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We investigate precipitation dynamics in the presence of a local solute gradient using phase-
field simulations. During the homogenization heat treatment of the solidified Inconel 718 alloy,
high Nb concentration within the Laves phases or at the core of the secondary arms results in Nb
diffusion into the γ matrix. The volume fraction and spatial distribution of precipitation during
subsequent annealing can be controlled by tailoring the Nb concentration gradient in the matrix
during homogenization. We use a surrogate Ni-Fe-Nb alloy for Inconel 718 to explore the growth
dynamics of δ precipitates related to the local Nb concentration levels. The simulations indicate
that, in the presence of a Nb concentration gradient, the growth rate of δ precipitates is higher
than in a matrix of uniform average Nb concentration. The higher growth rate is a result of the
higher local thermodynamic driving force at the interface between the solute-rich matrix and the δ
interface. We propose a phenomenological model to describe the diffusion-controlled growth kinetics
of the δ phase under a solute concentration gradient.

I. INTRODUCTION

Additive Manufacturing (AM) allows near-net fabrica-
tion of components with complex geometries using cus-
tom designs that are beyond the capabilities of conven-
tional metal casting approaches [1, 2]. AM is finding in-
creasing application in many structural alloys including
nickel-base superalloys [3–7]. For nickel-base superalloys
such as Inconel 718 (IN718), a post-process heat treat-
ment is applied to recover the target mechanical proper-
ties, that are improved by the precipitation of coherent
phases such as γ′′ [7–12].

In recent experimental studies [7, 8], two steps of heat
treatments are suggested for AM IN718. Solidified mi-
crostructures in IN718 contain undesirable Laves phases,
which trap large quantities of Nb that is required for the
precipitation of the beneficial γ′′ phase [4–8, 13], and have
detrimental effects on the mechanical properties [4, 6, 7].
Therefore, homogenization to dissolve the Laves phase is
an important first step in the post-process annealing of
AM IN718. When the dissolution of the Laves phase
is complete, there are various levels of Nb concentra-
tion gradients in the matrix depending on the extent of
homogenization [14]. During a subsequent aging treat-
ment, the hardening phases precipitate within the γ ma-
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trix [7, 8]. Precipitation in a concentration gradient is
of interest because of the potential for creating gradient
microstructures that are known to possess attractive me-
chanical properties compared to the homogeneous coun-
terparts [15].

We use the phase-field (PF) method [16–18] to simulate
the microstructure evolution during post-process anneal-
ing in AM IN718. The PF method has emerged as a pow-
erful technique to simulate microstructure evolution asso-
ciated with solidification and solid-state phase transfor-
mations in multi-component and multi-phase alloys [16–
24]. Solid-solid phase transformations are characterized
by the presence of elastic strain fields associated with pre-
cipitate phases that show various levels of coherency with
the matrix. The PF method is well suited to incorporate
the effect of elastic strain fields, as well as the anisotropy
in the matrix-precipitate interfacial energy, that influence
the precipitate morphologies [22–27]. We perform simu-
lations using the PF code MEUMAPPS (Microstructural
Evolution Using Massively Parallel Phase Field Simula-
tions) that has been developed recently at the Oak Ridge
National Laboratory (ORNL) [27] as a part of the Exas-
cale Computing Program sponsored by the US Depart-
ment of Energy. We use this code to investigate the
growth dynamics of precipitates in a surrogate Ni-Fe-Nb
alloy for IN718.

This research presents important observations related
to the precipitation kinetics under Nb gradients in IN718
using phase-field simulations, and the results indicate
that the solute levels within the γ matrix are linked to
the growth dynamics of the δ precipitates.

II. METHOD

In the MEUMAPPS-SS model, the total free energy F
is described by the sum of the various components of the
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energy densities within a unit volume V, i.e.,

F =

∫ (
fb + fel + fch

)
dV . (1)

The boundary energy fb is the sum of the energy contri-
butions at the diffuse inter-phase interface due to energy
penalties caused by gradients in order parameters φv,
corresponding to a δ variant v existing at the interface,
and the boundary energies between phases [27]. With
twelve variants of the δ phase [28], the boundary energy
is described as

fb =
1

2

12∑
v=1

[∇φv]Tκv[∇φv] +

12∑
v=1

12∑
q>v

ωvq|φv φq|

+ ω̄

12∑
q=1

φq

(
1−

12∑
v=1

φv

)
, (2)

where κv is an anisotropic gradient coefficient of the δ
variant, ωvq is the height of an energy well that de-
pends on the boundary width (5∆x), and ω̄ is the av-
erage height. The first term on the right hand side of the
above equation describes the gradient energy. The sec-
ond and third terms are for the energies at the δ− δ and
the δ−γ boundaries, respectively. We use the interfacial
energy 0.8x̂ + 0.03ŷ + 0.8ẑ [J µm2/mol] for all variants
to calculate the κ and ω terms following the method in
Ref. [27, 29].

For the elastic energy fel, we use the Steinbach-Apel
approach [22, 24, 27] that interpolates fel as the sum of
individual strain energies of phases through an interpo-
lation function of the order parameter φ, which is given
by

fel =

12∑
v=1

h(φv)f
δ,v
el +

[
1−

12∑
v=1

h(φv)

]
fγel , (3)

where h(φ) = φ3(6φ2−15φ+10) is an interpolation func-
tion of the order parameter. The strain energy for a

phase p is fpel = 1
2ε
el,p
ij : Cpijkl : εel,pkl with the elastic strain

εelij = εtotij − ε∗ij calculated using the total strain εtotij and
the transformation strain ε∗ij . We used Khachaturyan’s
approach [25] that describes the total strain as the sum
of the mean strain ε̄ij and the heterogeneous strain δεij ,
defined using the local displacement gradients, which is
given by εtotij = ε̄ij + δεij . An iterative approach pro-
posed by Hu and Chen [23, 24] is used to compute the
displacement field at every time step, which, in turn,
is used to estimate the elastic energy field. Then, the
overall elastic strain between γ and δ is interpolated as

εelij =
∑
v h(φv)ε

el,δ,v
ij − [1 −

∑
v h(φv)]ε

el,γ
ij . The compo-

nents of the elastic modulus tensor C are zero, except
(C11, C22, C44) = (203, 150, 135) for the γ matrix and
(C11, C12, C13, C33, C44, C66) = (260, 96, 97, 280, 109, 143)
for the δ variant in units of GPa.

The chemical energy fpch of a phase p is described using
quadratic functions of the element concentrations [26].

For the Ni-Fe-Nb system, the total chemical energy fch
is interpolated using an expression similar to Eq. (3) [27],
and the chemical energy of each phase p is given by,

fpch = Ap1(XFe −Ap4)2 +Ap2(XNb −Ap5)2 +Ap3 , (4)

where XFe and XNb are the Fe and Nb concentrations
in mole fractions, and Api values are fitting parameters.
The Api parameters are obtained by fitting the Gibbs free
energy from the Thermo-Calc Software TCNI8 Ni-based
superalloys [30]. For the δ precipitate growth, we con-
sider the fixed temperature T = 850 ◦C. At this temper-
ature, we obtained the Gibbs free energy data of the γ
matrix with a resolution of 0.001 mole fraction within
the ranges of 0.45 ≤ XFe ≤ 0.75 and 0.0 ≤ XNb ≤ 0.15
using Thermo-Calc. Similarly, we calculated energy val-
ues for the δ phase within 0.0 ≤ XFe ≤ 0.2 and
0.1 ≤ XNb ≤ 0.3. We used the same resolution of 0.001
for the free energy of the δ phase.

Then, we fit the energy values as a function of XFe

and XNb to Eq. (4) using Python with the least-squares
fitting method. The obtained Api parameter sets are
(Ap1, Ap2, Ap3, Ap4, Ap5) = (21654.6796, 188869.6365, -
67323.8182, 0.19, 0.14) for the γ matrix and (86533.8069,
365879.3077, -77299.9162, 0.09, 0.29) for the δ phase.
The maximum errors of the fitting equations with re-
spect to the Thermo-Calc data are 3.6% and 2.1% for
the γ and δ phases respectively, which show quantita-
tive agreement with the energy data at T = 850 ◦C. It
is worth noting that, because the Gibbs free energy is
related to the temperature, the parameters should be
estimated separately for different temperatures of inter-
est. For example, the parameter set for the γ becomes
(28300.9118, 185748.1403, -86558.1615, 0.3, 0.14) at T =
1100 ◦C. The quadratic expression for the Gibbs free en-
ergy shown in Eq. (4) results in linear equations for the
chemical potentials of Fe and Nb that makes it conve-
nient for the calculation of the interface concentrations
required in the PF model using the Kim-Kim-Suzuki ap-
proach [20].

We solve the Ginzburg-Landau equation for the time
evolution of the phase field of a variant φv [27],

∂φv(ρ, t)

∂t
= −L

 1

N

∑
v 6=q

(
δF

δφv(ρ, t)
− δF
δφq(ρ, t)

) ,

(5)
and the Cahn-Hilliard equation for the alloy compo-
nents [27],

∂Xc

∂t
= ~∇

(
M c~∇∂fch

∂c

)
(6)

where L is the interface mobility, N is the number of
phases coexisting at a position ρ = (x, y, z), and M c

is the mobility of an element c. We use the Kim-
Kim-Suzuki approach [20] to compute the solute concen-
trations at the various inter-phase interfaces based on
the assumption of equal chemical potential of a solute
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within the phases at the interface. The governing equa-
tions are solved using a Fourier spectral method [31].
The P3DFFT library for the Fast Fourier Transform
(FFT) was used to perform the calculations in a paral-
lel computing environment [32]. We considered 12 vari-
ants of the δ phase that precipitate during heat treat-
ments [7, 8, 14, 26].

We used ∆x = 1×10−9 m (1 nm) for the grid spacing,
W = 5∆x for the interface width, and ∆t = 0.01 s for
the time step. In order to estimate the interface mobility
L, we performed a separate simulation using δ precipi-
tates growing under a higher XNb = 0.15. The mobility
is calculated using the procedure outlined in Ref. [33].
The mobility is sensitive to the mesh resolution. For the
resolution of 1 nm used in this study, an average value
computed using the above approach for different concen-
trations was L = 1.475× 10−10 m3/Js, which we used in
our simulations. In experimental measurements [26, 34–
36], the diffusion coefficient varies between ∼ 10−16 and
∼ 10−18. We used the smaller value of D = 10−18 m2/s
for both Fe and Nb elements.

Two simulation domains were considered: Nx = Ny =
Nz = 210∆x for the large simulations involving multiple
precipitates in Figs. 1-2 and Nx = Ny = Nz = 168∆x for
simulations involving a single precipitate. Here Nx, Ny,
and Nz are the number of grid points along the x, y, and
z axes, respectively. We used periodic boundary condi-
tions along all the axes. Other material and elasticity
parameters can be found elsewhere [26–29].

Our simulations were performed using 1764 IBM
Power9TM CPUs on Summit at Oak Ridge National Lab-
oratory. The simulation with a large system size took
about 3 hours for 20000 iterations. For a smaller system,
it took about 4.5 hours for 60000 iterations. If a smaller
∆x is used, it takes a longer time to perform a simulation
relevant to our simulation size because it requires more
grid points.

III. RESULTS AND DISCUSSION

A. Growth of multiple precipitates

During the homogenization heat treatment, segregated
elements such as Nb slowly diffuse within the γ matrix.
In addition, the dissolution of the Laves phase formed by
the end of the solidification process leads to various levels
of Nb [14]. Accordingly, if the homogenization step is not
long enough, the segregated elements are not uniformly
distributed within the matrix. The resulting non-uniform
solute fields can affect the precipitate growth during the
annealing step.

We use the Thermo-Calc Software TCNI8 Ni-based
superalloys [30] in conjunction with the PF method to
model an inhomogeneous solute gradient within a sec-
ondary arm spacing. Based on the Thermo-Calc Soft-
ware, the ternary system of XFe = 0.483 and XNb =
0.056 shows reasonable agreement with both the solid-
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FIG. 1. Initial Nb profiles along the z axis. Three different
profiles (red, green, and blue lines for Case 1, 2, and 3, respec-
tively) are used as the initial conditions for PF simulations in
Fig. 2. The simulation domain size along the z axis is 210 nm
(Nz = 210 and ∆x = 1 nm).

ification range and the volume fraction of the δ phase
at T = 850 ◦C in IN718. We perform the Scheil solidi-
fication simulation of this system, and the result shows
that the XNb (XFe) changes from 0.024 (0.523) to 0.123
(0.258) as the volume fraction of γ increases.

We use these values to estimate an inhomogeneous so-
lute field for the initial solute profile. We assume that the
high XNb is located at the center of the secondary arm
spacing of 210 nm [37], and it linearly decreases along z
according to XNb(x, y, z) = 0.123−0.00146|z−Nz/2| un-
til XNb = 0.024. We determine the slope to be −0.00146
to keep the average XNb as 0.056 within the simulation
domain. In addition, XFe varies from 0.258 to 0.523 ac-
cording to

XFe(x, y, z) = 0.258 + 2.677(0.123−XNb), (7)

which is linearly related to XNb. We let the solute fields
evolve at T = 1100 ◦C within the γ matrix for 200 s,
600 s, and 1000 s, which correspond to the red, green,
and blue lines in Fig. 1, respectively. These lines indicate
the Nb profiles along the z axis. Then, we use these
solute profiles as the initial solute field and perform a
simulation by randomly adding 1000 super-critical nuclei
of the δ phase. We assigned nuclei to be one of the 12
δ variants chosen randomly, and let them grow at T =
850 ◦C.

When using a smaller radius of 1∆x, most nuclei dis-
solved quickly even in the Nb-enriched central regions.
We performed initial trials to determine the approximate
nucleus size that would become critical for most of the
central regions with Nb enrichment. A radius of 2∆x was
found to be adequate based on these initial trials.

Figures 2(a)-(c) show the δ phase precipitates (silver)
within the γ matrix after 200 s obtained using the three
initial Nb profiles in Fig. 1. It can be seen from the mi-
crostructures shown on the left-hand side that the sur-
viving δ precipitates are located near the central region.
The δ nuclei located away from the center dissolve quickly
because their growth is not energetically favorable due to
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FIG. 2. Microstructures from phase-field simulations and con-
centration maps at a mid-2D section. Simulation results in
(a), (b), and (c) used initial Nb profiles of Cases 1, 2, and 3 in
Fig. 1, respectively. Left microstructures show δ precipitates
(silver) after 200 s at T = 850 ◦C. Right color maps are the Nb
fields at the midsection of the left microstructures. (d) shows
δ fractions along the z axis for Cases 1-3. In all simulations, δ
seeds are distributed initially with fractions according to the
black dashed line shown in (d).

an initially low Nb concentration.
The color maps on the right in Fig 2(a)-(c) show the Nb

concentration fields at the midsection of the microstruc-
tures on the left. The higher Nb (red) regions indicate the
δ precipitates. The δ precipitates for Case 1 in Fig. 2(a)
survive in greater numbers and grow to a larger size than
those for the other cases in Fig. 2(b) and (c). In order to
clarify the δ survival and growth due to different initial
Nb profiles, we measure the δ fractions in Fig 2(a)-(c)
along the z axis, namely,

Φ(k) =

∑Nx

i=1

∑Ny

j=1

∑12
v=1 φv(i, j, k)

Nx ×Ny
, (8)

where i, j, and k are the coordinates of a grid point along
the x, y, and z axes, respectively. In all three cases, the
initial δ fraction is the same as the black dashed line in
Fig. 2(d). Due to the initial Nb distribution, the fraction
Φ(k) decreases from Case 1 (red solid line) to Case 2
(green solid line) and Case 3 (blue solid line) in Fig. 2(d).

The greater fraction of surviving precipitates in Case 1
is linked to the initially higher Nb concentration near the
mid-section. The higher Nb concentration leads to higher
nucleation density because of the reduced activation en-
ergy [39]. In addition, the higher Nb concentration leads
to a greater driving force for precipitate growth.

It is worth noting that the survival of the δ is related
to the critical nucleus size for a given Nb concentration.
The width of the δ precipitation region in the center will
depend on the size of the nucleus used in simulations. If
we had introduced nuclei of a larger size, the δ precipi-
tation zone would have been wider because more nuclei
would have survived at lower Nb concentrations. While
we introduced nuclei with a fixed size in our simulations,
nucleation could also be modeled through random per-
turbation of the order parameters of different variants
using a Langevin noise. The width of the δ precipitation
region in this case would be influenced by the choice of
the parameters used in the Langevin noise model. This
will be investigated further in future studies.

These results suggest that the δ precipitate growth is
related to the local Nb concentration. In addition, a local
solute gradient could also influence the growth kinetics
of a precipitate. In order to quantify the effect of the
local solute level on the precipitation kinetics, we perform
simulations using a single precipitate that grows under
different solute gradients.

B. Growth of a single precipitate

For the simulation of a single δ precipitate growth, one
super-critical seed with a radius of 2∆x is initially located
at the center of the simulation domain. We first consider
a uniform distribution of XNb = 0.1 within the matrix.
Based on Eq. (7), XFe = 0.32 is imposed. In order to
minimize the incubation time associated with nucleation,
we use a high XNb = 0.24 and a low XFe = 0.047 within



5

the δ seed, based on the known levels of Nb and Fe inside
the δ phase from the TCNI8 database [30].

The δ precipitate exhibits a plate-like morphology, and
hence we can describe its morphology based on its radius
r within the (111) plane and thickness h orthogonal to the
plane. Under steady-state conditions, the interfaces nor-
mal to r and h should satisfy diffusion-controlled growth
dynamics based on the power law g0t

1/2 [38], where g0 is
the growth constant. Including the elastic strain affects
only the growth constant, and the power law exponent
remains 1/2 [40, 41].

Figure 3(a) shows the δ (silver) at t = 300 s. In (a),
the δ shape as shown along the blue (111) plane is not
a perfect ellipse because the shape is influenced by elas-
tic energy and anisotropy in the interfacial energy. We
interpolate interface positions (φ = 0.5) on the plane us-
ing the Paraview program [42]. At t = 0 s, the program
interpolated 21 positions. As the δ grows, it calculates
more interface positions. For example, we obtained 907
positions for the δ in Fig. 3(a). We averaged the positions
to compute the radius values for Fig. 3(b).

In Fig. 3(b), we plot r2 − r0(t0)2 as a function of time
t− t0 with a reference time t0. We averaged the interface
positions measured in the (111) habit plane to calculate
the radius r = r(t) at a time t. From the time when
it reaches the steady state, the precipitate growth would
show the power law growth and thus r2 − r0(t0)2 ∼ t −
t0 [40, 41]. It is difficult to predict when the precipitate
reaches the steady state, and hence we use three reference
times, t0 = 0 s, 150 s, and 300 s, and, at those times, the
radii are r0(t0) = 1.7, 29.2, and 52.4 nm, respectively. In
the plot, solid lines are for simulation results and dashed
lines are the fitted linear guide lines. The insert in (c) is
a log-log plot showing a linear fit.

The initial evolution of the δ phase occurs under the
artificial nucleation conditions, and it takes some time for
the conditions to reach a thermodynamically consistent
state of growth. During this stage, the δ growth rate
(black line) is faster than the linear slope expected from
a purely diffusion controlled growth. As time proceeds
(blue and red lines), it approaches the diffusion controlled
growth limit. While we measure the radius only up to ∼
500 s since the δ grows out of the simulation box at longer
simulation times, we expect the power law exponent to
be satisfied (p = 1) under such conditions.

We used Paraview to estimate the thickness of the δ.
We obtained the φ profile along the white arrow on the
(101̄) plane, which is the green plane in the right image of
Fig. 3(a). This arrow passes through the center of the δ.
We measured two interface positions from the profile, and
the distance between them was the thickness. Similarly,
we obtained additional φ profiles along four other lines
that are orthogonal to the (111) plane. Those lines are
±10∆x apart from the white arrow along the x and y
axes.

We averaged the measured thickness values of the δ
in Fig. 3(c). The dashed line is the linear fit line using
the simulation data (black solid line) from t = 50 s. The

(a) δ precipitate at t = 300 s

(b)
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FIG. 3. Radius and thickness of a δ precipitate as a function
of time under initially uniform solute fields. The left image
in (a) shows a radius r of the δ (silver) within the blue (111)
plane. On the right, the φ profile along the white arrow across
the center of the δ on the green (101̄) plane is used to measure
the thickness. (b) shows r2 − r0(t0)2 of a δ precipitate, where
r is the average radius and r0 is the radius at a reference time
t0. We use three different r0(t0) [nm] = 1.7 for t0 = 0 s (black
line), 29.2 for t0 = 150 s (blue line), and 52.4 for t0 = 300 s
(red line). (c) shows the square of the half thickness as a
function of time. In both plots, solid and dashed lines are for
the simulation results and linear fit lines, respectively. The
insets show the log-log scale graphs.
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thickness h in the simulation shows steady-state growth
according to (0.5h)2 ∼ t (dashed line) from the begin-
ning. We assume that, due to the slow thickness
growth, the solute profiles quickly approach the steady
state. Accordingly, we expect the diffusion-controlled
growth to be reached fairly early in the process.

We consider the precipitate growth under three differ-
ent initial Nb gradients as shown in Fig. 4(a). We also in-
troduce a high XNb = 0.24 and a low XFe = 0.047 within
the δ to minimize the influence of the nucleation kinet-
ics. Inside the matrix, XNb = 0.15 at the center region
where a precipitate is located. Otherwise, as illustrated
in Fig. 4(a), XNb decreases away from the interface along
the z axis with shallow (red dashed line), moderate (green
dashed line), and deep (blue dashed line) gradients until
XNb reaches the minimum value. The minimum XNb is
estimated by using the bilinear interpolation to keep the
average XNb = 0.1. XFe is determined using Eq. (7),
and its average value remains XFe = 0.32. The gradient
profiles represent solidification microstructures with mi-
crosegregation of Nb corresponding to different cooling
rates of IN718 that lead to different Nb gradients in the
matrix coexisting with the Laves phase.

0.1
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FIG. 4. Growth of a δ precipitate under different Nb gra-
dients. (a) shows initial Nb profiles along the z axis at the
center using different gradient slopes. The δ nucleus is located
at the center with a high XNb = 0.24. Black solid line is for
the uniform XNb = 0.1 field within the matrix. Red, green,
and blue dashed lines are for the gradients of ±0.002, ±0.004,
and ±0.006, respectively. (b) shows the volume fractions at
different times. The inset is for the log-log scale graph.

Figure 4(b) exhibits the volume fractions (Vf ) as a
function of time. Simulation results show that the δ
phase under a Nb gradient (dashed lines) grows faster
than under the uniform XNb = 0.1 (solid line).

(a) Uniform (b) Shallow gradient

(c) Moderate gradient (d) Deep gradient

x

z

y

FIG. 5. δ precipitates for the volume fraction of Vf = 0.015.
The volume fraction is reached around t = 295.21 s for the
uniform (a), 154.02 s for the shallow (b), 190.97 s for the
moderate (c), and 209.51 s for the deep gradient cases (d).
Blue plane indicates the (111) plane.

We have examined the δ morphologies due to the differ-
ent solute gradients, as shown in Fig. 5 when the volume
fraction of the δ phase is Vf = 0.015. The black box indi-
cates the simulation domain, and the gray shapes are the
δ. Under the initially uniform condition, the δ precipitate
attains the volume fraction Vf = 0.015 at t = 295.21 s
(a). The precipitate can reach the same volume frac-
tion earlier when a gradient is imposed, i.e., t = 154.02 s
for the shallow (b), 190.97 s for the moderate (c), and
209.51 s for the deep gradients (d).

Due to anisotropy in the interfacial and the elastic en-
ergies, the δ precipitate has a non-circular shape along
the (111) plane (blue plane) under the uniform condi-
tion as shown in Fig. 4(a). However, we observe that the
shape of the δ plates is different in the presence of gra-
dients in the Nb concentration. We measure the angle of
the maximum radius of the δ plate with respect to the z
axis, and it is 85.6◦ for the uniform case. The angle is
slightly increased to 89.2◦ when the gradient has been im-
posed, as shown in Fig. 4(b)-(d). For all cases where a Nb
gradient is initially imposed in the z-direction, the Nb en-
riched region is located at the center of the domain, which
is asymmetric with respect to the (111) plane. Hence, the
δ becomes elongated along the Nb-enriched region due
to the higher thermodynamic driving force. Accordingly,
the ratios between the maximum and minimum radii of
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FIG. 6. Volume fraction as a function of time from the sim-
ulations (solid lines) and prediction (dashed lines). Dashed
lines are the predicted growth rates using Eq. (10). For the
uniform case, the equation becomes Eq. (9) due to FR(t) = 1.
The inset is for the log-log scale.

the δ plates for the gradient cases in Fig. 5(b)-(d) are
1.76, 1.90, and 1.84, respectively. These values are con-
siderably higher than the corresponding ratio of 1.26 for
the uniform condition case in Fig. 5(a).

Since the interface of the precipitate follows a parabolic
growth of t1/2 at steady state [38, 40, 41], the volume of
the precipitate should increase based on the power law
growth exponent of 3/2 [39, 43].

In our simulations, the δ precipitate grows as a non-
circular plate. The volume during growth is mainly re-
lated to the mean radius of the plate, and its thick-
ness. We have shown earlier that the thickness follows
a diffusion-controlled growth with a growth exponent of
roughly 0.5, while the growth exponent of the radius is
higher at the initial transient stage during which ther-
modynamic consistency is being approached (Fig. 3(a)).
Hence, the power law exponent sg for the volume fraction
given by,

Vf = V0t
sg , (9)

is not 1.5 when evaluated from t=0. When we fit the
simulation results for the uniform condition (black solid
line in Fig. 6) to Eq. (9), the power law exponent becomes
sg = 2.15 with V0 = 7.24× 10−8 (black dashed line).

The higher growth rate in the presence of Nb gradi-
ent, with a higher Nb at the precipitate-matrix interface
shown in Fig. 4(a), is probably due to the higher ther-
modynamic driving force associated with the higher Nb
concentration. Accordingly, we can modify Eq. (9) by
introducing an additional contribution of FR(t) as

Vf = FR(t) V0 t
sg (10)

to incorporate the effect of local solute concentration and
the associated thermodynamic driving force on the vol-
ume fraction.

The term FR(t) would be related to the free energy
and the diffusion dynamics. The chemical free energy

is much higher than the elastic strain energy, and thus,
provides the main contribution to the modification. The
effect of Nb concentration on the driving force for growth
is obtained through Eq. (4). In addition, the precipitate
growth would approach the growth kinetics under a uni-
form field as the solute field homogenizes. Therefore, the
value approaches FR(t) → 1 after a long time. Based
on our simulation results, we suggest an expression for
FR(t) to describe the δ growth under a solute gradient,
which is

FR(t) =
(
X2
r − b0(1− exp(−t/τ))

)sf
, (11)

where the ratio Xr = XNb
max/X̄

Nb is between the effective
maximum and the average Nb concentrations, which are
related to the free energy contribution. For the simula-
tion with the shallow gradient, those are XNb

max = 0.15
and X̄Nb = 0.1. The constant b0 is determined by
b0 = X2

r − 1, and hence, the function FR(t) approaches
towards 1 as time elapses. For the uniform case, the con-
stants in the above equation become Xr = 1 and b0 = 0,
which leads to FR(t) = 1. Then, Equation (10) is the
same as the power law growth in Eq. (9). We assume
that the precipitate growth follows the same power law
of sf = sg = 2.15 for the uniform case. The characteris-
tic time τ is linked to the diffusion dynamics. We use the
best-fit approximation to obtain τ within the simulation
results before 400 s for the shallow gradient simulation
(red solid line in Fig. 6). The modified Vf in Eq. (10)
with the fitted τ = 501 s (red dashed line) agrees well
with the simulation result.

For the predictions of the moderate (green dashed line)
and deep (blue dashed line) gradients, we use Xr = 1.34
and 1.28, respectively. The concentration at the inter-
face changes quickly with a high gradient, so the effec-
tive maximum Nb concentration needs to be lower than
that for the shallow gradient, which leads to a smaller
Xr ratio. The other parameters sf and τ are related to
the diffusion, and they are consistent in our system. As
shown in Fig. 6, the predictions for the other gradients
also show quantitative agreement with the simulation re-
sults.

At a longer time, the δ growth slows down in the sim-
ulation. This is because, as the precipitate grows out-
side the simulation domain, one side of the δ approaches
the other side due to the periodic boundary. We
expect that the simulation result would follow the pre-
dicted dashed line better if the simulation domain size
were larger. It is worth noting that the power law expo-
nents sg and sf would be 1.5 under steady state condi-
tions because diffusion controls the interface growth.

IV. CONCLUSIONS

We performed PF simulations of solid-state phase
transformations to investigate precipitate growth kinet-
ics within the γ matrix using a surrogate Ni-Fe-Nb alloy
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for IN718. Our simulations indicate that both the nucle-
ation and growth rates of the δ phase are accelerated due
to the solute enrichment associated with inter-dendritic
segregation of Nb in a Ni-Fe-Nb alloy used as a surrogate
for IN718. We additionally investigated the growth dy-
namics of a single precipitate under various solute gra-
dients indicative of different cooling conditions charac-
teristic of those expected under AM conditions. Within
initially uniform solute fields, the interface growth of a
precipitate shows the power law growth exponent close to
1/2 at steady state, as predicted for diffusion-controlled
growth [40, 41]. Due to the slow growth of the thickness
of the δ phase, it reaches the exponent of 1/2 quickly. On
the other hand, it takes longer time for the δ radius to
approach the steady-state growth rate. At an intermedi-
ate state before reaching the steady state, the δ radius
grows faster for non-stabilized elastic and solute fields.
Accordingly, the volume fraction shows a different growth
exponent of sg = 2.15 in Eq. (9), instead of the predicted
value of 3/2 [39, 43]. With XNb = 0.15 for the initial
δ-matrix interface Nb concentration, a shallow gradient
results in the precipitate interface facing a higher Nb for a
longer time, which results in a faster interface growth due
to the higher thermodynamic driving force. In addition,
the asymmetric interface growth linked to the local Nb
level leads to a precipitate morphology different from the
one under the homogenized concentration field. In order
to describe the volume fraction of a precipitate under a
solute gradient, we introduce a phenomenological func-
tion that is linked to the free energy and the diffusion
dynamics. The modified prediction including the phe-
nomenological approach agrees well with the simulation

result (Fig. 6).

Advanced manufacturing processes such as additive
manufacturing are currently being used to manufacture
structural components. The solidification microstructure
under such processing conditions is characterized by so-
lute enrichment, such as Nb enrichment in the Ni-base
superalloy 718. Nb-enrichment plays a critical role in
the type, morphology and spatial distribution of precip-
itates that form during post-process heat treatment of
these components [5, 14, 44, 45]. The simulations pre-
sented here highlight the relationship between precipitate
growth kinetics and the local solute conditions charac-
teristic of those expected under AM solidification condi-
tions. The results are relevant to the design of customized
heat treatment for AM components in alloy 718, espe-
cially the development of gradient microstructures that
show considerable improvement in the mechanical prop-
erties compared to materials with uniform microstruc-
tures.
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