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ABSTRACT: The random substitutional solid solution between the antiferromagnetic (AFM) 

full-Heusler alloy Ru2MnSn and the ferromagnetic (FM) full-Heusler alloy Ru2FeSn provides a 

rare opportunity to study FM-AFM phase competition in a near-lattice-matched, cubic system, 

with full solubility. At intermediate x in Ru2Mn1-xFexSn this system displays suppressed magnetic 

ordering temperatures, spatially coexisting FM and AFM order, and strong coercivity 

enhancement, despite rigorous chemical homogeneity. Here, we construct the most detailed 
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temperature- and x-dependent understanding of the magnetic phase competition and coexistence 

in this system to date, combining wide-temperature-range neutron diffraction and small-angle 

neutron scattering with magnetometry and specific heat measurements on thoroughly 

characterized polycrystals. A complete magnetic phase diagram is generated, showing FM-AFM 

coexistence between x  0.30 and x  0.70. Important new insight is gained from the extracted 

length scales for magnetic phase coexistence (25-100 nm), the relative magnetic volume fractions 

and ordering temperatures, in addition to remarkable x-dependent trends in magnetic and electronic 

contributions to specific heat. An unusual feature in the magnetic phase diagram (an intermediate 

FM phase) is also shown to arise from an extrinsic effect related to a minor Ru-rich secondary 

phase. The established magnetic phase diagram is then discussed with the aid of phenomenological 

modeling, clarifying the nature of the mesoscale phase coexistence with respect to the 

understanding of disordered Heisenberg models.            

 

PHYSH:  Research areas:  Magnetism; magnetic interactions, magnetic order 

  Physical systems:  Magnetic systems; alloys; Heusler alloys 

Techniques:  Neutron scattering, magnetization measurements, specific 

heat measurements  
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I. INTRODUCTION 

The chemically-ordered intermetallics known as Heusler alloys have grown to encompass a large 

family, with broad potential applications [1,2]. These alloys crystallize in cubic full-Heusler 

(X2YZ) and half-Heusler (XYZ) variants, incorporating a variety of X and Y transition metals 

(e.g., Mn, Fe, Co, Ru) and Z main group elements (e.g., Al, Si, Ga, Ge, In, Sn, Sb) [1,2]. Magnetic 

examples from this alloy class provide perfect illustrations of their diverse functionalities, which 

include: ferromagnetism with nonmagnetic X, Y, Z; high Curie temperature (TC) and saturation 

magnetization (MS); half-metallic or highly spin-polarized character; spin-gapless semiconducting 

behavior; magnetocaloric response; and exciting topological characteristics [1-4]. Particularly 

extensively studied in this context are NiMnSb and the Co2MnZ and Ni2MnZ families, although 

interest has been widespread [1-4]. A pervasive strategy in the investigation of such materials is 

to study quaternary solid solution or deliberately off-stoichiometric versions, such as Co2FeGe1-

xGax, Ni2Mn1+xSn1-x, etc., which enable composition-based tuning of lattice parameter, spin-

polarized electronic structure, topological band structure, and so on [1-4].  

In fundamental magnetism, a particularly attractive prospect with quaternary solid solution and/or 

off-stoichiometric Heusler alloys is the identification of model systems to study the long-standing 

problem of ferromagnetic-antiferromagnetic (FM-AFM) phase competition. Prominent examples 

include heavily studied Ni2Mn1+xSn1-x, Ni2Mn1+xIn1-x, and Ni2-xCoxMn1+ySn1-y, where AFM 

interactions (e.g., due to Mn-Mn interactions generated by MnSn substitution) are controllably 

introduced into a FM Heusler matrix (e.g., Ni2MnSn) [5-17]. The impacts of the resulting FM-

AFM phase competition are fascinating, encompassing phase separation into short-range FM 

clusters in AFM or non-magnetically-ordered matrices, resulting superparamagnetism in bulk 

solids, and exchange bias and coercivity enhancement due to naturally-formed FM/AFM interfaces 
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[5-17]. Such effects also interplay with martensitic phase transformations, generating magnetic-

field-induced transformations, magnetic shape memory effects, magnetocaloric and barocaloric 

phenomena, etc. [1,2,5-17].    

Quaternary solid solution Heuslers, such as Cu1-xNixMnSb [18] and Ru2Mn1-xFexSn [19-21], have 

also attracted attention as more idealized systems for the study of FM-AFM phase competition. In 

Ru2Mn1-xFexSn, this is because Ru2FeSn is FM with TC  500 K, while Ru2MnSn is AFM with 

Néel temperature TN  300 K [19-21]. Compositional tuning on a single site then enables the study 

of FM-AFM phase competition with complete solubility in Ru2Mn1-xFexSn, while maintaining 

cubic structure, with only a 0.02 Å variation in lattice parameter [19-21]. Such complete 

solubility between FM and AFM end-points in a cubic system with modest structural variations is 

rare. In recent work, polycrystalline Ru2Mn1-xFexSn was synthesized, quenched to avoid chemical 

phase separation, and proven chemically homogeneous over broad length scales [19]. This 

homogeneity was established via powder X-ray diffraction (PXRD), neutron powder diffraction 

(NPD), pair distribution function (PDF) analysis of neutron scattering data, and scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) with energy dispersive X-ray 

spectroscopy (EDS) [19]. Temperature (T)-dependent magnetometry then revealed suppression of 

TN as x increases from zero (i.e., as Fe is alloyed into Ru2MnSn), and rapid suppression of TC as x 

decreases from unity (i.e., as Mn is alloyed into Ru2FeSn) [19]. Critically, low T NPD at x = 0.50 

then revealed both FM and AFM reflections, with no canted or ferrimagnetic state, suggesting 

spatial coexistence of FM and AFM phases, despite the chemical homogeneity [19]. In the FM-

AFM coexistence region, a striking low T coercivity enhancement was discovered, i.e., magnetic 

hardening, ascribed to interfacial FM/AFM interactions. 
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This work on Ru2Mn1-xFexSn quickly stimulated theoretical studies. In 2017, density functional 

theory (DFT) computations shed significant light by establishing the origin of FM in Ru2FeSn and 

AFM in Ru2MnSn [20]. The moment in such systems is strongly confined to Fe and Mn, with the 

FM or AFM arising from a subtle balance between Sn-mediated AFM superexchange and the 

itinerant electron FM RKKY (Ruderman-Kittel-Kasuya-Yoshida) interaction [20]. Importantly, 

these calculations also highlighted a tendency to chemical phase separation [20], no doubt 

frustrated in practice by quenching, as in other related Heusler-based systems [22-24]. Specifically, 

a tendency to form (111)-oriented stripes and short-range-ordered clusters of Fe- and Mn-rich FM 

and AFM phases was uncovered [20]. In 2019, Decolvenaere et al. built on this to advance a 

mixed-basis chemical and magnetic cluster expansion method, to which Monte Carlo simulations 

were applied, both to equilibrated and quenched structures [21]. This enabled semi-quantitative 

reproduction of the available magnetic phase diagram, accurately describing MS(x) [21]. The 

Monte Carlo simulations also provided snapshots of the separation into spatially coexisting short-

range-ordered FM and AFM regions, providing much insight [21] and highlighting the key role of 

the Fe/Mn site disorder.                

While the above represents substantial progress with Ru2Mn1-xFexSn, challenges and questions 

remain. It would be desirable, for example, to extend the limited neutron scattering data (which 

are at low T only, at x = 0.00, 0.50, and 1.00 [19]) to a complete study vs. x and T, to construct a 

full magnetic phase diagram. The critical issue of the length scales over which the FM-AFM phase 

coexistence occurs is also poorly understood, due to limited application of experimental probes 

with appropriate spatial resolution. With respect to experimental probes in general, magnetometry, 

some NPD, Mössbauer spectroscopy, local structure methods, and basic structural and chemical 
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characterization have been applied [19], but thermodynamic and transport studies are absent. This 

is despite the utility of the latter for probing magnetically inhomogeneous systems.     

In light of the above, we present here a detailed wide-T-range neutron scattering study of 

competing FM and AFM order in Ru2Mn1-xFexSn, spanning x = 0.00, 0.25, 0.40, 0.50, 0.60, and 

1.00, using both NPD and small-angle neutron scattering (SANS). This is combined with 

magnetometry, and, importantly, specific heat measurements, along with analysis of T-dependent 

lattice parameters, to provide the most comprehensive understanding to date of the T- and x-

dependent FM-AFM phase competition and coexistence in Ru2Mn1-xFexSn. Nano- to meso-scale 

FM-AFM phase coexistence is thus pinned down to 0.30 < x < 0.70, where we extract detailed 

information on T-dependent AFM and FM order parameters, TN and TC, AFM and FM volume 

fractions, and phase coexistence length scales. Specific heat, in addition to providing the x-

dependent Debye temperature, reveals signatures of both the FM phase and AFM-FM phase 

coexistence, as well as an enhancement of the Sommerfeld coefficient around x = 0.50. An unusual 

feature in the phase diagram (an intermediate FM phase) is also elucidated as arising from an 

extrinsic effect, related to a Ru-rich secondary phase. Finally, guided by phenomenological 

modeling, the deduced experimental magnetic phase diagram is appropriately placed in the context 

of the theoretical understanding of Heisenberg models for disordered magnets.        

 

II. EXPERIMENTAL DETAILS 

Polycrystalline Ru2Mn1-xFexSn samples (0.2-2 m grain size) were prepared via solid-state 

synthesis from Mn, Fe, Ru and Sn, then quenched in ice water, as described earlier [19]. The exact 

powder samples used by Douglas et al. [19] were employed in our magnetometry, SANS, and 

specific heat measurements. These samples were previously characterized by PXRD (with 
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Rietveld refinement), SEM, TEM, SEM- and TEM-based scanning EDS, low T NPD (at x = 0.00, 

0.50, and 1.00 only), and neutron PDF analysis [19]. As discussed in Section I, chemical phase 

separation was ruled out at all probed length scales [19]. For the more extensive NPD in the current 

paper, new, higher mass (3-5 g) powder samples were prepared via similar methods, resulting in 

similar PXRD, room temperature lattice parameters, etc. A previously identified Ru-rich 

hexagonally-close-packed (HCP) minor secondary phase (5% mole fraction) [19] was also 

detected in these NPD samples.    

Magnetometry was done in a Quantum Design PPMS vibrating sample magnetometer (VSM) with 

a high temperature oven, from 5-700 K, in applied magnetic field (H) to 50 kOe. Heat capacity 

measurements were also performed in a PPMS (1.8 to 380 K, zero field), using relaxation 

calorimetry. 2% temperature pulses were used, 3 measurements were averaged at each T, the 

thermal coupling factor never fell below 95%, and the ratio of sample to addenda heat capacity 

was maintained above 1.5 [25]. NPD was done at Oak Ridge National Laboratory on the HB-1A 

(FIE-TAX) and WAND instruments of the High Flux Isotope Reactor (HFIR), on 3-5 g powder 

samples. On HB-1A, a fixed incident energy of 14.6 meV was used, employing a double pyrolytic 

graphite (PG) monochromator system. Two highly-oriented PG filters were placed after each 

monochromator to reduce higher-order contamination of the incident beam. Collimator settings of 

open-40’-sample-40’-80’ were used. On WAND (HB-2C) a focusing 113-Ge monochromator with 

an incident wavelength of 1.486 Å was used, in tandem with a 1D position sensitive detector; the 

113-Ge reflection has no wavelength contamination. The resulting resolution dQ/Q (where Q is 

the scattering wavevector) is approximately 0.02 in the used Q range. On both instruments, a 15-

700 K temperature interval was explored, using high temperature closed-cycle refrigerators. 

Samples were mounted in sealed V cans in helium exchange gas. SANS measurements were done 
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on the NG7 and NGB 30 m beamlines at the NIST Center for Neutron Research, using sample-

detector distances of 3 and 12 m to span a Q range of 0.005-0.16 Å-1. Powder samples of mass 

200 mg were studied. Data were taken from 5 to 650 K, in a high temperature closed-cycle 

refrigerator. 

 

III. RESULTS AND ANALYSIS 

In the interests of clarity, in Section III.A we first present the deduced experimental magnetic 

phase diagram of Ru2Mn1-xFexSn, augmenting our findings with previously reported data. Section 

III.B then discusses the T-dependent NPD measurements used to track the order parameters and 

ordering temperatures upon which the phase diagram is based, along with additional information 

on length scales associated with the magnetic ordering. Complementary magnetometry 

measurements are then presented in Section III.C. SANS data providing further insight into FM 

order and associated length scales are provided in Section III.D, followed by x- and T-dependent 

specific heat measurements in Section III.E. The latter are then connected to T-dependent lattice 

parameter anomalies in Section III.F.     

III.A MAGNETIC PHASE DIAGRAM 

Fig. 1(a) depicts the Ru2Mn1-xFexSn magnetic phase diagram deduced in this work. The TN and TC 

values shown derive from the NPD measurements presented in Section III.B, corroborated by 

magnetometry and SANS in Sections III.C and III.D. As discussed in the Introduction, AFM order 

with TN  300 K occurs at x = 0.00, i.e., in Ru2MnSn. As x increases, TN gradually decreases to 

250 K at x  0.30, above which a drastic change occurs. Specifically, FM order is also now 

detected, coexisting with AFM. At x = 0.40, 0.50, and 0.60, for example, FM ordering emerges 

first on cooling (at a TC that increases rapidly with x), followed by AFM ordering at a lower TN 
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that decreases rapidly with x, reaching 120 K at x = 0.60; TC and TN thus appear uncoupled. 

Increasing x beyond 0.70 then results in all signatures of AFM order being lost in neutron and 

magnetometry measurements, i.e., phase-pure FM. (Note that while compositions between 0.60 

and 1.00 are not studied here, prior work suggests phase-pure FM at x = 0.75 [19], meaning that 

the region of FM-AFM phase coexistence ends between 0.60 and 0.75; we thus take x  0.7 as an 

estimate). This phase-pure FM behavior persists to x = 1.00 (Ru2FeSn), at which point TC reaches 

500 K. Based on Fig. 1(a), the low T (ground state) magnetic phase behavior with increasing x can 

thus be characterized as phase-pure AFM to x  0.30, and phase-pure FM beyond x  0.70, 

bracketing a substantial range (0.30 < x < 0.70) over which FM and AFM order coexist. Crucially 

(see Section III.B), NPD data at 0.30 < x < 0.70 indicate: (i) no effect of the onset of AFM order 

(at TN) on the development of FM order, and (ii) no evidence for a new magnetically-ordered state 

such as a canted AFM or a ferrimagnet. Spatially coexisting FM and AFM order is instead 

implicated. The only other phase in Fig. 1(a) [aside from paramagnetic (PM) at high T] is the one 

labeled FM*, which will be discussed in Sections III.D and III.F, where it is concluded that this is 

related to the minor Ru-rich secondary phase. As returned to below (Section IV), broadly similar 

phase diagrams have been reported in other quaternary Heuslers, particularly Cu1-xNixMnSb [18].  

Reinforcing the phase diagram in Fig. 1(a), shown in Fig. 1(b) are the low T (15 K) relative NPD 

scattering intensities (normalized to their maximum values) from the AFM (red) and FM (blue) 

phases. Consistent with the end of the phase-pure AFM region in Fig. 1(a), the relative AFM 

intensity, a proxy for the AFM phase fraction, is seen to drop from 1.0 between x = 0.25 and 0.40, 

remaining finite to x  0.70, i.e., throughout the AFM-FM coexistence region. Correspondingly, 

the relative FM intensity is zero to between 0.25 and 0.40, above which it grows at the expense of 

the AFM phase, saturating at 1.0 (phase-pure FM) at around 0.70. AFM and FM order parameters 
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thus coexist between approximately x = 0.30 and 0.70. (Again, while compositions between 0.60 

and 1.00 are not studied here, prior work suggests phase-pure FM at x = 0.75 [19], meaning that 

the region of FM-AFM phase coexistence ends between 0.60 and 0.75; we thus take x  0.7 as an 

estimate). Also shown for completeness in Fig. 1(b) are the 4 K coercivity values from Ref. 19, 

showing the magnetic hardening due to interfacial AFM/FM coupling. Interestingly, this peaks at 

x = 0.40, not at the composition where FM and AFM volume fractions cross, but at lower x, where 

small volume fractions of FM phase are embedded in an AFM matrix.  

III.B NEUTRON DIFFRACTION 

Fig. 2(a) first shows an example NPD pattern (x = 0.50) in the low Q region, where magnetic 

information can be obtained (full data were obtained from 0.5 – 9.7 Å-1). Consistent with prior 

work at this composition [19], on cooling to low T both FM and AFM orderings are evident, 

through the growth of the FM 1 1 1 reflection, and the emergence of the AFM 1/2 -3/2 1/2 

reflection (among others). This AFM order corresponds to AFM coupling between (111) planes of 

parallel spins [19], as in other Full-Heuslers such as Ru2MnSb and Ru2MnGe [26-29]. Most 

importantly, and again consistent with prior work [19], possibilities such as canted AFM and 

ferrimagnetism were found inconsistent with these NPD data. Specifically, all low T NPD patterns 

in the 0.30 < x < 0.70 regime could not be fit with a single magnetic wavevector, implying spatial 

coexistence of FM and AFM order, as opposed to a new magnetic phase.  

This conclusion is further supported by detailed x- and T-dependent measurements of the FM and 

AFM order parameters, using the intense 1 1 1 and 1/2 -3/2 1/2 NPD reflections; these are the 

measurements used to determine the phase behavior in Fig. 1. The order parameters were simply 

obtained by taking the FM and AFM peak intensities at each measured T then subtracting the high 

T (T > TN or T > TC) average intensity. While this does not correct for non-magnetic effects on 
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peak intensities (specifically the Debye-Waller factor), note that this is negligible in this low Q 

range, and even in the FM case, where the magnetic intensity is superimposed on nuclear intensity, 

the FM-induced growth in intensity is substantial. This latter point is already apparent in Fig. 2(a) 

for x = 0.50, and is yet clearer at higher x. Fig. 2(b) first shows the T dependence of the relative 

FM intensity (normalized to the low T, x = 1.00 value), which reveals clear Curie points followed 

by order-parameter-like growth for x = 1.00, 0.60, 0.50, and 0.40; the low FM intensity in the x = 

0.40 case is magnified in the inset. The low T saturation value of the relative FM intensity is seen 

to gradually drop with decreasing x (as in Fig. 1(b)), mirroring the decrease in TC (as in Fig. 1(a)). 

At x = 0.25 and below, no FM order was detected by NPD (as in Fig. 1(a)), consistent with phase-

pure AFM. Fig. 2(c) then shows equivalent data for the relative AFM intensity (normalized to the 

low T, x = 0.00 value), which reveals clear Néel points followed by order-parameter-like growth 

for x = 0.00, 0.25, 0.40, 0.50, and 0.60. Accompanying the gradual decrease in TN (as in Fig. 1(a)), 

the low T saturation value of the relative AFM intensity drops as x is increased above 0.25 (as in 

Fig. 1(b)), becoming undetectable above x = 0.60, consistent with phase-pure FM. As shown in 

Figs. 1(a,b), these low T NPD data thus support phase-pure AFM to x  0.30, phase-pure FM 

beyond x  0.70, and FM-AFM coexistence between 0.30 and 0.70. Critically, and consistent 

with the conclusion of spatially coexisting FM and AFM as opposed to a canted AFM or 

ferrimagnet, TC and TN appear essentially uncoupled. The onset of AFM order at a TN lower than 

TC (see Fig. 1(a), for example) has no apparent impact on the growth of the FM order parameter. 

The solid lines in Figs. 2(b,c) are in fact fits to squared mean-field order parameters (see caption 

for details), confirming mean-field-like behavior even in the FM-AFM coexistence regime. At x = 

0.50, for example, FM order sets in at TC  280 K (Fig. 2(b)), the AFM ordering at TN  180 K 

(Fig. 2(c)) having no impact on the FM order parameter (Fig. 2(b)).  



12 

 

The important issue of the length scales associated with the magnetic order is addressed in Fig. 

2(d). Plotted here are the T dependences of the Scherrer lengths () extracted from the 1/2 -3/2 1/2 

AFM reflections, i.e., the lengths calculated by applying the Scherrer equation to the peak full-

widths at half-maximum. We perform this analysis only for the AFM peaks, as the FM equivalents 

grow from nuclear peaks, which substantially complicates the analysis. The values shown here 

were corrected for the instrumental broadenings, which were determined from reference data on 

Si powder, HB-1A (FIE-TAX) having slightly lower broadening than WAND. At x = 0.00 and 

0.25 in Fig. 2(d), the low T value of  saturates at about 60-65 nm, which, as illustrated by the 

horizontal dashed line, corresponds closely to the typical  extracted from the nuclear reflections 

of these samples (x = 0 data were used to determine this, where there is no influence of FM on the 

nuclear peaks). The low T AFM order in these compositions is thus indistinguishable from full 

long-range order. The x = 0.40, 0.50, and 0.60 behavior in Fig. 2(d), however, is different. In this 

x regime, the low T length scales saturate at 25-50 nm, consistent with shorter-range AFM. In all 

cases, the extracted AFM length scales decrease as T  TN
-, as expected. The important conclusion 

from Fig. 2(d) is thus short-range AFM order on 10s of nm length scales. In Section III.D this will 

be supplemented with SANS observations of similar length scales for the FM order, indicating 

spatially coexisting FM and AFM order on nano- to measo-scopic scales.  

III.C MAGNETOMETRY 

T-dependent magnetometry measurements providing complementary insight to NPD are provided 

in Fig. 3, at representative x = 1.00 (a), 0.60 (b), 0.50 (c), and 0.40 (d). The temperature dependence 

of the magnetization (M) is shown at H = 50, 200, 500, 5000, and 50000 Oe, spanning a wider H 

range than prior work. At x = 1.00, the behavior is unremarkable, the sharp feature at the FM TC 

of 530 K simply broadening as H is increased. (Note that minor variations in ordering 
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temperatures occur in comparison to larger mass samples used for NPD, ascribed to small 

differences in preparation and composition). As x is decreased to 0.60, 0.50, and 0.40, however 

(Figs. 3(b-d), note the different T scale to Fig. 3(a)), FM-AFM coexistence kicks in, both TC and 

TN becoming apparent in M(T). At the highest H, M(T) in Figs. 3(b-d) is essentially featureless 

below TC, consistent with the mean-field FM order parameter growth in Fig. 2(a). As H is 

decreased, however, TN becomes progressively apparent via features in M(T), and conspicuous 

bifurcation of field-cooled (solid lines) and zero-field-cooled curves (dashed lines). As expected, 

the high H, low T saturation magnetization also drops with decreasing x, tracking the relative FM 

NPD intensity in Figs. 2(a) and 1(b). Magnetometry is thus in good agreement with Figs. 1 and 2, 

particularly the phase-pure FM behavior at x > 0.70, and the FM-AFM coexistence at lower x.                   

III.D SMALL-ANGLE NEUTRON SCATTERING (SANS) 

SANS is a powerful probe of FM ordering and inhomogeneity (particularly at nano- and meso-

scales) [30] and was thus applied here at x = 1.00, 0.60, 0.50, and 0.40, i.e., where FM was detected 

by NPD and magnetometry. (As a low scattering wavevector (Q) technique, SANS is specifically 

sensitive to FM (i.e., Q = 0) fluctuations and order [30]). Shown first in Fig. 4 are representative 

SANS cross-section (d/d) vs. Q plots for x = 1.00 (top panels), 0.60 (middle panels), and 0.40 

(bottom panels), at high (right panels), intermediate (middle panels), and low T (left panels). These 

were obtained from circular averaging of isotropic Qx-Qy maps. At x = 1.00, the high T (i.e., 600 

K) d/d(Q) in Fig. 4(c) is composed of two contributions: a low Q contribution with linear 

behavior on this log10-log10 plot (i.e., a power-law), and a high Q contribution with a slower roll-

off to the highest Q. As illustrated by the dashed lines, these two contributions are well described 

by Porod and Lorentzian terms, i.e., d/d = (d/d)P/Qn and d/d = (d/d)L/(Q2 + 1/2), 

respectively, where (d/d)P and (d/d)L parameterize the strength of the Porod and Lorentzian 
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scattering, n is the Porod exponent, and  is the Ornstein-Zernike magnetic correlation length [30]. 

Our data were best fit with n = 4.15 (blue dashed lines in Fig. 4), close to the classic n = 4 exponent 

for Porod scattering from three-dimensional objects of size d with smooth surfaces, in the Q >> 

2/d limit [30]. As is typical, we ascribe this to scattering from microstructural features such as 

grains and grain boundaries above TC, and from FM domains and domain walls below TC [30]. In 

these unpolarized measurements, the low Q Porod intensity thus saturates at a T-independent level 

at T > TC, but grows below TC. This can be seen by comparing Figs. 4(a-c), where d/d at the 

lowest Q grows significantly on cooling, as shown more clearly below. The Lorentzian 

contribution, on the other hand (red dashed line), captures the short-range FM spin fluctuations 

that grow as T  TC
+ at a second-order paramagnetic-to-FM phase transition [30]. This 

contribution is thus strong in Fig. 4(c), at T = 600 K (= 1.13TC), but diminishes rapidly on cooling 

(e.g., Fig. 4(a)). 

Considering Figs. 4(a-c) together, at x = 1.00 the observed behavior is thus fairly typical: the Porod 

contribution grows on cooling below TC due to long-range FM, while the Lorentzian scattering is 

strong around and above TC but diminishes on cooling. As exemplified by Fig. 4(b), however, an 

additional contribution emerges at intermediate T (480 K in this case). This consists of a small but 

distinct hump at intermediate Q of 0.015 Å-1, which can be captured (green dashed line) by a 

Gaussian peak, i.e., d/d = (d/d)G exp[-(Q-QG)2/(2G
2)], where (d/d)G is the peak intensity, 

QG is the peak position, and G is the peak width. This is a somewhat atypical feature, not of 

obvious origin, although similar behavior has been found in off-stoichiometric magnetic Heusler 

alloys, due to nanoscopic FM clusters in paramagnetic, AFM, or even FM matrices [13,17,30]. 

The origin in the current case will be clarified below, in Sections III.E and F. Most important for 
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now, with these three contributions (low Q Porod, intermediate Q Gaussian peak, and high Q 

Lorentzian), all data can be fit to 

𝑑Σ

𝑑Ω
(𝑄, 𝑇) =  

(
𝑑Σ

𝑑Ω
)

𝑃
(𝑇)

𝑄𝑛
+  

(
𝑑Σ

𝑑Ω
)

𝐿
(𝑇)

𝑄2+(
1

𝜉
)

2 +  (
𝑑Σ

𝑑Ω
)

𝐺
(𝑇)𝑒𝑥𝑝 (

−[𝑄−𝑄𝐺(𝑇)]2

2∆𝐺(𝑇)2
) (1), 

resulting in the solid lines through the data in Fig. 4, and the Porod, Gaussian, and Lorentzian 

contributions shown in dashed blue, green, and red. At x = 0.60 (where TC  300 K) the Lorentzian 

scattering is again strong near TC (Fig. 4(f)), then diminishes on cooling as the Porod scattering 

from long-range FM grows, with a small Gaussian hump again showing up at intermediate T (Fig. 

4(e)). The same qualitative trends are then repeated for x = 0.40 (Figs. 4(g-i)).   

The overall T dependence for x = 1.00, 0.60, 0.50, and 0.40 is shown more clearly in Fig. 5, simply 

by plotting the low and high Q scattering cross-sections vs. T. Scattering wavevectors of 0.006 and 

0.114 Å-1 were chosen, i.e., at the lower and upper ends of the probed range, where Porod and 

Lorentzian contributions dominate, respectively. As shown in Figs. 5(a,b,) the minimum d/d at 

any T was subtracted here, employing the standard approach to isolate T-dependent magnetic 

scattering in unpolarized SANS. As in Figs. 2(a) and 3(a), the behavior for x = 1.00 is that of an 

archetypal long-range-ordered FM, the low Q magnetic Porod scattering (Fig. 5(a)) turning on at 

TC then growing monotonically [30]. Correspondingly, in Fig. 5(b) the high Q (Lorentzian-

dominated) magnetic scattering grows as T  TC
+ then falls quickly below TC, vanishing at low 

T; this is a classic “critical scattering” peak [30]. Decreasing x into the FM-AFM coexistence 

regime at x = 0.60 and 0.50 then leads to suppressed TC, as expected, with lower magnetic Porod 

intensity (Fig. 5(a)), as well as critical scattering peaks (Fig. 5(b)). As deduced from NPD, clear 

FM order thus persists in this composition regime. Regarding the length scales of this FM order, 

the Porod scattering clearly includes a significant magnetic contribution at x = 0.60 and 0.50 (Fig. 
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5(a)), which extends to the minimum Q in Figs. 4(d,g) of 0.005 Å-1. This corresponds to scattering 

from FM domains of size above 2/0.005 Å-1  100 nm, on a similar scale to the AFM length scale 

of 25-55 nm deduced from NPD (Fig. 2(d)). Spatially intertwined AFM and FM orders on nano- 

to meso-scales is thus supported.   

Finally, at x = 0.40, the behavior in Fig. 5 changes. At this composition, at which FM order was 

weak in NPD, no order-parameter-like growth is seen in Fig. 5(a) and no critical scattering peak 

is seen in Fig. 5(b). The primary feature is instead weak monotonic growth of the high Q magnetic 

scattering intensity on cooling (Fig. 5(b)), indicating short-range FM spin fluctuations but no long-

range FM order. This sample is thus very close to the onset of phase-pure AFM and the end of the 

FM-AFM coexistence regime, the only semblance of FM being short-ranged. The weak long-range 

FM order detected at x = 0.40 by NPD (Fig. 2(a), inset), and the only short-range FM detected by 

SANS (Fig. 5(b)) are likely reconcilable via the minor sample-to-sample compositional and 

magnetic property variations already noted (e.g., with respect to the small variations in TC between 

NPD and SANS samples with x = 1.0, 0.60, and 0.50). 

More quantitative SANS analysis is provided in Fig. 6, which shows the T dependence of the 

parameters extracted from fits of equation 1 to d/d(Q) at all T and x. Note here that while the 

number of fitting parameters in (1) is significant, in the low Q region the Porod term is entirely 

dominant and in the high Q region the Lorentzian term is entirely dominant, leading to high 

confidence in the extracted parameters. Shown first in Fig. 6(a) is (d/d)P, which, consistent with 

Fig. 5(a), shows monotonic increases on cooling below TC for x = 1.00, 0.60, and 0.50. The solid 

lines are in fact fits to squared mean-field order parameters, confirming quantitative agreement 

with NPD (Fig. 2(a)). No such behavior occurs for x = 0.40, however, consistent with Figs. 5(a,b). 
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Correspondingly, (d/d)L (Fig. 6(b)) is substantial above TC for x = 1.00, 0.60, and 0.50 (due to 

short-range FM spin fluctuations), falling rapidly below TC. At x = 0.40, consistent with Fig. 5(b), 

no critical scattering occurs, (d/d)L instead growing weakly on cooling to the lowest T, 

indicating short-range FM spin fluctuations only. As expected, the extracted (T) for x = 1.00, 

0.60, and 0.50 (Fig. 6(c)) then exhibits power-law divergence as T  TC
+, i.e.,  = o / (T/TC - 1), 

where o is a constant and  is a critical exponent [30,31]. The solid line fits in Fig. 6(c) yield  = 

0.63, 0.78, and 0.73 for x = 0.5, 0.6 and 1.0, respectively. These are close to the three-dimensional 

Heisenberg and Ising FM exponents, confirming typical behavior [30,31]; we make no attempt at 

deeper quantitative analysis, as the required detailed, small-T-spacing data were not taken. Due to 

the very low scattering intensity, no such  values could be extracted at low T for x = 0.40.  

Figs. 6(d,e) then plot the parameters related to the intermediate Q Gaussian scattering. Given the 

modest intensity of this hump (Figs. 4(b,e,h)) one challenge here is that it is difficult, likely futile, 

to separate QG, the peak position, from G, the width. We instead fixed QG = 0.013 Å-1 based on 

preliminary fits, and left (d/d)G and G as the only parameters. The behavior of (d/d)G(T) in 

Fig. 6(d) (which is robust with respect to different fitting approaches) is remarkable, revealing that 

this anomalous intermediate Q scattering occurs only over a finite T window for x = 1.00, 0.60, 

and 0.50. Specifically, at x = 1.00, (d/d)G turns on at TC, grows rapidly, but then diminishes 

below 500 K, becoming undetectable at 340 K (as in Fig. 4(a)). Similar behavior occurs for x = 

0.60 and 0.50, but shifted to lower T, with lower intensity. In the phase diagram in Fig. 1(a) we 

thus define a new region, FM*, between TC and the temperature T* where (d/d)G vanishes. Fig. 

6(e) plots G(T), the width of the intermediate Q Gaussian hump, which, as already noted (see 

Figs. 4(b,e,h)) is challenging to separate from QG, the peak position. The extracted G values 
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appear to have systematic T dependence (decreasing on cooling for each x), falling in the 

approximate range 0.002 – 0.035 Å-1. The length scales extracted from the positions and widths of 

the anomalous intermediate Q peak are thus in the 10s to 100s of nm range. The physical meaning 

of these is returned to below, when the FM* region is clarified in Sections III. E and F.         

III.E SPECIFIC HEAT 

Specific heat (CP) provides a direct, powerful probe of magnetic ordering and has been extensively 

utilized to probe magnetic phase coexistence and phase separation, and was thus also applied here. 

Fig. 7(a) shows the standard analysis of low T (<10 K in this case) CP(T) in metals, plotting CP/T 

vs. T2 to probe for behavior of the form CP(T) = T + T3. The first term here describes electronic 

excitations, where , the Sommerfeld coefficient, is given by  = 2kB
2D(EF)/3, with kB 

Boltzmann’s constant and D(EF) the density of states at the Fermi level [32]. The second term 

describes lattice excitations, which, in the low T limit of the Debye model, yield  = 234NkB/D
3, 

where N is the number of atoms per mole and D is the Debye temperature [32]. As can be seen 

from Fig. 7(a), while approximately linear behavior with a positive intercept is found in Ru2Mn1-

xFexSn at most x, deviations do arise. The most obvious occurs for x = 0 (Ru2MnSn), which appears 

to show divergence as T  0 on this CP/T vs. T2 plot. Such behavior is not uncommon in low T 

specific heat, often indicating Schottky anomalies linked to energy level spacings that arise from 

myriad factors, including paramagnetism, crystal field splittings, nuclear hyperfine contributions 

in magnetically-ordered systems, etc. [33-40]. While this obscures further low T analysis of CP(T), 

this occurs at only one composition (x = 0.00), and would require further work at lower T to 

elucidate. We thus leave this as a topic for future work. At higher x, particularly 0.40 and above, 

while the intercept in Fig. 7(a) indicates finite , as expected in these metals, small deviations from 

linear remain. Close inspection (e.g., at x = 0.40, 0.50, 0.60) reveals that these are downward 
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deviations from linear on cooling, indicating CP(T) contributions weaker than T3. Given that spin-

waves in phase-pure long-range-ordered FMs often give a Cp contribution T3/2 [e.g., 35-37], and 

that T2 specific heat has been observed in various magnetically-phase-separated systems [35-39], 

the data were fit to 

𝐶𝑃(𝑇) =  𝛾𝑇 +  𝛽𝑇3 +  𝐵1𝑇2 +  𝐵2𝑇3/2 (2), 

where B1 and B2 are pre-factors of the T2 and T3/2 terms. The result is excellent fits at all x other 

than 0.00, yielding the D, , B1, and B2 shown vs. x in Figs. 7(b-d).  

The D(x) data in Fig. 7(b) are fairly unremarkable. (Note here that the x = 0.00 value shown was 

determined from higher T than in Fig. 7(a)). Only a modest variation in D occurs across the entire 

phase diagram (40-50 K), the increase upon substitution of Fe for Mn being unsurprising, as are 

the overall D values, which can be compared to 310, 330, 460, 474, 505, 516, and 550 K in 

Ni2Mn1.4Sn0.6 [38], Cu2MnAl [39], Ru2VGa [40], Ru2MnGe [27], Cu2MnSn [39], Ru2CrGe [27], 

and Ru2VAl [40] full-Heuslers, respectively. The behavior of , however, is more interesting. 

Specifically,  exhibits a broad maximum around x = 0.5, rising from 9 mJ mol-1 K-2 for x = 1.00 

(fairly typical for a metallic full-Heusler alloy), to 17 mJ mol-1 K-2 around x = 0.50 (quite large 

for a metallic full Heusler). Applying  = 2kB
2D(EF)/3 yields D(EF) from 3.5 up to 7.0 

states/eV/formula unit. Interestingly, the DFT calculations of Decolvenaere et al. [20] also suggest 

non-monotonic D(EF) vs. x in Ru2Mn1-xFexSn, rising from 3.07 states/eV/formula unit at x = 0.00, 

to 3.59 states/eV/formula unit at x = 0.33, then falling to 1.86 states/eV/formula unit at x = 1.00. 

This arises from complex x-dependent changes in the spin-resolved D(EF), reflecting the delicate 

magnetic phase competition. Nevertheless, the overall non-monotonic trend in Fig. 7(c) is at least 

qualitatively consistent with first-principles results. More quantitatively, the enhancement of the 
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measured  over DFT is close to 2, independent of x. This is well within the realm of typical mass 

enhancement factors due to electron-phonon interactions, electronic correlations, etc. We note that 

magnetic behavior such as spin-glass freezing is known to produce additional T-linear 

contributions to CP(T) [44], but this is unlikely here given the FM-AFM coexistence as opposed 

to glassy magnetism. As discussed below, the magnetism in Ru2Mn1-xFexSn manifests in other 

terms in equation 2.  

Moving to these other terms, we first see in Fig. 7(d) that non-zero B2 was only required to fit the 

CP(T) data for x = 1.00, i.e., in the phase-pure long-range FM state, where B1 is negligible. 

Regarding statistical significance, a free fit with CP(T) = T + T3 + cTn (with c and n constants) 

significantly improved 2, resulting in n = 1.48, i.e., very close to 3/2. Therefore, while deviations 

from linearity for x = 1.00 in Fig. 7(a) are small, the additional T dependence is conclusively of 

B2T
3/2 form, as expected for a long-range-ordered FM [e.g., 35-37]. The B2 of  0.4 mJ mol-1 K-2.5, 

while not out of bounds in comparison to other FMs, is small, so it is unsurprising that this CP 

contribution is not detected at lower x, particularly given the maxima in (x) and B1(x). Effects of 

long-range FM order on CP(T) are also known to fall off quickly as phase-pure FM is disrupted 

[39]. Moving to B1(x), the striking feature is the prominent peak at intermediate x, the composition 

range over which B1  0 corresponding exactly to the FM-AFM coexistence regime in Fig. 1; FM-

AFM phase coexistence is thus clearly manifested in CP(T). This T2 contribution to CP in 

magnetically-phase-separated systems has a substantial history, since Woodfield et al. suggested 

that coexisting FM-like and AFM-like excitations in an A-type AFM could generate T2 [35]. This 

T2 contribution was subsequently found in various magnetically-phase-separated systems, 

including manganites and cobaltites, suggesting that it could be a general signature of nanoscopic 

FM regions embedded in non-FM matrices [36-39]. The detection of this CP contribution here, in 
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a metal alloy, is thus of high interest, particularly given the peak in B1 at x = 0.5, i.e., the exact 

composition at which the FM and AFM volume fractions phases cross (Fig. 1(b)). In terms of 

statistical significance, consistent with the visible downward curvature on cooling for x = 0.40, 

0.50, and 0.60 in Fig. 7(a), reasonable fits could not be obtained without finite B1 in equation 2. 

Free fits to CP(T) = T + T3 + cTn also yield n = 1.8 to 2.0 in all cases, leading to high confidence 

in the conclusion of T2 specific heat related to FM-AFM coexistence.        

Further insight is provided by the higher T behavior of CP(T). The x = 0.5 case is shown as 

illustrative in Fig. 8(a), revealing qualitatively typical form, approaching 3R at high T. Notably, 

no lambda anomaly is seen in Fig. 8(a) (where TN  180 K), as is also the case at 0.40 and 0.60. 

Although at first surprising, it should be noted, as alluded to above, that lambda anomalies at 

second-order magnetic phase transitions have been reported to fall off quickly as phase-pure long-

range FM or AFM is disrupted by doping into a regime of magnetic phase separation [39]. Outside 

of the FM-AFM coexistence regime, where TC and TN should be visible in CP(T), they fall outside 

our measurement range (e.g., TC = 500 K at x = 1.00), or in a range where the vacuum grease used 

to affix samples produces spurious features (e.g., TN = 300 K at x = 0.00). Nevertheless, one aspect 

of the phase behavior in Fig. 1 is detected in CP(T), namely T*. As illustrated in Figs. 8(b-d), 

evidence exists (certainly for x = 1.00, but also 0.60 and 0.50) for CP(T) anomalies very close to 

the T*(x) from SANS. For x = 1.00 a clear step in CP(T) occurs at T* (Fig. 8(d)), becoming weaker 

at lower x, although a more subtle slope change persists (Figs. 8(b,c)). The T* values deduced from 

Figs. 8(b-d) are the open red points in Fig. 1(a), agreeing closely with T* from SANS (open green 

points, from Fig. 6(d)). The anomalous intermediate T range FM* region in Fig. 1 is thus detected 

not only by SANS, but also CP(T). Inspired by Figs. 8(b-d), the NPD data of Section III.B were 
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further analyzed to extract T-dependent lattice parameters in the FM phase, searching for an 

anomaly at T*.  

III.F TEMPERATURE-DEPENDENT STRUCTURAL MEASUREMENTS  

Shown in Fig. 9(a) are cubic lattice parameter (a) vs. T data for x = 0.40, 0.50, 0.60, and 1.00, 

obtained from Pawley fits of NPD data. As expected, the room temperature a decreases slightly 

with x, and thermal expansion occurs. The latter was analyzed by fitting a(T) in Fig. 9(a) using the 

Grüneisen approximation for anharmonic phonon potentials combined with Einstein lattice 

dynamics, i.e., 𝑎(𝑇) =  𝑎0 {1 +  
𝛼0𝑇𝐸

2
[𝑐𝑜𝑡ℎ (

𝑇𝐸

2𝑇
) − 1]}, where ao is the T = 0 lattice parameter, TE 

is the Einstein temperature, and o is the linear thermal expansion coefficient at T >> TE [45]. The 

resulting fits (Fig. 9(a)) are generally good, particularly for x = 0.40, 0.50, and 0.60, revealing no 

detectable anomalies at TC, TN, or T*. This is shown more quantitatively for x = 0.50 in the inset, 

where the deviation between data and fit (a) is plotted vs. T, confirming no systematic deviations. 

At x = 1.00, however, deviations are visible in Fig. 9(a), the inset showing negative deviations 

(i.e., experimental a values below the fit) in broad ranges between 100 and 350 K, and 350 and 

500 K. A fairly well-defined maximum in a thus occurs at 350 K, close to T* from SANS and 

specific heat (see Figs. 1(a), 6(d), and 8(d)). It is plausible that weaker anomalies at T* for x = 0.40, 

0.50, and 0.60 are not detected simply due to the significant curvature in a(T) at their respective 

T* (110-150 K); the x = 1.00 composition is instead in the linear thermal expansion regime at its 

T*  350 K. 

Further insight was obtained by analyzing the T-dependent lattice parameters of the previously 

mentioned Ru-rich minority phase. In prior work this phase (5% molar fraction) was 

hypothesized, based primarily on Rietveld refinement of NPD data, to be a Ru-rich HCP Ru-Mn-
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Fe solid solution, likely forming coherently within the cubic Heusler matrix, and thus being 

strained [19]. Fig. 9(b) shows the c-axis lattice parameter of this HCP secondary phase (chcp) for x 

= 1.00, which, in addition to thermal expansion, reveals a clear anomaly at 350 K, i.e., T* at this 

x (see Figs. 1(a), 6(d), 8(d), and 9(a) inset). The subtle feature at T* in a(T) in the Heusler primary 

phase is thus conspicuous in the chcp(T) of the HCP Ru-rich secondary phase, supporting the 

conjecture of structural coherence between the phases, and substantial strain. Considering this in 

light of Figs. 6(d), 8(b-d), and 9(a,b) clarifies the origin of the FM* phase and associated T* in Fig. 

1(a). Specifically, the intermediate Q hump in the SANS data in Fig. 4 indicates some form of 

inhomogeneity in the FM-ordered regions in Ru2Mn1-xFexSn, which Fig. 6(d) establishes to occur 

only at T* < T < TC, on length scales (Fig. 6(e)) of 10s - 100s of nm. Figs. 8(b-d) and 9(a,b) further 

establish a subtle structural transition in the Ru2Mn1-xFexSn primary phase, strongly strain-coupled 

to the Ru-rich HCP secondary phase. Based on Fig. 6(d), this transition apparently leads to 

negligible magnetization contrast with the FM Heusler primary phase at T < T*, whereas this 

contrast is clearly visible at T* < T < TC. While the precise origin of this behavior is difficult to pin 

down, one possibility is FM ordering of the secondary Ru-Mn-Fe phase. At high T (i.e., T* < T < 

TC) the magnetic inhomogeneity detected by SANS in the FM phase of the Ru2Mn1-xFexSn would 

thus arise due to PM secondary phase regions dispersed in the FM Heusler matrix, the onset of FM 

in the secondary phase regions (at T < T*) then decreasing the magnetization contrast and 

suppressing the intermediate Q hump. Accompanying strain-coupled magnetostructural anomalies 

could then produce the behaviors in Figs. 9(b), 9(a, inset), and 8(b-d). Most importantly, regardless 

of the exact origin, the data of Fig. 9 establish T* as linked to the Ru-rich secondary phase, meaning 

that it is not fundamental to the phase behavior of Ru2Mn1-xFexSn. We thus leave the FM* phase 

on Fig. 1(a) for completeness, but emphasize that is very likely extrinsic.     
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IV. THEORETICAL DISCUSSION 

With the aim to shed further light on the deduced experimental phase diagram (Fig. 1(a)), and 

better place it in the context of current understanding of magnetic phase competition in disordered 

magnets, we consider a general phenomenological model for competing FM and AFM states. 

Denoting the FM vector order parameter 𝑴𝐹 and the AFM equivalent 𝑴𝐴, the Landau free-energy 

expansion is (see, e.g., Refs. [46, 47]):  

𝐹 = (
𝑎𝐹

2
𝑀𝐹

2 +
𝑢𝐹

4
𝑀𝐹

4) + (
𝑎𝐴

2
𝑀𝐴

2 +
𝑢𝐴

4
𝑀𝐴

4) + [
𝛾

2
𝑀𝐹

2𝑀𝐴
2 +

𝑤

2
(𝑴𝐹 ∙ 𝑴𝐴)2]           (3), 

where, 𝑎𝐹 ∝ 𝑇 − 𝑇𝐶, 𝑎𝐴 ∝ 𝑇 − 𝑇𝑁, and the other coefficients are quartic Landau parameters. We 

also assume 𝑢𝐴, 𝑢𝐹 > 0 to ensure the pure FM and AFM transitions are of second-order nature. 

The transition temperatures 𝑇𝐶 and 𝑇𝑁 are then functions of a tuning parameter – in our case, the 

concentration x of Fe – and cross at a multi-critical point. Depending on the relationship between 

the quartic Landau coefficients [46,47], the system may then display either a new thermodynamic 

mixed phase, where both order parameters coexist microscopically at all atomic sites, or a phase 

where FM and AFM orders coexist on a mesoscopic scale without forming a new phase, i.e., in 

distinct regions of the sample. In the former case, the multi-critical point is tetracritical; inside the 

magnetically-ordered phase, as one moves along the phase diagram, there is a second-order 

transition from the AFM phase to the mixed phase, and then another second-order transition from 

the mixed phase to the FM phase. In the latter case, on the other hand, the multi-critical point is 

bicritical and there is a first-order transition between the AFM and FM phases, with mesoscopic 

AFM-FM coexistence as a consequence.  
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The mean-field “phase diagram” describing this behavior is shown in Fig. 10. Applying the 

standard criterion for tetracritical vs. bicritical behavior [48], the system is in a mixed phase when 

−√𝑢𝐹𝑢𝐴 < 𝛾 + min(0, 𝑤) < √𝑢𝐹𝑢𝐴, and displays mesoscopic coexistence otherwise. The nature 

of the mixed phase also depends on the sign of 𝑤: when 𝑤 > 0, the AFM and FM order parameters 

coexist on the atomic scale and are mutually perpendicular, giving rise to a canted spin structure. 

When 𝑤 < 0, however, the order parameters are parallel, resulting in a ferrimagnetic spin 

structure. Both structures are depicted schematically in Fig. 10. The experimental results reported 

here strongly support the scenario of mesoscopic AFM-FM phase coexistence, placing the Landau 

parameters in the regime corresponding to the yellow shaded areas in Fig. 10. First, as shown in 

Fig. 1(b), the AFM and FM volume fractions seem to simply grow at the expense of one another 

vs. x, suggesting little, if any, spatial overlap between phases. Second, Figs. 2(a-b) show that the 

squared FM order parameter 𝑀𝐹
2 is insensitive to the onset of AFM order at a lower T. This can be 

compared to known cases of competing orders coexisting on the atomic scale, such as AFM and 

superconductivity in iron-based materials, where the onset of the latter strongly suppresses the 

former [49]. Third, there is no signature of non-collinear or non-uniform (from site to site) 

magnetization in the various experimental probes employed here, ruling out a canted or 

ferrimagnetic spin structure. 

Of course, such phenomenological analysis does not explain why the Landau parameters are such 

that the multi-critical point is bicritical in our case. For that, microscopic models are needed to 

determine those parameters. For Ru2Mn1-xFexSn, the concentration x, which tunes the system from 

AFM to FM, has two effects: tuning the delicate balance between AFM and FM interactions and 

adding disorder (FeMn substitutions). The latter is commonly captured in nearest-neighbor 

Heisenberg models by introducing either site or bond disorder. For bond disorder, one often 
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assumes a distribution of FM and AFM bonds across the system [47]. The expectation from 

analyses of the closely related Sherrington-Kirkpatrick model is that a spin-glass phase will then 

form between the FM and AFM phases (for a review, see [50]). No signatures of spin-glass effects 

appear in our experimental data, however. One can then also consider site-disorder. While there 

are different ways of implementing this, let us focus on the case where each site randomly has 

either a FM or AFM atomic species [46]. As discussed in Ref. [51], where Monte Carlo simulations 

of this model were performed, if there is no coupling between the two types of sites, and if the 

lattice is bipartite, the system displays two independent percolation-driven AFM and FM 

transitions, resulting in a so-called decoupled tetracritical point. The tetracritical point remains 

stable upon inclusion of coupling between the two types of sites, even in the frustrated regime 

[51]. While these results apply directly to simple and body-centered cubic lattices (SC and BCC, 

respectively), the situation for the non-bipartite face-centered cubic (FCC) lattice, most relevant 

here, is less clear. The frustration intrinsic to the FCC lattice does not prevent the onset of AFM 

order, which is expected to be collinear in the clean limit [52]. However, the Monte Carlo 

simulations of Ref. [51] did not probe this more involved type of frustrated AFM order. While it 

is possible that the frustration introduced by the FCC lattice results in an intermediate spin-glass 

phase, it is also conceivable that, similar to the cases of the BCC and SC lattices, and to the general 

results of Ref. [46], the multi-critical point remains tetracritical. 

These effective Heisenberg models thus do not seem to entirely capture the phase diagram of 

Ru2Mn1-xFexSn. In Ref. [21], however, a cluster-expansion Hamiltonian approach was recently 

developed to model this specific quaternary Heusler system, drawing on results from first-

principles calculations. The key insight with this approach is to include not only the effects of 

magnetic disorder, but also chemical disorder, i.e., the Fe/Mn site disorder. In the quenched case, 
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where this disorder is frozen in, a phase diagram remarkably similar to Fig. 1(a) was obtained, 

suggestive of a bicritical point. AFM-FM phase coexistence at very short length scales was in fact 

observed in the Monte Carlo simulations, with a wide x range over which AFM (FM) clusters form 

in an FM (AFM) matrix, potentially explaining the exchange hardening in Fig. 1(b). Based on this, 

it is therefore highly likely that chemical disorder plays a key role in shaping the phase diagram of 

Ru2Mn1-xFexSn. In essence, despite the absence of gross chemical phase separation, local Mn/Fe 

disorder is nevertheless important in seeding local FM or AFM order. The observed AFM-FM 

phase coexistence can thus be at least qualitatively reconciled with established models, inclusion 

of quenched chemical disorder leading to more quantitative agreement. Future work investigating 

annealing of quenched Ru2Mn1-xFexSn samples, and the subsequent evolution of short-range 

chemical and magnetic order [22-24], would clearly be worthwhile.   

 

V. SUMMARY 

In short, we have presented an NPD, SANS, magnetometry, specific heat, and structural-based 

analysis of the magnetic phase behavior of the Ru2Mn1-xFexSn system, culminating in a detailed 

magnetic phase diagram. Aside from an anomalous FM* phase associated with a subtle extrinsic 

effect related to a minority phase, the phase diagram essentially reveals phase-pure AFM to x  

0.30, phase-pure FM above x  0.70, and a substantial regime of FM-AFM nano- to meso-scale 

coexistence between, despite chemical homogeneity. In this coexistence regime, the development 

of FM order below TC is essentially unperturbed by the onset of AFM order at a lower TN, resulting, 

at low T, in intertwined FM and AFM order on 10s to 100s of nm length scales. TC is apparent in 

magnetometry, NPD and SANS, TN is apparent in magnetometry and NPD, the relevant length 

scales can be determined from NPD and SANS, and the low T FM-AFM coexistence is found to 
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be reflected in a T2 contribution to specific heat. Comparison with theoretical models suggests that 

chemical disorder is likely key to stabilizing a bicritical point in the phase diagram (and thus 

mesoscopic FM-AFM phase coexistence), as opposed to the tetracritical point generally expected 

from Heisenberg models with AFM and FM site-disorder, or to the spin-glass phase typical of the 

Heisenberg model with AFM and FM bond-disorder. In totality, these findings thus substantially 

improve the understanding of the magnetic phase coexistence in this model system, thereby 

improving the overall understanding of the enduring topic of magnetic phase competition in 

compositionally-tuned systems.    
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Figure 1:  (a) Ru2Mn1-xFexSn magnetic phase diagram deduced from this work. The red, blue, and 

green points (data) and lines (guides to the eye) are the Néel temperature (TN), Curie temperature 

(TC), and T* (defined in the text). TN and TC were determined from neutron diffraction, and T* from 

SANS (open green points) and heat capacity (open red points). The labeled phases are PM 

(paramagnet), AFM (antiferromagnet), FM (ferromagnet) and FM* (as discussed in the text). The 

blue and red dashed lines illustrate the region over which FM-AFM phase coexistence is deduced. 

(b) Normalized neutron diffraction intensities (Irel) of the FM 1 1 1 (blue) and AFM 3/2 1/2 1/2 

(red) reflections at 15 K. Solid lines are guides to the eye. As noted in the text, while compositions 

between 0.60 and 1.00 were not studied here, prior work [19] suggests phase-pure FM at x = 0.75, 

meaning that FM-AFM phase coexistence ends between 0.60 and 0.75; we thus depict the red 

(blue) line in (b) to reach zero (unity) at x  0.7 (where the FM-AFM coexistence region ends in 

(a)). The black points and line (corresponding to the right axis) are the 4 K coercivity (Hc) from 

Ref. 19.   
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Figure 2: (a) Example low scattering wavevector (Q) NPD patterns for x = 0.50 at 350, 170, and 

15 K. The intensity is normalized to beam monitor counts. As shown in the later panels (and Fig. 

1), at this x, the FM and AFM order turn on at approximately 300 and 200 K, respectively. 

Temperature (T) dependence of the normalized neutron diffraction intensity (Irel), for the FM 1 1 

1 (b) and AFM 1/2 -3/2 1/2 (c) reflections for various x. The inset in (b) is a blow-up of the x = 

0.40 data. Solid lines are squared mean-field order parameters using S = 2, L = 2, J = 4 for the FM 

cases and S = 5/2, L = 0, J = 5/2 for the AFM cases, i.e., atomic values for Fe and Mn, respectively. 

(d) T dependence of the Scherrer length () extracted from the AFM 1/2 -3/2 1/2 reflections for 

various x. The solid lines are guides to the eye. All data were acquired on the HB-1A instrument 

(FIE-TAX) unless labeled “WAND”. The approximate length scale corresponding to the nuclear 

peak broadening (determined here from x = 0 data, where no FM occurs) is shown as the horizontal 

dashed black line.  
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Figure 3: Temperature (T) dependence of the magnetization (M) for (a) x = 1.00, (b) x = 0.60, (c) 

x = 0.50, and (d) x = 0.40, measured in 50, 200, 500, 5000, and 50000 Oe magnetic fields. Solid 

lines are field-cooled (in the same field used for measurement) and dashed lines are zero-field-

cooled. The vertical dashed lines indicate the approximate positions of the Néel temperature (TN, 

red) and Curie temperature (TC, blue). Some modest differences with the TC and TN values from 

neutron diffraction (Figs. 1 and 2) are attributed to the use of different samples (and very different 

sample masses) in the two cases, as well as potential high T thermometry issues for large mass 

neutron samples.    
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Figure 4: SANS cross-section (d/d) vs. scattering wavevector magnitude (Q) for representative 

x = 1.00 (top panels (a-c)), x = 0.60 (middle panels (d-f)), and x = 0.50 (bottom panels (g-i)) 

compositions at representative temperatures (T). The temperatures decrease from right to left, 

corresponding to above TC (the Curie temperature), just below TC, and far below TC, in each case. 

Solid blue lines are fits based on a sum of Porod (blue dashed lines), Lorentzian (red dashed lines), 

and Gaussian peak (green dashed lines) contributions.  
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Figure 5:  SANS cross-section (d/d) vs. temperature (T) at scattering wavevector magnitudes 

(Q) of (a) 0.006 Å-1 and (b) 0.114 Å-1, for representative x = 1.00, 0.60, 0.50, and 0.40 

compositions. Dashed lines are guides to the eye. The data are plotted as [(d/d) – (d/d)min], 

where (d/d)min is the averaged minimum (typically high T) value of d/d; this highlights the 

magnetic scattering component. Some modest differences with the TC values from neutron 

diffraction (Figs. 1 and 2) are attributed to the use of different samples (and very different sample 

masses) in the two cases, as well as potential high T thermometry issues for large mass neutron 

samples.      
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Figure 6:  Temperature (T) dependence of (a) the Porod cross-section (d/d)P, (b) the Lorentzian 

cross-section (d/d)L, (c) the magnetic correlation length () from the Lorentzian contribution, 

(d) the Gaussian cross-section (d/d)G, and (e) the Gaussian peak width (G), for representative 

x = 1.00, 0.60, 0.50, and 0.40 compositions. Solid lines in (a) are squared mean-field order 

parameter fits (as in Figs. 2(a,b)), while solid lines in (c) are power law fits, as described in the 

x = 1
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text. Dashed lines in (b), (d) and (e) are guides to the eye. Some modest differences with the TC 

values from neutron diffraction (Figs. 1 and 2) are attributed to the use of different samples (and 

very different sample masses) in the two cases, as well as potential high T thermometry issues for 

large mass neutron samples.    
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Figure 7: (a): Low temperature (T  10 K) specific heat (CP) plotted as CP/T vs. T2 for x = 0.00, 

0.25, 0.40, 0.50, 0.60 and 1.00. Solid lines are fits to CP(T) = T + βT3 + B1T
2 + B2T

3/2, as described 

in the text. x dependence of (b) the Debye temperature (D), (c) the Sommerfeld coefficient (), 

and (d) the parameters B1 (left axis) and B2 (right axis). Dashed lines are guides to the eye. No x = 



42 

 

0.00 value of  is shown in (c) due to the Schottky anomaly obscuring the electronic contribution 

(see (a)).    

 

 

 

 

 

 

 



43 

 

 

Figure 8: (a) Temperature (T) dependence of the specific heat (CP) over a wide temperature range 

(up to 200 K) for a representative x = 0.50 composition. The horizontal dashed line marks the 

Dulong-Petit value (3R, where R is the molar gas constant) for reference. T dependence of CP for 

x = 0.50 (b), x = 0.60 (c), and x = 1.00 (d) at temperatures around T* (as defined in the text). 

Dashed lines are guides to the eye. Note the differing T axes in (a-d).  
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Figure 9:  (a) Temperature (T) dependence of the Heusler cubic lattice parameter (a) for 

representative x = 0.40, 0.50, 0.60, and 1.00 compositions. These were determined from Pawley 

fits to neutron powder diffraction patterns. Solid lines are Grüneisen-Einstein fits, as described in 

the text. The inset shows the deviation (a) between the data and fits for x = 0.50 and 1.00. (b) T 

dependence of the c-axis lattice parameter (chcp) of the HCP (hexagonal-close-packed) secondary 

phase for x = 1. This was determined from the highest intensity (101) peak, assuming a constant 

c/a ratio of 1.584, i.e., that of pure HCP Ru at 300 K. 
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Figure 10:  Nature of the magnetic state below the multi-critical point of the phenomenological 

Landau model for competing AFM and FM states. 𝛾, 𝑤, 𝑢𝐹, and 𝑢𝐴 are the quartic coefficients of 

the free-energy expansion. Depending on their ratios, the system may either form a new magnetic 

ground state where the AFM and FM order parameters are simultaneously non-zero at every site 

(red and blue shaded areas) or a state where finite-size regions with only AFM or FM order coexist 

at the meso-scale (yellow shaded areas). In the former case, the multi-critical point is tetracritical, 

and there are two types of magnetic ground states depending on the sign of 𝑤: a ferrimagnetic 

phase (illustrated in the red shaded area), in which the FM and AFM order parameters are parallel 

to each other; and a canted spin phase (illustrated in the blue shaded area), where the FM and AFM 

order parameters are perpendicular. In the case of AFM-FM mesoscopic coexistence, the multi-

critical point is bicritical. 


