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Materials exhibiting negative thermal expansion (NTE) are important for the fabrication and
operation of microelectronic devices and optical systems. As an important group of Ruddlesden-
Popper (RP) perovskites, calcium titanates Can+1TinO3n+1 (CTO, n= 1, 2, ..., ∞) have layered
structures and may exhibit quasi-two dimensional (quasi-2D) NTE within their three-dimensional
structural architectures. In this work, combining density-functional-theory calculations and the self-
consistent quasiharmonic approximation method, we investigate the variation of quasi-2D character
of the phonon spectra and thermal expansion in the Can+1TinO3n+1 family (n = 1,2,3, and ∞) with
respect to n. We find that a quasi-2D NTE mechanism is active in the RP-CTOs at n of 1, 2, and 3,
while a quasi-rigid-unit mode mechanism is active at n =∞ (i.e., the perovskite phase). We find
a NTE trend with layer number for the orthorhombic materials comprising the RP series, but the
monoclinic polymorph is an outlier. For the orthorhombic members, we find the critical pressure for
NTE increases with increasing n, but the NTE critical temperature decreases (when materials are
compared at the same pressure). Additionally, the elastic moduli can be used as effective descriptors
for this layer-dependent behavior of the NTE, i.e., the stiffer the RP-CTO then the lower its NTE.
We also propose the integrated NTE capacity to capture the correlation between the quasi-2D NTE
and n, and it monotonically decreases with increasing n.

I. INTRODUCTION

Materials with reduced dimensionality are proposed as
viable complementary beyond-CMOS platforms for next-
generation electronic devices. Although the few-atom
thicknesses possessed by two-dimensional (2D) materials
imbue them with unique electronic and thermomechan-
ical properties, it is those same structural features that
make 2D materials highly challenging to manufacture,
interface, and control in regards to material thickness and
sample transfer in nanotechnologies [1]. For these reasons,
theoretical materials efforts have focused on identifying
“thicker” quasi-2D materials with layered crystalline habits
that are able to replicate 2D physics by exploiting a di-
mensional reduction within the active degree of freedom;
for example, 2D band structures can be found in 3D
materials if the active electronic orbitals are sufficiently
confined [2, 3].

In nanoelectronic and optical devices, the accumulated
thermal stress from fabrication and during operation may
cause component spalling, large resistance variablility,
and shifts in photoluminescence [4, 5] owing to strain
induced by the coefficient of thermal expansion (α, CTE)
mismatch between materials, e.g., graphene and its sup-
porting substrate. Hence thermal properties must be
accounted for in both the interpretation of experimental
data taken under variable temperature and when process-
ing functional van der Waals heterostructures [6]. Some
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amount of NTE may also be beneficial for scaffolding
different materials into multicomponent architectures, be-
cause NTE tends to cancel the unusual deleterious positive
expansion and helps reduce the CTE mismatch [7].

Negative thermal expansion (NTE) is another unique
2D property exhibited by graphene, germanene, blue
phosphorene [8], and transition metal dichalcogenides [9].
Layer number was found to control the thermal expan-
sion in the graphene-graphite-diamond carbon allotrope
family [10]. Negative thermal expansion was found to de-
crease in magnitude as layer number increased: Graphene
(monolayer) exhibits a larger negative α and temperature
range than graphite (two layers), whereas diamond (3D
connected) exhibits only positive thermal expansion. The
underlying negative thermal expansion mechanism in this
family is a two-dimensional Z-acoustic (ZA) phonon mode
associated with quadratic dispersion in momentum space.
The ZA mode exhibits a negative Grüneisen parameter
in graphene and graphite (albeit, smaller magnitude in
graphite), yielding the negative thermal expansion.

Negative thermal expansion mechanisms in 3D ternary
perovskite-type materials are due to one of the three
general microscopic mechanisms: phase-transition-driven
(structural [11] or electronic/magnetic [12]), phonon-
driven [13], or elasticity-driven [14, 15] (negative com-
pliance tensor elements) NTE. For phonon-based mecha-
nisms, NTE arises from a population of the modes exhibit-
ing negative mode-Grüneisen values (γ = −Vν

dν
dV < 0),

a lattice-dynamical quantity which describes the change
in phonon frequency ν of a particular mode with unit-
cell volume V [16]. A phonon with γ < 0 usually ex-
hibits transverse atomic displacements in its correspond-
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ing vibrational pattern, which justifies the so-called ten-
sion effect [17, 18]. In the aforementioned 2D materials,
this behavior manifests as the ZA mode (i.e., graphene),
whereas in 3D framework materials (i.e., with nearly-rigid
octahedra), it occurs as collective rotations and tilts of
polyhedra—so-called rigid unit modes (RUMs). In fact,
d’Ambrumenil and colleagues showed that 2D structural
units within the 3D framework structure ZnNi(CN)4 al-
lows both 3D-RUMs and 2D-transverse-vibration-type
phonons to contribute to the NTE [19], although the
transverse vibration (hence the 2D mechanism) was iden-
tified to dominate. Negative thermal expansion driven
by lattice dynamics, however, occurs over specific tem-
perature ranges, i.e., when thermal population of the
modes that yield negative γ dominate over those with
positive γ (and γ > 0 arises from a bond-stretching effect)
[18]. Microscopically, when atomic bonds involved in a
vibration are strong, the bond stretching outcompetes
bond bending modes, resulting in positive γ contribu-
tion. In contrast, if the bonds are weak, then the bending
contribution dominates to give negative γ.

Owing to its variable number of perovskite blocks, the
Ruddlesden-Popper (RP) series is an ideal family to ex-
plore the effect of dimensionality on NTE. The n = 1
member exhibits a quasi-2D structure, with a sheet of
corner-connected BO6 octahedral units (in the [100] and
[010] directions) separated by rocksalt layers along the
[001] direction, whereas the n = ∞ member, the per-
ovskite, exhibits a 3D structure with corner-connected
octahedra in all directions as shown for Can+1TinO3n+1

in Fig. 1. The effect of dimensionality on the properties of
all inorganic RP oxides has been studied recently in the Sr-
Ti-O homologous family: It was found, for example, that
the band gaps decrease as n increases due to decreased
confinement [20, 21], the exciton binding energy tends
to decrease as n increases [21], and strain can induce
a two-to-three dimensional ferroelectric transition [22].
Layer-dependent phase stabilities and thermal expansion
behavior were also investigated, with a dimensionality
transition occurring at n = 3 due to the appearance of
octahedral rotations in those structures (n ≥ 3) [23]. The
optical properties as a function of dimensionality have also
been studied experimentally in Ca3Ti2O7 and CaTiO3

[24].
Pressure-induced volumetric negative thermal expan-

sion was previously demonstrated in the polar polymorphs
of Ca3Ti2O7, the n = 2 member of the Ca-Ti-O homolo-
gous series, enabled by a quasi-2D vibration [25]. Bansal
and colleagues[26] then performed a combined experiment-
theory study to investigate the quasi-2D nature of the
dispersion using inelastic x-ray scattering (IXS) and DFT.
While the IXS data showed only linear dispersion be-
havior, their relaxed DFT calculation showed quasi-2D
dispersion behavior. The difference was attributed to the
lack of anharmonic effects in the DFT calculation [26].
Uniaxial NTE was also demonstrated in Ca3Mn2O7 and
Ca3−xSrxMn2O7, attributed to a symmetry-trapped rigid
unit phonon in the high-temperature centrosymmetric
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FIG. 1. Atomic structures of the homologous series of
Ruddlesden-Popper Can+1TinO3n+1 titanates. The broken
brackets indicate the number (n) of TiO6 octahedral layers.

phase (Acaa symmetry) [27, 28]. The latter trapping phe-
nomenon was then investigated in n = 1 Ca2GeO4 as a
model system with density functional calculations, and it
was determined that anisotropy in the mechanical compli-
ance tensor and phonons with γ < 0 were responsible for
the uniaxial NTE in the I41acd phase [14]. This result
reinforces the importance of phonon modes with negative
Grüneisen parameters, as in the n = 2 RPs, but further
highlights the role of an anisotropic elastic compliance
tensor in the thermal response. The anisotropy in the
elastic compliance arises from the “frozen-in” octahedral
distortions and symmetry-breaking rocksalt motif in the
RP series.

The elastic compliance tensor was also analyzed as a
function of n in the Ca-Ge-O homologous series. The
anisotropy was found to decrease as a function of n [29].
The n = 1 germanate exhibited the most anisotropic ten-
sor, and thus the strongest predicted uniaxial NTE [29].
The behavior was attributed to the increased interface
fraction in the small-n compounds. Finally, the uniaxial
CTE was tuned by chemical control over the tolerance fac-
tor in the Ca2−xSrxMn1−yTiyO4, where maximal uniaxial
negative thermal expansion behavior was found preceding
a low-tolerance factor phase boundary (I41/acd → Pbca)
due to progressively lower frequencies of octahedral rota-
tions, and right before a high temperature phase boundary
(I41/acd→ I4/mmm) due to high elastic compliance [30].
Taken together, the aforementioned uniaxial NTE results
suggest design strategies for NTE in RP compounds by
(i) controlling proximity to a phase transition, (ii) increas-
ing the elastic anisotropy arising from static octahedral
distortions, and/or (iii) increasing the interface fraction
(low-n compounds). It should be noted, however, that the
uniaxial work presents a different physical picture than
that presented here (and previously in our earlier n = 2
work). The uniaxial research focuses on inter-axis cou-
pling and elastic anisotropy, while we focus on quasi-2D
and quasi-3D mechanisms.

Here, we computationally assess the structural, lattice
dynamical, and thermal properties of the calcium titanate
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RP series with layer thickness n = 1, 2, 3, and ∞ within
the framework of density functional theory, and identify
the phononic origin of their volumetric negative thermal
expansion. As the n=1 phase has not been synthesized ex-
perimentally, we propose structures which may be targets
for synthesis: ambient pressure Pbca and P21/c phases
and a high pressure Cmca phase. All RP structures ex-
hibit NTE due to the quasi-2D mechanisms, while the
perovskite phase exhibits NTE due to a quasi-RUM. We
find that, for the orthorhombic compounds, the volumet-
ric NTE activity increases as n decreases, which can be
understood to arise from a decrease in the elastic stiffness
of the materials with n. The monoclinic angle in P21/c
hinders the NTE response, such that a higher critical
pressure is needed to activate the phenomena than in
the n=1 Pbca and the n=2 members. We find that the
Pbca phase at n = 1 has the largest negative CTE of
−2.5× 10−6 K−1 (at P = 20 GPa, T = 55 K) and exhibits
NTE over the largest temperature range (up to 149 K). To
compare NTE behavior across materials, we use the NTE
capacity, which reveals that the NTE behavior increases
as n decreases owing to the increased mechanical stiffness
in the orthorhombic members. These models provide a
strategy to understand and design NTE in a variety of
layered transition metal compounds.

II. MATERIALS AND METHODS

A. Can+1TinO3n+1 Structures

Fig. 1 shows the Ruddlesden-Popper and perovskite
structures comprising the Ca-Ti-O homologous series ex-
amined in this study. An interesting feature of this struc-
tural family is the presence of inversion symmetry with
layer number n. Members with values of n even are pre-
dicted to be polar due to the odd number of CaO layers
and their non-cancelling anti-polar displacements of the
Ca cations [31]. Conversely, odd-n members are predicted
to be nonpolar, because they have an even number of
CaO layers, and thus anti-polar A-site displacements are
fully compensated.

The low-temperature phase of perovskite CaTiO3

(n = ∞) exhibits Pnma symmetry with the a−a−c+

tilt pattern (in Glazer notation [32]) and it undergoes
two phase transitions upon heating at ambient pres-
sure. It undergoes a orthorhombic-to-tetragonal tran-
sition (Pbnm → I4/mcm) at 1512 ± 13 K followed by
a transition to cubic Pm3̄m symmetry at 1636 ± 12 K
[33, 34]. At all temperatures, the structure is centrosym-
metric. Pressure dependent x-ray diffraction measure-
ments show that the orthorhombic Pbnm phase is stable
up to 60 GPa. After 40 GPa, however, peaks broadened in
the x-ray pattern, which was attributed to nonhydrostatic
stress [35]. This experimental result is consistent with
ab initio molecular dynamics calculations that also find
dynamic stability of the orthorhombic polymorph up to
65 GPa at 300 K [36].

Ca4Ti3O10 (n = 3) crystallizes in the centrosymmetric
Pbca symmetry (space group number 61) at room tem-
perature [37] and exhibits the a−b−c+ tilt pattern. Its
temperature-pressure phase diagram has not been investi-
gated experimentally. Ca3Ti2O7 (n = 2) exhibits polar
Cmc21 symmetry, which is stable up to 1150 K [27], and
is a hybrid improper ferroelectric [38].

The n = 1 member of the family, Ca2TiO4, remains
to be synthesized experimentally and is predicted to be
thermodynamically unstable based on disproportionation
energies [39], indicating that the decomposition products
are RP titanates of increased layer number (i.e., n = 2 or
n = ∞) and CaO. It also does not appear in the phase
diagram for the Ca-Ti-O system [40–43].

To search for candidate n = 1 structures, we employ
symmetry-based structure searching, aided by Bayesian
inference. A previous result by Balachandran et al. [44]
enumerated common distortions in experimentally known
n=1 RP oxide compounds. The commonly observed dis-
tortions for Ca on the A site transform as the irreducible
representations (irreps) X+

2 ⊕X
+
3 and P4, whereas Ti on

the B site frequently exhibits the distortion transforming
as X+

3 ⊕M
−
3 , where each mode-vector is an irreps of the

I4/mmm space group. Additionally, low-temperature
distortions adopted by n=1 RP oxides with these ele-
ments include X+

2 ⊕X
+
3 and P4. As X+

2 ⊕X
+
3 and P4

appeared twice, we checked the stability of the structures
produced by these irreducible representations with den-
sity functional theory calculations described below: Pbca
(X+

2 ⊕X
+
3 ) and Pca21 (X+

2 ⊕X
+
3 ⊕ P4).

We found that Pbca was nearly dynamically stable,
while Pca21 was dynamically unstable. Upon compres-
sion by approximately 10 %, the octahedral rotation in the
Pbca was no longer favorable, leading to Ca2TiO4 with
the Cmca space group and one octahedral tilt. Tracking
the DFT-computed lattice constants with pressure shows
clear evidence of a phase transition (Figure S4). We then
relaxed the Cmca structure to obtain its equilibrium ge-
ometry and found it exhibits three unstable modes at
the Γ point (see Figures S1 and S6, in the Supporting
Information, SI, appearing as Ref. 45). After condensing
the unstable modes, we found that although the Pbca
structure was lowest in energy, it was not dynamically
stable [45]. The second-lowest-energy P21/c polymorph
was dynamically stable and is approximately 8 meV/f.u.
higher in energy than the Pbca phase, which is within
kT at 300 K. We then computed the thermomechanical
properties of both phases and herein focus on the Pbca
phase for comparison in the Ca-Ti-O orthorhombic RP
and perovskite series, because it is lowest in energy and is
of the same crystal class as the other materials. We then
compare the n = 1 Pbca and P21/c polymorphs directly.
Our phase exploration of Ca2TiO4 suggests that a synthe-
sis experiment under pressure may yield the Cmca phase,
and subsequent decompression experiments could yield
an ambient pressure polymorph. This synthetic strategy
has successfully yielded novel intermetallics [46–49] and
alloys [50].
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B. Density Functional Calculations

Density functional theory (DFT) calculations were per-
formed using the Vienna Ab initio Software Package
(VASP) [51, 52] with projector augmented planewave
(PAW) pseudopotentials [53, 54] and the Perdew-Burke-
Ernzerhof exchange correlation functional revised for
solids (PBEsol) [55, 56]. The valence configurations for
Ca, Ti, and O are 3s23p64s2, 3p63d24s2, and 2s22p4, re-
spectively. An 800 eV energy cutoff was used for the
planewave expansion for all structures. A 6 × 6 × 6 Γ-
centered k-point mesh was used for CaTiO3, 6 × 6 × 1
Γ-centered mesh for Ca4Ti3O10, and Γ-centered 8× 8× 2
mesh for Ca2TiO4 (Pbca). In addition, a Γ-centered
6 × 6 × 2 mesh was used for the Cmca phase and a Γ-
centered 6 × 6 × 6 mesh was used for the P21/c phase.
Gaussian smearing (0.1 eV width) was used for each struc-
ture. The electronic convergence threshold was 5×10−8

eV, and the force convergence threshold for atomic relax-
ations was 5×10−4 eV Å−1. The stresses after structural
relaxation were less than 0.05 kbar. A comparison of
theoretical and experimental structures are available in
Tables S1-S4, and energetic comparisons of the n = 1
polymorphs are in Table S5 of Ref. 45.

C. Lattice Dynamical Properties

The lattice dynamical properties were calculated us-
ing the finite-displacement method with pre- and post-
processing utilizing the PHONOPY software package [57].
An atomic displacement of 0.03 Å is used for CaTiO3,
Ca4Ti3O10, and Ca2TiO4. Supercell sizes of 2×2×2 (160
atoms) for CaTiO3, 2× 2× 1 (272 atoms) for Ca4Ti3O10,
and 4×4×1 (448 atoms) for Ca2TiO4 (Pbca) and 2×2×2
supercell (112 atoms) of the AFLOW [58] for Ca2TiO4

(P21/c) were used to obtain phonon spectra to assess
thermodynamic quantities using the self-consistent quasi-
harmonic approximation (SC-QHA) method [59]. Com-
putational details for n=2 Ca3Ti2O7 can be found in
Ref. 25. A 2 × 2 × 1 cell (112 atoms) was used for the
n=1 Cmca Ca2TiO4 phase from which the n=1 phase
space was searched. The n=1 Cmc21 phonon spectra was
generated using a 2× 2× 2 supercell (112 atoms) of the
AFLOW [58] primitive cell. Here we note that phonon
dispersions obtained from the finite-displacement method
for Ca2TiO4 (Pbca) were sensitive to choice of numerical
parameters in our calculation (see Figure S5 of Ref. 45
for additional details); the quadratic-dispersing phonon
was generated using a 2× 2× 1 supercell. Also, the n = 3
structure presented a numerical instability in the equilib-
rium structure (see Figure S4) [45]; therefore, compressed
structures corresponding to approximately 7.5-10 % of
the equilibrium value were used to generate the thermal
expansion data with the SC-QHA. Justification for this
can be found in the SI, Sec. VI.B and Figures S9-S11 [45].

D. The quasiharmonic approximation and
SC-QHA Method

The SC-QHA method allows for the efficient calculation
of anharmonic (i.e. thermodynamic) properties of solids
based on ab initio electronic and lattice dynamical input.
The most common way to obtain these properties is to
use the quasiharmonic approximation (QHA) method,
where phonon frequencies are volume-dependent but not
explicitly temperature-dependent. Temperature depen-
dence only occurs indirectly through thermal expansion
effects [57, 60, 61]. The conventional QHA implemen-
tation is very time consuming. Phonon spectra of ten
or more volumes of a compound are needed to obtain
an accurate free energy-volume relationship, from which
thermodynamic properties (including thermal expansion)
are derived. This necessitates stable phonon spectra at
each volume. The ground state and expanded volumes
of some oxides and perovskites, however, may have artifi-
cial imaginary phonon modes at the DFT level [23, 59].
For example, SrTiO3 exhibits imaginary modes in its
DFT equilibrium and expanded volume structures [23]
and Ca3Ti2O7, exhibits imaginary modes in its expanded
volumes [25, 59]. The presence of such imaginary modes
thereby prohibits the QHA method from being applied.

The SC-QHA method, on the other hand, only re-
quires phonons at three volumes of a material in order
to obtain thermodynamic quantities. Thus, if imaginary
modes appear at equilibrium or expanded volumes of
a material, three compressed volumes can be used in-
stead. Because those artificial imaginary modes in reality
should be real and exhibit a smooth dependence on vol-
ume, phonon frequencies of the three compressed volumes
are extrapolated and used to replace the problematic
modes at the equilibrium or expanded volume. (Note
that negative phonon modes are not allowed as a solution
in the SC-QHA method.) This is the main difference
between the SC-QHA and QHA, which has led to the
success of SC-QHA in modeling accurate coefficients of
thermal expansion (CTEs) for perovskite-structured ti-
tanates [23, 25, 59]. We also found that the SC-QHA
yields good agreement between the 0 K DFT-computed
equilibrium volumes of the materials and the 1.0 K (i.e.,
lowest computed temperature) volume from the SC-QHA
method, supporting the validity of our following ther-
momechanical results (see SI Sec. VI.A and Figure S8)
[45].

The derivation and validation of the SC-QHA method
is presented in Ref. 25. Here, we briefly summarize the
algorithm, which solves for the equilibrium volume at a
specified pressure and temperature as;

V (P, T ) =

[
dEe
dV

+ P

]−1

× 1

Nq

∑
q,σ

Uq,σγq,σ , (1)

where Uq,σ is the internal energy and γq,σ = − V
νq,σ

dνq,σ
dV

is the Grüneisen parameter of phonon mode (q, σ). The
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number of q-grid points is Nq, σ is the phonon branch,
and q is the phonon wave vector. Equation 1 shows that
the volume is obtained by balancing external and internal
pressures, P = Pe(V ) + Pγ(V, T ) where Pe = dEe

dV is the

electronic pressure and Pγ = 1
V Nq

∑
q,σ Uq,σγq,σ is the

phononic pressure.
In practice, electronic energies (Ee) are obtained first

for 10 (or more) volumes using DFT. Then an equation-
of-state, such as the fifth-order Birch-Murnaghan (BM5,)
is fit to the calculated Ee values. Next, phonon spectra of
2 or 3 volumes are calculated to obtain the first-order or
second-order Taylor expansion of the phonon frequencies,
respectively, of the form:

ν(V ) = ν(V0) +

(
dν

dV

)
0

∆V +
1

2

(
d2ν

dV 2

)
0

∆V 2 , (2)

where ∆V = V − V0 and V0 is the reference volume. An
assumption here is that ν(V ) is continuous and differen-
tiable. The volume-dependent Grüneisen parameter is
then:

γ(V ) = −V
ν

[(
dν

dV

)
0

+
1

2

(
d2ν

dV 2

)
0

∆V

]
. (3)

The self-consistent loop used to obtain V (P, T ) is initial-
ized at a certain temperature by setting the initial volume
to be 0.2% larger than the DFT equilibrium volume. New
volumes, phonon frequencies, and Grüneisen parameters
are updated at that temperature until convergence is
reached within a threshold (e.g., 10−6). Then the tem-
perature window is scanned, where calculated volumes,
phonons, and Grüneisen parameters at one temperature
are used as initial values for the next temperature. Af-
ter converging these phonon parameters, thermodynamic
properties such as the thermal expansion coefficient can
be calculated. The method assumes non-negative phonon
frequencies as well as a smooth ν − V relationship. The
method is available online [62] and as part of AFLOW
[63].

For the Ca-Ti-O data presented in this work, a fifth or-
der Birch-Murnaghan equation-of-state is used for fitting
[64]. This data is available in Table S6 and Figures S2
and S3 of the SI [45]. In addition, we note that because
Ca2TiO4 (n = 1) and Ca4Ti3O10 (n = 3) exhibit unstable
phonons at certain unit cell volumes (see Figures S5 and
S7, Ref. 45), the conventional QHA cannot be used to
calculate the anharmonic lattice properties such as:

α =
1

V

dV

dT
=

1

NqVTBT

∑
q,σ

Cq,σV γq,σ , (4)

where σ, q, and Nq have been defined previously, BT is
the isothermal bulk modulus, CV is the isovolume heat
capacity, and γ is the Grüneisen parameter. The q-grid
for the RP compounds (except the P21/c phase) was
4 × 4 × 1, while the grid for the perovskite and n=1
P21/c was 4× 4× 4. The thermomechanical properties
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FIG. 2. Structural features of the Can+1TinO3n+1 titanates
as a function of inverse layer number 1/n: (a) average (total)
Ti-O bond length, (b) average Ti-O equatorial bond length,
(c) average Ti-O axial bond length, (d) average TiO6 rotation
angle about [110], (e) average TiO6 octahedral volume, (f)
average CaOx polyhedral volume, (g) in-plane area of the (001)
plane (a× b), and (h) average Ca-Ca distance along [001].

presented here were calculated with the second-order SC-
QHA formulism (2nd-SC-QHA).

Note that the external pressure term is an independent
parameter in the SC-QHA used to solve for the volume
at that specified pressure (and temperature) [25]. To find
the critical pressure, we parametrically varied P to find
the value for which α < 0. The minimum pressure that
provides this constraint is then identified as the critical
pressure pc.

III. RESULTS AND DISCUSSION

A. Equilibrium Structures

We first compare the bond and lattice stiffness of the
Ca-Ti-O homologous series in terms of changes in atomic
structure features and the macroscopic elastic responses
using our DFT relaxed atomic structures. Detailed crys-
tallographic information is available in Ref. 45, and here
we note that there is good agreement between the DFT
atomic structures and those from experiment. A compar-
ison among Ca3Ti2O7, Ca3Zr2O7, and Sr3Zr2O7, previ-
ously proposed that weaker B-O and A-O bonds make
it easier to observe NTE using pressure in layered RP
oxides [25]. This suggests that compounds with stiffer or
stronger metal-anion bonds will exhibit reduced (or zero)
NTE response. We now assess whether this hypothesis is
valid in Can+1TinO3n+1 titanates.

Fig. 2a shows that the average (total) bond length
evolves with a volcano-like dispersion with inverse layer
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number (1/n) and is maximum at n=2 (Ca3Ti2O7). To
understand this behavior, we next decomposed the av-
erage bond length into the average equatorial (Fig. 2b)
and axial (Fig. 2c) bond lengths. Here we find that gen-
erally the average equatorial bond lengths decrease and
the average axial bond lengths increase. For both types
of bonds, we find that the dispersion with n is different
over the ranges n ∈ [1, 2] and n ∈ [3,∞]. This change
originates in the fact that the TiO6 octahedral network
transitions from 3D character in the n = ∞ perovskite,
to mixed dimensional (3D and 2D character) in the n = 3
compound, and finally presents exclusively 2D character
in the n = 1 and 2 materials. The reduced dimensional-
ity leads to axial oxide anions that are terminal ligands
(one-coordinate), and thus exhibit on average larger bond
lengths. As a consequence, the average TiO6 octahedral
volume (Fig. 2e) and in-plane area of the (001) plane,
obtained as the product of the a and b lattice parameters
(Fig. 2g), exhibit maxima at n = 2.

On the other hand, the average rotation angle about
[110] (Fig. 2d), average Ca-O polyhedral volume (Fig. 2f),
and average interplanar Ca-Ca spacing (Fig. 2h) exhibit
monotonic dependencies with n. Each structural feature
increases toward the perovskite value, which we attribute
to the decreased interface fraction of CaO rock salt layers
as n increases. More octahedral units with 3D corner
connectivity act to constrain the average rotation angle of
the TiO6 octahedra. The interface also under-coordinates
the A-site Ca, resulting in a lower Ca-O polyhedral volume
as n decreases. The CaOx polyhedra were modeled using
a maximum bond length of 4 Å, yielding CaO12 in the
perovskite-type layers and CaO9 at the rocksalt interface
in each RP structure. The interplanar spacing decreases
as n decreases as well so as to maximize coordination of
the Ca atoms. As more layers octahedra are added from
n=1 to 3, the Ca become fully coordinated within an
AOx perovskite-like polyhedron, and thus the Ca cations
shift to become further apart along the z-axis to maintain
the same nominal bond valence. This shift leads to an
increasing in the average spacing.

As there was no clear stiffness trend from a bond anal-
ysis of the homologous Ca-Ti-O series, we next calculated
the elastic stiffness tensor Cij and the bulk modulus B to
ascertain the extent of anisotropy in the linear mechani-
cal properties (Fig. 3). Most tensor components as well
as the bulk modulus increase with n. We find that the
out-of-plane moduli, C33 increase from 229 to 343 GPa
as n increases, as does the bulk modulus (from 130 to
180 GPa). Thus, as TiO6 octahedral layers increase from
n = 1 to ∞, the lattice becomes stiffer in that direction.
Interestingly, the in-plane stiffness (C66) for the n = 1
compound is higher than that of the n = 2 compound,
indicating the monolayer is less susceptible to a shear
distortion. Similarly, the n = 3 has an odd number of
octahedral units and may not be easily sheared. The
octahedra in perovskite are 3D corner connected, so as
expected, the in-plane stiffness is highest for that phase.

80

160

240

320

C
1

1
 (

G
P

a
)

80

160

240

320

C
4

4
 (

G
P

a
)

80

160

240

320

C
2

2
 (

G
P

a
)

80

160

240

320

C
5

5
 (

G
P

a
)

0 0.2 0.4 0.6 0.8 1
1/n

80

160

240

320

C
3

3
 (

G
P

a
)

0 0.2 0.4 0.6 0.8 1
1/n

80

160

240

320

C
6

6
 (

G
P

a
)

0 0.2 0.4 0.6 0.8 1
1/n

120
140
160
180

B
 (

G
P

a
)

FIG. 3. Components of the elastic stiffness tensor, Cij , and
bulk modulus, B, as a function of inverse layer number (1/n).

B. Phonon Dispersions

Fig. 4 shows the phonon dispersions for Can+1TinO3n+1

with n = 1, 2, 3, and ∞ along the kz = 0 plane of the
Brillouin zone. As expected, all structures exhibit three
acoustic modes that approach zero frequency at the zone
center. Remarkably, Ca2TiO4 (Fig. 4a) and Ca3Ti2O7

(Fig. 4b) exhibit quadratic-dispersing acoustic branches
along the Γ−X path, whereas the n = 3 (Fig. 4c) and
perovskite (Fig. 4d) titanates exhibit the expected linearly
dispersing acoustic branches along this direction. The
quadratic dispersions are also observed in 2D materials
such as graphene and graphite, where a ZA phonon with
quadratic dispersion occurs along an in-plane trajectory
in the Brillouin zone. This ZA mode exhibits γ < 0 and is
responsible for the NTE. A parabolic ZA mode was also
responsible for negative thermal expansion in single-layer
MoS2 [65]. Note that although a quadratic dispersion
of the ZA mode indicates susceptibility of a material to
exhibit NTE, it is only a sufficient rather than necessary
condition. We show in the following that the phonon
dispersions of the titanates suggests a 2D mechanism
enabling (pressure-tunable) negative thermal expansion
for n = 1, but potentially a RUM mechanism for n = 3
and perovskite.

Owing to the quadratic dispersion of the ZA phonon
mode in n = 2 Ca3Ti2O7, which arises from severing the
octahedral connectivity, we expected that the layered n =
1, 3 members would exhibit a similar feature whereas the
3D-connected n = ∞ perovskite should exhibit linearly
dispersion. As we see next, the 2D mechanism is active
when γ of that low-energy mode is negative regardless of
the specific curvature of band.



7

Γ X S Γ
0

1

2

3

4

5
F

re
q
u
e
n
c
y
 (

T
H

z
)

Γ X S Γ Γ X S Γ Γ X S Γ

(a) (b) (c) (d)

FIG. 4. Phonon dispersions of (a) Ca2TiO4, (b) Ca3Ti2O7, (c)
Ca4Ti3O10, and (d) CaTiO3. The n = 1 and 2 structures in
(a) and (b) exhibit phonons with 2D character, indicated by
an orange (bold) line. The chosen path in momentum space
spans the planar portion of the structure consistent with where
phonons responsible for NTE in 2D materials occur. The n = 1
dispersion for the Pbca phase is slightly dynamically unstable
along the Γ-S path. For in-depth analysis of this, see Figure
S5 and associated discussion in Ref. 45.

C. Thermal Expansion

Fig. 5 shows the pressure dependent thermal expan-
sion coefficients for Ca2TiO4, Ca3Ti2O7, Ca4Ti3O10, and
CaTiO3, as calculated with the 2nd-SC-QHA. As these
are anisotropic materials, it should be noted that the
calculated volume expansion coefficients are done in a
partially anisotropic manner because the phonon spec-
tra used to generate the thermal expansion coefficient
were from DFT calculations wherein the unit-cell shape
was optimized. Although this treatment neglects internal
coupling between different lattice vectors (i.e., Poisson
ratio), it is justified because in the RP Sr-Ti-O series,
the volumetric thermal expansion coefficients from par-
tially and fully anisotropic methods are nearly the same
in the 0-900 K temperature range [23]. We find that all
materials exhibit α > 0 at ambient pressure (0 GPa) and
a transition to α < 0 with applied hydrostatic pressure.
Note that the thermal expansion coefficient for CaTiO3

agrees well with experiment (see Figure S19 of Ref. 45).
The different temperature ranges over which NTE exists
as a function of n and pressure are explored later. We
note that our prediction of negative thermal expansion
can be experimentally verified, as this property has been
investigated under similar pressures for MgSiO3 [66, 67],
indium [68], and ε-Fe [69], as well as under high pressure
and low temperatures in indium [70] and ε-Fe [71]. Next,
we emphasize that despite the absence of a quadratically
dispersing acoustic phonon for n = 3 and n = ∞, NTE
occurs in all calcium titanates. Thus, a quadratic dispers-
ing phonon is a signature, but not necessary condition for
NTE.

To understand the existence of NTE at ambient pres-
sure, we examine the mode Grüneisen dispersions for the
Ca-Ti-O homologous series, focusing on the modes that
have negative Grüneisen parameters and thus lead to
negative thermal expansion. Fig. 6 shows the Grüneisen
dispersions for the n = 1, 2, 3 and∞members of the series.
First, we find each material exhibits negative Grüneisen

parameters. The eigenvectors corresponding to the domi-
nant modes exhibiting negative Grüneisen parameter for
each material are presented in Figures S12-16 of Ref. 45.
The n = 1, 2, and 3 (orthorhombic) compounds have a
Z-acoustic (ZA) or transverse acoustic (TA) mode hy-
bridizing with a shearing optical (SO) mode, while the
perovskite compound has a TA mode that mixes with a
longitudinal acoustic (LA) mode. The n=1 monoclinic
structure has hybridization of its ZA and LA modes. Our
analysis of the eigenvectors corresponding to the modes
with negative Grüneisen parameter reveals that the quasi-
2D mechanism reported in Huang et al. [25] is also active
in the n = 1, 2, 3 structures. The mode mixing transfers
the quasi-2D Z displacements from the ZA mode to the
optical modes, and gives rise to low-temperature NTE as
we show below.

In contrast, the modes with negative Grüneisen param-
eters in perovskite CaTiO3 exhibit quasi-rigid unit mode
(quasi-RUM) behavior, whereby the shared (bridging) oxy-
gen atoms in the octahedra exhibit transverse vibrations
as a result of concerted tilts and rotations of the rigid
polyhedra with small perturbations to the regular unit.
This beavhior is seen in ZrV2O7 [18] in contrast to the
ideal RUM behavior (no distortions to the polyhedra) as
reported in ZrW2O8 [18] and ScF3 [72]. The quasi-RUM
pattern also appears as part of two shearing modes in the
n=3 structure that yield negative Grüneisen parameters.
The TiO6 octahedral unit of the trilayer has rotation
and tilt motion (see the animation provided in the SI).
This demonstrates that the 2D NTE mechanism coexists
with the quasi-RUM mechanism, and that dimensionality
crossover of the NTE mechanism occurs in the n=3 phase.

Fig. 6 shows that the ZA mode undergoes a transi-
tion from positive-to-negative γ along the Γ to X path,
whereas it is already negative at Γ in the n = 1 com-
pound. The positive-to-negative transition is attributed
to stretching of weak interlayer bonds induced by the
ZA mode [25]. This feature (positive-negative transition)
is active in the γ of n = 2 and 3 titanates, which have
multiple octahedral layers connected to each other in
the z direction, but is inactive in n = 1 where there is
only one octahedral layer interleaved with rocksalt layers.
Fig. 3 supports the role played by the weak interlayer
bonds in n = 1, where the moduli of the elastic stiffness
tensor along the z direction (C33, C44, and C55) increase
as n → ∞. The octahedral layers in Ca2TiO4 (n = 1)
exhibit weaker bond stretching along z compared to the
other members in the series.

Next, we focus on the NTE regions of the titanates. At
low temperatures, the quasi-2D and quasi-RUM mech-
anisms dominate, leading to negative thermal expan-
sion, because only the low-frequency modes with neg-
ative Grüneisen parameter are excited. The negative-to-
positive transition occurs in the coefficient of thermal ex-
pansion for each material because increasing temperature
allows more phonons with positive Grüneisen parameter
to be excited. Evidence for this is seen in Fig. 7, as
there is only positive Grüneisen density-of-states (DOS)
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FIG. 5. Thermal expansion coefficients for (a) Ca2TiO4, (b) Ca3Ti2O7, (c) Ca4Ti3O10, and (d) CaTiO3. All materials have
pressure-induced negative thermal expansion and a CTE that decreases with pressure at high temperatures due to bulk modulus
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FIG. 6. Grüneisen spectra for (a) Ca2TiO4, (b) Ca3Ti2O7, (c)
Ca4Ti3O10, and (d) CaTiO3. Important modes are highlighted,
e.g., ZA is Z-acoustic (red, all plots), TA is transverse acoustic
(blue, all plots), LA is longitudinal acoustic (green, all plots),
and SO is shearing optical (mustard, all plots).

at higher frequencies.
Furthermore, we find that the critical pressures pc at

which NTE first arises increase as layer number n in-
creases (Table I). The critical temperatures, Tc, at which
α(T ) = 0, demarcating the transition between negative
and positive thermal expansion at a certain pressure, de-

TABLE I. Critical pressures, temperatures, and phononic
mechanism for negative thermal expansion (NTE) in the ho-
mologous series of calcium titanates. The critical temperatures
listed are for the corresponding critical pressures of each mate-
rial, but note that each pressure where NTE occurs will have
its own critical temperature.

Material (n) pc (GPa) Tc (K) NTE Mechanism

Ca2TiO4 (1) 5 146 quasi-2D

Ca3Ti2O7 (2) 10 49 quasi-2D

Ca4Ti3O10 (3) 13 19 quasi-2D and quasi-RUM

CaTiO3 (∞) 19.2 26 quasi-RUM

creases as n increases (when materials of different n are
compared at the same pressure). In each member of the
homologous series, Tc increases with pressure. To under-
stand the pressure effects and microscopic character of
the phonon modes responsible for NTE in the homologous
series, we next compute and show the Grüneisen-weighted
phonon density-of-states in Fig. 7 according to

gγ(ν) =
1

Nq

∑
q,σ

γq,σδ(ν − νq,σ) (5)

at ambient (0 GPa) and high pressure (20 GPa). Accord-
ing to Equation 4, we expect negative thermal expansion
to occur when the number of occupied phonons with γ < 0
exceeds those exhibiting the usual positive behavior. At
ambient pressure for each material, we find a net positive
Grüneisen-weighted DOS, while at 20 GPa, it becomes
negative for all materials. Thus, Tc increases with pres-
sure because of the increased contribution of the negative
Grüneisen DOS relative to the total as pressure increases
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titanates show an increased bulk modulus with pressure, i.e.,
bulk modulus stiffening.

(Fig. 7). This pressure-dependence also manifests in the
positive regions of α(T ), which monotonically decrease
as pressure increases. This reduction occurs due to bulk
modulus stiffening (increasing) with pressure (Fig. 8), and
the bulk modulus appears in the denominator of Equa-
tion 4. Note that there is a slight negative value of the
DOS for 0 GPa in Ca2TiO4 at low frequency, but that is
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instability of the phonons at 10 and 20 GPa; it is included
here to reveal the NTE-capacity dependence with 1/n.

due to the slightly negative frequencies appearing for the
in-plane phonon dispersions (see Figure S5 of Ref. 45).

In all titanates, the positive Grüneisen modes blueshift
to higher frequencies while negative Grüneisen modes
redshift (Figure S17, in Ref. 45, which plots the positive
and negative contribution separately). In addition, the
widths and magnitudes of the negative Grüneisen regions
increase with pressure. This occurs in the Ruddlesden-
Popper materials due to the membrane effect [25]. The
shrinkage of the octahedral in-plane membrane area low-
ers the frequency of the quasi-2D mode and makes it more
responsive to pressure (Fig. 9), resulting in a larger nega-
tive magnitude of the Grüneisen parameter. The pressure
simultaneously shortens the interlayer spacing, evidenced
by the compression of the average d-spacing (d̄, Fig. 9).
This enhances the interlayer repulsion, hardening the ZA
modes near the Γ point and reducing its anharmonicity.
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TABLE II. Structural comparison of the P21/c and Pbca
Ca2TiO4 polymorphs using attributes defined in Fig. 2. The
local connectivity in terms of bond lengths and polyhedral
volumes and orientations are similar in both phases.

P21/c Pbca

l̄ (Å) 1.95 1.95
¯lax (Å) 1.97 1.96
¯leq (Å) 1.94 1.95

angle (◦) 6.92 7.15

V̄TiO (Å3) 9.91 9.95

V̄CaO (Å3) 33.2 33.2

D. NTE Capacity

To more clearly elucidate the effect of layer number n
on the thermal expansion, we modify the recently defined
metric called “NTE capacity” [73]. Coates and Goodwin
proposed the NTE capacity, χv = −αv∆T , as a feature
to quantify and compare volumetric NTE across material
families and mechanisms [73]. In this spirit, we intro-

duced the integrated-NTE capacity as χ̃v = −
∫ Tc

0
αv dT ,

for non-cubic materials where the temperature-dependent
CTE is known. Note that in the definition of χv, a single
CTE value is used to assess the complete temperature
range (∆T ). As previously shown, the materials of the ho-
mologous calcium titanate series have different phononic
mechanisms yielding NTE, making χ̃v ideal for compar-
ing NTE activity across the family as a function of layer
number. With this feature, we find the integrated NTE
capacity increases as layer number n decreases (Fig. 10).
This can be understood in terms of the membrane effect,
wherein the thinner membrane (i.e., n = 1) is more respon-
sive to external perturbations than a thicker membrane
(i.e., n=∞) and thus has larger NTE capacity. This result
is consistent with our elasticity trends. The out-of-plane
C33 and shearing C44 and C55 all increase as n increases.
The elastically stiffer and thicker membrane limits the
transverse vibration producing NTE via the enhanced
tension mechanism. Here we note that while the Ca-Ti-O
RP series exhibits pressure-induced NTE, the Sr-Ti-O
series does not [23]. Electron density profiles revealed
that substitution of Ca by Sr stiffens the interfacial bond-
ing (at the rocksalt motif), making the Sr-Ti-O series
only have positive Grüneisen parameters and thus only
positive thermal expansion (even under pressure).

E. Comparison of P21/c and Pbca Ca2TiO4

We now examine the higher in energy but dynami-
cally stable n = 1 P21/c ambient pressure polymorph
of Ca2TiO4 and compare it to the Pbca polymorph de-
scribed previously. Crystallographic information for the
monoclinic structure is available in Ref. 45. Besides the
monoclinic distortion along the stacking direction, the

TABLE III. Elastic constant Cij comparison of the n = 1
Ca2TiO4 P21c and Pbca polymorphs.

Polymorph

Cij (GPa) P21/c Pbca

C11 213.2 208.5

C22 183.2 190.2

C33 228.3 229.3

C44 74.3 78.4

C55 80.7 81.5

C66 96.6 94.9

B 130.5 135.1
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FIG. 11. Lattice dynamical properties for the n = 1 Ca2TiO4

P21/c polymorph including the (a) in-plane phonon spectra,
(b) mode Grüneisen spectra, with the Z-acoustic (ZA, red),
transverse acoustic (TA, blue) and longitudinal acoustic (LA,
green) modes labelled, (c) cumulative sum P21/c and Pbca
Grüneisen-weighted phonon density of states (normalized per
atom) as a function of pressure, and (d) thermal expansion
coefficient at various pressures.

local connectivity of the two polymorphs are rather simi-
lar (Table II). They have almost the same average Ti-O
bond length (including average axial and equatorial bond
lengths), TiO octahedral volumes, and CaO polyhedral
volumes. Additionally, the angles away from the [110] axis
are also comparable. We also find that although P21/c
is less stiff than Pbca overall based on its bulk modulus
value, there is no clear trend among the elastic constants
(Table III).

In Fig. 11, we catalogue lattice-dynamically-derived
properties of the P21/c polymorph, including the (a) in-
plane phonon spectra, (b) mode Grüneisen spectra, (c)
comparison of the pressure-dependent cumulative sum
of the Grüneisen-weighted phonon density of states (nor-
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malized per atom), and (d) pressure-dependent thermal
expansion coefficient. Note that in this Brillouin zone,
X corresponds to the reduced reciprocal point [0, 1/2,
0], A to [1/2, 1/2, 0], and Z to [1/2, 0, 0]. These recip-
rocal space coordinates are in the plane defined by the
perovskite TiO6 layer. In contrast to Pbca, we do not
find a nonlinear acoustic mode in the phonon spectra.
Similarly, nonetheless, we do find a quasi-2D vibration
leading to negative Grüneisen parameters, as the ZA
mode is negative at the Z-point. It is hybridized with
the LA mode, which has a positive-to-negative Grüneisen
transition along Γ-Z due to initial in-plane character fol-
lowed by acquisition of Z-character along the path. This
is similar to the Γ-X path of the Pbca structure where
the quasi-2D modes with transverse eigenvectors led to
negative Grüneisen parameters. Note that in both cases,
the reciprocal path compared is (0,0,0) → (1/2,0,0).

The pressure-dependent positive and negative
Grüneisen DOS yield different overall behavior for the
two polymorphs. Although the negative Grüneisen DOS
increases for both polymorphs with pressure, the positive
Grüneisen DOS shows opposite trends. The number of
modes with γ > 0 in the P21/c polymorph increases
with pressure, while those in the Pbca decreases with
pressure (Fig. 11c). This can be rationalized with a
representative example (while recognizing that the DOS
depends on all modes) by considering a vibrational mode
at q = (1/2, 1/2, 0), i.e., the A point in P21/c. Here
we find a mode with large positive character that is
insensitive to pressure, while this feature and behavior is
absent in Pbca at the corresponding (S) point (Fig. 6a).

Although NTE still appears in the P21/c phase due to
a quasi-2D mechanism like in the Pbca structure, it occurs
at a critical pressure of 12 GPa (as opposed to pc = 5 GPa
in Pbca). This higher critical pressure occurs because
of the persistent positive Grüneisen DOS in P21/c but
absent in Pbca, as noted earlier. This is additionally
emphasized in Figure S18 in the SI, where the Grüneisen
DOS for P21/c is shown in a decomposed and summed
form. The summation is positive at pressures of 5 GPa
and 10 GPa, but negative for 12 GPa (pc) and 20 GPa.
Importantly, the C33 for P21/c is less than that of Pbca,
suggesting that the elastic constants cannot be a universal
descriptor for NTE behavior. In fact, the critical pressure
of n = 1 P21/c is greater than that of even the n = 2
Ca3Ti2O7 (where pc = 10 GPa).

The monoclinic angle seems to play a role in the dif-
ferent NTE behavior. Specifically, the interlayer spacing
of the Ca atoms in the rocksalt layers of P21/c increases
faster with pressure than that in Pbca (4.7×10−3 Å/GPa
vs. 3.5×10−3 Å/GPa, respectively), thereby stiffening the
ZA mode and contributing to the positive Grüneisen DOS
population with pressure. Furthermore, although we find
that the NTE mechanism of P21/c is quasi-2D, a shearing-
type mode which appears in the other orthorhombic RP
members of the Ca-Ti-O series is not present in P21/c.
The polymorph is already statically sheared in-plane along
the long-axis due to the monoclinic angle, and we find
no vibrational mode with an eigenvector exhibiting a sim-

ilar atomic displacement pattern. We know that NTE
appears when there is more overall negative than posi-
tive Grüneisen DOS at certain frequencies. The shearing
modes have large negative Grüneisen parameters in the
orthorhombic RP systems, and thus the absence of it in
the monoclinic structure in part justifies the higher NTE
critical pressure in the P21/c phase.

IV. CONCLUSIONS

We computed the temperature dependent thermal ex-
pansion of the homologous series of Ruddlesden-Popper
calcium titanate, n = 1, 2, 3, and ∞, using density fun-
tional theory methods. In the course of this study, we
predict dynamically stable Ca2TiO4 polymorphs thereby
expanding the phase space of RP Ca-Ti-O materials. All
structures exhibit positive thermal expansion at ambi-
ent conditions as well as pressure-induced negative ther-
mal expansion, despite quadratic-dispersing phonons only
appearing in the (orthorhombic) n = 1 and 2 phases.
We found a quasi-2D NTE mechanism is active in the
n = 1, 2, and 3 phases, while the n = ∞ perovskite ex-
hibits a quasi-RUM mechanism. Furthermore, we found
trends with NTE and layer number for the orthorhombic
Ca-Ti-O RP series, and introduced the integrated NTE
capacity, which descibes the volumetric contraction of
a material over its NTE temperature range. The NTE
trends are as follows: the NTE critical pressure increases
as n increases, and the NTE critical temperature decreases
as n increases; the NTE capacity decreases as n increases.
This layer dependent NTE behavior in the orthorhombic
members is due to the increased lattice stiffness in the
(out-of-plane) z-direction as n increases, as evidenced by
changes in the elastic constants with layers n.

Our results suggest that less stiff (and thinner) RP
and perovskite structures are more likely to have larger
volumetric NTE capacity, and therefore, provides an im-
portant step forward in design of novel materials with
tunable CTEs. Furthermore, our results suggest that for
the same layer number n, stoichiometry, and chemical
identity, a monoclinic angle will reduce NTE behavior.
Fully anisotropic volume expansion, which may yield axis-
specific trends for this series, could be pursued in future
work.
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