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The accurate prediction of solid-solid structural phase transitions at finite temperature is a challenging task,
since the dynamics is so slow that direct simulations of the phase transitions by first-principles (FP) methods
are typically not possible. Here, we study the α-β phase transition of Zr at ambient pressure by means of on-
the-fly machine-learned force fields. These are automatically generated during FP molecular dynamics (MD)
simulations without the need of human intervention, while retaining almost FP accuracy. Our MD simulations
successfully reproduce the first-order displacive nature of the phase transition, which is manifested by an abrupt
jump of the volume and a cooperative displacement of atoms at the phase transition temperature. The phase
transition is further identified by the simulated X-ray powder diffraction, and the predicted phase transition
temperature is in reasonable agreement with experiment. Furthermore, we show that using a singular value
decomposition and pseudo inversion of the design matrix generally improves the machine-learned force field
compared to the usual inversion of the squared matrix in the regularized Bayesian regression.

I. INTRODUCTION

Because of widespread applications in nuclear, chemical,
and manufacturing process industries [1, 2], zirconium has
stimulated extensive interest in fundamental research aim-
ing to clarify the underlying mechanisms responsible for the
phase transitions and phase diagram from both experiment
and theory [3–31]. Upon cooling the melt, Zr solidifies to
a body-centred cubic (bcc) structure (the β phase) and un-
dergoes a phase transformation to a hexagonal close-packed
(hcp) structure (the α phase) at a temperature lower than 1136
K at zero pressure [3] and at lower temperatures under pres-
sure [10]. With increasing pressure, the hcp phase transforms
into another hexagonal but not close-packed structure (the ω
phase) [5–11]. Under further increased pressure, the ω phase
transforms to the β phase [7, 10]. The experimentally esti-
mated α-ω-β triple point is at 4.9 GPa and 953 K [10].

To understand the microscopic mechanism of the bcc-hcp
phase transition of Zr, Burgers [15] proposed that the tran-
sition can be divided into two processes. As illustrated in
Fig. 1, the bcc phase first undergoes a long wavelength shear
in the [111̄] direction along the (112) plane (or equivalently
in the [11̄1] direction along the (1̄12) plane), which squeezes
the bcc octahedron to the hcp one, thereby changing the an-
gle between the [111̄] and [11̄1] directions from 109.5◦ to
120◦ [15, 16]. Then, the neighbouring (011) planes of the
bcc phase experience a shuffle along opposite [011̄] direc-
tions with a displacement of aβ

√
2/12 [15, 16] [compare

Figs. 1(b) and (c)]. The shuffle originates from displacements
along the zone-boundary N-point phonon of the T1 branch in
the [110] direction [15, 16]. The transition belongs to the
martensitic transformations, is of first order and displacive,
and adopts the definite orientational crystallographic relation
(011)β //(0001)α and [111̄]β //[1̄21̄0]α [15].

∗ peitao.liu@univie.ac.at

FIG. 1. (a) Schematic illustration of the structural relationship be-
tween hcp (α) and bcc (β) Zr. The black straight lines and dashed
lines represent the hcp and bcc conventional unit cells, respectively.
Note that for simplicity, atoms are only shown for the hcp phase
in (a). The blue lines indicate the minimum common 4-atom or-
thorhombic (o) cell, whose lattice parameters (ao, bo, co) defined in
terms of hcp and bcc lattices are given as (aα1 , aα1 + 2aα2 , c

α) and (aβ,
bβ − cβ, bβ + cβ), respectively. (b) The (011) plane of the bcc phase.
(c) The (0001) plane of the hcp phase. Green and red balls represent
the Zr atoms in two layers. The crystallographic relation for the β-α
martensitic phase transition is indicated [15].

The Burgers mechanism was later confirmed by Willaime
and Massobrio [29] using classic molecular-dynamics (MD)
simulations based on a semi-empirical tight-binding in-
teratomic potential [32], giving valuable insight on the
temperature-induced hcp-bcc phase transition of Zr from an
atomistic point of view. However, their predicted phase tran-
sition temperature deviated by nearly 800 K from the exper-
imental value, since their potential was fitted to the hcp Zr
phase only [29]. By including zero-temperature as well as
high-temperature properties of both hcp and bcc Zr phases
in the fitting procedure, Mendelev and Ackland [33] devel-
oped an embedded-atom interatomic potential that predicted a
reasonable hcp-bcc transition temperature. Some residual de-
pendency on the target properties used in the fitting, however,
remained. Furthermore, these physics-based semi-empirical
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potentials, in general, suffer from limited accuracy and are not
very flexible, because of their rather simple analytical form.
This cannot capture the properties of structures over a large
phase space.

Machine learning (ML) based regression techniques [34–
39] have recently emerged as a promising tool to construct
interatomic potentials. Their advantage is that they are en-
tirely data-driven and do not assume any specific functional
form. Most machine-learned force fields (MLFF) try to learn
the potential energy surface as well as its derivatives by find-
ing a map from the local atomic environments onto local en-
ergies. Typically, energies, forces, and stress tensors that are
calculated by first-principles (FP) techniques are fitted. Us-
ing the kernel ridge regression method, Zong et al. gen-
erated an interatomic potential that successfully reproduced
the phase diagram of Zr [22] and uncovered the nucleation
mechanism for the shock-induced hcp-bcc phase transforma-
tion in hcp-Zr [30]. Using the Gaussian approximation po-
tential (GAP) model [35, 40], Qian and Yang [24] studied
the temperature-induced phonon renormalization of bcc Zr
and clarified the origin of its instability at low temperature.
However, for the hereto employed ML methods, construction
of suitable training structures is a fairly time-consuming trial
and error process based on intuition. The thus obtained train-
ing datasets are normally huge and might contain unnecessary
structures outside the phase space of interest. This can even
reduce the accuracy of the generated ML potential. Further-
more, the generated ML potential showed only fair agreement
with phonon frequencies and elastic constants calculated us-
ing density functional theory (DFT).

To reduce human intervention, on-the-fly machine learning
schemes [41–43] provide an elegant solution. These generate
the force fields automatically during FP molecular dynamics
(MD) simulations while exploring potentially a large phase
space. In particular, Jinnouchi et al. [43, 44] suggested using
the predicted Bayesian error to judge whether FP calculations
are required or not. In this manner, usually more than 98%
of the FP calculations are bypassed during the training, sig-
nificantly enhancing the sampling of the configuration space
and the efficiency of the force field generation [43]. This
method has been successfully applied to the accurate and effi-
cient prediction of entropy-driven phase transitions of hybrid
perovskites [43], melting points [44], as well as chemical po-
tentials of atoms and molecules [45].

In this work, we attempt to revisit the hcp-bcc phase transi-
tion of Zr at ambient pressure by using the on-the-fly MLFF
method developed by Jinnouchi et al. [43, 44]. Almost with-
out any human intervention, our generated MLFF successfully
reproduces the phonon dispersions of both the hcp and bcc
phases at 0 K as well as the first-order displacive nature of the
phase transition manifested by an abrupt jump of the volume
and cooperative movement of atoms at the phase transition
temperature. This confirms the Burgers mechanism [15]. The
phase transition is further confirmed by the simulated X-ray
powder diffraction. Moreover, we demonstrate that using a
singular value decomposition for the regression overall im-
proves the accuracy of the MLFF compared to the regularized
Bayesian regression.

II. METHOD

For a comprehensive description of the on-the-fly MLFF
generation implemented in the Vienna Ab initio Simulation
Package (VASP), we refer to Ref. [44]. A perspective article
on this method can be found in Ref. [46]. Here, we just sum-
marize the most important aspects of the underlying MLFF
techniques.

As in many MLFF methods [34–40, 47–50], the potential
energy U of a structure with Na atoms is approximated as a
summation of local atomic potential energies Ui

U =

Na
∑

i=1

Ui, (1)

where Ui is described as a functional of the two-body (ρ(2)
i

)
and three-body (ρ(3)

i
) distribution functions,

Ui = F
[

ρ
(2)
i
, ρ

(3)
i

]

. (2)

The two-body distribution function ρ(2)
i

is defined as the prob-
ability to find an atom j ( j , i) at a distance r from atom
i [44, 51]

ρ
(2)
i

(r) =
1

4π

∫

ρi (rr̂) dr̂, (3)

where ρi(r) (r = rr̂) is the three-dimensional atom distribution
function around the atom i defined as

ρi (r) =
Na
∑

j,i

ρ̃i j (r) ,

ρ̃i j (r) = fcut

(

|r j − ri|
)

g
(

r − (r j − ri)
)

.

(4)

Here, ρ̃i j (r) is the likelihood to find atom j at position r rel-
ative to atom i, fcut is a cutoff function that smoothly elimi-
nates the contribution from atoms outside a given cutoff ra-
dius Rcut, and g is a smoothed δ-function. The three-body dis-
tribution function ρ(3)

i
is defined as the probability to find an

atom j ( j , i) at a distance r from atom i and another atom
k (k , i, j) at a distance s from atom i spanning the angle
∠ki j = θ between them. It is defined as [51]

ρ
(3)
i

(r, s, θ) =
"

dr̂dŝ δ (r̂ · ŝ − cosθ)
Na
∑

j,i

Na
∑

k,i, j

ρ̃ik (rr̂) ρ̃∗i j (sŝ)

=

"
dr̂dŝ δ (r̂ · ŝ − cosθ)

×
















ρi (rr̂) ρ∗i (sŝ) −
Na
∑

j,i

ρ̃i j (rr̂) ρ̃∗i j (sŝ)

















.

(5)

It should be noted that the definition of ρ(3)
i

in Eq. (5) is free
of two-body components and the importance of the two- and
three-body descriptors can thus be separately tuned. To dis-
tinguish from the power spectrum [40], we denote these de-
scriptors as the separable descriptors. For more discussions
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on the difference between the separable descriptors and the
power spectrum, we refer to Ref. [51].

In practice, ρ(2)
i

and ρ(3)
i

are discretized in a suitable basis
and represented by a descriptor vector xi collecting all two-
and three-body coefficients [51]. Therefore, the functional F

in Eq. (2) becomes a function of xi [51]

Ui = F
[

ρ
(2)
i
, ρ

(3)
i

]

→ F(xi). (6)

For the functional form of F, a kernel based approach is
used [40]. Specifically, using the algorithm of data selec-
tion and sparsification [44], NB atoms are chosen from a set
of reference structures generated by FP MD simulations and
the atomic distributions surrounding the selected atoms are
mapped onto the descriptors xiB

. The function F is then ap-
proximated by the linear equation of coefficients wiB

F(xi) =
NB
∑

iB=1

wiB
K

(

xi, xiB

)

, (7)

where the kernel function K
(

xi, xiB

)

is a nonlinear function
that is supposed to quantify the degree of similarity between a
local configuration xi of interest and the reference configura-
tion xiB

. Here, a polynomial function K
(

xi, xiB

)

=
(

x̂i · x̂iB

)ζ is
used [40, 51]. This introduces nonlinear mixing of purely two-
and three-body descriptors, which was found to be important
for an accurate and efficient description of the potential energy
surfaces [51].

From Eq. (7), the total energy, forces and stress tensors of
any structure can be obtained as linear equations of the coef-
ficients wiB

. In a matrix-vector representation, it can be ex-
pressed as

yα = φαw, (8)

where yα is a vector collecting the FP energy, forces, and
stress tensors for the given structure α of Nαa atoms, in total,
mα = 1 + 3Nαa + 6 components. φα is a mα × NB matrix. The
first line of the matrix φα is comprised of

∑Nαa
i

K
(

xα
i
, xiB

)

/Nαa ,
the subsequent 3Nαa lines consist of the derivatives of the ker-
nel with respect to the atomic coordinates, and the final 6 lines
consist of the derivatives of the kernel with respect to the unit
cell coordinates [44]. w is a vector collecting all coefficients
{wiB
|iB = 1, ...,NB}. The generalized linear equation contain-

ing all reference structures is given by

y = Φw. (9)

Here, y is a super vector collecting all FP energies, forces, and
stress tensors {yα|α = 1, ...,Nst} for all reference structures
and similarly, Φ is the design matrix comprised of matrices
φα for all reference structures [44]. Based on Bayesian linear
regression (BLR), the optimal coefficients w̄ are determined
as [44, 52]

w̄ =
(

Φ
T
Φ + σ2

v/σ
2
wI

)−1
Φ

Ty, (10)

where σ2
v is the variance of the uncertainty caused by noise

in the training datasets, and σ2
w is the variance of the prior

distribution [44]. The parameters σ2
v and σ2

w are obtained by
maximizing the evidence function [44].

Having obtained the optimal coefficients w̄, the energy,
forces, and stress tensors for any given structure α can be pre-
dicted by yα = φαw̄, and the uncertainty in the prediction is
estimated as the variance of the posterior distribution [46]

σ2 = σ2
vI + σ2

vφ
α
(

Φ
T
Φ + σ2

v/σ
2
wI

)−1
[φα]T. (11)

It is found that the square root of the second term in Eq. (11)
resembles the real error remarkably well [44] and thus pro-
vides a reliable measure of the uncertainty. This is the heart
of the on-the-fly MLFF algorithm. Armed with a reliable er-
ror prediction, the machine can decide whether new structures
are out of the training dataset or not by using state-of-the-art
query strategies [44]. Only if the machine finds the need to
update the training dataset with the new structures, FP cal-
culations are carried out. Otherwise, the predicted energy,
forces, and stress tensors by the yet available MLFF are used
to update the atomic positions and velocities. In this manner,
most of the FP calculations are bypassed during training runs
and simulations are in general accelerated by several orders
of magnitude while retaining almost FP accuracy [44, 46]. A
final note is in place here: we generally distinguish between
training runs and the final application of the MLFF. In the first
case, the force field is continuously updated and the total en-
ergy is not a constant of motion, whereas in the latter this is
the case.

Furthermore, we notice that in Eq. (10), disregarding reg-
ularization, essentially an inversion of a squared matrix ΦT

Φ

is performed

w̄ =
(

Φ
T
Φ

)−1
Φ

Ty. (12)

Similar procedures (inversion of a squared matrix) are adopted
by Csányi and co-workers [53], although a different regular-
ization is used. We find that the condition number of the
squared matrixΦT

Φ often approaches 1/ǫ, where ǫ is the ma-
chine precision (for double precision arithmetic ǫ is roughly
10−16). Squaring the matrix Φ, i.e., calculating ΦT

Φ means
that the condition number of the matrix Φ is also squared. If
the condition number of the squared matrix exceeds 1/ǫ, in-
formation is irrevocably lost from the original problem. The
standard means to avoid squaring the problem is ro replace
the solution of the normal equation (12) by the QR decom-
position Φ = QR and to obtain w̄ by backwards substitution
Rw̄ = QTy. It is well known that QR algorithms significantly
improve the stability of the solution of a least square problem.
A slightly more expensive and equally controlled solution is
to calculate the pseudoinverse ofΦ using a singular value de-
composition (SVD)

Φ = UΣVT, (13)

Φ
−1 = VΣ−1UT, (14)

w̄ = Φ−1y. (15)

This can be calculated by calling scaLAPACK routines [54].
The key question is whether this allows to salvage the addi-
tional information fromΦ that is lost by squaring the problem
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and solving the regularized normal equation. Inspection of the
eigenvalue spectrum of Φ for the present case shows that the
condition number ofΦ is roughly 4×1010. This confirms that
some information is lost due to extinction and finite precision
in the matrix ΦT

Φ, which would formally have a condition
number of ≈1021. As we show below, we are indeed able
to recover some additional information and thus improve the
accuracy by calculating the pseudoinverse of the design ma-
trix instead of solving the regularized normal equation. In the
present case the advantages are, however, small. Since calcu-
lating the pseudoinverse takes little extra time, we feel that this
step should be performed regardless of the admittedly small
gains in accuracy. We do this only once, after the on-the-fly
training has finished. We note that the condition number of the
design matrix Φ is rarely reported in literature for MLFFs. It
would be interesting to know whether other implementations
observe similar issues. Specifically, we expect that a combi-
nation of radial and angular descriptors or use of the power
spectrum generally leads to a fairly ill-conditioned problem.

Finally, we stress that regularization in a manner strictly
compatible to Eq. (10) can be easily recovered by using the
Tikhonov regularization [55] if needed. However, contrary to
common belief, we find that due to the inclusion of equations
for the forces and sparsification of the local environments, our
system of equations is in general over-determined and there-
fore regularization is not strictly required. To give an exam-
ple, in the present case, the final force field is trained using
935 structures of 48 atoms, each yielding one energy equa-
tion, 6 equations for the stress tensor, and 48× 3 equations for
the forces. Due to sparcification only 1013 fitting coefficients
need to be determined (see Sec. III B). This means that the
number of equations is about 140 times larger than the num-
ber of unknowns. Finally, we note that we use the evidence
approximation to determine σ2

v and σ2
w. We find that the quo-

tient (σ2
v/σ

2
w)/λmax (λmax being the maximum eigenvalue of

the squared matrixΦT
Φ) approaches machine precision in the

present case. This also confirms that the system of equations
is over-determined and that regularization is not required.

III. COMPUTATIONAL DETAILS

A. First-principles calculations

All first-principles calculations were performed using
VASP [56, 57]. The generalized gradient approximation
of Perdew-Burke-Ernzerhof (PBE) [58] was used for the
exchange-correlation functional. A plane wave cutoff of 500
eV and a Γ-centered k-point grid with a spacing of 0.16 Å−1

between k points were employed, which ensure that the total
energy is converged to better than 1 meV/atom. The Gaussian
smearing method with a smearing width of 0.05 eV was used
to handle fractional occupancies of orbitals in the Zr metal.
The electronic optimization was performed until the total en-
ergy difference between two iterations was less than 10−6 eV.

TABLE I. The training and validation root-mean-square errors
(RMSE) in energies (meV/atom), forces (eV/Å) and stress tensors
(kbar) calculated by MLFF-BLR and MLFF-SVD for three ωE . Note
that in this work ωE=10 is used unless otherwise explicitly stated.

Training errors Validation errors
BLR SVD BLR SVD

ωE = 1
Energy 3.69 3.22 2.87 2.70
Force 0.08 0.07 0.10 0.09
Stress 1.16 1.04 1.16 1.12

ωE = 10
Energy 2.33 1.74 2.17 1.96
Force 0.08 0.07 0.10 0.09
Stress 1.40 1.05 1.34 1.11

ωE = 100
Energy 1.65 0.47 2.87 2.36
Force 0.09 0.08 0.11 0.10
Stress 1.89 1.27 1.98 1.29

B. MLFF training

Our MLFFs were trained on-the-fly during MD simulations
using a Langevin thermostat [59] at ambient pressure with a
time step of 1.5 fs. The separable descriptors [51] were used.
The cutoff radius for the three-body descriptor and the width
of the Gaussian functions used for broadening the atomic dis-
tributions of the three-body descriptor were set to 6 Å and
0.4 Å, respectively. The number of radial basis functions and
maximum three-body momentum quantum number of spher-
ical harmonics used to expand the atomic distribution for the
three-body descriptor were set to 15 and 4, respectively. The
parameters for the two-body descriptor were the same as those
for the three-body descriptor.

The training was performed on a 48-atom orthorhombic cell
using the following strategy. (i) We first trained the force field
by a heating run from 0 K to 1600 K using 20,000 MD steps
starting from the DFT relaxed hcp structure. (ii) Then, we
continued training the bcc phase by a MD simulation with
an isothermal-isobaric (NPT) ensemble at T=1600 K using
10,000 MD steps. (iii) Using the equilibrium bcc structure
at T=1600 K obtained from the previous step, the force field
was further trained by a cooling run from 1600 K to 0 K using
20,000 MD steps. (iv) Since the bcc Zr is strongly anharmonic
and dynamically stable only at high temperatures [23–27], to
include the ideal 0 K bcc structure in the training dataset, an
additional heating run from 0 K to 300 K using 10,000 MD
steps was performed starting from the DFT relaxed bcc struc-
ture. Indeed, we observed that the bcc phase is unstable at low
temperature and transformed into the more stable hcp struc-
ture just after 300 MD steps. It should be stressed here that our
on-the-fly MLFF training is rather efficient. Eventually, only
935 FP calculations were performed out of 60,000 MD steps,
i.e., nearly 98.4% of the FP calculations were bypassed. From
these 935 reference structures, 1013 local configurations are
selected as the basis sets. In the last step, the SVD [Eq. (15)]
was used to redetermine the coefficients using the same de-
sign matrix as obtained from the BLR. In the following, we
denote the MLFFs obtained by using BLR and SVD for the
regression as MLFF-BLR and MLFF-SVD, respectively.
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FIG. 2. MLFF-SVD vs. DFT in terms of (a) energies, (b) forces, and
(c) diagonal components of the stress tensors for the test datasets. (d)
The MLFFs and DFT predicted energy difference for each structure
in the test datasets.

Furthermore, we note that for any regression method it is
possible to increase the weight of some equations, though this
reduces the “relevance” and in turn the accuracy of the other
equations. Presently our machine learning code first reweights
all equations such that the standard deviations in the energy
per atom, forces and stress tensors equal one. To give an ex-
ample, if the standard deviation in the energy per atom is 100
meV, all energy equations are scaled by 1/100 meV−1. Like-
wise, if the standard deviation for the forces is 0.5 eV/Å, all
force equations are scaled by 2 (eV/Å)−1.

After this scaling has been performed, we found that it is
expedient to increase the relative weight of the energy equa-
tions (ωE) by a factor of 10 with respect to the equations for
the forces and stress tensors in the linear regression. This de-
creased the root-mean-squared errors (RMSE) in the energies
by almost 1.4 meV/atom for the training dataset, while the
errors in the forces and stress tensors did not increase signifi-
cantly (see Table I). One motivation for increasing ωE is that
for each structure with Na atoms, there is only one equation
for the energy, but 3Na and 6 equations for the forces and
stress tensors, respectively. Likewise, we found that increas-
ing the relative weight of the stress tensor equations (ωS ) by
a factor of 5 improves the accuracy of the elastic constants,
although it slightly worsens phonon dispersion relations (see
Sec. IV).

C. MLFF validation

The generated MLFFs have been validated on a test dataset
containing 40 hcp structures of 64 atoms at T=500 K and
another 40 bcc structures of 64 atoms at T=1400 K. These
structures were generated using MD simulations with an NPT
ensemble at T=500 K and 1400 K employing the obtained
MLFFs. Table I shows both the training and validation er-
rors in energies, forces and stress tensors calculated by MLFF-

TABLE II. Lattice parameters of hcp and bcc Zr as well as their
energy difference at 0 K predicted by DFT and MLFFs using BLR
and SVD for the regression. Note that the experimental data for hcp
Zr [60] and bcc Zr [61] were measured at room temperature and low
temperature (< 7 K), respectively.

DFT BLR SVD Expt.
hcp Zr
a = b (Å) 3.235 3.234 3.235 3.233 [60]
c (Å) 5.167 5.169 5.166 5.147 [60]
bcc Zr
a (Å) 3.574 3.574 3.573 3.551 [61]
E(bcc)−E(hcp) (eV/atom) 0.084 0.081 0.082 —

BLR and MLFF-SVD. Clearly, results using SVD are gener-
ally improved compared to the results using BLR, both for the
test and training dataset. Although the improvement seems
to be modest, we will see below that physical observables are
also better described using the SVD. Concerning the relative
weight of the energy equations, we note that using SVD the er-
ror in the energy in the training dataset decreases significantly,
reaching sub meV precision (0.47 meV/atom), if the energy
equations are reweighted by a factor of 100. Unfortunately,
the errors in the test dataset increase, if ωE is increased be-
yond a value of 10. This indicates that by strongly weighting
the energy equations, the unregularized SVD tends to overfit
the energies, and overall the best results on the test dataset are
obtained by reweighting the energy equations by a factor of
10 and using SVD.

As an illustration, results on the energies, forces and diag-
onal components of stress tensors predicted by MLFF-SVD
and density functional theory (DFT) for the test dataset are
presented in Figs. 2(a), (b) and (c), respectively, showing
very good agreement. In addition, the MLFFs and DFT pre-
dicted energy difference for each structure in the test datasets
is shown in Fig. 2(d). Compared to the hcp structures, the bcc
ones exhibit larger errors due to the stronger thermal fluctua-
tions at high temperature. We note that our generated MLFF-
BLR is already very accurate with training and validation er-
rors of 2.33 and 2.17 meV/atom in the energy, respectively.
Due to the improved condition number, MLFF-SVD further
improves upon MLFF-BLR by reducing the overall errors in
energies, forces and stress tensors (see Table I). These im-
provements are particularly relevant for the application to the
prediction of defects energetics where supercells need to be
used and errors in the range of 1 meV/atom will cause errors
of the order of 100 meV for defects. In addition, as compared
to MLFF-BLR, MLFF-SVD improves the phonon dispersions
towards DFT results due to its improved forces, as will be dis-
cussed later on.

We notice that our force field is more accurate than the one
obtained by Zong et al. [22], which exhibited much larger
training mean absolute errors of 5.8 and 6.7 meV/atom in the
energy for hcp and bcc Zr, respectively. This might be re-
lated to the fairly simplified ML model used in Ref. [22] as
well as a rather extensive training dataset containing multi-
phase structures. Surprisingly, the force field generated by
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predicted by DFT (grey dotted lines) and MLFFs (full lines) using
BLR (black) and SVD (red for ωS=1 and blue for ωS=5) for the
regression. 180-atom and 343-atom supercells have been used for
hcp and bcc phases, respectively.

Qian and Yang [24] shows rather small validation RMSE of
0.2 meV/atom for the hcp phase and 0.3 meV/atom for the bcc
phase [24]. In our experience, a precision of sub meV/atom
can only be attained if fairly small displacements and low tem-
perature structures are used. Indeed, the training structures
considered in Ref. [24] correspond to small displacements of
the groundstate hcp and bcc structure as well as finite tempera-
ture training data at 100 K, 300 K, and 1200 K, and validation
was done for configurations selected from MD simulations at
300 K.

IV. RESULTS

We start by showing the lattice parameters of hcp and bcc
Zr at 0 K as well as their energy difference predicted by DFT
and MLFFs. As seen in Table II, almost perfect agreement is
observed between DFT and MLFFs for both BLR and SVD.
The slightly larger lattice parameters predicted by theory as
compared to experiment originate from the tendency of PBE
to overestimate lattice constants. For the energy difference
between bcc and hcp Zr, both MLFF-BLR and MLFF-SVD
slightly underestimate the DFT value with MLFF-SVD being
more accurate (see also Table I).

Fig. 3 presents the phonon dispersions of hcp and bcc Zr at
0 K calculated by DFT and MLFFs. Consistent with previous
FP calculations [21–24], at 0 K hcp Zr is dynamically stable,
whereas bcc Zr is dynamically unstable due to the double-
well shape of the potential energy surface [24]. As compared
to DFT, MLFF-BLR describes the acoustic phonons of hcp
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FIG. 4. Energies of hcp and bcc Zr at 0 K as a function of volume
predicted by DFT and MLFFs. Curves are fitted by using the Vinet
universal equation of state [62].

Zr very well. Although a slightly larger deviation exists for
the optical phonons, it seems that difficulties in accurately de-
scribing optical phonons are quite general for machine learned
interatomic potentials [22, 24]. For instance, our results are
comparable with those predicted by Qian and Yang [24], but
are better than those predicted by Zong et al. [22]. The latter
show a very large discrepancy of nearly 2 THz for the optical
phonons at the Brillouin-zone center [22]. The possible rea-
sons have been discussed in Sec. III C. Here, we want to em-
phasize that in contrast to Ref. [24] where the force field was
purposely trained to model phonons by using perturbed su-
percells with strains and displacements, in the present work,
the necessary information on the force constants were auto-
matically captured during the on-the-fly MLFF training, and
our MLFF predicted phonon dispersions came out to be in
good agreement with the DFT results. In addition, we ob-
serve that the average optical phonon frequencies predicted
by our MLFFs are quite accurate, which implies that free en-
ergy differences are likely to be described accurately. For the
bcc phase, the MLFF-BLR is able to capture the soft zone-
boundary N-point phonon of the T1 branch which is involved
in the β-α phase transition [15, 16] and the soft phonon mode
in the H-P direction which is responsible for the β-ω phase
transition [6, 16, 25], but struggles to obtain accurate results
along P-Γ. However, these soft phonon modes are extremely
difficult to obtain accurately even by DFT, with the DFT re-
sults being strongly dependent on the system size. This means
that training on a 48-atom cell is likely to be inadequate to
describe all phonon instabilities in bcc Zr. As compared to
MLFF-BLR, MLFF-SVD overall improves the phonon dis-
persions towards the DFT results for both hcp and bcc Zr, in
particular for the optical phonon modes for both phases and
the soft phonon modes along P-Γ for bcc Zr. This is not un-
expected, since MLFF-SVD reduces errors in forces as com-
pared to MLFF-BLR (see Table I).
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TABLE III. Ion-relaxed elastic coefficients Ci j and bulk moduli (in
GPa) of hcp and bcc Zr at 0 K predicted by DFT and MLFFs. For the
MLFFs using SVD, results using two relative weights of the stress
tensor equations (ωS=1 and 5) are shown. Values in the parentheses
represent the ion-clamped elastic coefficients. The experimental data
of hcp Zr [4] and bcc Zr [27] shown in this table were measured at 4
K and 1189 K, respectively.

DFT BLR SVD SVD Expt.
(ωS=1) (ωS=1) (ωS=5)

hcp Zr
C11 143.4 133.9 132.0 140.7 155.4

(155.3) (150.3) (142.9) (149.6) –
C12 64.9 78.0 61.8 63.2 67.2

(52.9) (61.5) (50.8) (54.3) –
C13 65.4 68.6 56.7 62.8 64.6
C33 169.3 169.4 158.9 158.0 172.5
C44 24.4 26.7 24.5 24.0 36.3
B 93.31 95.55 89.0 91.8 97.5
bcc Zr
C11 73.3 109.0 72.3 76.7 104
C12 95.3 117.8 105.4 108.1 93
C44 28.8 39.5 36.5 32.7 38
B 88.80 111.67 97.1 97.3 —

Another important quantity for the prediction of phase tran-
sition are the elastic properties, which are typically hard to
accurately predict [22, 24, 63]. Although our MLFFs were
trained during a heating/cooling MD simulation at a constant
zero pressure only (the focus of the present study is on the
temperature-induced hcp-bcc phase transition at ambient pres-
sure), it turns out that the fluctuations of the volumes in the
MD simulation allow to sample slightly strained structures
and therefore our MLFFs are capable to describe elastic prop-
erties quite well. Indeed, Fig. 4 shows the volume dependence
of the energies of hcp and bcc Zr at 0 K predicted by DFT
and MLFFs. One observes that the DFT calculated energy
vs. volume curve is well reproduced by our MLFFs. Obvious
deviations are discernible only for small volumes away from
the equilibrium volume. This is expected, because no exter-
nal pressure is applied during training. The better agreement
between DFT and MLFFs for the larger volumes apparently
benefits from the thermal expansion during heating. As com-
pared to the results in Ref. [22], our MLFFs predicted energy
vs. volume curves are, again, in better agreement with the
DFT data. Table III summarizes the predicted elastic coeffi-
cients and bulk moduli. One can see that our MLFFs work
well for the elastic properties of hcp Zr, showing reasonably
good agreement with DFT. However, the description of the
elastic properties for bcc Zr by our MLFFs is not so satisfac-
tory. The largest discrepancy is found for C44. This is be-
cause at 0 K, the bcc phase is unstable both dynamically [see
Fig. 3(b)] and mechanically [the Born elastic stability crite-
rion (C11−C12 > 0) [64] is disobeyed], and therefore, only few
reference structures corresponding to the unstable ideal bcc
phase are collected during our on-the-fly training. Concern-
ing the comparison between MLFF-BLR and MLFF-SVD, we
found that both MLFFs are comparably good in predicting the

 4200

 4240

 4280

 4320

 4360

 600  800  1000  1200  1400  1600

V
ol

um
e 

(Å
3 )

Temperature (K)

(b) MLFF−SVD

heating
cooling

 4200

 4240

 4280

 4320

 4360

 600  800  1000  1200  1400  1600

V
ol

um
e 

(Å
3 )

(a) MLFF−BLR

TExpt.

heating
cooling

FIG. 5. Evolution of the volumes of 180-atom orthorhombic su-
percells with respect to temperature during the heating (black) and
cooling (red) MD simulations using (a) MLFF-BLR and (b) MLFF-
SVD. The dashed lines represent the experimentally measured hcp-
bcc phase transition temperature TExpt. = 1136 K [3].

elastic properties of hcp Zr, whereas the MLFF-SVD dramat-
ically improves over the MLFF-BLR for bcc Zr. In addition,
by increasing ωS by a factor of 5, the overall elastic proper-
ties are further improved, but this slightly worsens the phonon
dispersion relations (see Fig. 3). This is expected, because in-
creasing ωS yields more accurate stress tensors, while slightly
increasing the errors in energies and forces.

Finally, we turn to the hcp-bcc phase transition. To avoid
large volume fluctuations appearing in small supercells, a rea-
sonably large orthorhombic supercell with 180 Zr atoms is
used to simulate the phase transition. Fig. 5 shows the evo-
lution of the volume with respect to the temperature during
the heating and cooling MD simulations predicted by MLFF-
BLR and MLFF-SVD. For each MD simulation, 2 million
MD steps (corresponding to a heating/cooling rate 0.33 K/ps)
were used. First, one can observe that both MLFFs success-
fully reproduce the hcp-bcc phase transition, a typical first-
order phase transition manifested by an abrupt jump in the
volume at Tc. Second, the predicted phase transition between
hcp and bcc phases is reversible via heating or cooling, but
a fairly large hysteresis is observed, i.e., heating and cooling
runs yield different Tc. This is not unexpected for a first-order
phase transition and similar to experimentally observed super-
heating and super-cooling. Third, if we average over the upper
and lower transition temperatures, both MLFFs predict a Tc

that is in reasonable agreement with the experimental value.
However, as compared to the phonon dispersion relations, no
improvement for the prediction of Tc by SVD is obvious. We
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will explain this observation below.
We note that a quantitative comparison of Tc between ex-

periment and theory as obtained from direct heating and cool-
ing should be done cautiously. For small systems, the transi-
tion temperatures might be well wrong by 100 K due to er-
rors introduced by finite size effects or hysteresis. To mitigate
this problem, we performed each heating or cooling run ten
times to obtain a reasonable statistics for estimating Tc, and
we obtained a mean value of 1040 K with a standard devia-
tion of 30 K for MLFF-SVD. Upon heating the lowest tem-
perature at which the transition to the bcc structure occurred
was 1107 K, while upon cooling the highest temperature at
which the transition to the hcp structure occurred was 982 K.
The mean (1045 K) is in excellent agreement with the above
value. To refine the transition temperature further, we low-
ered the heating and cooling rate by a factor of 4 (0.08 K/ps)
and performed four more cooling runs yielding transition tem-
peratures of 1019-1047 K, as well as four more heating runs
yielding transition temperatures of 1046-1093 K. These val-
ues clearly confirm that the transition temperature for a system
size of 180 atoms is about 1045 K with an estimated error bar
well below 10 K. Such a small error bar would be very hard
to achieve using, for instance, thermodynamic integration and
free energy methods.

Finally, we have explore how accurate the force fields,
MLFF-BLR and MLFF-SVD, are compared to the reference
PBE calculation. The previous assessments on the ideal hcp
and bcc structures are not necessarily very accurate, since bcc
Zr at 0 K is dynamically unstable, and finite temperature dis-
placements are obviously not considered. To assess the accu-
racy of the MLFF for predictions of the transition temperature,
we estimate the free energy difference FFP−FMLFF between FP
and MLFF calculations through thermodynamic perturbation
theory (TPT) in the second-order cumulant expansion [65, 66]

FFP − FMLFF = −
1

kBT
ln〈exp

(

−UFP − UMLFF

kBT

)

〉

≈ 〈∆U〉 − 1
2kBT

〈(∆U − 〈∆U〉)2〉,
(16)

where ∆U = UFP − UMLFF is the potential energy difference
between FP and MLFF calculations. Without loss of gener-
ality, 40 structures close to T=1040 K from the heating and
cooling MD runs using MLFF-SVD were selected as test en-
semble. The former (heating) are clearly hcp like, whereas
the later resemble bcc like structures. The estimated values
of FFP − FMLFF are shown in Table IV. Obviously, MLFF-
SVD is more accurate than MLFF-BLR for the free energies,
in particular for the bcc Zr where a larger deviation of 1.64
meV/atom from the FP free energy is observed in the MLFF-
BLR. This is expected, since MLFF-SVD predicts more ac-
curate potential energies as well as phonon dispersion rela-
tions. For the free energy difference between the bcc and hcp
phases, which is relevant for estimating Tc, MLFF-SVD and
MLFF-BLR yield deviations of 0.27 and 0.84 meV/atom, re-
spectively, as compared to the one calculated by PBE. After
estimating the entropy difference between the two phases, we
estimate that this translates to an error of 9 K for MLFF-SVD

TABLE IV. Estimated free energy difference FFP−FMLFF (meV/atom)
between FP and MLFF calculations at T=1040 K using an ensem-
ble of 40 structures picked from heating and cooling MD runs using
MLFF-SVD. Because of the hysteresis, the heating run yields hcp
like structures, whereas the cooling run yields bcc like structures.

Heating/ hcp Cooling/ bcc
BLR SVD BLR SVD

FFP − FMLFF −0.80 −0.56 −1.64 −0.83
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FIG. 6. Simulated XRD patterns of Zr at selected temperatures dur-
ing (a) heating and (b) cooling MD simulations using MLFF-SVD.
The corresponding adopted structures are shown in Fig. 7. The XRD
patterns of hcp and bcc Zr at 0 K are also shown for comparison.

in predicting Tc. With the correction by TPT, our final esti-
mate for Tc by PBE is placed at 1049 K, in reasonable agree-
ment with the experimental value of 1136 K.

To further validate that the observed phase transition is from
hcp to bcc, X-ray powder diffraction (XRD) patterns are sim-
ulated for snapshot structures picked from the MD trajecto-
ries. The results are shown in Fig. 6. From the XRD patterns,
the hcp-bcc phase transition is unambiguously confirmed, in
accordance with Fig. 5. Furthermore, the displacive nature of
the phase transition can be visually observed from the changes
in the atomic structure, as shown in Fig. 7. The cooperative
movement of Zr atoms of alternating (011)β planes in the bcc
phase along the opposite [011̄]β directions results in the hcp
atomic stacking sequence, confirming the the Burgers mecha-
nism for the temperature-driven bcc-hcp phase transition [15].

Our good prediction for the hcp-bcc phase transition of Zr
undoubtedly demonstrates the strength and accuracy of on-
the-fly MLFF. In particular, almost no human interference was
required during the training, which in the present study just in-
volved heating and cooling of hcp and bcc Zr. In principle, the
training can be done in less than a week, with the human effort
of setting up the calculations being just few hours. As a mat-
ter of fact, testing the MLFF was a significantly more time-
consuming endeavor in the present case. Our MLFF training
strategies and analysis presented in this work can also be em-
ployed to study the temperature-dependent martensitic phase
transitions in other materials such as other group-IV elements
Ti and Hf and group-III elements Sc, Y and La, with very little
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FIG. 7. Structure evolution as a function of temperature during heating (upper row) and cooling (bottom row) MD simulations. These snapshot
structures were picked from the MD trajectory using MLFF-SVD. The hcp and bcc structures at 0 K are also illustrated for comparison.

effort. In addition, the obtained force fields trained on hcp and
bcc Zr at ambient pressure can be further trained by applying
external pressure and by including the hexagonal ω phase in
the training dataset so that the full temperature-pressure phase
diagram of Zr can be readily constructed.

V. CONCLUSIONS

To summarize, we have successfully applied the on-the-fly
MLFF method to determine a force field for bcc and hcp Zr
and study the hcp-bcc phase transition of Zr. This is a fairly
challenging problem that is hard to address using brute force
methods and FP MD simulations due to the limited length-
and time-scales accessible to DFT simulations. Certainly,
standard passive learning methods are possible and have been
successfully used in the past, but they do not offer the same
sort of convenience as the present approach. The first-order
displacive nature of the hcp-bcc phase transition— manifested
by an abrupt jump in the system volume and a change in
the atomic stacking sequences —has been unambiguously re-
produced by our MD simulations and identified by the sim-

ulated XRD patterns, confirming the Burgers mechanism for
the temperature-induced hcp-bcc phase transition. In addition,
our MLFF predicted phase transition temperature is found to
be in reasonable agreement with experiment. Finally, we have
shown that due to the improved condition number, SVD is
in general more accurate than the regularized BLR, which is
evidenced by the systematic decrease of the errors in ener-
gies, forces, and stress tensors for both the training and test
datasets. The improvement by SVD over BLR has also been
showcased by its improved prediction of the energy difference
between bcc and hcp Zr and of the phonon dispersions of both
hcp and bcc Zr. In summary, evidence shown in this paper
suggests that pseudo inversion of the design matrix using SVD
is a useful approach to overcome some of the limitations of
regularized regression methods.
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