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Abstract. Properties of soft materials are influenced by their anisotropic structuring under non-

equilibrium fields. Although anisotropic structure-property relationships have been extensively 

explored theoretically, comparison to experiments requires determination of the microstructural 

orientation probability distribution function (OPDF) of microstructural elements. Small angle 

scattering (SAS) measurements encode information about the OPDF, but tools to navigate this 

connection are incomplete. Here, we develop and validate an explicit framework to link arbitrary 
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OPDFs to SAS measurements. Specifically, we propose, validate, and apply a method, maximum 

a posteriori scattering inference (MAPSI), whereby the OPDF may be obtained from SAS 

measurements using a Bayesian estimation method. Using this method, we obtain estimates of the 

full 3D OPDF for two model semi-dilute fd-virus (rod-like) dispersions at concentrations that are 

approximately equal to and twice the overlap concentration.  From the OPDF, we calculate its 

second and fourth moments and compare these to predictions for a dilute suspension of rigid rods 

and to a recent theory for semi-dilute suspensions. Finally, we use both the theoretical and 

measured moments to calculate the stress, both for dilute and semi-dilute suspensions. These 

predictions are not only compared to each other, but also to measured values of the shear stress, 

and point to new insights into the behavior of suspensions of highly elongated particles in the 

transition between dilute and semi-dilute behavior. We also use this new framework to provide 

perspective on the connection between scalar parameterizations of scattering and the OPDF that 

have frequently been used in the past. The new tools developed in this work provide an 

unprecedented path toward experimental validation of dynamical theories of rod-like colloids and 

polymers, and for measurement of non-equilibrium structures and stresses of other complex fluids 

and soft materials with SAS. 

 

1. Introduction 

Non-equilibrium fields often produce anisotropic structures and properties in soft materials 

due to the orientable nature of material elements. [1,2] In such situations, diffraction represents a 

powerful technique for measuring anisotropic microstructure to connect theoretical models to 

macroscopic properties. In particular, small angle scattering (SAS) of light or neutrons enables one 

to probe length scales ranging from nanometers to microns, corresponding to structural features 
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that are relevant to many soft materials. [3] SAS sample environments have been developed to 

make measurements in situ under applied flow, magnetic and electrical fields where the external 

field can induce microstructural orientation, stretching and/or aggregation. [4–8] Such 

experiments can be utilized to connect non-equilibrium processing to structure, dynamics and the 

resultant materials properties of soft material systems. [9–11] 

In this work, we are specifically concerned with the problem of using SAS to determine the 

orientation probability distribution function (ODPF) for dispersions of rigid, non-spherical objects 

under simple shear flow. Although here we focus exclusively on shear flow, the models and 

methods we discuss can be generalized to other orienting fields. The ODPF describes the 

probability that a particle will be oriented in a particular direction, and moments of the OPDF 

provide a direct link to theories that describe structure-property relationships in anisotropic 

materials, such as mechanical, optical and transport properties. [12] The problem of extracting 

OPDFs from SAS measurements has received considerable attention. [4,6,13,14] In the following, 

we will briefly summarize current methods to analyze anisotropic scattering from soft materials, 

which will highlight the need for new methodology to extract quantitative OPDFs. We refer the 

interested reader to the Supporting Information for a more thorough review on this subject.  

In principle, SAS measurements encode information about the underlying OPDF of the 

material under measurement. However, in addition to being pre-ensemble averaged, this 

information is convoluted by the fact that the OPDF is an intrinsically 3D property (i.e., it can be 

defined on the surface of a unit sphere representing orientation space for axisymmetric particles), 

whereas SAS measurements are typically recorded as a 2D projection of the scattering onto a 

planar detector. In some cases, such as for spatially homogeneous uniaxial fields, symmetry 

conditions can be imposed to eliminate the need for 3D information from the 2D 
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measurement. [15] By contrast, the most widely utilized flow for studies of soft materials and 

complex fluids is simple shear flow, which breaks uniaxial symmetry such that a full 3D 

description is required for the OPDF. As such, there is no exact mapping of the “inverse problem” 

that connects a single 2D scattering measurement to a unique 3D OPDF. To overcome this 

limitation, it has been suggested that scattering measurements should be made under a series of 

rotational 2D projections, however sample environments to make these measurements have not 

yet been developed. [16–18] In this work, we will explore the use of scattering data in two or three 

orthogonal planes, as these configurations are currently available for flow-SANS 

measurements. [4,19,20] 

In general, prior researchers attempted one of two approaches to estimate the OPDF: (1) 

the use of various model-free parameterizations of the scattering anisotropy in the measurement 

plane, which are assumed to correlate with analogous metrics of the real-space 3D OPDF, or (2) 

the use of a 3D structural model whose predicted scattering is used to fit various parameters of the 

model to the data. For case (1), scalar parameters such as the “alignment factor” (Af) and Hermans’ 

orientation parameter are used to qualitatively track the evolution of SAS anisotropy, and 

proposals have been made about the relationship of these parameters and moments of the 

OPDF. [13,21–25] In the SI, we explore this case further, and demonstrate that it does not generally 

provide quantitative results for moments of the OPDF. For case (2), fitting of SAS patterns has 

been restricted to situations where the microstructure is modeled as a cylinder and the OPDF is 

assumed to be uniaxial. [14,26–34] As will be discussed in detail later, the ill-posedness of the 

underlying fitting problem makes these schemes highly sensitive to experimental noise. 

Experimental measurement of the OPDFs of non-spherical particles in flow is especially 

relevant to the development of rheological models of dispersions, nanocomposites and rod-like 
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polymers. For the limiting case of non-interacting, rigid, axisymmetric particles in a Newtonian 

solvent, a rigorous micromechanical theory for the particle contribution to the stress exists [12,35] 

based upon evolution of the OPDF according to the Smoluchowski equation in orientation space 

where orientational probability is advected by flow (as described by Jeffery’s equation [36]) and 

randomized by rotational diffusion due to thermal fluctuations. Corrections to this theory have 

been proposed for semi-dilute systems to account for direct particle interactions. [37–39] In all of 

these theories, the structure and stress are only dependent on the particle shape, concentration, and 

moments of the OPDF. [12] Therefore, direct measurement of the OPDF under flow would provide 

a critical test of the theoretical models for particle orientation, and would also enable a direct 

prediction of the stress that can be compared with experimental measurements. While the OPDFs 

of micron-sized particles can be directly probed with optical microscopy, scattering techniques 

such as SAS are required to probe the OPDF of nanoparticles under flow. [40–42] Given the 

practical ability to produce homogeneous simple shear flows and the aforementioned breaking of 

uniaxial symmetry, simple shear flow presents a rigorous test of such theories. The preferred model 

system for structural and mechanical studies of nonspherical nanoparticles in simple shear flow 

has been aqueous dispersions of fd-viruses — rigid, monodisperse and rod-like particles. [26,43–

47] In this work, we will probe SAS from aqueous dispersions of fd-virus particles in simple shear 

flow. 

The primary objectives of this work are:  

1) first, to develop a generalized framework for analyzing anisotropic SAS measurements 

of dispersions of rod-like particles under simple shear flow that accounts for 

contributions to the scattering resulting from particle shape and the 3D nature of the 
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OPDF, ultimately resulting in parameter-free and fully 3D OPDF estimations from 

multi-projection SAS measurements;   

2) second, to utilize this method to compare measured properties of the fd-virus 

dispersions at concentrations near or somewhat above the critical overlap concentration 

f*
, including moments of the OPDF, and rheological properties in shear flow, with 

theoretical predictions for dilute suspensions, and extensions to that theory that have 

been proposed for semi-dilute systems.  

With regard to the first objective, we develop the expressions for predicting the scattering due to 

oriented, non-spherical particles in a dilute dispersion under simple shear flow and propose model-

independent methods to extract the OPDF from SAS measurements that account for the three-

dimensionality of particle orientations. We then develop a new approach based upon Bayesian 

estimation theory that we call “maximum a posteriori scattering inference” (MAPSI) to extract 

parameter-free estimates of the 3D OPDF from planar SAS measurements. We test the accuracy 

and properties of this method by applying it to the case of dilute suspensions where we can 

calculate the SAS patterns, and for which we know the exact OPDF.  We then apply MAPSI to 

infer OPDFs from SANS measurements of semi-dilute fd-virus dispersions in simple shear flow. 

We calculate moments of the OPDF that are related to the macroscopic stress and compare them 

with moments calculated from the theories for a dilute suspension of non-interacting particles. 

Using the measured moments, we also calculate the bulk stress, using an expression derived by 

Batchelor for non-interacting particles. [12] These predictions of the stress are then compared with 

mechanical measurements of the shear stress for the same fd-virus suspensions as a means to test 

the applicability of the theoretical expressions for the stress.  
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Experimental Methods  

The fdY21M viruses used in this work are monodisperse, rod-like (with length, L = 920 nm, and 

radius, R = 3.3 nm), and rigid (Lp/L = 11, where Lp is the persistence length) particles. [26,39,43–

46] The fdY21M viruses were prepared using standard protocols. [48] The viruses were dispersed 

in a 20 mM Tris/100 mM NaCl/D2O buffer at two concentrations of 0.1 and 0.2 vol% (where 𝜙∗ ≈

24(2𝑅/𝐿)2 = 0.124 vol% is the overlap concentration [2]). The salt concentration was chosen to 

eliminate the effect of charge interactions between the viruses as demonstrated by Lang et. al. 

using rheological measurements, and the virus concentrations were chosen to be in the regime of 

𝜙∗=O(1) to explore the effects of interactions between the viruses, while limiting direct physical 

interactions and still providing sufficient scattering signal above background. [39]  

Two different flow cells were used to probe different projections of SANS data from the same 

sample under steady simple shear flow with varying shear rate, �̇�. Scattering in the flow-vorticity 

plane was probed utilizing the 1-3 plane rheo-SANS flow cell, which is an Anton Paar MCR 501 

rheometer (Anton Paar GmbH, Graz, Austria) with a quartz Couette geometry. [19] Since the 1-3 

plane measurements were made in a rheometer, the shear stress was measured simultaneously. 

Scattering in the flow-gradient plane was probed using a 1-2 plane shear cell. [20] A similar gap 

size (1 mm) and outer cylinder radius (25 mm) were used for both sample environments. Both 

measurements were conducted at the National Institute of Standards Center for Neutron Research 

on the VSANS instrument with λ = 5 Å and Δλ/λ = 0.11. In this work, we include results for the q-

range from 0.02 to 0.2 Å-1. All measurements were performed at 25 °C. Data from the 

measurements were reduced using standard NCNR protocols with Igor PRO software to correct 

for empty cell, background, and intensity normalization to an absolute scale. [49]. 
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2. Rheological Theories for Suspensions of Brownian Particles  

In the sections to follow, we utilize previously published theories for the rheology of dilute 

and semi-dilute suspensions of axisymmetric, elongated Brownian particles. In the interest of 

brevity, we do not repeat these theories here, but we recognize that they may not be familiar to all 

readers and we therefore summarize the key aspects in the SI. These theories consist of two parts. 

One is the theory for calculating the OPDF in flow, namely the Smoluchowski or convection-

diffusion equation in orientation space,  

𝐷𝑁

𝐷𝑡
+

𝜕

𝜕𝐩
∙ (𝑁�̇�) =

𝜕

𝜕𝐩
∙ (𝐷𝑟

𝜕𝑁

𝜕𝐩
),                                             (1) 

where N(p,t) is the OPDF,  the unit vector p specifies the orientation of the axis of particle 

symmetry,  the rotation of this axis by the flow, and 𝐷𝑟 is the rotational diffusivity. The second 

component of the theory is the expression that relates the stress to the OPDF. 

       The only case for which an exact theory is available is the limit of a dilute suspension of non-

interacting Brownian particles. For this case,  

�̇� = 𝛀 ∙ 𝐩 +
𝑟𝑒

2−1

𝑟𝑒
2+1

[𝐄 ∙ 𝐩 − (𝐩 ∙ 𝐄 ∙ 𝐩)𝐩]                  (2) 

which is Jeffrey’s solution for rotation of an axisymmetric particle in a homogeneous flow. [36] 

Here Ω is the vorticity tensor, E the rate of strain tensor, and 𝑟𝑒 the particle’s effective aspect ratio 

(for cylinders, 𝑟𝑒 ≈
𝐿

2𝑅 √
8𝜋

16.35 ln(
𝐿

2𝑅
)
  where L is the cylinder length and R is the cylinder 

radius) [50]. The rotational diffusion coefficient for an isolated Brownian particle is [51], 

𝐷𝑟 = 𝐷𝑟,0 =
3𝑘𝑏𝑇  ln(

𝐿

𝑅
)

𝜋 𝜂𝑠𝐿3 (

1−
1.5

ln(
𝐿
𝑅

)

1+
0.64

ln(
𝐿
𝑅

)

)     (3) 

where kbT is the thermal energy and ηs is the suspending fluid viscosity [2,52]. For this limit, there 

is also an exact framework first provided by Batchelor for calculating the particle contribution to 
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the stress tensor, given knowledge of the OPDF. [12] For highly elongated particles this can be 

expressed in the form  

𝛔𝒑 = 2𝜂𝑠𝜙 (𝐴 (𝐒(4): 𝐄 −
1

3
𝐈𝐒: 𝐄) + 𝐷𝑟,0𝐹 (𝐒 −

1

3
𝐈))  (4) 

where  

𝐒 = ∫ 𝐩𝐩 𝑁(𝐩, 𝑡)𝑑𝐩 and 𝐒(𝟒) = ∫ 𝐩𝐩𝐩𝐩 𝑁(𝐩, 𝑡)𝑑𝐩    (5) 

are the second and fourth moments of the OPDF. Here, 𝜙 is the volume fraction of rods and A and 

F are coefficients that depend only on the aspect ratio 𝑟𝑒 of the particles. Equation 4 will be referred 

to as Batchelor’s expression for the remainder of this work. 

       For the simple shear flows considered in this work, the nonzero components of the vorticity 

and rate of strain tensors are 𝛺12 = −𝛺21 = �̇� 2⁄  and 𝐸12 = 𝐸21 = �̇� 2⁄  where �̇� is the shear rate 

and the subscripts 1 and 2 denote the flow and gradient directions. Qualitatively, the orientation 

distribution will depart from the isotropic, equilibrium distribution in a manner that depends on 

the relative strength of the flow and the rotational diffusion. This can be parameterized via the 

rotational Peclet number, 𝑃𝑒𝑟 = �̇� 𝐷𝑟,0⁄ . For the fd-virus in D2O solvent at 25 °C (ηs = 1.1 mPa s), 

this yields Dr,0 = 17 s-1. Therefore, we expect to observe significant alignment of the microstructure 

when �̇� > 17 s-1 (i.e. Per  > 1). To obtain detailed quantitative results for N(p,t), the Smoluchowski 

equation (1) was solved numerically using the method outlined by Férec et. al., which was 

specifically designed to enable higher stability at large Per. [53] The details of this method and the 

discretization used in the present work can be found in the SI. Calculations of moments of N(p) 

and scattering intensities, 𝐼(𝐪)̅̅ ̅̅ ̅̅ , were made using numerical integration with the mid-point rule. 

In the present work, we will use the OPDF for the dilute case to both predict the expected 

SAS patterns and to predict the stress. We will discuss the theory required for predicting the 

scattering in the next section as it requires some extension of existing theory. The stress is 
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calculated via Eqns (4) and (5), with geometric parameters A = 820, Dr,0 = 17 s-1 and F = 3830, 

corresponding to 𝑟𝑒 = 76, which is the value for the fd-virus [50]. For simple shear flow, the 

relevant stress components are the shear stress (the viscosity), and the first and second normal 

stress differences. In terms of the components of S and S(4), these are 

                            
𝜂𝑝

𝜂𝑠𝜙
=

𝛔12,p

𝜂𝑠𝜙�̇�
=
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= 2 (𝐴𝑆1122

(4)
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�̇�
𝑆12)    (6) 

 
𝑁1
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= 2 (𝐴�̇�(𝑆1112

(4)
− 𝑆1222

(4)
) + 𝐷𝑟,0𝐹(𝑆11 − 𝑆22))  (7) 

 
𝑁2

𝜂𝑠𝜙
=

𝛔22,p−𝛔33,p

𝜂𝑠𝜙
= 2 (𝐴�̇�(𝑆1222

(4)
− 𝑆1233

(4)
) + 𝐷𝑟,0𝐹(𝑆22 − 𝑆33)).  (8) 

 

The normalization of these quantities was chosen such that they are independent of particle 

concentration and solvent viscosity.  

         The dilute theory is applicable when the mean spacing between particles is large compared 

to their length, i.e., when  𝜙 ≪ 4𝑅2 𝐿2⁄ .  Clearly, neither of the fd-virus dispersions considered in 

this work is close to satisfying this conditions. Beyond the dilute limit, there is no exact theory, 

although there have been a number of empirical extensions of the dilute theory to consider the 

semi-dilute regime. [37,38,54,55] Among these, one that has received recent attention, partly due 

to recent comparisons with data from fd-virus dispersions, is that due to Dhont and Briels with 

extensions by Lang et. al. that we will refer to as the modified D-B model. [38,39,46,56] This 

theory is adapted in a recent paper, and we follow their presentation. [39] The key elements of the 

theory for the present study are again in the SI. 

 

3. Theory for SAS and Data Analysis via Bayesian Estimation  

In general, the a priori description of anisotropic scattering by oriented microstructures from 

requires two components. The first is a form factor model that takes as an input a real-space 
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description of the distribution of scattering length density (SLD), , within a geometrically defined 

particle shape and orientation, which is then averaged against the OPDF. The second is the physical 

theory, described in the previous section, that describes how the OPDF evolves due to the details 

of an imposed orienting field. Alternatively, the former can be used in closed form by “fitting” 

either the single-particle form factor and/or the OPDF to experimentally measured small-angle 

scattering (SAS) data.  

a) Scattering theory: calculating the orientation-dependent form factor scattering  

SAS measures the intensity with which radiation (e.g., neutrons, light) is scattered from a material 

as a function of the scattering wavevector, 𝐪 = 4𝜋 sin(𝚯/𝟐)/𝜆, where Θ is the scattering angle 

(made by the vectors of incident and scattered radiation) and λ is the wavelength of the incident 

radiation. We emphasize that q is a vector, and so the scattering in general will depend on the 

direction of q relative to the local orientation of the material (Figure 1). We assume single elastic 

scattering events from a homogeneous dispersion of particles with uniform scattering length 

density (SLD). Under conditions where intraparticle and interparticle scattering correlations do 

not interfere, the intensity of radiation scattered from a material at some q, I(q), is related to 

contributions from intraparticle scattering (the form factor, P(q)) and interparticle scattering (the 

structure factor, S(q)) 

𝐼(𝐪)̅̅ ̅̅ ̅̅ =  𝛷(Δ𝜌)2𝑉𝑝𝑃(𝐪)𝑆(𝐪)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑏    (9) 

where 𝛷 is the volume fraction of particles, Δ𝜌 is the SLD contrast between the particle and the 

suspending fluid, 𝑉𝑝 is the average particle volume, and b is the incoherent scattering cross-section. 

The overbars in the expression signify ensemble averages of the quantities where, importantly, the 

product of the form factor and structure factor is the quantity being averaged on the right-hand 

side. For the experiments to which we will be comparing this framework, the measurements were 
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made at low particle concentrations and in a sufficiently high q-range where interparticle scattering 

effects are insignificant (i.e., 𝑃(𝐪)𝑆(𝐪)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝑃(𝐪)̅̅ ̅̅ ̅̅  for all measured q). Notably in SANS, one can 

measure or predict 𝛷, Δ𝜌 and the shape of the particle from other independent measurements. 

 

Figure 1. The orientational coordinate system for a rod relative to the simple shear flow field 

indicated on the coordinate axis. The angles (ϕ, θ) provide information about particle orientation 

in the flow (qu), gradient (qu), and vorticity (qω) directions. For the 1-2 and 1-3 sample 

environments, the relationship between the flow field and beam coordinate systems for the two 

sample environments used experimentally in this work are provided. In a real experiment, the 

direction of incident radiation (qz) will not change, only the orientation of the flow relative to the 

incident radiation using different flow cells. Not pictured is the detector for the 2-3 plane, where 

incident radiation is along the flow direction. 

 

The orientation of a 3D particle with arbitrary shape is uniquely defined by three 

orthogonal orientation vectors p1, p2 and p3. If one only considers effects from orientation on the 

form factor, the measured form factor of such a particle is the macroscopic average of the single-

particle form factor at all orientations weighted by the OPDF. [1,27] One can calculate this average 

form factor as 

𝑃(𝐪)̅̅ ̅̅ ̅̅ = ∭ 𝑁(𝐩𝟏, 𝐩𝟐, 𝐩𝟑)𝑃(𝐩𝟏, 𝐩𝟐, 𝐩𝟑; 𝐪)𝑑𝐩𝟏𝑑𝐩𝟐𝑑𝐩𝟑  (10) 

where P(p1,p2,p3;q) is the form factor for a single particle at a single orientation and N(p1,p2,p3) 

is the OPDF. The calculation of P(p1,p2,p3;q) at a single, arbitrary orientation in 3D space is 
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described in the Supporting Information, with examples provided for cylindrical, parallelepiped, 

and ellipsoidal particles in Cartesian q-space. Equation 10 is completely general in that it makes 

no assumptions about the mathematical form of the OPDF or particle shape. In conjunction with 

recent advances in calculating form factors for particles at arbitrary orientations [57], this expands 

the range of microstructures and forms of OPDFs for which one may predict SAS patterns to 

monodisperse systems of arbitrarily shaped rigid particles with a known OPDF, that are 

sufficiently dilute (although not hydrodynamically dilute as required by the dynamical theory) 

such that 𝑃(𝐪)𝑆(𝐪)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑃(𝐪)̅̅ ̅̅ ̅̅  in the q-range considered. We will demonstrate later that both fd-virus 

dispersions considered in this work satisfy this criterion. 

For this work, due to the axisymmetric shape of the fd-virus, the orientation of the particle is 

best described by one orientation vector, p, in spherical polar coordinates (ϕ, θ) relative to a 

Cartesian simple shear flow field (Figure 1) with qu, qu, and qω as the wavevector components in 

the flow (u), gradient (u) and vorticity ( = u) directions, respectively. We emphasize that θ 

defined here is not the same as Θ from the definition of q. In what follows, we will sometimes 

refer to the flow, gradient and vorticity directions as 1, 2 and 3, respectively. In SAS 

measurements, scattering intensity is measured on a planar detector positioned very far from the 

sample relative to the detector size. As a result, measurements are typically assumed to be made 

in the qz ~ 0 plane where z is the direction of incident radiation. Depending on the sample 

environment used, one may probe the structure in the qu ~ 0 (flow-vorticity) plane for the 1-3 

rheo-SANS sample environment or in the qω ~ 0 (flow-gradient) plane for the 1-2 shear cell sample 

environment. [19,20] One can also configure the rheo-SANS sample environment such that 

measurements are made in the qu ~ 0 (gradient-vorticity) plane; however, in this work, SAS was 

not measured in this plane due to complications from the curvature of the sample environment. 
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Equations 9 and 10 provide the general framework for computing the SAS from dilute, rigid 

particle dispersions. This framework can be utilized in two distinct ways: (1) in the “forward 

problem”, the physical theory for dilute, rigid particles in flow can be used to predict the OPDF 

and, therefore, the SAS intensity; and (2) in the “inverse problem”, the measured SAS intensity 

can be used to infer the OPDF. The use of the framework in these ways is predicated on one’s 

ability to derive orientation-dependent form factors for the particle, P(p;q), which must be 

validated for the system of interest. In this work, we validate a cylinder form factor to describe the 

fd-viruses by comparing equilibrium SAS measurements to SAS predictions with a uniform 

OPDF.  

b) Model-free Bayesian inference method for inverting scattering integral equations 

When the fluid is not dilute, hydrodynamic and direct interactions render the flow-induced particle 

dynamics too difficult to solve, so that a rigorous Smoluchowski equation, equivalent to Equation 

1, cannot be formulated without simplifying assumptions such as those inherent in the derivation 

of the modified D-B model described previously. In this case, the only way to assess such a model 

is to develop a generalized framework for inferring OPDFs directly from experimental SAS data. 

Such an “inverse problem” is commonly encountered in scattering measurements, for which 

model-free solution approaches are highly sought due to their general applicability. Examples of 

such approaches are the use of constrained regularization algorithms for the parameter-free 

estimation of real-space density correlation functions from static scattering data, [58] the structures 

of 2D lattices, [59] or distributions of Brownian diffusion coefficients from dynamic scattering 

experiments. [60] 

In this work, we introduce a novel approach we call maximum a posteriori scattering 

inference (MAPSI) based on Bayesian estimation to solve for the OPDF from SAS measurements 
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and a prescribed scattering model for the orientable particle. The general problem statement is to 

solve Equations 9 and 10 for 𝑁(𝐩), given the measured scattering intensity, 𝐼(𝐪)̅̅ ̅̅ ̅̅ , and an 

expression for the single particle form factor as a function of p and q, i.e., 𝛷(Δ𝜌)2𝑉𝑝𝑃(𝐪, 𝐩). This 

problem represents a Fredholm integral equation of the first kind and is, therefore, fundamentally 

ill-posed (i.e., a solution does not exist that is stable against perturbations in the data). 

Regularization has been demonstrated as an effective method for numerically solving such 

problems, [61] but these methods have not been applied toward the inference of OPDFs from SAS. 

Recently, a Bayesian method was proposed to solve a similar ill-posed problem with the 

application of inferring nanoparticle size distributions from single particle tracking 

experiments. [62] Here, we adapt a similar mathematical framework for analysis of anisotropic 

scattering. We will briefly outline the method as it applies to extracting OPDFs from SAS 

experiments while a more rigorous description of the method is included in the Supporting 

Information. We note that MAPSI as outlined here is valid for axisymmetric particles but can be 

extended to include non-axisymmetric particles by utilizing three angles to describe the 

orientation. Furthermore, our formulation of MAPSI applies no physical constraints on the OPDF 

and is therefore general to any particle and orienting field (e.g. biaxial simple shear flows), 

although additional constraints due to symmetry of the OPDF could be incorporated if desired. We 

will not incorporate such constraints in this work due to the known biaxiality of the OPDFs for 

particles in simple shear flow. 

 First, the unknown OPDF is discretized into a linear combination of hat functions in 

orientation space as 𝑁(𝐩) = ∑ 𝑤𝑚𝜒𝑚(𝐩)𝑀
𝑚=1 , where M is the number of hat functions used to 

discretize the OPDF, 𝜒𝑚(𝐩) is a 2D spherical triangular hat function (see Supporting Information) 

centered at a grid point indexed by m and is a function of orientation on the surface of the unit 
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sphere S2, and 𝑤𝑚 is the weighting for the hat function. Specifically, hat functions were generated 

on the 2-sphere by taking the convex hull of a sufficiently resolved Kurihara grid. [63] With this 

discretization, defining 𝐩𝟏 = 𝐩 as the only applicable orientation vector, and setting 𝑃(𝐪)𝑆(𝐪)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 

𝑃(𝐪)̅̅ ̅̅ ̅̅ , Equations 9 and 10 become 

𝛷(Δ𝜌)2𝑉𝑝 ∫ 𝑃(𝐪𝑘, 𝐩)𝑁(𝐩)𝑑𝐩 = ∑ 𝐴𝑘,𝑚𝑤𝑚

𝑀

𝑚

 

𝐴𝑘,𝑚 = 𝛷(Δ𝜌)2𝑉𝑝 ∫ 𝑃(𝐪𝑘, 𝐩)𝜒𝑚(𝐩)𝑑𝐩     (11) 

The OPDF is restricted to satisfy the conditions ∫ 𝑁(𝐩)𝑑𝐩 = 1, 𝑁(𝐩) > 0 for all 𝐩. These 

requirements yield the constrained optimization problem 

ŵ𝑚 =
arg 𝑚𝑎𝑥

w𝑚
     

−1

2𝐾
∑

1

𝜎𝑘
2 

[𝐼(𝐪𝑘) − 𝑏 − ∑ 𝐴𝑘,𝑚𝑤𝑚

𝑀

𝑚=1

]

2

+ 𝜆𝑔(𝐰)

𝐾

𝑘=1

 

       𝑠. 𝑡.      𝐰 ≥ 0         

∑ 𝑤𝑚
𝑀
𝑚 = 1          (12) 

where K is the number of collected points in q-space, 𝜎𝑘 is the standard deviation of intensity of 

the kth wavevector (a known experimental quantity), and λg(w) is the log-prior, or regularization 

term. The regularization term is crucial for addressing the ill-posedness of the underlying problem 

and ensuring that the scattering intensity does not overfit the data and produce artificially sharp 

peaks in the OPDF. [58,62] In this case, we define the regularization term as the integral of the 

square of the gradient of the OPDF, which can be represented as a quadratic form in the weights 

and results in an optimization problem that can be efficiently solved with a quadratic programming 

solver. The hyperparameter, λ, which governs the strength of the regularization term, is found via 

cross validation in order to prevent overfitting when dealing with a finite amount of data. See the 

Supporting Information and ref. [62] for additional details on the cross validation procedure.  
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The function 𝜒(𝐩𝒎) was chosen as the means of discretizing the OPDF to simplify the 

numerical scheme by enabling one to cast the optimization as a quadratic problem and allowing 

for one to easily constrain 𝑁(𝐩) ≥ 0 for all 𝐩. In the Supporting Information, we demonstrate that 

hat functions can approximate smooth functions on the surface of a sphere to arbitrary accuracy. 

We specifically emphasize for studies that utilize different detector planes that one may 

specify the measured wavevectors (qk’s) that are included for extracting the OPDF. For example, 

in this work we will consider extracted OPDFs that utilize measured wavevectors from a single 

measurement plane (i.e., using measurements from only the 1-2 or 1-3 sample environment) or 

from two measurement planes (i.e., using measurements from both the 1-2 and 1-3 sample 

environments). This will allow us to assess the information that is gained or lost from 

measurements in a particular plane. For data sets that combine measurements from different 

planes, it is crucial that q-vectors are expressed with respect to the same reference frame (in this 

case the flow field, see Figure 1). 

MAPSI presents distinct advantages over other methodologies that determine OPDFs from 

SAS measurements. Compared to more conventional fitting strategies, this method makes no 

assumptions about the mathematical form of the OPDF. We note that the recently proposed 

spherical harmonics expansion shares this advantage. [14] Unique to MAPSI is the use of and 

search for the regularization parameter λ. Addressing the ill-posedness of the inference problem 

requires the use of a regularization term to avoid overfitting. Rather than arbitrarily choosing the 

strength of the regularization term, λ, MAPSI utilizes cross validation to find a value of λ that is 

most consistent with the data under measurement uncertainty. SAS measurements have inherent 

uncertainty given the spread in incident neutron wavelength and finite measurement time of 

experiments, which should be reflected in any parameter extracted from the measurement. Given 
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the Bayesian nature of MAPSI and more specifically the search for λ (via cross validation), these 

uncertainties are naturally propagated through the analysis to the posterior distribution of the 

weights, which we sample with a Monte Carlo scheme in order to extract measures of error for 

derived quantities of the distribution. In this work, we will use such a sampling procedure to extract 

moments of the OPDF with error bars that represent the standard deviation of the full posterior 

probability distribution of moments or other derived quantities. 

5) Results and Discussion 

a. Near-equilibrium 1D scattering for validation of scattering model 

To validate the single-particle scattering model (i.e., 𝛷(Δ𝜌)2𝑉𝑝𝑃(𝐪, 𝐩)) used to describe the SAS 

from the fd-virus dispersion, we compare the isotropic predictions of the scattering model for the 

fd-virus with equilibrium SANS measurements. As mentioned before, the fd-virus used in this 

work is typically modeled as a cylinder with radius, R = 3.3 nm, and length, L = 920 nm. [45,46] 

The fd-virus scattering length density (SLD) was calculated to be ρSLD,p = 3.03 × 10-6 Å-2 using the 

“Biomolecular SLD Calculator” available through ISIS and the known protein sequence for the 

virus. [64] The solvent SLD was fixed at that of pure D2O (ρSLD,s = 6.33 × 10-6 Å-2), although one 

may expect the solvent D2O to be slightly lower due to the added buffer. The incoherent 

background scattering was calculated from a linear fit of a plot of q4 vs Iq4, where the slope of the 

line is equal to the background. The only remaining parameter, the concentration of the fd-virus, 

is determined from a fit of the measured equilibrium scattering. We stress that the only adjustable 

parameter in the fit is one relating to the absolute magnitude of the scattering signal, and so the 

shape of the scattering curve is fixed from the known particle shape. The fits and subsequent 

analyses were made in the q-range from 0.02 to 0.2 Å. 
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The equilibrium structure at zero shear rate was probed for the two different concentration 

dispersions and in the two detector planes. These equilibrium measurements, corrected for the 

incoherent scattering cross section (Iincoh), which is extracted from the measurement, and 

normalized by the volume fraction, are included in Figure 2. Also included is a prediction of the 

scattering intensity for the fd-virus, modeled as a cylindrical particle with the dimensions 

mentioned previously. We find that the normalized equilibrium scattering from the samples in both 

the 1-2 and 1-3 planes are well described by this scattering model, with no included structure 

factor, validating its use in the following sections for all concentrations and detector planes. 

 

Figure 2. 1D equilibrium SANS measurements and fits for the fd-virus dispersions considered in 

this work. The measured intensities are corrected for incoherent scattering and volume fraction 

extracted from fits of the measurements. Measurements are included for the concentrations (0.1 

and 0.2 vol%) and measurement planes (1-2 and 1-3) as the open points of varying color where 

the error bars indicate the standard deviation of the intensity from the SANS measurement. The 

cylinder model considered for the fd-virus is included as the black line. 

 

b. Parameter-free extraction of the 3D OPDF using MAPSI: method validation 

In the theory section, we described a method, MAPSI, that can be used for determining 

OPDFs from experimental measurements. To validate the method, we conduct numerical 

simulations using the dilute particle theory to predict SAS patterns in the 1-2, 1-3 and 2-3 

measurement planes, which are then used as an input to MAPSI. Utilizing predictions from dilute 

theory with no added noise enables us to assess the utility of MAPSI for accurately extracting 
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OPDFs free from the influence of non-idealities in the experimental system or uncertainties in the 

measured scattering intensity. Any deviation of the extracted OPDF from the OPDF used to 

generate the scattering therefore represents errors introduced from either the limited q-resolution 

in the predicted scattering patterns or from MAPSI itself. 

Numerical simulations of the OPDF for dilute rodlike particles matching the dimensions 

of the fd-virus in simple shear flow were carried out as a function of rotational Péclet number, Per. 

The OPDFs were used with the validated fd-virus scattering model to generate SAS predictions in 

the 1-3, 1-2 and 2-3 measurement planes with the same q-range and q-resolution measured in 

experiments. The predicted SAS patterns were then used as input to MAPSI to extract OPDFs. 

Since MAPSI requires information about measurement errors, the standard deviation of the 

intensity was set to 0.33I(q), representative of the value of the standard deviation in the SAS 

measurements. A smaller value was found to have no observable effect on the inferred OPDFs.  

 

Figure 3. Representative 3D OPDFs (i) simulated from dilute theory and extracted from MAPSI 

using theory-predicted scattering in the (ii) 1-2, 1-3 and 2-3 planes, (iii) 1-2 and 1-3 planes, (iv) 1-
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2 plane and (v) 1-3 plane. For the 1-3 scattering, the incident radiation is in the ∇𝑢 (2) direction; 

for the 1-2 scattering, the incident radiation is in the ω (3) direction; and for the 2-3 scattering, the 

incident radiation is in the 𝑢 (1) direction. The representative results are included for Per = (a) 2, 

(b) 7.5, and (c) 30. The color on the unit sphere represents the value of the OPDF in a particular 

direction in the u, u, and ω reference frame specified in the bottom left corner. The black lines 

on the unit sphere indicate the edges of the hat functions used to discretize the OPDF. 

 

Representative OPDFs for Per = 2, 7.5, and 30 are included in Figure 3, including the 

OPDF predicted from theory and extracted from MAPSI using scattering from the 1-3 plane, 1-2 

plane, both the 1-2 and 1-3 planes, and all three planes. For all extracted OPDFs, as Per is 

increased, the apparent OPDF becomes increasingly peaked. Importantly, when comparing the 

OPDF extracted from all three scattering planes simultaneously, we find that the full OPDF is 

nearly quantitatively recovered, validating the MAPSI method. By contrast, when an incomplete 

set of scattering projections is used, the apparent most likely orientation (corresponding to the peak 

in N(p) ) depends on the measurement planes utilized. For 1-3 plane measurements, the most likely 

orientation coincides with the flow direction, about which the OPDF is symmetric, whereas for 1-

2 plane measurements it lies slightly away from the flow direction toward the gradient direction, 

which is expected from the dilute theory. Additionally, the OPDF extracted from the 1-2 plane 

scattering is broadened along the vorticity direction compared to that extracted from 1-3 plane 

scattering. For the extractions combining measurements (1-3 + 1-2 and 1-3 + 1-2 + 2-3), the axis 

of symmetry of the OPDF is tilted into the gradient direction similar to the 1-2 plane, yet is more 

weakly broadened in the vorticity direction than for the former case. When comparing the OPDF 

extracted from the 1-2 and 1-3 scattering to the theory-predicted OPDF, we find that the peak 

location in N(p) is accurately captured, while its value is underestimated, which we attribute to the 

spreading of probability in the vorticity direction compared to the underlying OPDF. For several 

of the OPDFs we also note the presence of ‘ridges’, most significantly along ω = 0. We attribute 
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the presence and locations of these ridges to regions of the OPDF where the included SANS 

measurements provide little information. In other words, these regions correspond to areas where 

the particle is perfectly aligned or just off alignment from the plane of measurement. Since we are 

not probing a q-range corresponding to the full length of the particle, it can be expected that such 

regions would exist in the OPDF. We do not observe such ridges in the OPDFs determined from 

experimental measurements, and therefore attribute the absence of ridges to the regularizing effect 

of measurement uncertainty. 

We now summarize the effects of utilizing scattering from different detector planes (i.e. 

projections of structure) on the extracted OPDF relative to that extracted using all three detector 

planes. For OPDFs extracted from the 1-3 plane only, the OPDF is broadened along the flow 

gradient direction, and the most probable orientation always lies exactly in the flow direction. For 

the OPDF extracted from the 1-2 plane scattering, the OPDF appears to be broadened along the 

vorticity direction, and the most probable orientation shifts from 45° between the flow-flow 

gradient directions at low shear rates to nearly the flow direction at high shear rates. Both results 

are due to the loss of out-of-plane orientational information when restricting analysis to a single 

scattering projection plane. We suggest that this occurs because the form factor when qz = 0 (where 

z is the direction of incident radiation) is symmetric with respect to Θ = 0, where Θ is the orientation 

of the particle out of the plane of measurement. Qualitatively, one can understand this effect as 

analogous to projections in real-space measurements, where particle orientations in the ±Θ 

direction cannot be distinguished. In the case of the 1-3 plane scattering, Θ = ϕ and qz = qu, which 

leads to the measured symmetry about the flow direction in the extracted OPDF because one 

cannot distinguish between orientations in the ±ϕ-direction. Finally, OPDFs extracted from 1-3 + 

1-2 scattering planes appears to have artificially smoothed features, but do not qualitatively differ 
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from the case where all three planes are used. We conclude that accurately resolving the full OPDF 

from SAS requires measurement and analysis of at least two different detector planes. 

The preceding analysis qualitatively demonstrates the loss of information regarding the 3D 

OPDF generally incurred by an analysis of anisotropic scattering when analysis is restricted to a 

single scattering plane. A more quantitative analysis of this information loss can be assessed by 

examining various scalar moments of the OPDF. Given that MAPSI accurately resolves the full 

OPDF, one could theoretically calculate moments of the OPDF (and propagated errors of such 

moments) to arbitrarily high order. Here, we restrict the analysis to include only the second and 

fourth moments of the distribution, S and S(4). As mentioned previously, these moments are 

required to determine various material properties, such as the particle contribution to the 

mechanical stress in force-free orientable particle systems. [12]  

Figure 4. Components of the second moment tensor, S, calculated from simulations of the dilute 
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rod theory (black lines) and calculated from OPDFs extracted from MAPSI using theory predicted 

scattering (points) at varying Per. Components of the moment tensor extracted using MAPSI 

include results using data from different scattering projections included: 1-2 plane only (up-

pointing red triangles with right side filled), 1-3 plane only (down-pointing blue triangles with left 

side filled), using both 1-2 and 1-3 plane scattering (purple filled diamonds), using 1-2 + 1-3 + 2-

3 plane scattering (filled black circles) and using 1-2 + 1-3 + 2-3 plane scattering with an extended 

q-range (filled gray circles). The error bars indicate the standard deviation of the value from 

posterior sampling where the standard deviation was taken to be 𝐼(𝐪)/3. 

 

The results for the nonzero components of the second moments, S, are included in Figure 

4. We show results including scattering measurements in single detector planes (the 1-2 and 1-3 

planes), in both the 1-2 and 1-3 planes, and in three orthogonal planes (1-2+1-3+2-3) for q in the 

range from 0.02 to 0.2 Å, which corresponds to that available in the experiments. We see that the 

agreement for the diagonal components of S obtained via MAPSI and the exact results is excellent 

in cases where multiple projection planes are used. The only modest disagreement is for S12, where 

the peak values obtained via MAPSI are smaller and there appears to be a slight shift toward 

smaller values of Per, both for the 2-plane and three-plane cases. The 3-plane result is clearly better 

than the 2-plane result, though both cases show errors of similar magnitude. The main reason why 

the 3-plane result still shows a difference from the exact result for S12 is that the data are restricted 

to a limited q-range for this comparison, in an attempt to capture experimental conditions. Of 

course, for the dilute suspension case that we are considering in this section, we can calculate the 

scattering patterns for arbitrary q, and then explore how the results from MAPSI would change if 

we had data for a wider range of q. One example where the q range is extended to include 0.002 

to 0.2 Å is included in Figure 4. The agreement between the MAPSI extracted moments and the 

dilute theory clearly demonstrates that a very accurate result could be achieved if data were 

available over a wider range of q. The components of S define a first approximation of the shape 

of the OPDF in the form of an ellipsoid. At equilibrium, the shape is a sphere (the diagonal 
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components are nonzero and equal while the off-diagonal components are zero). The first 

departure is a distortion in the principle straight direction (S12 > 0), followed by elongation of the 

ellipsoid and rotation toward the flow axis.  The fact that the peak in S12 is underestimated means 

that the OPDF obtained via MAPSI shows somewhat less alignment and distortion in the direction 

of the principle strain-rate axis than actually occurs. According to Equation 6, this would produce 

an underestimate of the shear viscosity at Per of O(10) if we used the OPDF obtained via MAPSI. 

Due to tensor symmetries and the symmetry of the shear flow field, there exist 9 unique, 

non-zero scalar components for the fourth-order tensor, S(4) (Figure 3). While other studies have 

resolved the diagonal components of the second moment tensor with measurements in multiple 

detector planes [46], to our knowledge the current work represents the first means of measuring 

the off-diagonal terms for nonspherical nanoparticles simultaneously utilizing multiple SAS 

projections, and therefore this necessitates a discussion of the information about S(4) that is lost or 

gained from scattering information in a particular plane. In order to facilitate this discussion, the 

moments have been divided into the three diagonal components 𝑆1111
(4)

, 𝑆2222
(4)

 and 𝑆3333
(4)

, the three 

symmetric off-diagonal components 𝑆1122
(4)

, 𝑆1133
(4)

 and 𝑆2233
(4)

, and the three antisymmetric 

components 𝑆1112
(4)

, 𝑆1222
(4)

 and 𝑆1233
(4)

. 

For the diagonal components, 𝑆1111
(4)

 increases whereas 𝑆2222
(4)

 and 𝑆3333
(4)

 decrease with 

increasing shear rate, regardless of the data used in MAPSI (Figure 5, first row). In the case of 

both 𝑆1111
(4)

 and 𝑆3333
(4)

, we find that only including the scattering data in the 1-3 or 1-2 measurement 

plane leads to a quantitative underestimate compared to simultaneously using data from both of 

these planes, which is more severe for measurements in the 1-3 plane. For 𝑆2222
(4)

, including only 

information from the 1-3 plane yields a value that is quantitatively similar to the result when both 
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planes are included, while only including the 1-2 plane measurement overpredicts 𝑆2222
(4)

. For the 

diagonal components, including multiple planes in the analysis significantly reduces these errors 

(with absolute errors less than 0.04 and 0.008 when using the 1-2 and 1-3 planes or the 1-2, 1-3 

and 2-3 planes, respectively). 

 

Figure 5. Components of the fourth moment tensor, S(4), calculated from simulations of the dilute 

rod theory (black lines) and calculated from OPDFs extracted from MAPSI using theory predicted 

scattering (points) at varying Per. The component of the moment tensor is indicated in the legend, 

where the four numbers correspond to the i, j, k and l indices for the moment. Components of the 

moment tensor extracted using MAPSI include results using data from different scattering 

projections included: 1-2 plane only (up-pointing red triangles with right side filled), 1-3 plane 

only (down-pointing blue triangles with left side filled), using both 1-2 and 1-3 plane scattering 

(purple filled diamonds), using 1-2 + 1-3 + 2-3 plane scattering (filled black circles) and using 1-

2 + 1-3 + 2-3 plane scattering with an extended q-range (filled gray circles). The error bars indicate 

the standard deviation of the value from posterior sampling where the standard deviation was taken 

to be 𝐼(𝐪)/3. 
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For the symmetric off-diagonal components of the moment tensor (Figure 5, second row), 

we find an increase followed by a decrease in the values 𝑆1122
(4)

 and 𝑆1133
(4)

, while we find a 

monotonic decrease in the value of 𝑆2233
(4)

 with increasing shear rate. For 𝑆1122
(4)

, we find that only 

including the information from the 1-2 measurement leads to a slight underestimation of the value, 

while only including 1-3 measurement information overestimates the value of the component 

compared to utilizing all the measured intensities. For 𝑆1133
(4)

, using only 1-3 plane information 

correctly infers the values while using only 1-2 plane information leads to an overestimate. For 

𝑆2233
(4)

, using only the 1-2 plane measurement tends to slightly overestimate the value while using 

only the 1-3 plane correctly infers the value. Again, including information from two or more planes 

leads to very small errors between the “true” values and those estimated by MAPSI. 

For the antisymmetric components of the moment tensor (Figure 5, third row), the 𝑆1112
(4)

, 

𝑆1222
(4)

, and 𝑆1233
(4)

 component values increase and then decrease with increasing shear rate. For all 

of these components, only utilizing the information from the 1-3 measurement leads to a severe 

underestimate for these components, and only utilizing the information from the 1-2 measurement 

leads to a similar value of the components as when both 1-2 and 1-3 plane measurements are used. 

Again, in most cases using two or more planes significantly improves the accuracy of estimates 

from MAPSI. However, this is not true for 𝑆1112
(4)

, even when including measurements in the 1-2, 

1-3 and 2-3 planes. However, when a wider q-range is included, MAPSI correctly predicts the 

value of 𝑆1112
(4)

 and all components of the fourth moment tensor. 

Overall, we find excellent quantitative agreement between fourth moments determined 

from the known exact OPDF and those obtained using MAPSI when two or three measurement 

planes are used. As commented on previously, a general feature of the OPDFs inferred from 
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measurements in a single detector plane is a loss of information about the OPDF in the out-of-

plane direction. The clearest illustration of this from the moment analysis is the severe 

underprediction of values for the antisymmetric components from 1-3 plane measurements. These 

antisymmetric components describe the asymmetry of the OPDF around the velocity direction due 

to the biaxial nature of the shear flow. From the full OPDF (Figure 3ci), we can directly observe 

this loss of asymmetry. Furthermore, we have quantified the errors expected for particular 

moments, which will be used in the analysis of moments extracted from experimental data to 

follow. The results for the second and fourth moments make it clear that the accuracy in extracting 

moments improves further with a wider q-range, but such extended q-ranges were logistically 

unrealizable for the dilute dispersions considered in this work. Therefore, one must consider the 

potential errors arising from sampling a limited q-range. For now, we consider these reported 

errors to be expected for each of the components from utilizing MAPSI with the measured q-range 

relative to the characteristic size of the particle considered in this work. 

 

c. Parameter-free extraction of the 3D OPDF for fd-virus dispersions at /* 1 and 2 

We now utilize MAPSI to extract the 3D OPDF from experimental flow-SANS measurements 

under shear in the 1-2 and 1-3 planes of measurement for the two semi-dilute fd-virus dispersions. 

A comparison of SANS patterns measured for the more dilute dispersion and predicted from the 

dilute theory (Appendix A) shows that the SANS patterns are qualitatively different from those 

predicted from the dilute suspension theory (see Figures A1 and A2). Using MAPSI will therefore 

enable us to directly quantify the aspects of the OPDFs inferred from experiments that deviate 

from the dilute theory. In the process, we explore the extent to which particle interactions for semi-

dilute fd-virus dispersions cause the OPDF to deviate from that for the dilute limit. 
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Figure 6. A comparison of OPDFs from (i) dilute theory to those inferred by MAPSI using (ii) 

dilute theory predictions of SANS in the 1-3 and 1-2 planes and (iii, iv) experimentally measured 

SANS of the fd-virus dispersions at 0.1 and 0.2 vol%. For the 1-3 measurement, the incident 

radiation is in the ∇𝑢 (2) direction, while for the 1-2 measurement, the incident radiation is in the 

ω (3) direction. The representative results are included for Per of (a) 0.94, (b) 1.9, (c) 7.5, (d) 15, 

(e) 30 (�̇� = 16, 32, 128, 256 and 512 s-1 respectively). The color on the unit sphere represents the 

value of the OPDF in a particular direction in the u, u, and ω reference frame specified in the 

bottom left corner. The black lines on the unit sphere indicate the edges of the hat functions used 

to discretize the OPDF. 
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 MAPSI was used to extract OPDFs from SANS measurements from Per = 0.06 (where no 

anisotropy was observed in the measured patterns) to Per = 30 (where significant anisotropy was 

observed). We therefore expect MAPSI to infer isotropic OPDFs for smaller shear rates and more 

anisotropic OPDFs with increasing shear rate. Figure 6iii includes representative results for the fd-

virus dispersions. We also include the OPDF from the dilute theory (Figure 6i) and the 

corresponding inferred OPDF using MAPSI and predictions of the scattering from the dilute theory 

in the 1-3 and 1-2 planes (Figure 6ii). Since the experimental measurements were only made in 

the 1-3 and 1-2 planes, the latter represents what we would expect to infer from measurements if 

the experimental system has the exact same structure as that predicted from the dilute theory. At 

low Per and for all the OPDFs, we find that the resulting OPDF is nearly isotropic for all 

orientations, as expected for a dispersion at small Per. As Per is increased, the OPDFs become 

increasingly peaked. All three OPDFs show a similar direction of most probable alignment, which 

shifts from 45° between the flow and gradient directions to the flow direction with increasing Per. 

As discussed in the previous section, the OPDFs inferred from MAPSI using only scattering in the 

1-2 and 1-3 planes have maxima that are quantitatively smaller than the OPDF from the dilute 

theory, which is clearer at higher shear rates. 

We will now compare the OPDFs inferred using MAPSI based upon the theoretically-

predicted SANS patterns from the dilute theory and the experimentally measured SANS patterns 

for the fd-virus. When comparing the MAPSI inferred OPDFs from theory and experiment, we 

find that those inferred from experiments have a smaller maximum in the OPDF than those inferred 

from theory. This difference is not surprising, given the previous analysis of the differences in the 

scattering patterns that were used to infer the OPDFs (see Appendix Figures A1 and A2). Other 

than the differences in the maximum value of the peak, we find few qualitative differences between 
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the two OPDFs, and the OPDFs display striking similarity overall. As previously mentioned, both 

OPDFs begin to show deviations from uniformity at similar Per (near 1). For all Per, both OPDFs 

have a similar shape to the peak in the OPDF (probability is stretched more along the vorticity 

direction than the gradient direction, and this asymmetry increases with increasing Per). 

Comparing the experimental OPDF to the theory OPDF (Figures 6ii and 6iii), we note that 

probability is slightly more spread out in the ω = 0 plane and slightly less spread out in the ∇𝑢 = 

0 plane in the experiment than in the theory. However, these differences are difficult to resolve at 

this level. To assess the differences between the OPDFs, we turn to an analysis of the moments of 

the OPDFs, which will provide a quantitative description of the differences in the structure 

between the dilute theory and the experimental measurements of the fd-virus dispersion. 

 

Figure 7. Components of the second moment tensor, S, calculated from simulations of the dilute 

rod theory (black lines), simulations of the modified D-B model (colored lines), and calculated 
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from OPDFs extracted from MAPSI using experimentally measured scattering (colored points) at 

varying Per. Concentrations of 0.1 vol% (blue) and 0.2 vol% (red) corresponding ϕ/ϕ* ≈ 1 and 2 

are included. The solid black points are moments extracted from MAPSI and dilute theory 

predictions of the scattering in the 1-2 and 1-3 planes (Figure 4).  The error bars indicate the 

standard deviation of the value from posterior sampling. 

 

Again, we begin with the second moment tensor, S. The results for the two experimental 

fd-virus dispersions are included in Figure 7, together with the exact results for the dilute 

suspension, and for the dilute suspension inferred by MAPSI from the calculated SAS patterns 

(see section (b)) in similar planes of measurement (1-2 + 1-3). Starting with the diagonal 

components of S (S11, S22, and S33), we find that the lowest concentration fd-virus is similar to the 

results for the dilute suspension, but that there are significant differences for the more concentrated 

dispersion. In the latter case, the component in the flow direction (S11) is larger between Per ≈ 0.5 

and 20 and departs from the equilibrium value at a lower value of Per, while the components in 

the gradient (S22) and vorticity (S33) directions are smaller in this Per range. Recalling that the 

second moments are related to the shape of the OPDF, viewed as an ellipsoid, we see that the 

OPDF is more elongated and oriented toward the flow direction and flattened in the gradient and 

vorticity directions relative to the predicted shape for a dilute suspension. Interestingly, the values 

of the diagonal components are similar at high Per for both experimentally measured dispersions. 

Larger differences between experiment and theory are observed in the S12 component, with the 

values very much reduced for Per greater than O(1). While the two dispersions are similar in this 

regime, the more concentrated dispersion deviates from both the dilute suspension and from the 

lower concentration dispersion at significantly lower Per. Both this result and the earlier departure 

of S11 from its equilibrium value are indicative of the fact that the relaxation time of the fluid is 

significantly increased as a consequence of particle interactions. 
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An obvious question is whether the modified D-B model for semi-dilute suspensions 

provides a better fit to the experimental data. An indication of the answer is shown in Figure 7 as 

a comparison between the experimental data, the dilute suspension results, and predictions from 

the modified D-B model for the components of S. For the symmetric components of S, we find 

that the modified D-B model captures the initial deviations from the dilute theory but fails to at 

high shear rates. In particular, we find that the diagonal components of S have concentration-

independent values at the largest measured shear rates (Per ≈ 30), while the modified D-B model 

predicts that concentration will have a significant effect at these shear rates. This result suggests 

that the modified D-B model overpredicts the impact of interparticle interactions when the particles 

are significantly aligned to an extent that cannot be explained solely by the effects of finite q-range 

sampling discussed previously. For the S12
 component, the modified D-B model does not predict 

the lower value measured at high shear rates (Per > 2). These deviations are larger than those 

resulting from only using measurements in the 1-3 and 1-2 detector planes, suggesting that 

measurement errors are not a sufficient explanation for the observed deviations. Therefore, the 

way the modified D-B model accounts for interparticle interactions does not explain all the 

deviations between the measured and theoretical value of S12, and new theoretical developments 

will be needed to explain this measured result. One possible area for improvement in the model is 

the expression for the diffusivity. In particular, the modified D-B model interpolates between small 

and high degrees of alignment, and it is possible that this interpolation underpredicts how quickly 

the diffusivity of the rods approaches the dilute limit with increasing particle alignment. These 

measurements could be used to provide more accurate interpolation between the near-equilibrium 



34 

 

diffusivity provided with the Doi expression and the fully aligned diffusivity provided by the 

expression for dilute rods. 

 

Figure 8. Components of the fourth moment tensor, S(4) computed for the OPDFs extracted from 

MAPSI (points) compared to the dilute theory predictions (black lines) with varying Per. The 

component of the moment tensor is indicated in the legend, where the four numbers correspond to 

the i, j, k and l indices for the moment. Moments from SANS experiments with the fd-virus 

dispersion are indicated with the open circles while moments from SANS predictions from the 

dilute theory are indicated with the closed diamonds. The error bars indicate the standard deviation 

of the value from posterior sampling. 

 

As discussed in the previous section, an important additional quantitative description of 

the OPDFs may be achieved through the calculation of the fourth moment tensor, S(4). Figure 8 

includes the components of the fourth moment tensor with error propagated from the SANS 

measurement. We also include the moments as predicted from the dilute theory and moments 
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extracted from the MAPSI inferred OPDFs using dilute theory predictions for the scattering. We 

do not include predictions from the modified D-B model, as the model utilizes a closure 

approximation and does not make predictions for the fourth moments of the OPDF. Detailed 

investigations of the applicability and accuracy of closure approximations in general will be the 

subject of future studies. Due to the information lost from only using measurements in the 1-2 plus 

1-3 planes, the proper comparison between theory and experiment is between the respective 

MAPSI inferred moments.  

For the diagonal and symmetric off-diagonal components of S(4) over the whole range of 

Per, we find good agreement overall between the moments derived from experiment and theory. 

We do observe fluctuations in the values of the experiment-derived moments at low shear rates, 

where the value is expected to be nearly constant. We attribute these fluctuating values to slight 

variations in the magnitude of the scattering intensity between measurements, which affects the 

single particle scattering model (i.e., 𝛷(Δ𝜌)2𝑉𝑝𝑃(𝐪, 𝐩)) that describes the system. In reality, the 

particle scattering model validated at equilibrium will itself have errors, which should also be 

propagated into the derived moments and standard deviations of moments. Incorporating these 

types of uncertainties is beyond the scope of this work, and these magnitudes of variations do not 

affect the conclusions to follow. 

The most notable deviations between the experiment and theory occur at Per > 1, and this 

is particularly true for the antisymmetric components. We will focus on two aspects of the 

differences for only the 0.1 vol% dispersion, as the dispersion at this concentration is better 

described by the dilute theory than the 0.2 vol% dispersion. The two most notable deviations are 

for several of the components of S(4) at Per = 30 and deviations in the antisymmetric components 

(𝑆1112
(4)

, 𝑆1222
(4)

, and 𝑆1233
(4)

) for all Per > 1. At Per = 30, the experiments yield a larger value of 𝑆2222
(4)

, 
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𝑆1122
(4)

,and 𝑆2233
(4)

  and a smaller value of 𝑆1111
(4)

, 𝑆1133
(4)

 and the antisymmetric components. As noted 

previously, the onset of a Taylor instability is expected to occur for a Newtonian fluid of similar 

viscosity and density as the fd-virus dispersion when Per ≈ 13.5. The measurements at Per ≈ 30 

are well into the regime where one may expect such an instability assuming Newtonian rheology. 

Additionally, the presence of the associated vortices would likely produce less significant 

alignment of the microstructure, leading to the observed deviations in the moments. It is therefore 

possible that the deviations at Per ≈ 30 are due to a Taylor instability. For the antisymmetric 

components of S(4), the deviations of experiment from theory occur at Per well below the expected 

onset of this instability. 

Above Per = 1, we find that the experimentally measured antisymmetric moments are 

significantly lower than what is predicted for a dilute suspension. We suggest that the differences 

in these components may be due to the presence of hydrodynamic and other interactions between 

rods. Importantly, it appears that the only effect such hydrodynamic interactions have is to modify 

the antisymmetric components of S(4), while the other components of S(4) are very similar to what 

is predicted by the dilute theory. We note further that the antisymmetric components of S(4) are the 

three components that contribute to S12, which suggests that hydrodynamic interactions decreases 

this component of the second moment tensor, while other components are not significantly 

affected. Overall, a comparison of MAPSI extracted moments from experiment and the dilute 

suspension theory enable the quantification of the differences between the OPDFs.  

 

d.  Rheological characterization from scattering measurements 

One important macroscopic property of the fd-virus dispersions is their rheological behavior. Here, 

we consider the behavior for the shear viscosity, and the two principle normal stress differences 
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N1 and N2, based on Batchelor’s expression for the stress in non-interacting particle dispersions 

and using the experimentally measured second and fourth moments from the preceding section. 

These results are then compared to the dilute theory, the modified D-B model and, in the case of 

the shear stress, to values measured mechanically in a rheometer. The comparison to the dilute 

suspension theory provides a direct indication of the importance of particle interactions on the 

structure of the fd-virus dispersions. The comparison with rheological measurements of the shear 

stress explicitly tests whether the stress expression for dilute systems due to Batchelor is accurate 

for this range of particle concentrations. Such an approach has previously been applied to studies 

of suspensions of spherical particles to estimate the particle contribution to the stress. [65] To our 

knowledge, this study is the first to utilize scattering measurements to directly estimate the particle 

contribution to the stress in elongated particle suspensions, here enabled by the ability to estimate 

the full OPDF of the material. 

 Figure 9 includes the rheological quantities as calculated from the SANS estimates of the 

moments and Batchelor’s expression for the stress, compared to the dilute theory, to the modified 

D-B model and, in the case of the viscosity, to rheological measurements for the fd-virus 

dispersions. Figure 9a includes the particle contribution to the viscosity normalized by the solvent 

viscosity and volume fraction of particles, 𝜂𝑝/𝜙 𝜂𝑠 . The dilute theory (black line) predicts a 

constant viscosity at low shear rates and shear thinning behavior beyond Per = 1 (i.e., �̇� = 17 s-1). 

As mentioned previously, the dilute theory prediction of 𝜂𝑝/𝜂𝑠𝜙 is independent of concentration. 

The colored lines are the predictions from the modified D-B model. Also included in this figure is 

𝜂𝑝/𝜂𝑠𝜙 as determined from the SANS measurements and Batchelor’s expression for the stress. 

For the 0.1 vol% dispersion, the value of 𝜂𝑝/𝜂𝑠𝜙 obtained in this way nearly matches that of the 

dilute theory for all shear rates. Furthermore, at this concentration the modified D-B model 
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predictions are very close to those of the dilute theory. The exceptions are at Per ≈ 0.5 and at 

moderate shear rates from Per ≈ 4 to 15 where the viscosity calculated from Batchelor’s theory and 

moments inferred from SANS measurements is less than that predicted from the dilute theory. 

Compared to the 0.1 vol% dispersion, the 0.2 vol% dispersion shows similar behavior at high shear 

rates. However, at low shear rates, the predicted viscosities are greater than those of the 0.1 vol% 

dispersion, and, in addition, the 0.2 vol% dispersion shows shear thinning for all measured shear 

rates.  

More striking, however, is that the rheological measurements of the shear viscosity for both 

the 0.1 vol% and 0.2 vol% dispersions produce values that are much greater even than the 

predictions from Batchelor’s expression using the measured moments, especially at the lower shear 

rates. The 0.2 vol% dispersion again has a larger zero shear viscosity than the 0.1 vol% dispersion 

and again shear thins over the whole range of shear rates, whereas the onset of shear thinning in 

the 0.1 vol% dispersion is similar to the predictions from dilute theory as well as the values of 

calculated from Batchelor’s theory and SANS measurements.  

There are two additional observations worth mentioning. First, the data for the dilute case 

with the moments estimated from the theoretical scattering prediction via MAPSI are in quite close 

agreement with the dilute and modified D-B model predictions for low and moderate shear rates. 

Only for Per values of order 10 or greater is there a difference between these two sets of results. A 

final interesting observation is that the values of 𝜂𝑝/𝜂𝑠𝜙 determined via the direct rheological 

measurements nearly collapse onto both the dilute theory prediction and the values calculated from 

Batchelor’s theory and SANS measurements at the highest shear rates. 
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Figure 9. Rheological quantities (a) the particle contribution to the viscosity, (b) the first normal 

stress difference and (c) the second normal stress difference for the fd-virus dispersions in simple 

shear flow. The quantities are normalized by the solvent viscosity and the volume fraction of 

particles. The open symbols represent values determined using S and S(4) from MAPSI with 

Batchelor’s expression for the stress tensor. The filled symbols are results from rheological 

measurements of the viscosity. The colors indicate the dispersion concentration including the dilute 

theory predictions of the scattering (black) and the measured 0.1 vol% (blue) and 0.2 vol% (red) 

fd-virus dispersions. Predictions from the dilute suspension theory are included as the solid black 

line. Predictions from the modified D-B model are included as the solid lines with colors 

corresponding to the concentrations of the measured points. The error bars represent the standard 

deviation of the measured quantity. 
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By comparing 𝜂𝑝/𝜂𝑠𝜙 determined from these various methods, we gain several key 

insights into the physical phenomena leading to the rheological response of fd-virus dispersions 

and, to the extent these results can be generalized, to other rodlike systems. Since the value of 

𝜂𝑝/𝜂𝑠𝜙 calculated from MAPSI and Batchelor’s expression is dependent on 𝑆12 and 𝑆1122
(4)

 and, as 

was found in the previous section, the values of 𝑆1122
(4)

 remain nearly constant for the range of shear 

rates tested, the deviations in 𝜂𝑝/𝜂𝑠𝜙 between the 0.1 and 0.2 vol% dispersions are mainly a result 

of differences in the values of S12. By comparing the values of 𝜂𝑝/𝜂𝑠𝜙 determined from SANS 

measurements, MAPSI and Batchelor’s expression to those predicted from the dilute theory, we 

find that the measured contribution to 𝜂𝑝/𝜂𝑠𝜙 purely from particle alignment effects is different 

than that predicted by the dilute theory in two ways. Firstly, the dispersions at both concentrations 

have lower 𝜂𝑝/𝜂𝑠𝜙 than that predicted by the dilute theory at high shear rates, and the value of 

𝜂𝑝/𝜂𝑠𝜙 at these high shear rates is independent of concentration. This result suggests that at high 

shear rates, the structure of the dispersions is independent of concentration, which was previously 

revealed in the analysis of S and S(4) in the previous section. Secondly, we find that at low shear 

rates the predictions obtained for the 0.1 vol% dispersion nearly match the dilute theory, while the 

0.2 vol% dispersion has a SANS-determined viscosity nearly half an order of magnitude greater 

than the dilute theory. These two concentrations represent values slightly below (0.1 vol%) and 

above (0.2 vol%) the overlap concentration. Therefore, this nonlinear effect is likely a result of 

interparticle interactions that become significant when particle lengths begin to overlap resulting 

in different values of S12 and, therefore, 𝜂𝑝/𝜂𝑠𝜙. 

 Finally, we compare 𝜂𝑝/𝜂𝑠𝜙 as measured with rheological measurements to those 

determined with SANS measurements, MAPSI and Batchelor’s expression. At low shear rates, the 

rheological measurements of 𝜂𝑝/𝜂𝑠𝜙 are half an order of magnitude greater than those determined 
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with SANS at both concentrations, suggesting that effects beyond simply the orientation of fd-

viruses are contributing to the viscosity. However, at high shear rates, these values collapse onto 

one another, suggesting that whatever effects increase the low shear-rate viscosity are negligible 

at high shear rates. The most likely possibility for the difference in viscosity between the SANS 

predictions and the rheological measurements are the presence of direct (i.e., excluded volume) or 

indirect (i.e., hydrodynamic) particle-particle interactions. Given that the predictions based on 

Batchelor’s expression collapse onto the measured viscosities at high shear rate, this suggests that 

effects from interparticle interactions are only significant at low shear rates and are negligible at 

high shear rates. The modified D-B theory suggests a contribution to 𝜂𝑝/𝜂𝑠𝜙 that is a function of 

the aspect ratio and volume fraction of particles. If we evaluate this extra contribution to the stress 

for the 0.1 vol% and 0.2 vol% dispersions we find that it results in a 25% and 45% increase in the 

zero-shear viscosity, respectively, which is much less than the observed increase by half an order 

of magnitude. A likely explanation for the discrepancy is that particle-particle interaction effects 

beyond excluded volume interactions contribute to the increased viscosity, although we do not 

have a reasonable explanation for what these effects may be at this time. 

  

We turn to the normalized first normal stress difference, 𝑁1/𝜂𝑠𝜙, which we compare 

between estimates from the SANS measurements on the fd-virus, the dilute and semi-dilute 

theories (which are again very similar), and the dilute (Batchelor) stress expression with moments 

determined via MAPSI (Figure 9b). Both the dilute theory and modified D-B model predict a 

monotonic increase in 𝑁1/𝜂𝑠𝜙 with increasing shear rate. Although this monotonic increase is also 

observed for 𝑁1/𝜂𝑠𝜙 estimated by SANS from both the 0.1 vol% and 0.2 vol% dispersions, the 

values of 𝑁1/𝜂𝑠𝜙 are larger at low and moderate shear rates, and this deviation increases with the 
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increase in concentration, similar to what was observed in the low shear-rate viscosity. This 

suggests that a concentration-dependent scaling of the shear rate (i.e., a concentration-dependent 

rotational diffusivity) could collapse the values of 𝑁1/𝜂𝑠𝜙. For all shear rates, the higher 

concentration sample has a larger value of 𝑁1/𝜂𝑠𝜙 for all shear rates, suggesting interparticle 

interactions are driving nonlinearities in the concentration dependence of the first normal stress 

difference. 

Finally, for the normalized second normal stress difference, 𝑁2/𝜂𝑠𝜙, the same set of results 

are shown in Figure 9c as were just discussed for 𝑁1/𝜂𝑠𝜙 in Figure 9b. The dilute theory and 

modified D-B model both predict a decreasing, negative 𝑁2/𝜂𝑠𝜙 followed by a plateau value at 

Per ≈ 10 with increasing shear rate. Due to the measurement errors largely stemming from using 

only the flow-gradient and flow-vorticity measurement planes, the uncertainties on the values of 

𝑁2/𝜂𝑠𝜙 are much larger than for 𝜂𝑝/𝜂𝑠𝜙 or 𝑁1/𝜂𝑠𝜙. However, to within this experimental 

uncertainty, the dispersions at both concentrations appear to have single particle contributions to 

the second normal stress differences that are reasonably well described by the dilute theory. We 

note a slight upturn in the average value of 𝑁2/𝜂𝑠𝜙 at high shear rates, however due to the large 

error bars, we cannot conclusively comment on this feature. It is possible that this upturn is a result 

of a Taylor instability as was discussed in the previous section. 

To summarize the findings of this section, we determined that MAPSI enables a novel 

comparison between theoretical structure-stress relationships for elongated particle dispersions 

and mechanical measurements of the stress. It was found that the “true” viscosity measured using 

rheometry was significantly larger than that determined by using the experimental measurements 

of the moments of the OPDF (from SANS measurements and MAPSI) and the Batchelor 

expression for the stress. Although it is clear that Batchelor’s “dilute” expression for the stress is 
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not adequate at the concentrations of the fd-virus suspensions, the modified Dhont-Briels model 

makes only a small correction to the dilute suspension theory at these concentrations, and does not 

account for the deviations we observe. A clear question remains as to the physics that lead to this 

increase in measured viscosity and the additional contributions to the stress due to particle 

interactions that may explain this result. 

 

6) Conclusions 

In this work, we presented a general framework to model SAS and extract anisotropic 3D 

orientation distributions for nonspherical particles aligned by an externally imposed field. For 

systems where the orientation distribution is known, we presented explicit expressions for the form 

factor (i.e., intraparticle scattering) for arbitrary particle shapes and orientation distributions. For 

systems where physical theories for predicting the full OPDF do not exist, we proposed a 

generalized Bayesian inference method, MAPSI, for inferring the OPDF from scattering data that 

relies only upon an orientation-dependent scattering model for the individual scattering object. 

Results from MAPSI using simulated scattering of dilute rod dispersions in shear flow were used 

to evaluate the inaccuracies incurred when various projections of the measured scattering and 

combinations thereof are used to extract the full 3D OPDF. We generally find that at least two 

projections of the scattering are required to extract accurate OPDFs. When only one scattering 

projection is used, the apparent OPDF broadens in the out-of-plane direction, owing to an inability 

to resolve the differences in scattering from particles oriented out-of-plane. 

Next, the second and fourth moments of the OPDF were calculated from the extracted 

OPDFs to enable a quantitative comparison between OPDFs from SANS measurements and 

theory. The second and fourth moments were chosen as they represent a sufficient description of 
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the OPDF for the calculation of mechanical properties of force-free dispersions of nonspherical 

particles, and therefore provide a clear route toward testing physical theories of such dispersions 

and structure-property relationships. [12] OPDFs extracted from measurements of a model rodlike 

particle dispersion at concentrations near the overlap concentration were compared to the theory 

for dilute particles and the modified D-B model including mean-field hard rod interactions between 

particles. This comparison revealed deficiencies in the theoretical understanding of interparticle 

interactions between rods and quantified the aspects of the structural evolution of such dispersions 

that have yet to be understood. 

Finally, the ability to extract moments of the OPDFs in combination with expressions 

relating the structure and stress for rodlike particle dispersions enables the direct estimation of 

rheological quantities based on components of the fluid stress. The extracted rheological quantities 

were compared to theory predictions and, in the case of the viscosity, rheological measurements. 

For the case of the viscosity, the comparison revealed that modern theories relating dispersion 

structure to stress significantly underpredict the stress contributions arising from interparticle 

interactions. 

The methods proposed in this work enable quantitative extraction of the full 3D OPDF 

from SAS measurements, so long as an orientation-dependent particle scattering model can be 

derived. We speculate that the extension of MAPSI to include other distribution functions (e.g., 

particle size or shape distributions) may offer the ability to infer the structure of a much wider 

range of systems such as, for example, polydisperse or deformable systems where the different 

constituents or states of deformation, respectively, adopt distinct OPDFs. Overall, the ability to 

determine fourth moments of the OPDF directly from experimental data provides a powerful new 

tool for testing theoretical structure-property relations for anisotropic materials, and various 
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closure approximations they rely upon. [12,35,38,39,66,67] We anticipate that the new tools 

provided by the current work will generate renewed interest and scrutiny of these theories. 
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Appendix A: Forward prediction of SAS for a dilute dispersion 

With the scattering model for the fd-virus dispersions validated at equilibrium, we can compare 

SANS predictions from the combined scattering and orientational dynamics theory with SANS 

measurements of the fd-virus dispersion. We expect that the OPDF for the more dilute, 0.1 vol% 

dispersion can be somewhat described with the dilute rod theory, and we will compare these SANS 

predictions with no adjustable parameters to the experimentally measured SANS patterns for the 

0.1 vol% dispersion. 
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Figures A1 and A2 include the results comparing the SANS from theory and experiment 

in the 1-3 and 1-2 planes respectively. We focus the comparison to 3 representative Per (2, 7.5, 

and 30). The included shear rates range from the onset of discernable anisotropy in the SANS 

patterns to the highest measured shear rate. For these shear rates, we have included (i) the OPDF 

predicted from theory projected onto the surface of the unit sphere in the reference frame of the 

flow, (ii) the resulting SANS pattern predicted from the theory, (iii) the experimentally measured 

SANS pattern, and (iv) the absolute error or difference between these two patterns computed as 

𝐼𝑑𝑖𝑓𝑓(𝐪) = |𝐼𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝐪) − 𝐼𝑡ℎ𝑒𝑜𝑟𝑦(𝐪)|. 

 

Figure A1. Representative results of the 1-3 plane rheo-SANS experiments and theory predictions 

for Per of approximately (a) 2, (b) 7.5, and (c) 30 corresponding to �̇� = 32, 128 and 512 s-1, 

respectively. Included are the (i) dilute theory predicted orientation distribution function (OPDF) 

relative to the real-space flow, gradient, and vorticity directions (u, u, and ω, respectively), (ii) 

theoretically predicted SANS patterns, (iii) experimental SANS patterns and (iv) difference 

between these two patterns. The intensities and differences for the 2D patterns are on logarithmic 
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scales while the OPDFs are presented on a linear scale. The low-q cutoff and gap between detectors 

is indicated on the 2D patterns in black. 

 

 
For the 1-3 plane comparison (Figure A1), we find excellent agreement when comparing 

the SANS patterns from the theory and experiments, both in the degree of anisotropy and the q-

range over which it occurs. The alignment of microstructure, which increases with increasing shear 

rate, produces SANS patterns with higher intensity in the vorticity direction (qω) and lower 

intensity in the flow direction (qu) for a similar magnitude of q. The onset of this discernable 

anisotropy in the SANS patterns occurs at Per ≈ 2. By analyzing the difference between the theory 

and experimental SANS patterns, we find that such deviations are isotropic and random for a 

majority of the q-range probed. The exception to this is at the highest shear rate, Per ≈ 30, where 

we find larger differences between theory and experiment at low-q and along the qω direction. We 

will discuss potential reasons for the increased errors at Per ≈ 30 later with the results from the 1-

2 comparison. 
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Figure A2. Representative results of the 1-2 plane flow-SANS experiments and theory predictions 

for Per of approximately (a) 2, (b) 7.5, and (c) 30 corresponding to �̇� = 32, 128 and 512 s-1, 

respectively. Included are the (i) dilute theory predicted orientation distribution function (OPDF) 

relative to the real-space flow, gradient, and vorticity directions (u, u, and ω, respectively), (ii) 

theoretically predicted SANS patterns, (iii) experimental SANS patterns and (iv) difference 

between these two patterns. The intensities and differences for the 2D patterns are on logarithmic 

scales while the OPDFs are presented on a linear scale. The low-q cutoff and gap between detectors 

is indicated on the 2D patterns in black. 

 

For the 1-2 plane comparison (Figure A2), we again find good agreement when comparing 

the SANS patterns from the theory and experiments. Like the 1-3 plane measurements, we begin 

to observe anisotropy in the SANS patterns at Per ≈ 2. Unlike the 1-3 plane measurements, the 

direction of minimum intensity (corresponding to the direction where most of the rods are aligned) 

shifts from 45° in the flow-gradient plane to 0° into the flow direction, in agreement with the 

theory-predicted OPDF. Indeed, the direction and magnitude of anisotropy in the scattering at 

high-q is captured well for all shear rates measured.  For all measured q, the differences between 
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the theory and experiment are larger in the 1-2 than in the 1-3 measurements due to a larger 

standard deviation in the measured intensity. Larger systematic differences between theory and 

experiment are observed at low-q for the higher shear rates. In particular, we observe that the 

theory overpredicts the intensity along the direction of greatest anisotropy at the higher shear rates, 

and the magnitude of the overprediction increases with increasing shear rate. 

Appendix B: Assessment of scattering parameterization for extracting OPDFs 

Despite the imperfect comparison between theory and experiment, we can use these results 

to assess the quality of information provided by previously-utilized analyses of anisotropic 

scattering based on a single 2D projection and its assumed relationship to the in-plane OPDF. To 

summarize the discussion in the introduction and the more detailed discussion in the Supporting 

Information, one will typically either extract the annular variation of intensity with angle with 

respect to the detector, or calculate a scalar parameter characterizing the anisotropy based on the 

annular variation of intensity. Either of these methods is valid for assessing qualitative trends in 

particle alignment. However, these methods will be intrinsically convoluted by the fact that one is 

measuring a projection of the scattering onto a 2D plane. Furthermore, these methods discard 

useful information about the microstructure’s OPDF that relies on the dependence of the intensity 

on the magnitude of q, which is lost in the averaging. We will now assess whether such issues 

introduce systematic errors in the estimation of the OPDF from scalar parameterizations of the 

scattering anisotropy. 

       It is sometimes assumed that the annular variation in the scattering intensity is proportional to 

the in-plane projection of the OPDF shifted by π radians due to a Fourier transform of the scattering 

intensity distribution, i.e., 𝐼(𝜃, 𝑞∗) = 𝛼𝑁(𝜃 − 𝜋, 𝜙 = 0) for 1-3 plane measurements and 

𝐼(𝜙, 𝑞∗) = 𝛼𝑁 (𝜙 − 𝜋, 𝜃 =
𝜋

2
) for 1-2 plane measurements, where 𝐼(𝜃, 𝑞∗) is the annular averaged 
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scattering intensity in some q-range, q*, and 𝛼 is a proportionality constant. [13,22] Alternatively, 

one can obtain a scalar parameterization of the annular variation by assuming that a simple 

relationship with the second moment of the in-plane OPDF exists (essentially assuming a similar 

equality between the scattering and in-plane OPDF as above). One such parameterization is the 

alignment factor (Af), defined as 

𝐴𝑓(𝑞∗) = −
∫ 𝐼(𝛽,𝑞∗) cos(2(𝛽−𝛽0))𝑑𝛽

2𝜋
0

∫ 𝐼(𝛽,𝑞∗)𝑑𝛽
2𝜋

0

    (B1) 

Where β is the in-plane angle (i.e. 𝜃 or 𝜙 for 1-3 and 1-2 plane measurements respectively) and β0 

is the direction of most probable orientation. For measurements in the 1-3 plane, the alignment 

factor is sometimes assumed to be equal to Sm where  𝑆𝑚 = 𝑆11 – 𝑆33 for 1-3 plane measurements 

and 𝑆𝑚 = 𝑆11 – 𝑆22 for 1-2 plane measurements. [25] In other words, it is assumed that 𝐴𝑓(𝑞∗), as 

a scalar parameterization of the intensity, provides information about the corresponding second 

moment of the OPDF. While we only show results for this particular scalar parameterization of 

the intensity, we expect that the conclusions reached for 𝐴𝑓(𝑞∗) will be independent of the precise 

scalar used (e.g. 〈𝑃2〉 or Herman’s orientation parameter).  

        For this study, we averaged the predicted scattering intensities over a q-range of 0.032 to 

0.046 Å-1 to match a previous study on fd-viruses. [46] Similar to this previous study, we find that 

only 𝛼 is affected by the choice in q*, so we did not consider the effect of changing q*. Figures 

B1a and B1b include, for the 1-3 plane and 1-2 plane measurements respectively, a comparison of 

the experimentally measured annular averaged intensity (points), the theoretically predicted (solid 

lines) annular averaged intensity, and the in-plane projection of the actual OPDF (dotted lines) for 

the range of shear rates probed experimentally. As was found for the direct comparison of 

scattering intensity at all measured q, we find excellent agreement between the experiments and 

the theoretical predictions for the annular averaged intensity. When comparing the annular 
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averaged intensity (the solid lines) with the in-plane OPDF (the dotted lines), however, it is clear 

that one cannot assume that the annular averaged intensity provides a good approximation of the 

in-plane OPDF.  Both produce similar qualitative trends: increasing shear rate leads to a more 

anisotropic variation in both the intensity and the in-plane OPDF. Furthermore, the direction of 

maximum alignment in the plane of measurement is consistent between the two curves. However, 

a quantitative proportionality between the two does not hold. Clearly, estimates of the in-plane 

OPDF based upon the annular averaged intensity are subject to very significant error. Figures B1c 

and B1d include a comparison between the second moment of the OPDF (dotted line), the 

experimentally measured 𝐴𝑓(𝑞∗) (points) and the theoretically predicted 𝐴𝑓(𝑞∗) (solid line). As 

with the comparison of the annular variation in scattering intensity, we find that the qualitative 

trend in the second moment of the OPDF is properly captured by 𝐴𝑓(𝑞∗). Indeed, both metrics 

similarly capture regions of shear rate where the microstructure is not significantly aligned (Per < 

1) and where alignment is noticeable (Per > 1). However, the values of 𝐴𝑓(𝑞∗) deviate 

quantitatively. Assuming a quantitative equality, or even proportionality, between 𝐴𝑓(𝑞∗) and Sm 

would lead one to experimentally underpredict the overall order in the system at high alignment, 

and overpredict the order at low alignment.  
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Figure B1. (a) Averaged scattering intensity, I(𝜃,q*), as a function of annular angle 𝜃 within a q-

range of 0.032 and 0.046 Å-1 for the 1-3 plane. (b) Averaged scattering intensity, I(𝜙,q*), as a 

function of annular angle 𝜙 within a q-range of 0.032 and 0.046 Å-1 for the 1-2 plane. For a and b, 

the colored points correspond to experimentally measured intensity for Per from 0.06 to 30 (purple 

to red), which corresponds to shear rates from 1 to 512 s-1. The solid colored lines correspond to 

the theoretically predicted average scattering intensity at conditions matching the experiments. 

The dotted colored lines are the in plane OPDF from the theory (i.e., ϕ = 0 or 𝜃 =
𝜋

2
 for the 1-3 

and 1-2 planes respectively). The value of α was chosen for each shear rate to have the value of  

𝛼𝑁(𝜃 − 𝜋) equal 𝐼(𝜃, 𝑞∗) or 𝛼𝑁(𝜙 − 𝜋) equal 𝐼(𝜙, 𝑞∗) at the minimum intensity. (c and d) 

Alignment factor (𝐴𝑓(𝑞∗)) as a function of shear rate for the experimentally measured scattering 

(solid points) and scattering predicted from the dilute rod theory (solid line). Included on the same 

plot (dotted line) is Sm = 𝑆11 – 𝑆33 or Sm = 𝑆11 – 𝑆22 for the 1-3 and 1-2 planes, respectively, from 

the OPDF simulation. 

 
Taken together, these results suggest that there is a quantitative deviation in the presumed 

microstructural alignment when equating annular scattering intensity variations with the in-plane 

OPDF. Furthermore, no amount of proportional shifting of Af will lead to quantitative agreement 
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with the corresponding moment of the OPDF. We rationalize these results by noting that a 

proportionality between scattering intensity and OPDF intrinsically requires that the scattering 

amplitude is a delta function of intensity in the orientation direction, regardless of the 

microstructure’s out-of-plane orientation. In reality, the scattering amplitude (in this case, the form 

factor) is a continuous function that depends on the out-of-plane orientation. The fact that the 

function is continuous means that the intensity contribution from a perfectly aligned microstructure 

will be spread out over an annular range, leading to less anisotropy in the scattering intensity 

variation than in the OPDF. It is possible that for distributions that are uniaxial or with uniform 

probability in the out-of-plane direction, such a relationship will be found to hold more precisely. 

However, in general, any parameterization of anisotropic scattering will potentially depend on the 

scattering model employed, the q-range used for the calculation, the q-discretization in the 

experiment and the degree to which the microstructure is oriented out-of-plane. We conclude that 

one should not expect a moment parameterization of the anisotropic scattering to be directly 

proportional to the corresponding moment of the OPDF. 

 


