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Benjamin Hatanpää ,1 and Austin J. Minnich 1, †

1Division of Engineering and Applied Science,

California Institute of Technology, Pasadena, CA, USA

(Dated: January 25, 2021)

Abstract

The ab-initio theory of low-field electronic transport properties such as carrier mobility in semi-

conductors is well-established. However, an equivalent treatment of electronic fluctuations about

a non-equilibrium steady state, which are readily probed experimentally, remains less explored.

Here, we report a first-principles theory of electronic noise for warm electrons in semiconductors.

In contrast with typical numerical methods used for electronic noise, no adjustable parameters are

required in the present formalism, with the electronic band structure and scattering rates calcu-

lated from first-principles. We demonstrate the utility of our approach by applying it to GaAs and

show that spectral features in AC transport properties and noise originate from the disparate time

scales of momentum and energy relaxation, despite the dominance of optical phonon scattering.

Our formalism enables a parameter-free approach to probe the microscopic transport processes

that give rise to electronic noise in semiconductors.
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I. INTRODUCTION

Charge transport in semiconductors is a topic of fundamental and practical interest with a

well-established theoretical foundation [1, 2]. In many cases, a sufficient understanding of the

relevant physics at both low and high fields can be achieved using the Boltzmann equation

with semi-empirical scattering rates [3–6]. In other cases, a more precise description of

the electronic transitions induced by phonons and other perturbations is required. Such

a description is now possible owing to advances in electronic structure codes that enable

the ab-initio computation of the transition matrix elements given by Fermi’s golden rule

performed in conjunction with the numerical solution of the Boltzmann equation describing

carrier dynamics [7–10]. While method development is ongoing, these calculations are now

routine for various semiconductors including Si [11–13], GaAs [14–16], phosphorene [7], and

others [17–20].

In contrast, an equivalent treatment of fluctuations from a non-equilibrium steady-state is

lacking, despite the experimental accessibility of electronic noise [21, 22] and its importance

in applications [23]. At equilibrium, the Nyquist relation, or more generally the fluctuation-

dissipation theorem, relates the electrical conductivity to the spectral noise power [24–26].

Outside of equilibrium, the theorem no longer applies and the spectral noise power must be

computed with another approach.

The theoretical description of fluctuations about a non-equilibrium steady-state has a

long history. In 1935, Leontovich used kinetic theory to examine velocity fluctuations of

a non-equilibrium gas [27]. Around 20 years later, Wannier established the definition of

a diffusion coefficient for transport about a non-equilibrium steady state [28]. Hashitsume

considered a microscopic description of occupancy fluctuations about a steady distribution

using the Fokker-Planck equation with a random source term [29]. In analogy with earlier

works on fluctuational Maxwell equations, Kadomotsev introduced Langevin sources into

the Boltzmann equation [30]. Shortly thereafter, Price derived that for spatially homoge-

neous fluctuations, a fluctuation-diffusion relation links Wannier’s diffusion coefficient to the

spectral density of current fluctuations even outside of equilibrium [31]. For this reason, the

non-equilibrium noise at frequencies small compared to scattering rates is known as diffu-

sion noise. In the same year, Lax formulated a general kinetic theory of fluctuations for

a Markovian system [32]. Throughout the 1960s, Gantsevich and co-workers applied Lax’s
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kinetic theory to dilute gases for which the evolution of the one particle distribution function

is governed by the linear Boltzmann Equation [33]. Their technique, termed the “method of

moments,” demonstrated how to compute the spectral density of current fluctuations using

only the solutions of the linear Boltzmann equation. Concurrently with Gantsevich, start-

ing from Kadomotsev’s Boltzmann-Langevin equation, Kogan and Shul’man developed a

Langevin treatment of the current density fluctuations [34]. Lax, van Vliet, and Kogan and

Shul’man independently confirmed that the method of moments and the Langevin approach

are equivalent [35–37].

As computational resources became increasingly available, numerical implementations

of the methods described above permitted computations of electronic noise for both warm

(∆T/T0 � 1) and hot (∆T/T0 ∼ 1) electrons, where ∆T is the steady-state temperature

rise of the electrons and T0 is the lattice temperature. Due to the lack of knowledge of the

precise transition rates between electronic states, these studies employed simplified band

structures and parameterized models for scattering such as deformation potential theory for

acoustic phonon scattering [38, 39]. For example, Stanton and Wilkins obtained the Green’s

function of the Boltzmann equation under the single-mode relaxation time approximation,

demonstrating qualitative agreement with experiment in GaAs for one [40] and two [41] val-

leys. Numerous Monte Carlo simulations reported calculations of current spectral densities

in Si [38, 42–46], GaAs [43, 47, 48], and other semiconductors [49–52]. These works employed

various approximations such as Debye acoustic phonons, dispersionless optical phonons, and

spherical approximations for electron conduction bands. With empirical knowledge of band

structure parameters such as effective mass and approximate relaxation times, reasonable

agreement with experiments was reported [38, 42–47, 49, 53, 54]. More recently, these meth-

ods have been extended to heterostructures and have provided insight into the design of low

noise devices [55–57]. While studies with parameterized models can provide an adequate

description of the physics of interest in certain cases, they are not predictive and are re-

stricted to materials for which empirical models of the dominant scattering mechanisms are

available. It is therefore natural to consider how advances in the ab-initio calculation of

mean transport quantities [8, 9] can be applied to the non-equilibrium steady state.

Here, we present an ab-initio theory of electronic noise for warm electrons in non-

degenerate semiconductors. The formalism provides the spectral noise power and AC trans-

port quantities without any adjustable parameters. Using the method, we show that the
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anisotropy and spectral features of the noise power in GaAs can be explained by the dis-

parate timescales of momentum and energy exchange with phonons, even though scattering

is dominated by the inelastic polar optical phonon scattering mechanism. The formalism is

easily extendable to other semiconductors of technological interest such as InP, Si, and Ge.

Our method provides a parameter-free view of the microscopic transport processes respon-

sible for electronic fluctuations in semiconductors and will advance fundamental studies of

carrier transport and applications of low noise semiconductor devices.

II. THEORY

A. Steady-state transport

We begin by reviewing the ab-initio treatment of steady-state transport using the Boltz-

mann equation to set the notation. Consider a non-degenerate, spatially homogeneous

electron gas subject to an external electric field E . The system is governed by the following

Boltzmann equation:

∂fmk

∂t
+
∑
γ

eEγ
~

∂fmk

∂kγ
= I[fmk] (1)

Here, fmk is the distribution function that describes the occupancy of the electron state

with wave vector k and band index m, e is the fundamental charge, ~ is the reduced Planck

constant, and γ = x, y, z indexes the crystal axes.

The collision integral, I, describes the scattering rates between electronic Bloch states

mk and m′k′. In general, the collision integral is a nonlinear functional of the distribution

function given by Fermi’s Golden Rule [1]. In the steady case, the transient term vanishes,

and we denote the solution of the resulting equation as f smk.

In many problems, a good approximation is that the Boltzmann equation can be lin-

earized about an equilibrium distribution as f smk ≡ f 0
mk + ∆fmk, where ∆fmk is the change

in occupation due to the electric field E relative to the equilibrium distribution f 0
mk. Under

the non-degenerate assumption, f 0
mk is well approximated by the Maxwell-Boltzmann dis-

tribution. With this substitution and retaining only terms linear in ∆fmk, the Boltzmann

equation becomes [3]:
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∑
γ

[
eEγ
~

∂∆fmk

∂kγ

]
+
∑
m′k′

Θmkm′k′∆fm′k′ = −
∑
γ

eEγ
~

∂f 0
mk

∂kγ
(2)

where Θmkm′k′ is the linearized collision integral:

Θmkm′k′ =
2π

N~
∑
m′νq

|gmk,m′k+q|2
[
δ(εmk − ~ωνq − εm′k+q)Hem + δ(εmk + ~ωνq − εm′k+q)Habs

]
(3)

Here, gmk,m′k′ is the matrix element coupling electron state mk to another electron state

m′k′ = m′k + q via emission or absorption of a phonon with wave vector q, polarization ν,

and occupancy Nνq given by the Bose distribution. N is the total number of q-points. The

linearized emission and absorption weights areHems = Nq+1−f 0
mk+q andHabs = Nq+f 0

mk+q,

respectively, if m′k′ = mk, and Hems = −(Nq + f 0
mk) and Habs = −(Nq + 1 − f 0

mk) if

m′k′ 6= mk. Note that in Eqn. 2 we have moved the collision integral to the left-hand side

and defined Eqn. 3 without the usual minus sign to simplify the following expressions.

In the present study, we restrict the electric field to values where ∆fmk � f 0
mk so that

the linearization above is valid. However, in the typical ab-initio treatment of transport, the

electric field is further assumed to be small enough such that ∂fmk/∂kγ ≈ ∂f 0
mk/∂kγ , allowing

∆fmk to be obtained by an iterative method with only knowledge of Θmkm′k′ and the equi-

librium distribution f 0
mk [8]. In the present problem, the field is sufficiently large such that

∂∆fmk/∂kγ ∼ ∂f 0
mk/∂kγ and the neglected derivative term, ∂∆fmk/∂kγ , must be included.

This approximation was originally denoted as the ‘warm electron’ approximation since the

excess energy of the electrons over the thermal value can be non-zero while remaining small

on that scale [6].

To treat the drift term numerically, we employ a finite difference approximation:

∑
γ

eEγ
~

∂∆f smk

∂kγ
≈
∑
γ

eEγ
~
∑
m′k′

Dmkm′k′,γ ∆fm′k′ (4)

where the momentum-space derivative is approximated using the finite-difference scheme

given in [59] and Eqn. 8 of Ref. [58].

With these definitions, the steady Boltzmann equation becomes:

∑
m′k′

Λmkm′k′∆fm′k′ ≡
∑
γ

∑
m′k′

[
eEγ
~
Dmkm′k′,γ + Θmkm′k′

]
∆fm′k′ =

∑
γ

eEγ
kBT

vmk,γf
0
mk (5)
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Here, we have analytically expanded the gradient of the equilibrium Boltzmann distribution

on the right-hand side as ∂f 0
mk/∂kγ = −(~vmk,γ/kBT )f 0

mk, where vmk is the group velocity

and kBT is the thermal energy. Λmkm′k′ is defined as the relaxation operator that combines

the drift and scattering operators. Equation 5 shows that the steady Boltzmann equation

is now a system of linear equations. The solution, ∆fmk, can be written symbolically using

the inverse relaxation operator:

∆fmk =
∑
m′k′

Λ−1mkm′k′

∑
γ

(
eEγ
kBT

)
vm′k′,γf

0
m′k′ (6)

Transport properties such as the electrical conductivity can be defined using the steady

distribution. In particular, the linear DC conductivity σlinαβ can be expressed as:

σlinαβ =
2e2

kBTV0

∑
mk

vmk, α

∑
m′k′

(Θ−1mkm′k′ vm′k′, βf
0
m′k′) (7)

where the factor of 2 accounts for spin degeneracy and V0 is the supercell volume. The

field is applied along the β axis and the resulting current is measured along the α axis. The

conductivity of Eqn. 7 is typically calculated in the cold electron approximation for which

∂∆fmk/∂kγ � ∂f 0
mk/∂kγ and is thus independent of the electric field.

For sufficiently large fields that ∂∆fmk/∂kγ ∼ ∂f 0
mk/∂kγ , the DC conductivity depends

on the electric field and is defined with the relaxation operator:

σαβ(E) =
2e2

kBTV0

∑
mk

vmk,α(Λ−1mkm′k′ vm′k′, β f
0
m′k′) (8)

Another important transport quantity, the AC small-signal conductivity σωαβ, describes

the linear response of the system about a non-equilibrium steady-state [21]. With the steady

distribution f smk being set by a DC field E as described above, an AC field perturbation along

crystal axis γ, δEγ(t) = δEγeiωt, induces a fluctuation of the steady distribution δfmk(t) =

δfmk(ω)eiωt. This fluctuation is governed by the Fourier transformed Boltzmann equation:

∑
m′k′

(iω I + Λ)mkm′k′ δfm′k′ = −
∑
γ

eδEγ
~

∂f smk

∂kγ
(9)

Here, I is the identity matrix. The fluctuation in the distribution function induces a current

fluctuation about the DC value, given as:
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δjα =
2e

V0

∑
mk

vmk, α δfmk (10)

The small-signal AC conductivity is defined as the linear coefficient relating the cur-

rent density variation to the perturbation, σωαβ ≡ δjα/δEβ. An explicit expression for AC

conductivity can be obtained by combining the above expressions:

σωαβ =
2e2

~V0

∑
mk

vmk,α

∑
m′k′

(iω I + Λ)−1mkm′k′

[
− ∂f sm′k′

∂k′β

]
(11)

At equilibrium the steady distribution reduces to the equilibrium distribution f smk = f 0
mk,

the kinetic operator reduces to the scattering operator, Λmkm′k′ = Θmkm′k′ . By examining

Eq. 7 and Eq. 11, we see that at equilibrium the zero-frequency differential conductivity is

equal to the linear DC conductivity σω=0
αβ (E = 0) = σlinαβ .

B. Fluctuations about a non-equilibrium steady state

We now consider fluctuations about a non-equilibrium steady state induced by the

stochastic nature of charge carrier scattering. Suppose that the steady state distribution

f smk is known. Just as in equilibrium, fluctuations in the instantaneous occupation of the

quantum states occur. Microscopically, these fluctuations arise because of the stochastic na-

ture of the scattering described by Θmkm′k′ . At steady state, detailed balance requires that

the mean flux of particles into every quantum state is zero. However, the flux of particles

into or out of a quantum state is a Poissonian process and is characterized by a variance.

Therefore, the instantaneous net flux into a quantum state is in general non-zero due to

instantaneous imbalance between the incoming and outgoing fluxes [60]. Consequently,

the occupancy of quantum states fluctuates under both equilibrium and non-equilibrium

conditions.

In the macroscopic limit at which fluctuations are observed in the laboratory, these dis-

tribution function fluctuations appear as instantaneous current fluctuations, or equivalently,

as electronic noise. A non-random characteristic of these fluctuations is the spectral density

of current density fluctuations, which, by the Wiener-Khintchine Theorem, is related to the

single-sided Fourier transform of the autocorrelation of the current density fluctuations [21]:

7



Sjαjβ(ω) ≡ (δjαδjβ)ω = 2

∫ ∞
−∞

δjα(t)δjβe
−iωtdt (12)

where the overbar indicates ensemble average.

We seek to link the macroscopic current density fluctuations to microscopic distribution

function fluctuations. Following Ref. [60], we now consider random fluctuations about the

non-equilibrium steady state, δfmk(t) = fmk(t)− f smk. In contrast to the fluctuations asso-

ciated with the small signal conductivity, these fluctuations are induced by the stochastic

nature of scattering rather than an external perturbation. The corresponding current den-

sity fluctuations can be expressed in terms of the fluctuation in the distribution function as

in Eqn. 10.

It follows that the ensemble average of the correlation function of instantaneous current

fluctuations along axes α and β, δjα(t)δjβ, can be expressed in terms of the correlation

function of the occupancy fluctuations, δfmk(t)δfm1k1 :

δjα(t)δjβ =

(
2e

V0

)2∑
mk

∑
m1k1

vmk, α vm1k1, β δfmk(t)δfm1k1 (13)

Equation 13 shows that computing the spectral density of current density fluctuations

requires calculating the correlations of single particle occupancy fluctuations δfmk(t)δfm1k1 .

This function is known as the time-displaced, two particle correlation function [60]. Through

a quantum statistical mechanical treatment, Gantsevich and coauthors have demonstrated

that the time-displaced, two particle correlation function obeys the same Boltzmann equa-

tion as the fluctuation itself [33]:

∂

∂t
δfmk(t)δfm1k1 +

∑
m′k′

Λmkm′k′ δfm′k′(t)δfm1k1 = 0 (14)

The result of Eqn. 14 can also be justified less mathematically rigorously but with more

physical intuition from Onsager’s regression hypothesis (in particular, see Sec. 1 of Ref. [60]).

Solving Eqn. 14 requires specifying an initial condition, δfm′k′δfm1k1 , which is known as

the one-time, two-particle correlation function. For a non-degenerate system with a fixed

number of particles N , Fowler [61] and Lax [32] derived the required condition as:

δfmkδfm1k1 = fmkδkk1δmm1 −
fmkfm1k1

N
(15)
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where the second term on the right-hand side indicates that a correlation exists between

occupancies due to the fixed particle number. With this initial condition for the correlation,

Eqns. 12, 13, and 14 can be combined to express the spectral density of current fluctuations

explicitly in terms of solutions to the Boltzmann equation. For a single band, we drop the

band index to get:

(δjαδjβ)ω =

(
2e

V0

)2∑
k,k1

vk,α vk1,β (δfkδfk1)ω (16)

As with the current density, the spectral density of distribution function fluctuations is

related to its analagous correlation function by Fourier transform:

(δfkδfk1)ω =

∫ ∞
−∞

δfk(t)δfk1 e−iωt dt (17)

By exploiting the stationary property of the autocorrelation function, the spectral density

can be expressed as [60]:

(δfkδfk1)ω = 2<
[∑

k′

(iω I + Λ)−1kk′ δfk′ δfk1

]
(18)

Combining Eqns. 15, 16, and 18 we obtain the following expression:

Sjαjβ(ω) = 2

(
2e

V0

)2

<
[∑

k

vk,α
∑
k′

(iω I + Λ)−1kk′

∑
k1

vk1, β

(
f sk′δk′k1 −

f sk′f sk1

N

)]

= 2

(
2e

V0

)2

<
[∑

k

vk,α
∑
k′

(iω I + Λ)−1kk′

(
f sk′(vk′, β − Vβ)

)]
(19)

Here, Vβ is the drift velocity along the β axis defined as:

Vβ =
1

N

∑
k

vk, βf
s
k (20)

where N =
∑

k fk is the total particle number.

From Eqn. 19, it follows that calculating the spectral density of the current fluctuations

requires solving the inhomogeneous Boltzmann equation twice. First, the steady occupation

function must be obtained using Eqn. 6. Then, the Boltzmann equation is solved again with

inhomogeneous term f sk(vk,β − Vβ) with f smk ≡ f 0
mk + ∆fmk. The appropriate Brillouin zone

integrations are then performed to calculate the power spectral density.
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As a check of the above derivation, consider an equilibrium system for which Eγ = 0 and

Vγ = 0. The equation is simplified as f sk = f 0
k and Λkk′ = Θkk′ . Then, we have:

Sjαjβ(E = 0) = 2

(
2e

V0

)2

<
[∑

k

vk, α
∑
k′

(iω I + Θ)−1kk′ f
0
k′ vk′, β

]
(21)

With the same simplifications, the equilibrium AC conductivity from Eqn. 11 is:

σωαβ(E = 0) =
2e2

~V0

∑
k

vk, α(iω I + Θ)−1kk′

[
− ∂f 0

k′

∂k′β

]
(22)

Combining the above expressions, we obtain the familiar Nyquist relationship [26]:

Sjαjβ(E = 0) = 4
kBT0
V0
<[σωαβ(E = 0)] (23)

This relationship is formally valid only in equilibrium but remains approximately true

in the ‘cold’ electron regime for which ∂f smk/∂k ≈ ∂f 0
mk/∂k and ∆fmk � f 0

mk such that

Λkk′ ≈ Θkk′ and f smk ≈ f 0
mk.

III. NUMERICAL METHODS

We now describe how to compute the spectral noise power and other quantities using the

theory from the previous section. The inputs to the Boltzmann equation are the electronic

structure and electron-phonon matrix elements gmk,m′k+q calculated using electronic struc-

ture packages. First, the electronic structure and electron-phonon matrix elements for GaAs

are computed on a coarse 8 × 8 × 8 grid using density functional theory (DFT) and den-

sity functional perturbation theory (DFPT), respectively, with Quantum Espresso (QE)

[62, 63]. These quantities are then interpolated to finer grids using Wannier interpolation

with Perturbo [64]. Perturbo includes corrections for polar materials that are necessary

in GaAs [65].

The electronic structure calculations using QE employ the same simulation parameters as

in Ref. [66]. Briefly, we use a plane wave cutoff of 72 Ryd and a relaxed lattice parameter of

5.556 Å. We set the Fermi level to obtain a carrier concentration of 1015 cm−3 corresponding

to a non-degenerate electron gas. We consider only conduction band electronic states within

an energy cutoff of 335 meV above the conduction band minimum (CBM). This energy

window is larger than the window used in typical electron transport calculations since the
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present calculations allow the electric field to heat the electrons, leading to occupation at

higher energy states. Further increasing the energy window by 50 meV had negligible effect

on the observables of interest like spectral noise power.

In Perturbo, we use a grid of 200× 200× 200 for the Wannier interpolated electronic

structures and electron-phonon matrix elements. The transition rates of Eqn. 3 are calcu-

lated at 300 K. We consider convergence by determining the change in the spectral noise

power at the maximum electric field for which the ∆fmk � f 0
mk assumption is satisfied.

Numerical experimentation shows that this condition is satisfied for E . 800 V cm−1. The

spectral noise power at 800 V cm−1 using the 200 × 200 × 200 grid differs by less than 1%

from the value obtained on a grid with twice the number of grid points. The delta function

in the electron-phonon matrix elements is approximated with a Gaussian with a 10 meV

broadening parameter [66]. Decreasing the broadening to 6 meV changed the spectral noise

power at 800 V cm−1 by less than 3%.

While Perturbo performs the Wannier interpolation for the electron-phonon interaction

on fine grids [58], it does not explicitly construct the collision matrix of Eqn. 3. Instead,

the mobility is computed using an iterative scheme under the cold electron approximation

[8]. We found that this iterative method was numerically unstable for the warm electron

case. We instead solved the linear system using the Generalized Minimal Residual (GMRES)

algorithm as implemented in the Scientific Python library [67]. The matrix was constructed

by modifying Perturbo to output the elements of Eqn. 3.

As described in Sec. II, the derivative term corresponding to particle drift in an electric

field E is approximated by a finite difference matrix. Boundary conditions must be applied

to points that do not have a full set of first-nearest neighbors. To do so, we assume that

these points have zero occupation by removing the contributions of these states to the finite

difference matrix. The energy window is selected so that these boundary states indeed have

negligible population, also ensuring that scattering induced by the collision matrix Θmkm′k′

for these states can be neglected.

With the collision and drift matrices computed, we then construct the relaxation operator

Λmkm′k′ , Eqn. 5. The steady-state distribution is obtained by solving the resulting linear

system given by Eqn. 6. We then solve Eqn. 19 with the inhomogenous term constructed

from the previously computed steady-state distribution as input. For this second Boltzmann

equation, we include an iω term on the diagonal of the linear system which corresponds to
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the Fourier transformed time derivative. Finally, the spectral density is computed as a

Brillouin zone integration over the distribution that solves the second Boltzmann equation.

The calculation of the AC mobility proceeds in a similar way as for the steady distribution

except with the addition of the iω term.

In this work, we apply our method to GaAs. Owing to computational limitations, we ac-

count for first-order electron-phonon (1ph) processes and neglect higher-order interactions

that are reported to play a role in GaAs [16]. Also, recently studies report the effect of

quadrupole electron-phonon interactions on electron transport [68, 69]. In particular, the

work of Ref. [69] predicted a significant correction to the mobility in GaAs limited by acous-

tic mode scattering. Our calculations were performed at 300 K at which the scattering

is dominated by polar optical phonons, and so we neglected quadrupole interactions. Fi-

nally, we note that the method described above is easily extendable to other technologically

interesting semiconductors. In particular, first-principles calculations of electron-phonon in-

teractions in Si, InP, and Ge are now routine; calculations in these materials is the subject

of ongoing work.

IV. RESULTS

A. Transport

We begin by examining the steady state distribution and associated transport observables

in the cold and warm electron regimes. Figure 1a plots the deviational steady state distribu-

tion functions under the two approximations versus wave vector parallel to the electric field,

kx. We refer to this direction as the longitudinal direction. At low fields E < 100 V cm−1,

the solutions are nearly identical, but as the field increases, differences in the distribution

functions emerge. Under the cold electron approximation, Eqn. 6 shows that ∆fmk is re-

quired to possess odd symmetry about the Brillouin zone center because ∂f 0
mk/∂k is odd

with respect to kx while the scattering matrix is even (Θkk′ = Θ−k−k′); this symmetry is

evident in Fig. 1a. In contrast, in the warm electron case the electrons can be heated and

the solution becomes asymmetric with increasing field.

The transport properties of the warm electron distribution differ from those of the cold

distribution because warm electrons in the high energy tail are able to emit optical phonons
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Figure 1. (a) Deviational occupation ∆fk in GaAs at 300 K under the cold (dotted lines) and

warm (solid lines) electron approximations versus longitudinal wave vector kx. Curves plotted

for E = 100 V cm−1 (blue), and E = 800 V cm−1 (orange). The dashed black line is a guide to

the eye. (b) Normalized longitudinal (‖) DC mobility versus electric field of the cold (dashed

blue line) and warm electrons (solid red line). The heating of the electrons leads to a decreased

mobility. The trend of the normalized mobility agrees well with experiments: Figure 1, Ref. [70]

(Upward black triangles) and Figure 4, Ref. [71] (Downward black triangles). (c) Real part of the

longitudinal small-signal AC mobility versus frequency for equilibrium (dashed black line), E =

100 V cm−1 (dash-dot blue line), and E = 800 V cm−1 (solid orange line) under the warm electron

approximation. The AC mobility exhibits spectral features at frequencies that are characteristic

of the inverse momentum and energy relaxation times (see Section IV C).

and hence exhibit higher scattering rates. As reported previously [66], the predicted mo-

bility of GaAs exceeds the experimental mobility owing to the exclusion of higher-order

phonon scattering processes and the lower calculated effective mass (0.055 m0) compared to

experiment (0.067 m0) [16].

Therefore, to facilitate comparison we examine the DC mobility normalized by its low-

field value in Fig. 1b. The low-field value of the computed mobility is 17,420 cm2 V−1 s−1. At

low fields E < 100 V cm−1, the mobility under the warm and cold electron approximations

agrees to within 1%. At E = 800 V cm−1, the DC mobility of the warm electrons has

decreased by more than 10%. This behavior is qualitatively consistent with the sublinear

current voltage characteristic (CVC) of n-type GaAs [21], or a decrease in mobility with

increasing electron temperature. The field dependence of the normalized mobility shows
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favorable comparison to experiment, implying that our calculation is properly capturing the

heating with the field.

In addition to steady quantities, the small-signal AC mobility can be computed as in

Eqn. 11. Figure 1c presents the small-signal AC mobility for the warm electron gas versus

frequency for several electric fields. At zero frequency, the equilibrium AC mobility is equal

to the equilibrium DC mobility, as expected. The decrease of the AC mobility with electric

field at is also consistent with the trend observed in the DC mobility. At f ∼ 1 THz,

the AC field frequency exceeds the phonon-mediated scattering rates which redistribute the

electrons, and thus the AC mobility rolls off at all fields. This result reflects the electrical

response transitioning from a purely resistive to a purely reactive regime as the frequency

exceeds the highest scattering rates.

The frequency dependence of the AC mobility indicates the relevant timescales of mo-

mentum and energy relaxation [72]. In particular, for 800 V cm−1, we observe a lower value

of the AC mobility at low frequency, followed by a maximum at around 100 GHz. This

feature is due to energy exchange with phonons and will be discussed in Section IV C.

B. Diffusion noise

We now calculate the spectral density of current fluctuations from the non-equilibrium

steady state in GaAs. Figure 2a shows the spectral density of longitudinal current fluc-

tuations versus electric field at an observation frequency of 1 MHz, far smaller than any

scattering rate. At equilibrium, the noise is given by the Nyquist relation, Eqn. 23. It is

conventional to report the spectral density normalized to the Nyqist value to allow compar-

ison between samples of different carrier density [22].

As the electric field increases, the computed noise decreases below the Nyquist value.

Few experimental studies of noise in GaAs cover the fields of present interest, but reasonable

agreement is observed with measurements by Bareikis et al. [73]. We note that a decrease

with field is observed in other studies in GaAs [70, 74] though the sparsity of data in the

relevant electric field range prevents direct comparison.

To better understand the decreasing trend, we use an approximate solution of the Boltz-

mann equation for an electron gas interacting quasi-elastically with a thermal phonon bath

[24, 75]. Under the quasi-elastic approximation, the distribution function is expanded in
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Figure 2. (a) Spectral density of longitudinal current density fluctuations (solid red line) normalized

to the Nyquist value versus electric field along with Davydov spectral densities calculated using

ADP (dash-dot blue line) and Fröhlich (dashed yellow line). At equilibrium, the noise agrees with

Nyquist-Johnson noise (dotted black line). The ab-initio calculation predicts a steeper decrease in

current PSD with field compared to the approximations. The symbols correspond to experimental

measurements (Figure 11, Ref. [73]). (b) Relaxation time versus energy above conduction band

minimum for GaAs at 300 K using ADP (dash-dot blue line), Fröhlich potential (dashed yellow

line), and computed (red circles). The energy of the zone-center LO phonon is shown for reference

(dashed black line). (c) Effective electron gas temperature versus electric field for ADP (dash-dot

blue line), Fröhlich (dashed yellow line), and computed (solid red line). The magnitude of electron

heating is similar among the various calculations.

momentum space using Legendre polynomials. Because the distribution is nearly isotropic

in momentum space under quasi-elastic scattering, only the two lowest Legendre polynomi-

als need be retained [76]; the zeroth-order term gives the occupancy versus energy and is

known as the Davydov distribution. The model is parametrized by the energy dependence of

the momentum and energy relaxation times, τ and τε respecitvely, and the inelasticity ratio

τ/τε [21]. Once these parameters are specified, the Davydov distribution can be computed

and used with Eqn. 19 to calculate the spectral density of current fluctuations [60].

Approximate analytic expressions for the electron relaxation times in semiconductors

are available [3]. Previous works have calculated the Davydov distribution for a power-

law energy dependence of the relaxation times such as that from the acoustic deformation

potential (ADP) [77–79]. However, in GaAs at room temperature, the long-ranged Fröhlich
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interaction with longitudinal optical (LO) phonons is the dominant scattering mechanism

[15, 66].

In Fig. 2a, we compare the ab-initio longitudinal spectral density to that predicted using

the Davydov distribution with the ADP and Fröhlich scattering rates. The approximate

relaxation times have been scaled to match the computed low-field mobility, and the inelas-

ticity ratio has been selected using an estimation of the energy and momentum relaxation

times (see Fig. 3). The spectral density is observed to decrease monotonically with the elec-

tric field. This decrease is captured qualitatively by the Fröhlich calculation. In contrast,

the ADP noise increases monotonically with field.

These trends can be understood in terms of the differing energy dependencies of the relax-

ation times in the various approximations. Figure 2b shows the phonon-mediated relaxation

times versus energy for electrons in GaAs at 300 K for the three cases. Below the zone-center

LO phonon energy ~ωLO ∼ 35 meV, the computed relaxation times are set by LO phonon

absorption [14]. Above the LO phonon energy, LO emission becomes dominant and the

relaxation times sharply decrease to a value that remains roughly constant until electron

energies are near the L-valley minimum at ∼ 0.25 eV above the CBM. This absorption-

to-emission transition is qualitatively captured by the Fröhlich approximation. The ADP

relaxation times agree reasonably well with the computed ones in the emission-dominated

region but do not exhibit the absorption-to-emission transition.

The electric field dependence of the spectral noise power reflects the balance between the

growth of scattering rates with electron energy and the heating of the electron gas by the

DC field [80]. To understand this balance, we examine the effective electron temperature of

the steady distribution for the three cases in Figure 2c. The effective electron temperature

is calculated as the temperature of a Maxwell-Boltzmann distribution that yields the same

energy density as the steady non-equilibrium distribution. At low fields E < 100 V cm−1,

the temperature is equal to the lattice temperature. As the electric field increases, the

effective temperature increases, corresponding to occupancy at higher energies and increased

scattering rates. Near equilibrium where the mobilities are equivalent, the temperature rise

predicted from each approximation is similar, but at higher fields, the ab-initio calculation

predicts a slightly lower temperature than do either the ADP or Fröhlich approximations.

As the electron gas heats, higher energy states are occupied and thus the spectral noise

power, Eqn. 19, includes contributions from fluctuations in those states; hence, the spectral
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noise power may increase on heating. On the other hand, at these high energies, the scat-

tering events which damp out fluctuations are more frequent, tending to decrease the noise.

The competition between these mechanisms sets the trends shown in Figure 2a. For both

Fröhlich and the present calculations, the sharp increase in scattering rates associated with

the absorption-to-emission transition dominates, and the spectral density decreases mono-

tonically with electric field. In contrast, the ADP approximation shows increasing noise with

electric field as the heating of the electrons dominates the weak increase of the scattering

rates.

The evolution of the spectral density with electric field demonstrates the sensitivity of

the spectral noise power to the energy dependence of the scattering rates. Although the

mobility at equilibrium is equivalent for all three cases, the non-equilibrium noise behavior

exhibits qualitatively different trends depending on the energy dependence and inelasticity

of the scattering mechanisms.

Figure 3. (a) Computed power spectral density (PSD) of longitudinal (‖, dashed orange line) and

transverse (⊥, dashed-dotted blue line) current density fluctuations versus frequency at E = 800

V cm−1, along with the Nyquist-Johnson prediction for E = 0 (solid black line). (b) Spectral

density of energy fluctuations versus frequency at equilibrium (solid black line), E = 800 V cm−1

(dashed orange line). The time scale for electron temperature fluctuations sets the upper frequency

limit for the convective mechanism.
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C. Spectral noise power

The non-equilibrium noise exhibits spectral features that are not present in the Nyquist-

Johnson case. Figure 3a shows the spectral density of longitudinal (L) and transverse (T)

current fluctuations (relative to the electric field axis) versus frequency at E = 800 V cm−1.

There are several notable features of the spectral density in this figure. First, the spectral

density is constant at low frequencies and rolls off as frequency increases, decreasing to

50% of its low frequency value at 300 GHz. Secondly, an anisotropy exists between the

longitudinal and transverse spectral densities. Finally, the longitudinal noise exhibits a

non-monotonic trend for frequencies around 50 GHz, similar to that observed for the AC

mobility in Fig. 1c. Spectroscopic measurements of the noise power at these frequencies have

not been performed, but these trends are qualitatively similar to those observed in recent

Monte Carlo simulations [57].

We discuss each of these points in turn. Consider first the noise at equilibrium. The

zero-field curve shows that the longitudinal and transverse spectral densities are equal and

coincide with the Nyquist-Johnson value, Eqn. 23. As with the AC mobility, the spectral

density rolls off at frequencies exceeding the phonon-mediated scattering rates because the

electronic system cannot redistribute in response to the fluctuation. This roll-off behavior

has been noted previously [6] and has also been observed for phonon thermal conductivity

(see Fig. 1b in Ref. [81]).

Now consider the noise with E = 800 V cm−1. A similar roll-off with increasing frequency

as the equilibrium case is observed. At low frequency, both the longitudinal and trans-

verse spectral densities are lower than the Nyquist value because of the increased electron

temperature. However, an anisotropy exists in the spectral densities. The origin of this

feature is the ‘convective’ mechanism [21, 24, 82] and can be understood by decomposing

the current fluctuations into two sources. The first is the fluctuation of the drift velocity,

induced by stochastic transitions between states of differing group velocity. The second is

the fluctuation of the electron temperature, induced by random energy exchange with the

thermal phonon bath. Under non-equilibrium conditions, these fluctuations couple. As the

gas is heated by the electric field, the fluctuating current induces a variation in the Joule

heating. The resulting electron temperature fluctuation changes the conductivity, which

in turn modifies the current. This coupling only exists for fluctuations longitudinal to the
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electric field because transverse fluctuations do not affect Joule heating. In sublinear CVC

materials such as GaAs, the conductivity decreases with electron temperature, and the con-

vective mechanism suppresses longitudinal fluctuations. This feature is indeed observed in

Fig. 3a.

The convective mechanism is only present at frequencies ωτε � 1, where τε is the energy

relaxation time. As discussed above, the local maxima from the convective contribution

appears at ωτε = 1 in the longitudinal direction (see Ref. [21], Chapter 7). The energy

relaxation time can also be extracted by calculating the spectral density of electron tem-

perature fluctuations versus frequency. This calculation is the energy analogue of Eqn. 19,

where the relevant state quantity is the energy instead of the group velocity. Figure 3b

shows the spectral density of energy fluctuations versus frequency for several electric fields.

At low frequencies, f < 10 GHz, the spectral density increases with field as the tempera-

ture fluctuations rise with higher Joule heating. At higher frequencies, f ∼ 50 GHz, the

energy fluctuations decrease to 50% of their low frequency values and begin to converge

for the two fields shown. This convergence signifies that the temperature of the electron

gas cannot change sufficiently rapidly due to its finite thermal capacitance. Consequently,

the convective noise mechanism is removed and the anisotropy of the densities in Fig. 3a

also disappears; the longitudinal and transverse spectral densities converge. The convec-

tive mechanism is also responsible for the non-monotonic trend of the AC mobility seen in

Fig. 1c.

D. Quasi-elastic scattering

The present formalism for electronic noise permits the study of the microscopic processes

responsible for electronic noise in a manner that is difficult to obtain by other methods.

As an example, consider the spectral features present in Fig. 3. Comparing the frequency

where the current power spectral density and energy power spectral density reach half of

their low frequency values (300 GHz versus 50 GHz, respectively), the energy relaxation time

is inferred to be around 6 times longer than the momentum relaxation time, implying that

the quasi-elastic assumption is valid. This observation is surprising given the well-known

dominance of high-energy LO phonon emission in GaAs [14] and that inelasticity is expected

only when the physical temperature is comparable to the Debye temperature [6]. Analytical
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Figure 4. (a) Probability histograms of longitudinal momentum loss Rk (blue bars) and energy loss

Rεk (yellow bars) normalized by the thermal averages at 800 V cm−1. The dashed lines represent the

average transfer per scattering event. At this field, the average fractional dissipation of longitudinal

momentum is ∼ 3× larger than that for energy. (b) Deviational occupation ∆fk in GaAs at 300

K versus energy calculated under the RTA (dashed black line), hot Maxwell-Boltzmann (dashed-

dotted grey line), and ab-initio warm electron approximation (solid orange line) at 800 V cm−1.

The dashed black line is added as a guide to the eye. Neither the RTA nor the Maxwell-Boltzmann

capture the hot electron tail.

treatments of noise under dominant LO phonon coupling typically assume strongly inelastic

interactions between the electrons and lattice (see Sec. 3.8 of Ref. [24], Sec. 7.3 of Ref. [21],

or Ref. [83]).

We identify the origin of this discrepancy by examining how individual scattering events

contribute to the momentum and energy relaxation of the electron system to the phonons.

These transfers can be expressed as sums over each of the electron-phonon scattering pro-

cesses in the collision integral weighted by the energy and momentum of the mediating

phonon. Every electronic state in the BZ is coupled via phonons to other states; by sum-

ming over all possible scattering processes, we obtain the average energy and momentum

exchanged in a single scattering event. More precisely, the fractional change in momentum

and energy per scattering event are calculated from:
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Rx =
1

Θkk〈|x|〉
∑
k′

∆xΘk′k (24)

where x = kx, εk and ∆x = x−x′ is the difference in the state quantity between k and k′.

〈|x|〉 denotes the thermal average magnitude of the relevant quantity; Θk′k represents the

component of the diagonal element of the collision matrix (the scattering rate) corresponding

to scattering from k to k′; and other variables carry same meaning as defined in Section II.

These fractional changes at 800 V cm−1 are plotted as a probability histogram in Figure

4a. In this figure, we have binned each state in the BZ by the value of Rk and Rεk . For all the

states in a given bin, we calculate the probability of scattering P ∝
∑

bin Θkkf
s
mk (the final

quantity is normalized to unity). The horizontal position indicates the average fractional

change in energy or momentum induced by the event. Positive values of the fractional change

correspond to net transfers to the lattice, or dissipation, while negative values correspond to

transfers to the electrons, or accumulation. The height of a bar represents the population-

weighted probability of scattering in a given time interval.

Figure 4a reveals several important features. First, energy transfers are clustered into two

groups. The grouping of accumulation events around −0.75 corresponds to the ∼ 35 meV en-

ergy gain associated with LO absorption, which dominates scattering of electrons below the

emission threshold ~ωLO. The relatively disperse grouping of the dissipation events reflects a

balance between LO emission and absorption for states above the threshold. Second, in con-

trast to energy transfers, momentum transfers grow with the wave vector of the mediating

phonon. Consequently, a broader and more disperse distribution of momentum transfers is

available. Finally, the balance between dissipation and accumulation differs between energy

and momentum. In equilibrium, these processes are balanced, but at 800 V cm−1, the net

transfers for both quantities are dissipative as the warm electrons transfer excess momentum

and energy to the lattice. The dashed lines in the figure represent the average fractional

transfer per scattering event and indicate that the net momentum dissipation exceeds the

energy dissipation by around a factor of 3. This imbalance is partly responsible for the

disparate time scales of energy and momentum relaxation observed in Fig. 3.

The second contributing factor to the relatively long energy relaxation time is the presence

of a hot electron tail in the calculated distribution. In Fig. 4b, we plot the steady devia-

tion distribution, ∆fs, calculated under the warm electron approximation using the full
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e-ph scattering matrix versus energy. For reference, the corresponding distributions for a

hot Maxwell-Boltzmann at the non-equilibrium electron temperature and a ‘relaxation-time

distribution’ obtained under the warm electron approximation with only the on-diagonal el-

ements of the scattering matrix. The ab-initio treatment predicts a hot electron tail that is

not observed with either approximate method. Although representing only a small fraction

of the population, these hot electrons are at energies 5 − 10× the thermal average value.

Consequently, many scattering events are needed to return these electrons to equilibrium,

further increasing the energy relaxation time. The result is that the quasi-elastic approxi-

mation is unexpectedly accurate despite the inelastic nature of optical phonon scattering,

and thus explaining the features in the spectral noise power and AC mobility.

V. SUMMARY AND FUTURE OUTLOOK

The primary numerical tools used to study electronic noise are Monte Carlo (MC) meth-

ods [55–57, 84, 85]. These simulators have many advantages, including the ability to incor-

porate realistic device geometries and space charge effects through coupled Poisson solvers,

and they are thus useful to interpret experimental measurements on devices. However, MC

studies rely upon semi-empirical models of scattering and electronic structure that require

parameters such as deformation potentials, sound velocities, effective masses, and energy

gaps to be specified and calibrated against experiment. The methods are thus most useful

for well-characterized materials for which these empirical models are available.

A parallel development in the transport field has been the introduction of ab-initio meth-

ods to study low-field transport phenomena without adjustable parameters. These methods

enable not only the computation of low-field transport properties such as electronic mobility

[8, 9] and phonon thermal conductivity [86] but also an understanding of the microscopic

scattering processes that underlie these macroscopic properties and prediction of the proper-

ties of new materials. However, thus far these methods have been restricted to the low-field,

cold electron regime.

In this work, we have described an ab-initio theory of electronic noise for warm electrons in

semiconductors. The method requires no adjustable parameters, with the phonon dispersion,

band structure, and electron-phonon coupling calculated from first-principles. Further, this

method permits the study of transport even when the electrons are not in equilibrium with
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the lattice, being free of the cold electron approximation used in previous transport studies.

To demonstrate the method, we performed calculations in GaAs, a technologically relevant

material, and demonstrated that the spectral features of the AC mobility and current noise

are linked to the disparate time scales of energy and momentum relaxation. The quasi-

elastic approximation is unexpectedly accurate in GaAs despite the dominance of polar

optical phonon scattering. Our work paves the way for first-principles studies of electronic

noise in other semiconductors that will advance the study of transport phenomena and

applications of low-noise semiconductor devices.
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