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CrI3 has recently been shown to exhibit low-dimensional, long-range magnetic ordering from few layers to
single layers of CrI3. The properties of CrI3 bulk and few layered systems are uniquely defined by a combi-
nation of short-range intralayer and long-range interlayer interactions; including strong correlations, exchange
and spin orbit coupling. Unfortunately, both the long-range van der Waals interactions, which are driven by dy-
namic, many-body electronic correlations and the competing strong intralayer correlations, present a formidable
challenging for the local or semi local mean-field approximations employed in workhorse electronic structure
approaches like density functional theory. In this work, we employ a sophisticated many-body approach that can
simultaneously describe long- and short-range correlations. We establish that the fixed-node diffusion Monte
Carlo (FNDMC) method reproduces the experimental interlayer separation distance of bulk CrI3 for the high-
temperature, monoclinic phase, with a reliable prediction of the interlayer binding energy. We subsequently em-
ployed, the FNDMC results to benchmark the accuracy of several density functional theory exchange-correlation
approximations.a

I. INTRODUCTION

Since graphene was exfoliated, significant advances in ex-
perimental techniques have resulted in the rapid discovery
of two-dimensional materials 1–5. These materials provide
a broad range of band gaps and electronic properties, such
as high carrier/thermal conductivity, optochemical reactivity,
and piezoresistive effects. Despite this rapid discovery of
novel 2D materials, it took nearly a dozen years to discover
two-dimensional magnets 6,7.

Recently, it was demonstrated that long-range magnetic or-
der in CrI3 persists down to a single monolayer6. This find-
ing marked a milestone in the community, as the existence
of the long-range magnetic order in a two-dimensional mate-
rial was thought to be prohibited by the Mermin-Wagner the-
orem. The apparent contradiction was explained by the fact
that spin-rotational invariance, a premise in the theorem, is no
longer present in CrI3 because of spin-orbit interactions which
induce single ion spin anisotropy 8. An additional interesting
finding regarding this material is that the magnetic ordering is
intimately related to the stacking configuration and the num-
ber of layers. Rhombohedral CrI3 bulk exhibits ferromagnetic
interlayer interactions. On the other hand, few-layered CrI3

has a different stacking configuration, similar to monoclinic
CrI3 bulk, and exhibits antiferromagnetic interlayer interac-
tions. As a result, monolayer CrI3 is a ferromagnet, while
bilayer CrI3 is a layeriwse antiferromagnet, and trilayer Cri3
is a layerwise ferrimagnet, in which the layers are magnetized
in different directions alternately (denoted as ↑↓↑)9.10
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This material is particularly attractive owing to the possi-
bility of dynamically controlling the spin orderings in a few-
layer CrI3. For example, an electric or magnetic field applied
to bilayer or trilayer CrI3 switches the spin orderings and con-
sequently alters the magnetoresistance 11–13. Moreover, bi-
layer CrI3 is proposed for use as “the antiferromagnet layer of
magnetic tunnel junctions (MTJs)”11 and “voltage-controlled
magnetic memories with low operation energy.”13 A recent
work by T. Song et al.14 reported that the magnetic state can
be tuned by pressure. They found that the antiferromagnetic
phase of the bilayer CrI3 vanishes under a pressure of 2.7 GPa.
Furthermore, they established that in trilayer CrI3 a fully fer-
romagnetic phase ↑↑↑, as well as a new magnetic phase ↑↑↓,
appear at high pressures. The ↑↓↑ and ↑↑↓ phases had dif-
ferent numbers of antiferromagnetic interfaces, resulting in
differences in their respective magnetoresistances. The three
magnetic phases remained even after the applied pressure was
removed, as such it is thought that a first order structural tran-
sitions are involved in the magnetic transitions.

In addition to the experimental research, CrI3 has been stud-
ied theoretically with ab initio methods focused on predict-
ing the magnetic ground state and explaining magnetic transi-
tions. For instance, prior to the experimental realization of 2D
magnetism in CrI3

6, M. McGuire et al.15 predicted that the fer-
romagnetic state would be significantly more stable than the
nonmagnetic state in monolayer CrI3 using first principles cal-
culations. N. Sivadas et al.16 elucidated why the magnetic or-
der of bilayered CrI3 changes between ferromagnetic and anti-
ferromagnetic depending on the stacking configuration. They
explained the magnetic transition by demonstrating that inter-
layer super-super exchange effects between chromium d or-
bitals mediated by iodine p orbitals determine the magnetic
state. The configuration-dependent magnetic transition agrees
with an experiment showing that trilayer CrI3 has three differ-
ent magnetic phases with different structures14.

Nevertheless, accurate predictions with ab initio methods
for these layered materials remain a difficult problem because
of the simultaneous presence of noncovalent interlayer inter-
actions and of highly correlated electrons occupying the d or-
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bitals in Cr, which are both significant challenges for mean
field approaches. The introduction of vdW corrections in den-
sity functional theory (DFT) improves the description of the
noncovalent interlayer forces, in practice. However, the re-
sults are sometimes not quantitatively reliable: they change
significantly depending on the parameterization of the van der
Waals (vdW) correction and the treatment of the exchange en-
ergy17–20.

To obtain reliable predictions independent of adjustable pa-
rameters without the mean-field approximation, we use the
fixed-node diffusion Monte Carlo method (FNDMC). This
method is one of the most reliable choices since it removes
any excited state components from a wave function using
the projection operator, e−Ĥτ |Ψ〉 (τ→ ∞): the wave func-
tion is optimized within the many-body form.21 FNDMC
has made accurate predictions of several layered materials
19,20,22–28. Mostaani et al.23 calculated the interlayer bind-
ing curve of bilayer graphene with FNDMC, successfully re-
producing the experimental out-of-plane zone-center optical
phonon frequency. Shin et al.22 concluded that bilayer α-
graphyne is more stable than bilayer graphene using FNDMC,
contrary to the DFT prediction. They found that FNDMC pre-
dicted a comparatively huge density of electron population be-
tween the layers in α-graphyne. Thus, they concluded that α-
graphyne is stabilized by interlayer covalent bond formation
in the FNDMC prediction. Kadioglu et al.29 predicted the rel-
ative stability of buckled and washboard phases for monolayer
and bilayer arsenene.

In this paper, we report FNDMC results on the interlayer
binding properties of monoclinic bulk CrI3. We find that
FNDMC reproduced the experimental interlayer separation
distance15 without adjustable parameters. In the absence of
accurate experimental data for the binding energy, FNDMC
provided an accurate benchmark for establishing the accu-
racy of state-of-the-art approximations used in DFT. We show
that the vdW correction in DFT is necessary to reproduce the
interlayer binding properties. Most notably, the vdW–DF–
optB88 and vdW–DF–optB86b functionals30 reproduced the
FNDMC-reference interlayer separation distance and binding
energy.

The rest of the paper is organized as follows: In Section II
we describe the technical details of our DFT and FNDMC cal-
culations. Especially, we explain how we carefully dealt with
the errors peculiar to FNDMC, such as the one-body finite-
size error, fixed-node approximation error, and time step er-
ror. In Section III we discuss and analyze our results. We
give an accurate prediction of the interlayer binding energy of
the monoclinic structure, carefully considering the two-body
finite-size error in the bulk and monolayer structures. We
show that our FNDMC reproduced the experimental interlayer
separation distance. Finally, we evaluate the DFT functionals
mentioned earlier compared with the reference binding energy
and separation distance. This work is summarized in Section
IV.

FIG. 1. Total energies of the rhombohedral structure predicted by
FNDMC with LDA+U trial wave functions with different U values.
The total energies are given as the relative differences from the lowest
data point. The optimal U value is estimated to be U=2.4(4) eV by
quadratic fitting (dashed line).

FIG. 2. Total energies per formula unit of the monoclinic structure
predicted by FNDMC with different grid sizes of twist-averaging.
The total energies are given as relative differences from that with a
4×4×4 grid. This figure indicates the one-body finite-size error is
sufficiently suppressed with a 3×3×3 grid.

II. CALCULATION DETAILS

We used QMCPACK31 for the FNDMC calculations. We
used Slater-Jastrow–type trial wave functions21, which have
proved to be sufficiently accurate in numerous applications of
FNDMC for both correlated and vdW materials. The orbital
functions comprising the Slater determinant were generated
by the local density approximation (LDA) +U method imple-
mented in Quantum Espresso (QE)32. We modified the value
of U to alter the nodes of the trial wave function. Figure 1
shows the relationship between the FNDMC total energies and



3

the U values. According to the variational principle, optimal
nodes correspond to a minimum of the total FNDMC energy.
It can be seen that the dependence of the energy on U is weak
in this system for low to moderate values of U. Since the
minimum is estimated to be U=2.4(4) eV by quadratic fitting,
we used U=2.5 eV for all the calculations. We used the BFD
pseudopotential for iodine atoms33,34. Meanwhile, we used
our own pseudopotential for chromium atoms35, since a 40%
decrease in the locality error from the BFD pseudopotentials
was achieved with our pseudopotentials for the 3d transition
metal atoms. Because of the intrinsic plane wave hardness of
the potentials, a high energy cutoff of 300 Ry was required
to obtain FNDMC trial wave functions from the DFT calcula-
tions 35,36. The Jastrow factor contained one-, two-, and three-
body terms amounting to 160 variational parameters in total,
which were optimized by the “linear” method37 implemented
in QMCPACK.

A FNDMC calculation is accompanied by two kinds of
system-size errors which are larger for smaller simulation
cells. They are called one- and two-body finite-size errors38.
The one-body finite-size error is caused by insufficient sam-
pling of the Brillouin zone. This error is suitably handled
with twist-averaged boundary conditions that is similar to the
k-points sampling in DFT. In this work, we used the recipro-
cal grid equal to or larger than 3×3×3 per 2 f.u.. The result-
ing one-body finite-size error was kept below 10 meV/f.u., as
shown in Figure 2. The two-body finite-size error is attributed
to the overestimation of the interaction distance between an
electron and its making exchange-correlation (XC) holes (i.e.,
a suppression of the electronic density caused by the presence
of the electron) in the periodic cells. The influence of periodic
images on this interaction is generally negligible for practi-
cally used cell sizes.38 However, in a typical implementation
of the potentials under the periodic boundary condition (i.e.,
Ewald method39), an electron is significantly affected by the
XC holes of the periodic images. Fortunately, the influence on
the total energy can be estimated by extrapolating the total en-
ergy on the inverse of the simulation cell size. Also schemes
to cancel out the spurious interactions can be used38. We used
the extrapolation scheme to estimate the two-body finite-size
error with the Ewald method as discussed in the first para-
graph of Section III.

We used the Gaussian charge screening breakup method,
an Ewald-class method, rather than the optimized breakup
method (default setting of current version of QMCPACK)40,
because of known numerical instabilities in the latter method
for some quasi-2D systems41. With the Gaussian charge
screening breakup method, care must be taken to minimize
the error induced by the exclusion of nearest neighbor images
in the real-space portion of the Ewald sum. The range of the
real-space portion of the Ewald potential is controlled by the
LR DIM CUTOFF parameter in QMCPACK31, with a larger
cutoff giving a smaller error. We confirmed that cutoffs equal-
ing 15, 20, and 25 gave 136.1, 11.6, and 1.0 meV/f.u. biases,
so we used a cutoff equaling 20 or larger.

We set the FNDMC timestep as dt = 0.005 a.u.−1. We
confirmed that the interlayer binding energies calculated with

dt =0.02 and 0.005 a.u.−1 were identical within the error bar of
one standard deviation (1σ). We confirmed that the nodal er-
rors and non-locality pseudopotential errors are small enough
to predict the binding properties, comparing the energy dif-
ference of the rhombohedral and monoclinic structures in Ap-
pendix A. We used Nexus42 for the FNDMC calculations.
Nexus is a workflow management system mainly for QMC-
PACK. Note that the error bars in this work all indicate 1σ
confidence interval.

We also calculated and compared the interlayer binding
curves with multiple approximations of DFT implemented in
Vienna Ab initio Simulation Package (VASP)43 to study how
the binding curve depends on the functional. We used the
projector-augmented wave (PAW) method to describe the core
electrons44. We described the Kohn-Sham orbitals by plane
waves. The cutoff energy was 520 eV, which is the higher
one of the recommended cutoff energies accompanied by the
chromium and iodine PAW pseudopotentials. The k-mesh
spacing was denser than 0.30 Å−1, with which the total en-
ergy of the monoclinic structure was converged within a few
meV per formula unit. For the comparison, we considered the
LDA45, PBE46. PBEsol47, and SCAN48 functionals; vdW in-
teraction corrected vdW–DF49,50, vdW–DF2 51,52, vdW–DF–
optPBE, vdW–DF–optB88, vdW–DF–optB86b30 rev–vdW–
DF218 and SCAN+rVV1053 functionals; and the LDA+U

method54. Here, VASP implements the vdW-DF-class non-
local correlation terms with the original formulas49–52, which
depends on the electronic density rather than the spin density.
On the other hand, there are extended formulas for spin polar-
ized calculations by Thonhauser et al.55. We confirmed that
the difference of the formulas hardly influences the interlayer
binding curve in the supporting information.

We used the experimental geometries for the rhombohe-
dral and monoclinic bulk structures, as reported in a previ-
ous work by one of the authors (See Table 1 of56 for details).
We targeted the ferromagnetic states for both bulk and mono-
layer structures (i.e., all the chromium ions magnetized in the
same direction). Since all the DFT functionals shown earlier
predicted 3 bohr/f.u. magnetization for the bulk and mono-
layer structures, we used this value for the FNDMC calcula-
tions. Although the monoclinic structure is known not to have
long-range magnetic order, our DFT calculation with VASP
code using the vdW–DF2 functional predicted that the above-
mentioned ferromagnetic phase is 1.45 eV/f.u. more stable
than the non-magnetic phase. This indicates that the magnetic
moment of the spins are stable but spins may be otherwise
disordered (i.e. the materials is likely paramagnetic). We se-
lected the ferromagnetic state as one of the choices of the spin
configurations. The energy difference of FM−AFM was only
0.5 meV/f.u..

III. RESULTS AND DISCUSSION

We calculated the interlayer binding energy of the mon-
oclinic structure. For the interlayer binding energy predic-
tion, care must be taken regarding the two-body finite-size
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FIG. 3. Total energies of the monolayer CrI3 predicted by FNDMC
for the inverse of different simulation cell sizes.

FIG. 4. Total energies of monoclinic bulk CrI3 predicted by FNDMC
for the inverse of different simulation cell sizes.

error, since errors are expected to be very different between
the bulk and the monolayer. We estimated finite-size errors
by extrapolating the total energy for the inverse of the sim-
ulation cell sizes. Figure 3 (Figure 4) shows the total ener-
gies for the monolayer (monoclinic bulk) structure calculated
with FNDMC as a function of the inverse of the size of the
simulation cell. The dotted straight lines shows a linear fit
curve using the energies of the larger of the two simulation cell
sizes. The y-intercept value represents the extrapolated value
of the total energy to the inifinite simulation cell size limit.
The binding energy is 342 (22) meV/f.u. equaling 16.7(11)
meV/Å2.

We calculated the interlayer binding curve of the mono-
clinic structure with FNDMC to predict the interlayer sep-
aration distance. We estimated the two-body finite-size er-
ror by a linear extrapolation of the energies of 4 f.u. and
12 f.u simulation cells for the inverse of the cell size. We

FIG. 5. The interlayer binding curves of the momoclinic structure
predicted with vdW–DF–optB86b for two different geometries: ex-
perimental and relaxed with vdW–DF–optB86b.

FIG. 6. FNDMC prediction of the binding curve of the monoclinic
structure. The vertical axis indicates the relative energy differences
from the lowest total energy. The dotted line indicates the quadratic
fitting curve with the four lowest data points.

did not optimize the geometry for every interlayer separation:
we merely changed the interlayer separation distance. How-
ever, we confirmed that the structural relaxation did not signif-
icantly alter the prediction of the separation distance. Figure
5 compares the interlayer binding curves of the monoclinic
structure predicted by the vdW–DF–optB86b functional for
two different geometries:with and without (fixed) structural
relaxation. The vertical lines indicate the minima estimated
by cubic spline interpolation, highlighting the minimal effects
of structural relaxation on the interlayer separation distance.
The binding curve predicted by FNDMC is shown in Figure
6. The minimum estimated by quadratic fitting is 6.749(73) Å,
which agrees with the experimental separation distance, 6.623
Å15, within 2σ standard deviation. We note that the interlayer
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FIG. 7. DFT prediction of the interlayer binding curves of the mono-
clinic structure with different functionals. The experimental separa-
tion distance is shown as a vertical line. The binidng energy predicted
by FNDMC is shown as a gray shaded region. The PBE result is just
behind the LDA result so the PBE curve is not visible.

separations predicted with 4 and 12 f.u. are 6.496(22) and
6.693(26) Å. The interlayer separation with the 4 f.u. simula-
tion cell is significantly different from the extrapolated value,
indicating the need for careful consideration of the two-body
finite-size errors when predicting interlayer separation dis-
tances.

TABLE I. Separation distances (dseparation) and binding energies
(Ebinding) of the monoclinic bulk CrI3 obtained with different ap-
proaches. The top and bottom items are reference data.

dseparation (Å) Ebinding (meV/Å2)
Experiment15 6.623 –

FNDMC 6.749(73) 15.6–18.1
vdW–DF 7.063 12.45

vdW–DF2 6.960 11.90
rev–vdW–DF2 6.671 13.05
SCAN+rVV10 6.656 12.27

vdW–DF–optPBE 6.847 15.02
vdW–DF–optB88 6.686 15.99

vdW–DF–optB86b 6.646 16.30
vdW–DF–optB86b56 6.240 –

Figure 7 shows the interlayer binding curves of the mono-
clinic structure predicted by DFT with different functionals.
(The predicted binding curves of the rhombohedral structure
are also shown in the appendix B. They are very similar
to those of the monoclinic structure.) The vertical line in-
dicates the experimental interlayer separation distance15. The
gray shaded region indicates the interlayer binding energy pre-
dicted by FNDMC. The vertical width of the region indicates
the error bar. The functionals without vdW corrections (i.e.,
LDA, PBE, LDA+U, PBEsol, and SCAN) completely fail to
reproduce the interlayer binding. For vdW-corrected function-
als, we estimated the minima (i.e., separation distance) by cu-

bic spline interpolation. The predicted separation distances
are shown in Table I with the experimental value15.

Before discussing the results, we will briefly introduce
vdW-corrected functionals, which are expressed as

EXC = EGGA
X + ELDA

C + ENL
C . (1)

Here, EGGA
X is the exchange functional, ELDA

C is the correla-
tion functional of LDA, and ENL

C is the non-local correlation
functional. ENL

C is given as

ENL
C =

1
2

"
d~rd~r′n(~r)φ(~r,~r′)n(~r′). (2)

Here, n(~r) is the electronic density at position ~r. The term
φ(~r,~r′) is defined in Reference49 and determines the inter-
action among the densities.The term EGGA

X− is the revPBE
exchange functional57 in the original vdW–DF functional.
The vdW–DF2 variant replaces the revPBE exchange func-
tional with a revised PW86 exchange functional58, because
revPBE is generally too repulsive near the equilibrium sep-
aration52. rev-vdW–DF2 uses the B86b59 exchange func-
tional rather than PW86. This functional is designed to pro-
vide improved descriptions of inhomogeneous systems com-
pared with PW86. For vdW–DF–optPBE, vdW–DF–optB88,
and vdW–DF–optB86b functionals, the parameters in the ex-
change functionals, revPBE, B8860, and B86b59, are opti-
mized for the S22 data set to work with the vdW–DF correc-
tion30. SCAN+rVV10 combines the SCAN functional61 and
rVV10 correction for vdW interactions62, which is similar to
vdW–DF correction.

In Table I, as expected from previous experience, the vdW–
DF functional overestimates the separation distance. The
vdW–DF2 functional predicts a shorter distance, but the sepa-
ration distance is still significantly larger than the experimen-
tal value. Similar overestimations have been reported in cases
of transition metal atom adsorption on a graphene surface17,18,
interlayer binding of quasi–two-dimensional materials18, and
benzene adsorption on a copper surface18. On the other hand,
rev–vdW–DF2 was found to be in extremely good agree-
ment with the experimental value, presumably because it pro-
vides a better description of inhomogeneity through the use of
the PW86b exchange functional. However, similar to vdW–
DF and vdW–DF2, the rev–vdW–DF2 functional still signifi-
cantly underestimates the binding energy. SCAN-rVV10 pro-
vides a similar prediction to that of rev–vdW–DF2. The func-
tionals whose exchange portions were reoptimized with the
vdW corrections (i.e.—vdW–DF–optPBE, vdW–DF–optB88,
and vdW–DF–optB86b)— best reproduced the reference in-
terlayer separation and binding energy. Among those func-
tionals, vdW–DF–optPBE slightly overestimates the separa-
tion distance and underestimates the binding energy, presum-
ably because the original revPBE functional generally overes-
timates interlayer repulsion. Finally, we note that our vdW–
DF–opB86b results contradict a previous study: The estima-
tion by McGuire et al.56 of the separation distance, shown in
the bottom column of Table I, significantly underestimates the
separation distance compared with the experimental value.
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The comparison between our results for CrI3 and other
benchmark studies of other quasi–two-dimensional materi-
als shows that the best density functional is system depen-
dent. Krogel et al.20 predicted the equilibrium separation
and the binding energy of TiS2. They established that vdW–
DF–optB86b and vdW–DF–optB88 reproduce both the refer-
ence equilibrium separation and binding energy. They also
established that SCAN+rVV10 significantly underestimates
the binding energy. Hamada18 predicted the equilibrium sep-
aration of graphite, hexagonal boron nitride, and molybde-
num(IV) sulfide with the vdW–DF2 and rev–vdW–DF2 func-
tionals. Their findings suggest that vdW–DF2 significantly
overestimates separation distances. On the other hand, their
findings differ from our results in that, in the case of graphite,
vdW–DF2 reproduces the reference binding energy but rev–
vdW–DF2 overestimates it. In the case of black phosphorus,
vdW–DF–optB86b significantly overestimates the binding en-
ergy compared with the FNDMC prediction19. Schulz and
Liljeroth63 predicted the distances between atoms in hexag-
onal boron nitride (graphene) and Iridium (111) substrate.
They showed that vdW–DF–optB88 reproduced the experi-
mental structure for graphene but the functional underesti-
mated the layer width in the case of the hexagonal boron ni-
tride. They established that vdW–DF–rB8618,63, vdW–DF2–
rB8618,63, and PBE+rVV1046,64 reproduced the experimen-
tal structures for both systems. However, their prediction
heavily depends on the functional, suggesting that their re-
sults may not apply to other systems. Tran et al.65 per-
formed benchmark study of DFT functionals for intralayer
and interlayer lattice constants and interlayer binidng energy
of several hexagonal layered solids. They established that
PBE+rVV10L66, SCAN+rVV10, and rev–vdW–DF2 showed
complehensively better performance than the other function-
als including vdW–DF–optB86b and vdW–DF–optB88. To
summarize, the accuracy of each DFT functional is signif-
icantly dependent on the target quasi–two-dimensional sys-
tem: thus, functionals should be benchmarked for each sys-
tem. Therefore, our study is a valuable source for subse-
quent DFT studies targeting CrI3. We have found that some
DFT functionals work impressively well for magnetic quasi–
two-dimensional systems, for which DFT functionals have not
been benchmarked against FNDMC to our knowledge. In ad-
dition, the reliable predictions of the binding energy of two-
dimensional materials with FNDMC will be useful in further
developing and improving DFT approximations.

IV. CONCLUSION

In summary, we studied the interlayer binding properties
of bulk CrI3 using FNDMC. This method successfully repro-
duced the experimental interlayer separation distance15; in-
dicating the reliability of FNDMC for investigating bulk CrI3.
We also predicted the interlayer binding energy with FNDMC,
which is estimated at 14.3 to 17.9 meV/Å2. We found that,
in agreement with experiment, the rhombohedral and mon-
oclinic structures observed experimentally were within ther-
mal energy difference, suggesting favorable cancellation of

systematic errors in FNDMC. In this work, we have care-
fully taken into account the different dimensional two-body
finite-size errors of monolayer and monoclinic bulk CrI3. We
have evaluated several DFT functionals based on the predicted
binding energy and the experimental interlayer separation dis-
tance. The results showed that functionals with vdW correc-
tions, vdW–DF–optB88, and vdW–DF–optB86b reproduced
the reference interlayer separation distance and binding ener-
gies very well. We believe that the FNDMC predicted in-
terlayer binding energy is useful to test other promising func-
tionals, such as vdW-DF-C0967, vdW-DF-cx68, DFT-D69–71,
TS-vdW72, and ones not yet invented, in future. Especially,
vdW-DF-cx was shown as good as vdW-DF-B86b in a previ-
ous benchmark study73.

. APPENDIX

A. Energy difference of the rhombohedral and monoclinic

structures

We calculated the energy differences of the rhombohedral
and monoclinic structures with FNDMC. The structures com-
pared have the same experimental geometries considered in
the main text.56 The energies were calculated for the ferro-
magnetic state with 3 bohr/f.u.. We compared the energies of
simulation cells with the same number of atoms and a similar
shape for both structures (three layers and 12 f.u. in total), so
that the two-body finite-size errors could be cancelled out in
the energy difference prediction; however, the residual finite-
size errors were shown to be large without extrapolation.

The energy difference of the two structural phases was con-
sidered to be a few meV per atom, since the transition tem-
peratures were below the room temperature. Our FNDMC
calculations found a 90(28) meV/f.u. energy difference, with-
out finite-size correction. This result, although encouraging,
may well be due to accidental cancellation of multiple er-
rors sources, since, in addition to size effects, nodal errors
and non-locality pseudopotential errors were typically much
larger than a few meV per atom. Finite-size extrapolations us-
ing FNDMC are currently not practical for the rhombohedral
structure.

B. DFT predicted binding curves of the rhombohedral

structure

In Figure 8, we compare the interlayer binding curves pre-
dicted by DFT with different functionals. Since the energy
difference between the monoclinic and rhombohedral struc-
ture is very small, the binding energy should be close. There-
fore we write the FNDMC prediction of the binding energy
for the monoclinic structure into the figure as the reference
for the binding energy. We obtained very similar results to
those for the monoclinic structure.
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FIG. 8. DFT prediction of the interlayer binding curves of the rhom-
bohedral structure with different functionals. The experimental sep-
aration distance is shown as a vertical line. The binidng energy pre-
dicted by FNDMC is shown as a gray shaded region. The PBE result
is just behind the LDA result so the PBE curve is not visible.
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I. Kylänpää, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R. M.
Martin, A. Mathuriya, J. McMinis, C. A. Melton, L. Mitas, M. A.
Morales, E. Neuscamman, W. D. Parker, S. D. P. Flores, N. A.
Romero, B. M. Rubenstein, J. A. R. Shea, H. Shin, L. Shulen-
burger, A. F. Tillack, J. P. Townsend, N. M. Tubman, B. V. D.
Goetz, J. E. Vincent, D. C. Yang, Y. Yang, S. Zhang, and L. Zhao,
Journal of Physics: Condensed Matter 30, 195901 (2018).

32 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello,
S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo,
G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M.
Wentzcovitch, Journal of Physics Condensed Matter 21 (2009),
10.1088/0953-8984/21/39/395502, 0906.2569.

33 M. Burkatzki, C. Filippi, and M. Dolg, The Journal of Chemical
Physics 126, 234105 (2007), https://doi.org/10.1063/1.2741534.

34 M. Burkatzki, C. Filippi, and M. Dolg, The Journal of Chemical
Physics 129, 164115 (2008), https://doi.org/10.1063/1.2987872.

35 A. L. Dzubak, T. Ichibha, J. T. Krogel, V. R. Cooper, and F. A.
Reboredo, “Diffusion quantum monte carlo study of halogen and
chromium-halogen complexes,” (2020), unpublished.

36 J. T. Krogel, J. A. Santana, and F. A. Reboredo, Phys. Rev. B 93,
075143 (2016).

37 C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hen-
nig, Phys. Rev. Lett. 98, 110201 (2007).

38 N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkes,
Phys. Rev. B 78, 125106 (2008).

39 P. P. Ewald, Annalen der Physik 369, 253 (1921),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19213690304.

40 QMCPACK, “Users guide and developers manu v3.9.2,” on-
line: https://docs.qmcpack.org/qmcpack_manual_v3.9.
2.pdf (2020), accessed on 16Nov2020.

41 QMCPACK google group, “strange results when changing lat-
tice paramaters,” online: https://groups.google.com/g/
qmcpack/c/3Hkt5sWY_e4/m/6P8aUWGaAQAJ (2020), accessed

on 19Nov2020.
42 J. T. Krogel, Computer Physics Communications 198, 154

(2016).
43 G. Kresse and J. Furthmüller, Computational Materials Science 6,

15 (1996).
44 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
45 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
46 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
47 G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen,
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