for β-Sn using the PBE
functional at equilibrium (Table II). The left axis shows Fph
for the 180 atom supercell (solid line) and the 448 atom su-
percell. The dotted line is the difference between the cells,
with the scale on the right.

shown in Figure 18, where we compare a 3 × 3 × 5 (180
atom) supercell to a 4 × 4 × 7 (448 atom) cell. The dif-
ference between the two calculations at 1000 K is 0.5%.
At 0 K the zero point energy is 14.33 meV for the small
cell and 14.20 meV for the large cell, a 0.9% discrepancy,
on the same order as the error in γ-Sn.

We have also investigated k-point convergence in the
supercells by increasing the k-point mesh in all three su-
percells. Fph for α-Sn and β-Sn are well converged with
k-point mesh using the default APL values, (Γ-centered
3 × 3 × 3 meshes with 10 k-points in the irreducible
Brillouin zone for both system). γ-Sn gives imaginary
phonons for meshes which are not of the form 3n×3n×m,
where m and n are integers. This is presumably because
the behavior of the hexagonal system strongly depends
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FIG. 19: Phonon spectra of α-Sn at the experimental vol-
ume. The solid lines are the frequencies predicted using the
APL module of AFLOW with the PBE functional, and the
dashed lines are the predicted frequencies for the SCAN func-
tional. The circles are the frequencies measured by Price et
al.[74] at 90K. The calculations use the supercell described
in Section IV. The high-symmetry paths through the face-
centered cubic Brillouin zone are defined by Setyawan and
Curtarolo.[80] Note that Price et al. only determined the fre-
quencies of one of the transverse branches along the Γ − K
and U −X directions (the Σ line).

on the electronic structure near the Brillouin zone bound-
ary. The 6×6×4 k-point mesh gives values for Fph close
to that of the 3× 3× 3 mesh, so this phase is converged
as well.

We conclude that the supercells we have chosen are
adequate to determine the vibrational free energy below
1000 K with an accuracy of ≈ 1.4% or better. But do
our phonon calculations actually correspond to reality?
Since we have experimental phonon results for all three
phases of tin or a tin alloy we can compare these to our
results.

Phonon data for α-Sn (gray tin, Strukturbericht A4)
was obtained by Price et al.[74] at 90K, with a unit cell
volume of 68.1Å3. We compare our results with theirs
along high-symmetry lines in the Brillouin zone[80] in
Figure 19. The calculations are reasonably good, better
for the optical modes and longitudinal acoustic modes
than for the transverse acoustic modes. We will see be-
low that the optical modes in α-Sn dominate the free en-
ergy, so this is acceptable. Aouissi et al.[81] have shown
that it is possible to get extremely accurate computa-
tional phonon spectra for α-Sn, but this requires super-
cells larger than we can afford to use and get this work
finished in a reasonable time.

Rowe et al.[75] and Price[76] measured the phonon
spectrum of β-Sn (white tin, Strukturbericht A5) at 296K
and 300K respectively, finding a volume of 54.1Å3. The
results are shown in Figure 20. The agreement with ex-
periment is worse than it was for α-Sn in the optic modes,
but better in the acoustic modes. Since the acoustic
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FIG. 20: Phonon spectra of β-Sn at the experimental vol-
ume. The solid lines are the frequencies predicted using the
APL module of AFLOW with the PBE functional, and the
dashed lines are the predicted frequencies for the SCAN func-
tional. In both cases the volume is held fixed, but the value
of c/a is chosen to minimize the total energy. The calcula-
tions use the supercell described in Section IV. The circles are
the frequencies measured by Price[76] at 300K and Rowe et
al.[75] at 296K The high-symmetry paths through the body-
centered tetragonal Brillouin zone are defined by Setyawan
and Curtarolo.[80] Note that Price only determined the fre-
quencies of one acoustic and one optic transverse branch along
the Γ−X (∆) line. Data points were obtained from the ref-
erences using the Engauge Digitizer.[72]

modes dominate the free energy in β-Sn, this, too, is
acceptable.

There are no samples of simple hexagonal (Strukturber-
icht Af ) tin, but alloying with indium is known to sta-
bilize this phase. Ivanov et al.[14] measured the phonon
spectrum of γ-Sn Sn0.8In0.2 at room temperature, where
they found the sample to have a primitive cell volume
of 26.8Å3. We compare that to our calculations for pure
simple hexagonal tin in Figure 21. Here the agreement
for longitudinal mode and the upper transverse mode is
excellent. There is some error in the lower transverse
mode, on the order of that in α-Sn.

While the APL is generally reliable, as shown above,
there are points where it gives imaginary phonon fre-
quencies. In particular, SCAN predicts that γ-Sn has an
unstable phonon mode at M ( 1

200) for cell volumes ≥
30Å3. It may be that this is an indication that the γ-Sn
structure is unstable with respect to β-Sn, but we have
not investigated this point. Fortunately the thermal ex-
pansion of tin does not take us past this critical volume
so long as wee keep the temperature below 800K, which
is sufficient for this study.

Finally, we should stress that all of these calculations
are carried out in a quasi-harmonic approximation, as-
suming that the vibrational energy of each phonon mode
is quadratic in the displacement of the atoms and that
the IFCs only depend on the structure and the volume
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FIG. 21: Phonon spectra of computational γ-Sn and ex-
perimental Sn0.8In0.2 at the experimental volume. The solid
lines are the frequencies predicted using the APL module
of AFLOW with the PBE functional, and the dashed lines
are the predicted frequencies for the SCAN functional. In
both cases the volume is held fixed, but the value of c/a is
chosen to minimize the total energy. The calculations use
the supercell described in Section IV. The circles are data
taken by Ivanov et al.[14] for Sn0.8In0.2 at room temperature.
The high-symmetry paths through the simple hexagonal Bril-
louin zone are defined by Setyawan and Curtarolo.[80] Data
points were obtained from the references using the Engauge
Digitizer.[72]

of the unit cell. Since tin melts at 505K[82] we are obvi-
ously close to the failure of the quasi-harmonic approxi-
mation, but the consideration of non-quadratic behavior
is beyond the scope of this work.

VIII. PHONONS AND THERMODYNAMICS

The free energy F (T ) has two major contributions:
the static lattice energy U(V ) determined by VASP, and
the vibrational free energy Fph(T ) (5), found from the
phonon density of states g(V, ε). The behavior of the
second term obviously dominates the thermal behavior
of tin. If we look at the graphs of U(V ) in Section VI we
see that a volume change of 10% changes the energy by
10-20 meV/atom. The vibrational free energy discussed
in Section VII changes by hundreds of meV/atom going
from absolute zero to 500 K.

The AFLOW APL module allows us to deter-
mine g(V, ε) and find the zero-point and temperature-
dependent free energy for all three of the tin phases. The
procedure is as follows:

• Determine the equilibrium c/a and static energy
U(V ) of the three possible phases of tin as a func-
tion of volume using AFLOW/VASP. Since the
variation of c/a for the β- and γ-phases is small,
we will ignore changes in c/a with temperature and
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use the c/a found to minimize the static energy at
each volume for all temperatures at that volume.

• Use the harmonic phonon module (APL) of
AFLOW to determine the phonon spectra for each
structure and volume.

• The APL module finds the pDOS and then deter-
mines the vibrational free energy (6) as a function
of temperature for each of these structures and vol-
umes, including the zero-point energy.

• For a given temperature, determine the volume
which minimizes the free energy using the Birch
fit (7), generating the free energy F (T ) and equi-
librium volume V (T ).

• Determine the averaged linear expansion coefficient
of each structure using the relationship

α(T ) =
1

3V (T )

dV

dT
(T ) , (8)

where V (T ) is the unit cell volume of the crystal.
For the tetragonal β- and hexagonal γ-phases α(T )
will be the average of the linear expansion coeffi-
cients in the x-, y-, and z-directions. By default the
APL module prints F (V, T ) in 10K increments from
absolute zero to 2000K. We determine the equilib-
rium V (T ) from (7), and use 5-point numerical dif-
ferentiation of these results to find α(T ).

• Compare the values of the free energy F (T ) for each
structure to determine the equilibrium structure as
a function of temperature.

A. Zero-point Energy

The PBE and SCAN functionals correctly place the
static equilibrium energies of β- and γ-Sn above α-Sn.
Neither the LDA, PBEsol, nor AM05 functionals cor-
rectly order these phases, all making β-Sn the ground
state. The revTPSS and other non-SCAN metaGGA
functionals predict a close-packed phase to be the ground
state, but also predict the β-Sn phase to be lower in en-
ergy than the other two tin phases. The obvious conclu-
sion is that we should only concentrate on the PBE and
SCAN calculations, but we must remember that the vi-
brational free energy, in particular the zero-point energy,
is not directly related to the static energy U(V ).

In that case, since the energy differences between the
phases are rather small, especially for AM05, the zero-
point energy (ZPE) in (5) might change the ordering of
the phases. The ZPE might even change the α-β energy
difference found in the SCAN functional to make it closer
to that found using PBE.

While the ZPE is implicitly contained in the calcula-
tions in the next two parts of this Section, there we will
only discuss “interesting” functionals. Here we will dis-
cuss the ZPE for all the functionals we studied.

TABLE IV: Zero-point energy (9) for a variety of density
functionals. All calculations are performed at the equilibrium
lattice constants given in Table III, and use the k-point meshes
described in Section VII. The structures marked with an as-
terisk have imaginary modes. The ZPE for these structures
were calculated by only integrating over the real modes.

Functional α-Sn β-Sn γ-Sn

LDA 22.4 16.3 15.5

PBE 21.1 14.4 13.7

PBEsol 21.8 15.9 15.1

AM05 21.8 16.0 15.0

revTPSS 21.7 16.2∗ 15.3∗

SCAN 22.5 15.5 14.4

As we showed in Section IV, the ZPE is just half of the
average phonon energy as weighted by the pDOS:

FZPE(V ) =
1

2

∫ εmax

0

dε g(V, ε) ε . (9)

We used the APL module to compute the zero-point
energy at static equilibrium, as given in Table III, for a
variety of density functionals, presenting our results in
Table IV. The revTPSS calculations show that β- and
γ-Sn are unstable, with imaginary frequencies near Γ (β-
Sn) and M (γ-Sn), not surprising as these structures are
not the lowest ones at their equilibrium volumes. The
ZPE for these states only includes the real modes, and is
presented only for comparison.

In all other cases we find that the zero-point energy of
α-Sn is 35-45% larger than that of the β- or γ-Sn phases.
This can be easily explained by looking at the phonon
density of states for the three phases. Figure 22 shows the
pDOS for all three phases using both the PBE and SCAN
functionals. Other functionals give similar results. We
see that the covalent bonding in α-Sn produces a phonon
spectrum almost perfectly divided into acoustic and op-
tical modes. The optical modes are concentrated near
the top of the phonon conduction band, and the maxi-
mum phonon frequency for α-Sn is roughly 20% larger
than the maximum of the other two phases. As a result
the zero-point energy (9) of α-Sn will always be larger
than that of the other two phases. This means that if
the static lattice calculation predicts that the β- or γ-Sn
phase is the ground state, then the addition of zero-point
energy will increase the energy difference. Consequently
the LDA, PBEsol, AM05 and revTPSS functionals will
never find the experimentally observed ordering between
phases. The zero-point energy will decrease the observed
energy difference between α-Sn and the other structures
when using the PBE and SCAN functionals, and so will
lower the α − β − γ phase transitions temperature com-
pared to what would be found with no zero-point energy.

Table IV also shows that the zero-point energy of γ-Sn
is always lower than the zero-point energy of β-Sn. This
will be important when we discuss the thermal stability
of tin below.
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FIG. 22: Phonon density of states for α- (solid line), β-
(dashed line) and γ-Sn (dotted line)) at the equilibrium con-
figurations from Table III. Top panel: PBE functional. Bot-
tom panel: SCAN functional. We show the number of phonon
modes per atom, thus the area under each curve is three.

B. Thermal Expansion

We now look at the full effect of the phonons on the
thermodynamics of tin predicted by these functionals.
First we consider the thermal expansion of the tin struc-
tures. The APL module of AFLOW prints the vibra-
tional free energy Fph(T ), so we can easily find the min-
imum free-energy volume V (T ) over a large number of
points. We also computed the linear expansion coeffi-
cient (8) using five-point numerical differentiation of the
volume.

The thermal expansion of α-Sn is shown in Figures 23
(PBE) and 24 (SCAN), compared to data taken by
Touloukian et al.[83] Even though PBE overestimates
the equilibrium volume, its predicted value of α(T ) is in
good agreement with experiment for low temperatures
and shows the same flattening at high temperature, al-
beit at a higher value than found by experiment. SCAN
is somewhat less accurate at low temperatures, and shows
a decreasing value of α above 150K.

β-Sn has a tetragonal lattice, so the lattice parame-
ters a(T ) and c(T ) can have different thermal expansion
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FIG. 23: (Color online) The primitive-cell volume of α-Sn as
function of temperature (left axis, red circles) and the linear
expansion coefficient α (right axis, blue triangles) calculated
by APL using the PBE density functional. We also plot the
experimental data found in Touloukian et al.[83] (black dia-
monds).
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FIG. 24: (Color online) The primitive-cell volume of α-Sn as
function of temperature (left axis, red circles) and the linear
expansion coefficient α (right axis, blue triangles) calculated
by APL using the SCAN density functional. We also plot
the experimental data found in Touloukian et al.[83] (black
diamonds).

coefficients,

α‖(T ) =
1

a(T )

da

dT
(T ) and α⊥(T ) =

1

c(T )

dc

dT
(T ) , (10)

where ‖ and ⊥ denote expansion in the a, b plane and
along the c axis, respectively. The averaged thermal ex-
pansion is then

α(T ) =
1

3

[
2α‖(T ) + α⊥(T )

]
. (11)
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FIG. 25: (Color online) The primitive-cell volume of β-Sn as
function of temperature (left axis, red circles) and the linear
expansion coefficient α (right axis, blue triangles) calculated
by APL using the PBE density functional. We also plot the
value of α(T) found in Touloukian et al.,[83] (solid black di-
amonds) and measured by Deshpande and Sirdeshmukh[77]
(open black diamonds).
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FIG. 26: (Color online) The primitive-cell volume of β-Sn as
function of temperature (left axis, red circles) and the linear
expansion coefficient α (right axis, blue triangles) calculated
by APL using the SCAN density functional. We also plot
the value of α(T) found in Touloukian et al.,[83] (solid black
diamonds) and measured by Deshpande and Sirdeshmukh[77]
(open black diamonds).

We compare predicted thermal expansion of β-Sn to
the experimental data cited in Touloukian et al.,[83]
(solid black diamonds) and measured by Deshpande and
Sirdeshmukh[77] in Figures 25 (PBE) and 26 (SCAN).
The results here are reversed from α-Sn, in that SCAN
has a much better prediction for α(T ) than PBE. Given
the problems noted with β-Sn in the PBE, it is not sur-
prising that we only get agreement between theory and
experiment below 50K. The SCAN functional is within
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FIG. 27: (Color online) The primitive-cell volume of γ-Sn as
function of temperature (left axis, red circles) and the linear
expansion coefficient α (right axis, blue triangles) calculated
by APL using the PBE density functional.
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FIG. 28: (Color online) The primitive-cell volume of γ-Sn as
function of temperature (left axis, red circles) and the linear
expansion coefficient α (right axis, blue triangles) calculated
by APL using the SCAN density functional.

10% of experiment at temperatures below 300K, but its
functional form is different, flattening above 100K, while
the experimental α(T ) continues to increase up to 500K.

There is no experimental information about the ther-
mal expansion of γ-Sn or even Sn0.8In0.2, but we can
determine the thermal expansion parameter, which we
plot in Figures 27 (PBE) and 28 (SCAN). We find that
α(T ) is in the same range as β-Sn, but there is a very
large difference in the behavior of α(T ) in the two phases.

The results of this section are confusing. SCAN gives
a much better prediction of the equilibrium lattice con-
stants of all three phases than PBE does, but the high-
temperature behavior of α(T ) differs from experiment in
all cases, and there are large differences between PBE
and SCAN. More study is needed here, including going
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FIG. 29: Free energy predicted by the PBE functional
(6,7) as a function of temperature for α-Sn (solid line), β-
Sn (dashed line), and simple hexagonal γ-Sn (dotted line).
The vertical lines show the experimental α-β phase transition
at 286K[10] and β-γ transition at 450K[12]. Top: the free en-
ergy of each phase shifted so that the energy of the α-phase
is zero at T = 0. Bottom: the difference in energy of the β-
and γ-phases with respect to α-Sn.

beyond the quasi-harmonic approximation.
In general both PBE and SCAN give reasonable values

of α(T ) at for T < 100K, but the higher temperature
behavior deviates from experiment. This may be due to
the failure of the harmonic approximation, or may be
that we simply require a finer volume mesh to determine
the equilibrium volume V (T ).

C. Thermal Phase Transitions

Having shown that APL/AFLOW/VASP finds reason-
ably accurate phonon spectra and gives us the correct or-
der of magnitude of the thermal expansion parameter, we
turn to the main question of this study: can we predict
the transition from α- to β-Sn, and is there a transition
from β- to γ-Sn?
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FIG. 30: Free energy predicted by the SCAN functional
(6,7) as a function of temperature for α-Sn (solid line), β-
Sn (dashed line), simple hexagonal γ-Sn (dotted line), and
simple cubic tin (dash-dot line). The vertical lines show the
experimental α-β phase transitions at 286K[10] and 450K[12].
Top: the free energy of each phase shifted so that the energy
of the α-phase is zero at T = 0. Bottom: the difference in
energy of the β- and γ-, and simple cubic phases with respect
to α-Sn.

We have determined the free energy F (T ) for all three
phases using the PBE and SCAN functionals as outlined
at the start of this section. Figure 29 shows the results
for the PBE functional, with the free energy for all three
phases plotted on the top of the graph and the devia-
tion of the free energy from α-Sn at the bottom. The
transition to γ-Sn is predicted to occur at 400K, not too
far from the 450K transition, but it occurs before the
transition to β-Sn, which would be at about 425K.

It could be argued that we should use the larger energy
cutoff and k-point mesh from Table II to do these calcu-
lations, but this will only shift the static energy of β-Sn
1 meV/atom below the γ-Sn result. By the time we get
to 400K the free energy of γ-Sn will still be lower than
β-Sn.

The SCAN functional correctly predicts the ordering
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U(α-Sn) < U(β-Sn) < U(γ-Sn) (Figure 13), so perhaps
it will do better, even though the static energy difference
between α- and β-Sn is quite large. One complication
is the low energy of the simple cubic phase, which is
actually lower in energy than γ-Sn. Because of this we
did a full set of phonon calculations for the simple cubic
phase, using a 5×5×5 (125 atom) supercell with a 4×4×
4 k-point mesh (18 k-points in the irreducible Brillouin
zone). The simple cubic phase is vibrationally unstable
for volumes below 28Å3/atom, so we only consider larger
volumes in computing the free energy.

The results of these calculations are shown in Fig-
ure 30. Again, the top panel shows the free energy of
four phases, and the bottom shows the deviation from α-
Sn. The simple cubic free energy is such that this phase
is above γ-Sn for temperatures greater than 120K, so we
can ignore it entirely. The SCAN functional predicts that
β-Sn will be below γ-Sn for temperatures up to 280K. If
the free energy difference between β-Sn and α-Sn was
lowered by some 40 meV/atom SCAN would predict the
correct ordering of the states. Unfortunately the free en-
ergy difference is about 67 meV/atom, so SCAN predicts
a transition from α-Sn to γ-Sn at about 700K, well above
the observed melting point of tin of 505K.[82] This means
that SCAN does not correctly describe the physics of tin,
but since it predicts a reasonable temperature for the β-γ
transition perhaps we can say that it is better than the
PBE functional.

IX. ELECTRONIC CONTRIBUTIONS TO THE
FREE ENERGY

The preceding calculations neglect the thermal energy
of the electrons. One can argue that this must be small
compared to the vibrational energy, since the electronic
contributions to metallic specific heats are much smaller
than the vibrational contributions.[84] In this case, how-
ever, the energy differences between the tin phases are
themselves small, so it is possible that the relatively small
electron energy may be large enough to change the or-
dering among phases.

The Kohn-Sham electronic eigenvalues found in DFT
calculations represent an independent approximation to
the true electron energies in the system. Using these
eigenvalues, the free energy of a system with electronic
density of states ρ(ε) is[85]

Uelec(T ) =

∫
dε ε ρ(ε)f(ε, T ) , (12)

where

f(ε, T ) =
1

eβ[ε−µ(T )] + 1
(13)

is the Fermi distribution function, and the chemical po-
tential µ(T ) is chosen so that

Nelec =

∫
dε ρ(ε)f(ε, T ) . (14)
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FIG. 31: The approximate contribution (16) electrons to
the free energy of α-Sn (solid line), β-Sn (dashed line), γ-
Sn (dotted line), and simple cubic tin (dash-dot line) at the
equilibrium volume of each phase using the SCAN functional.

Here Nelec is the number of valence electrons in the sys-
tem, four per atom for tin. The entropy of this distribu-
tion of electrons is

Selec(T ) = −k
∫
dε ρ(ε)

{
f(ε, T ) ln f(ε, T )+

[1− f(ε, T )] ln [1− f(ε, T )]

}
,

(15)
and the resulting contribution to the free energy of the
system is

Felec(T ) = Uelec(T )− TSelec(T ) . (16)

We can compute (16) using the eigenvalues and den-
sity of states found by VASP. Here we only present an
example, the free energy of the α, β, γ and simple cu-
bic tin phases at equilibrium using the SCAN functional
(see Figure 12). The results are shown in Figure 31. The
zero-temperature contribution of the electrons to the to-
tal energy are included in the ground-state calculation,
so we are only interested in the thermal contribution to
the free energy, Felec(T )−Felec(0). We see that the elec-
tronic contribution is indeed small compared to the free
energy shown in Figure 30. The electronic free energy of
the metallic phases changes by about 4 meV/atom from
0-800K, compared to the 400 meV/atom change of the
original free energy. The change in the electronic free en-
ergy of semi-metallic α-Sn is no more than 0.5 meV/atom
in this range.

This is not to say that the electronic free energy can-
not influence the predictions of transition temperatures.
The difference between α- and γ-Sn is about 3 meV/atom
at 700K. This will drive the α-γ transition temperature
down by about 50K. Unfortunately Felec for β-Sn is above
that of γ-Sn, hence the electrons will not help to move
the β-Sn free energy below γ-Sn, and there is still no α-
β transition predicted by SCAN. Indeed, the difference
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between the simple cubic and β-Sn electronic free ener-
gies is such that if we add the electronic free energy to
the results of Figure 30 the two phases will be essentially
degenerate, contrary to experiment.

In general the electronic contribution to the free en-
ergy is small compared to the vibrational contribution,
but it is large enough to change the structural transi-
tion temperature by about 10%. It is not, however, large
enough to change our conclusion that no functional cor-
rectly predicts the thermal transition sequence in tin.

The caveat here is that we do not have the true elec-
tronic spectra of tin. We only have the Kohn-Sham in-
dependent electron eigenvalues, which are known to be
at best only an approximation to the true electronic ex-
citation spectra.[86] At best, then, we can only use our
Kohn-Sham eigenvalues to estimate the electronic con-
tribution to the free energy. Although this should not
significantly change the results we cannot conclusively
prove this.

X. DISCUSSION

As noted in the introduction, this work is only con-
cerned with the quasi-harmonic approximation to the vi-
brational properties of tin, with volume-dependent har-
monic interatomic force constants for each structure.
Some experimental studies of anharmonicity have been
done on both α-Sn[87] and β-Sn,[88] with the later say-
ing “the anharmonic effect in white tin is weak.” At
some point the QHA must fail, as tin melts at 505K, not
far from the observed β-γ transition. Calculation of the
melting temperature would involve a molecular dynam-
ics calculation, and that is far beyond the scope of this
paper.

It is doubtful that anharmonicity would introduce large
enough corrections to help the predictions for the non-
SCAN metaGGAs, as this would involve extremely large
changes in the free energy for some phases, on the order
of 100 meV/atom. Even the GGA AM05 structure would
require that β- and γ-Sn have anharmonic corrections
that are around 30 meV/atom different than that found
for α-Sn. This too seems unlikely.

Returning to the QHA calculations of this paper, we
find that most of the functionals studied predict β-Sn
to be the ground state, contrary to experiment. The
empirical metaGGA functionals actually predict a close-
packed ground state for tin. Only the PBE and SCAN
functionals give the correct ground state, α-Sn, and only
SCAN unambiguously places equilibrium γ-Sn above β-
Sn.

The purpose of this study is twofold: first, to see if
high-throughput methods, in particular AFLOW, could
accurately describe the system using their default set-
tings; and second, can DFT adequately describe the ther-
modynamic behavior of tin.

The first question can be answered “yes.” The results
in Table II show that the static energy calculations are

sufficiently converged for our purposes, and the phonon
convergence tests in Section VII show that the vibra-
tional free energy of the system is insensitive to the su-
percell size. It should be stressed that the last point is a
result of the averaging over the phonon density of states
in both the zero-point and vibrational contributions to
the free energy (5). The phonon spectra themselves show
differences, in some cases rather large, between calcula-
tions using different cell sizes, and between calculation
and experiment, however these differences are minimized
because of the averaging effect of the integrals over the
phonon density of states.

While neither PBE nor SCAN correctly predict the be-
havior of tin, we can say that they describe the trend
of the vibrational free energy correctly. Differentiat-
ing F (T ) (5) with respect to temperature shows that
F ′(T ) < 0 for all temperatures. To see the observed
phase transitions in tin, at zero temperature we must
have the ordering α < β < γ, but the free energy of β-Sn
must fall off faster than that of α-Sn, and the free energy
of γ-Sn must fall off faster than the other two. This is
the case for both PBE and SCAN. The reason for this
can be seen in Figure 22. The phonon density of states
for α-Sn is dominated by the peak in the optical modes
near 6 THz, well beyond the maximum vibrational fre-
quency of the other two phases. β-Sn has a large peak in
its optical modes near 4 THz, where the pDOS of γ-Sn
is much less pronounced. Since the thermal part of the
free energy integral (5) is weighted toward lower phonon
energies, it follows that these phonon spectra will give
the correct ordering.

Although the electronic contribution to the thermal
free energy is small, our independent electron estimate
of its impact shows that it can change the phase transi-
tion temperature, and may even change the ordering of
the nearly degenerate β-Sn and simple cubic Sn phases
found by the SCAN functional. It does not, however,
change our fundamental conclusion that none of the den-
sity functionals correctly predict the correct tin phase
transition sequence.

If we are required to say which of these functionals
gives the “best” description of tin, albeit still incorrect,
it is our opinion that the SCAN functional is the winner.
Not only does SCAN give better ground state densities
than PBE, but it also gives the β-Sn→ γ-Sn transition at
a reasonable temperature, even if it predicts that it can-
not be observed. However, it is obvious from this study
that we still need better density functionals to adequately
describe the behavior of tin.

In conclusion, we have shown that high-throughput
calculations can be used to determine the thermal be-
havior of tin as for any given density functional. Un-
fortunately all of the currently available functionals are
flawed, with SCAN being the better than the others, al-
though it does not predict the correct ordering of the
phase transitions in tin. Fortunately we now have a plat-
form to quickly evaluate new density functionals as they
become available.
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[27] M. Jahnátek, O. Levy, G. L. W. Hart, L. J. Nelson, R. V.
Chepulskii, J. Xue, and S. Curtarolo, Ordered phases
in ruthenium binary alloys from high-throughput first-
principles calculations, Phys. Rev. B 84, 214110 (2011).

[28] Y. Lederer, C. Toher, K. S. Vecchio, and S. Curtarolo,

https://youtu.be/FUoVEmHuykM


22

The search for high entropy alloys: A high-throughput
ab-initio approach, Acta Mater. 159, 364–383 (2018).

[29] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnátek,
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