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We combine magnetometry and magnetic small-angle neutron scattering to study the influence of the 
microstructure on the macroscopic magnetic properties of a nanocrystalline Ni bulk sample, which was 
prepared by straining via high-pressure torsion. As seen by magnetometry, the mechanical deformation 
leads to a significant increase of the coercivity compared to nondeformed polycrystalline Ni. The neutron 
data reveal a significant spin-misalignment scattering caused by the high density of crystal defects inside 
the sample, which were created by the severe plastic deformation during the sample preparation. The 
corresponding magnetic correlation length, which characterizes the spatial magnetization fluctuations in 
real space, indicates an average defect size of 11 nm, which is smaller than the average crystallite size of 
60 nm. In the remanent state, the strain fields around the defects cause spin disorder in the surrounding 
ferromagnetic bulk, with a penetration depth of around 22 nm. The range and amplitude of the disorder is 
systematically suppressed by an increasing external magnetic field. Our findings are supported and 
illustrated by micromagnetic simulations, which, for the particular case of nonmagnetic defects (holes) 
embedded in a ferromagnetic Ni phase, further highlight the role of localized spin perturbations for the 
magnetic microstructure of defect-rich magnets such as high-pressure torsion materials.

 
 

 

1. Introduction 
Ultrafine-grained and nanocrystalline magnetic materials have 
attracted considerable interest over the last decades owing to 
their large potential for technological applications [1–4]. 
Among the most well-known and efficient techniques for 
synthesizing such materials are inert-gas condensation and 
high-pressure torsion (HPT), the latter being a severe plastic 
deformation method. For a brief overview of the main 
techniques for the preparation of bulk ultrafine-grained and 
nanocrystalline materials, we refer the reader to the article by 
Koch [5]; a detailed review on the HPT technique can be found 
in Ref. [6]. 
 
Since the magnetic properties will ultimately determine the 
performance of ultrafine-grained materials, a precise 
knowledge of the relationship between the microstructure and 
the magnetic properties, i.e., the correlation between e.g. the 
saturation magnetization, coercive field, and magnetic 
anisotropy and the average grain size or crystallographic 
texture is crucial. Previous studies have reported that the 
magnetic properties of strained nanocrystalline materials 
produced by HPT strongly differ from polycrystalline samples 
with larger grain sizes; in particular, a reduction of the 
saturation magnetization (by 5 %) and a significant increase of 
the coercive field (∼ 50 times larger) were observed in HPT 
Ni using magnetometry [7]. These features were qualitatively 
explained, respectively, by the decrease of the exchange 
energy in the vicinity of defects [8] and by the increase of the 
dislocation density within the grain boundaries [7]. The 
investigation of the magnetic domain structure of HPT 
materials with the aim to clarify the magnetization reversal 
mechanism has been mainly performed using Lorentz electron 
microscopy [9,10]. Although these studies reported that the 

domain structure (i.e., shape and size) is not strongly affected 
by the grain size, the influence of a high density of lattice 
defects (e.g. vacancies, dislocations, grain boundaries, pores) 
induced by HPT on the spin structure still needs to be further 
clarified. As previously demonstrated, HPT can be used to 
modify the structure and thus to control the macroscopic 
magnetic properties of magnetic materials [11,12]. Therefore, 
in the context of defect engineering of advanced materials 
using severe plastic deformation [13], a better understanding 
of the influence of the defects on the magnetic properties at 
different length scales is necessary.  
 
In this paper we employ unpolarized magnetic small-angle 
neutron scattering (SANS) to investigate the magnetic 
microstructure of HPT Ni on the mesoscopic length scale. 
Magnetic SANS is a powerful technique which provides 
volume-averaged information about the perturbation of the 
magnetization vector field on a length scale of about 1 – 500 
nm (see Refs. [14,15] for reviews of the magnetic SANS 
fundamentals and applications). This technique was recently 
used to demonstrate that in HPT Fe defects act as a source of 
an anomalous effective magnetic anisotropy field [16]. Here, 
we go a step further in the neutron data analysis. We determine 
the real-space magnetic correlation lengths from the magnetic 
SANS data to obtain estimates for the average defect size as 
well as for the spatial extent of the surrounding spin disorder 
within the bulk of the sample. Our experimental results are 
supported and illustrated by micromagnetic simulations. The 
specific neutron data analysis of the spin misalignment brings 
additional information which is important for the 
understanding of the role played by the defects in magnetic 
materials. 
 



 
 

 
2. Experimental details 
The HPT process for the preparation of the strained Ni sample 
used in this study is similar to the one described in Ref. [17]. 
Wide-angle x-ray diffraction data on HPT Ni and a 
nondeformed Ni sample (nd Ni) has been taken on a Bruker 
D8 diffractometer in Bragg-Brentano geometry using Cu Ka 
radiation. Room-temperature magnetization curves for both 
samples were recorded using a Cryogenic Ltd. vibrating 
sample magnetometer (VSM) equipped with a 14 T 
superconducting magnet. For the neutron experiments two 
disks of HPT Ni with a diameter of 10 mm and a thickness of 
0.5 mm were stacked together, resulting in a total sample 
thickness of 1.0 mm. The neutron measurements were 
conducted at the instrument D33 at the Institut Laue-Langevin, 
Grenoble [18]. The measurements were done using an 
unpolarized neutron beam with a mean wavelength of λ = 4.6 
Å and a wavelength broadening of Δλ/λ = 10% (full width at 
half maximum). The measurements were performed at room 
temperature and within a q-range of about 0.04 nm-1 ≤ q ≤ 0.45 
nm-1. A magnetic field H0 was applied perpendicular to the 
incident neutron beam (H0⊥k0). Neutron data were recorded 
by decreasing the field from the maximum field available of 
6.7 T to 0.1 T. The neutron-data reduction (correction for the 
empty sample holder and background scattering, sample 
transmission, and detector efficiency) was conducted using the 
GRASP software package [19]. Further neutron experiments 
under similar conditions were performed at the QUOKKA 
instrument [20] at the Australian Nuclear Science and 
Technology Organization (ANSTO). We determined the (over 
2π) azimuthally-averaged purely magnetic SANS cross 
section	dΣ()*(𝑞, 𝐻/) dΩ⁄  by subtracting the total (nuclear + 
magnetic) SANS cross section dΣ dΩ⁄  measured at the highest 
field of 6.7 T (approaching saturation) from the dΣ dΩ⁄  
measured at lower fields. This specific neutron data analysis 
was previously used to study the magnetization profile of 
magnetic nanoparticles [21]. 
 
 
3. Magnetic SANS Analysis  

3.1. Unpolarized SANS cross section 
When the applied magnetic field is perpendicular to the 
incident neutron beam (H0 ⊥ k0), the elastic total (nuclear + 
magnetic) unpolarized SANS cross section dΣ/dΩ at 
momentum-transfer vector q can be written as [14, 15]: 
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where V is the scattering volume, bH = 2.91 ́  108 A-1m-1 relates 
the atomic magnetic moment to the atomic magnetic scattering 
length, 𝑁D(𝒒) and 𝑴D (𝒒) = W𝑀D𝒙(𝒒), 𝑀D𝒚(𝒒), 𝑀D𝒛(𝒒)[ represent 
the Fourier transforms of the nuclear scattering length density 
N(r) and of the magnetization vector field M(r), respectively, 
θ specifies the angle between H0 and q @ q{0, sinθ, cosθ} in 
the small-angle approximation, and the asterisks “*” denote 

the complex conjugated quantities. For small-angle scattering, 
the component of the scattering vector along the incident 
neutron beam, here qx, is smaller than the other two 
components qy and qz, so that only correlations in the plane 
perpendicular to the incoming neutron beam are probed.  
 
In our neutron-data analysis below, we subtract the SANS 
signal at the largest available field of 6.7 T [approach-to-
saturation regime; compare Fig. 1(c)] from the measured data 
at lower fields. This subtraction procedure eliminates the 
nuclear SANS contribution ∝ B𝑁DB

?, which is field 
independent, and it yields the following purely magnetic 
SANS cross section dSmag/dW: 
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where the “D” stand for the differences of the Fourier 
components at the two fields considered. We emphasize that 
dSmag/dW is strongly dominated by the two transversal 
magnetization Fourier components 𝑀DG,H. 
 

3.2. Magnetic correlation function  
The normalized magnetic correlation function 𝐶(𝑟, 𝐻/) was 
numerically computed by a direct Fourier transformation of 
the experimental data for dΣ()*(𝑞, 𝐻/) dΩ⁄  according to [22]: 
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where 𝑗/(𝑞𝑟) = sin(𝑞𝑟)/𝑞𝑟 is the zeroth-order spherical 
Bessel function. For this purpose, the experimental data 
dΣ()*(𝑞, 𝐻/) dΩ	⁄ beyond 𝑞()f were extrapolated to infinity 
using a power law, dΣ()*(𝑞, 𝐻/) dΩ	⁄ ∝ 1/𝑞g with 4 ≲ n ≲ 7 
[compare inset in Fig. 2(b)], and the extrapolation from 𝑞(ij 
to q = 0 was done according to dΣ()*(𝑞,𝐻/) dΩ	⁄ ∝ 𝑎 + 𝑏𝑞?. 
 

3.3. Magnetic correlation length 
The magnetic correlation length 𝑙m characterizes the distance 
over which perturbations in the spin structure around a lattice 
defect are transmitted by the exchange interaction into the 
surrounding crystal lattice [23,24]. Several procedures for 
obtaining 	𝑙m are discussed in the literature, e.g., 𝑙m(𝐻/) can be 
defined as the value of r for which	𝐶(𝑟, 𝐻/) = 𝐶(0)𝑒Ao, or 𝑙m 
can be found from the logarithmic derivative of 𝐶(𝑟, 𝐻/) in the 
limit 𝑟 → 0 (Ref. [23]). Here, we determined the magnetic 
correlation length 𝑙m(𝐻/) from the 𝐶(𝑟, 𝐻/) data at a particular 
field according to: 
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The field dependence of the 𝑙m data was then fitted using the 
following expression:  
 

𝑙m(𝐻/) = ℒ +t
2𝐴vf

𝜇/𝑀x(𝐻/ + 𝐻∗)
										,							(5) 

 
where the field-independent parameter ℒ is of the order of the 
defect size, and 𝐴vf and 𝑀x are the exchange-stiffness constant 
and the saturation magnetization, respectively. The field 
𝐻∗	models the contribution of the magnetostatic and magnetic 
anisotropy field to the internal magnetic field. In the approach-
to-saturation regime and for single-phase materials, where 
nonzero divergences of the magnetization from within the bulk 
are expected to be small [25], the main contributions to 𝐻∗	 are 
due to the magnetic anisotropy. The phenomenological model, 
Eq. (5), is based on micromagnetic theory [26,27] and 
expresses the relationship between the nuclear and magnetic 
microstructure of a material. Equation (5) has already been 
successfully used to describe the spin misalignments in several 
nanocrystalline bulk ferromagnetic materials [28,29]. To 
reduce the number of free parameters in the data analysis (see 
below), we fixed 𝑀x to the value estimated from the 
magnetization curve (see Table 1), and 𝐴vf to 8.5 pJ/m. This 
value is obtained by performing a global fit analysis of the 
field-dependent dΣ dΩ⁄  data shown in Fig. 2(a) based on the 
micromagnetic SANS theory developed in Refs.  [24,30]. The 
resulting volume-averaged value of 𝐴vf = 8.5 ± 0.2 pJ/m 
compares favorably with data reported for nanocrystalline 
Ni [27]. 
 
 
4. Results and discussion 
Figure 1 displays the results of the structural and magnetic 
characterization. In Fig. 1(a) we show wide-angle x-ray 
diffraction data of HPT Ni and of a nondeformed Ni reference 
sample. The XRD patterns exhibit no impurity peaks, which 
confirm the high-quality synthesis of the samples. The XRD 
data refinement using the Le Bail fit method (LBF) 
implemented in the Fullprof software [31] yields an estimate 
for the average crystallite size of 60 ± 5 nm and a value of  » 
0.12 % for the root mean square strain of HPT Ni. The average 
crystallite size and strain of the nondeformed sample could not 
be evaluated, since the widths of the Bragg peaks cannot be 
distinguished from the instrumental resolution function. 
Figure 1(b) and (c) present the room-temperature 
magnetization curves of HPT and nondeformed Ni on a linear 
and semi-logarithmic scale, respectively. From the 
magnetization curves, we estimated the saturation 
magnetization 𝑀y, the remanent magnetization 𝑀z and the 
coercive field 𝐻m (see Table 1). By comparing the hysteresis 
curves, the two following features are observed: (i) 𝑀x of the 
HPT sample is slightly reduced (2.3%) and (ii) its 𝐻m increases 
significantly. These features are consistent with previous 
magnetic studies on HPT Ni [7,8,12]. The increase in 𝐻m can 
be attributed to the pinning of domain-wall motion by the high-
density of defects and the enhanced magnetoelastic coupling 
energy due to HPT straining [7,12]. The decrease in 𝑀x is 
generally explained by the formation of a grain-boundary 
phase with a lower crystal symmetry and smaller 𝑀x [8]. 

Defining the approach-to-saturation regime by M/Ms > 90 %, 
we see from Fig. 1(c) that this regime is attained for applied 
fields larger than about 0.1 T. 
 
Figure 2(a) displays the (over 2π) azimuthally-averaged total 
(nuclear + magnetic) SANS cross section dΣ(𝑞, 𝐻/) dΩ⁄  
measured at different applied magnetic fields. As can be seen, 
at the smaller momentum transfers q the cross section 
dΣ(𝑞,𝐻/) dΩ⁄  increases by more than two orders of magnitude 
when H0 is decreased from 6.7 T to 0.1 T. Since the nuclear 
scattering is field independent, the strong field dependence of 
dΣ(𝑞,𝐻/) dΩ⁄  observed in Fig. 2(a) originates from spin-
misalignment scattering caused by mesoscale spin disorder 
(i.e. from the failure of the spins to be completely aligned 
along H0). Figure 2(b) shows the corresponding purely 
magnetic SANS cross sections	dΣ()*(𝑞, 𝐻/) dΩ⁄ , which were 
obtained by subtracting the total scattering at 6.7 T 
(approaching saturation) from the data at lower fields. The 
magnitude of 	dΣ()*(𝑞, 𝐻/) dΩ⁄  is of the same order 
as	dΣ(𝑞, 𝐻/) dΩ⁄ . The asymptotic power-law exponent n in 
dΣ()*(𝑞, 𝐻/) dΩ	⁄ ∝ 1/𝑞g was found to be larger than the 
value of n = 4 [see inset in Fig. 2(b)]; n = 4 would correspond 
to scattering from particles with sharp interfaces or from 
exponentially correlated fluctuations. The finding of a field-
dependent n > 4 supports the notion of dominant spin-
misalignment scattering, for which exponents n = 4–8 are 
theoretically predicted and experimentally found [14,28]. 
 
Figure 3 shows the normalized magnetic correlation 
function	𝐶(𝑟, 𝐻/), which was numerically computed 
according to Eq. (3). Increasing the field from 0.1 to 4 T results 
in a decrease of 𝐶(𝑟,𝐻/) at a given r. This observation reflects 
the decrease of the spin-misalignment fluctuations and the 
suppression of the amplitude of the static disorder with 
increasing field. Furthermore, the correlations do not decay 
exponentially (see the log-linear plot in the inset of Fig. 3), in 
agreement with the absence of a corresponding n = 4 power-
law exponent observed in Fig. 2(b). Moreover, for the lowest 
applied fields, the absence of a finite slope of 𝐶(𝑟, 𝐻/)	in the 
limit 𝑟 → 0 is consistent with the absence of sharp interfaces 
in the magnetic microstructure and with the presence of a 
continuous magnetic scattering length density variation. By 
contrast, for homogeneous particles with a sharp interface (i.e., 
with a discontinuous jump in the scattering-length density), the 
slope of the correlation function at the origin is finite and 
provides information on the fine structure of the particle (e.g., 
on the surface-to-volume ratio). This is a direct consequence 
of the asymptotic q-4 Porod behavior of the SANS cross section 
(see the discussion by Porod in Ref. [32]). As shown in 
Ref. [22], for bulk ferromagnets, which are characterized by a 
smoothly-varying continuous magnetization vector field, the 
slope of C(r) vanishes as 𝑟 → 0, and the asymptotic power-law 
behavior of the magnetic SANS cross section exhibits power-
law exponents larger than n = 4.  
 
Figure 4 presents the field dependence of the magnetic 
correlation length 𝑙m(𝐻/) determined from the 𝐶(𝑟, 𝐻/) using 
Eq. (4). As can be seen, 𝑙m(𝐻/) increases from about 14 nm at 
the highest field of 4 T to 26 nm at the lowest field of 0.1 T. 
Moreover, for all fields investigated, the values of 𝑙m(𝐻/) 



 
 

remain much smaller than the average crystallite size of 60 nm 
of the HPT Ni sample. This latter observation thus indicates 
the presence of spin-misalignment correlations on a scale 
smaller than the average crystallite size. From the nonlinear 
least squares fit of the 𝑙m(𝐻/) data to Eq. (5) (dashed line in 
Fig. 4), the following best-fit parameters are obtained: ℒ =
11.3	 ± 0.1 nm and 𝜇/𝐻∗ = 71.2 ± 3.0 mT. We reemphasize 
that ℒ can be regarded as an estimate of the average defect size 
and 𝐻∗	models the influence of the magnetostatic and 
magnetic anisotropy field contributions to the internal 
magnetic field. The estimated “defect size” ℒ	~	11 nm 
suggests that the origin of the spin misalignment observed in 
HPT Ni results from a high density of crystal defects on a scale 
smaller than the grain size, as previously suggested in HPT 
Fe [16]. In the remanent state, we estimate the penetration 
depth 𝛿 = 𝑙m(𝐻/ = 0) − ℒ of the spin disorder into the 
ferromagnetic Ni-phase to be ~ 22 nm (Fig. 4). If the field 𝐻∗	 
in Eq. (5) were exclusively due to an effective uniaxial 
magnetic anisotropy of strength	𝐾�v��, then 𝐻∗ = 2𝐾�v��/
(𝜇/𝑀y) and the penetration depth 𝛿 = 𝑙m(𝐻/ = 0) − ℒ would 
be related to the domain-wall width 𝛿� ∝ �𝐴vf/|𝐾�v��|. Using 
𝐴vf = 8.5 pJ/m and assuming the (magnetocrystalline) single-
crystal value of 𝐾�v�� = −5.7 kJ/m3  [33] (ignoring that fcc Ni 
has a cubic rather than an uniaxial anisotropy symmetry), we 
obtain 𝛿� ≅	39 nm. On the other hand, using 𝐴vf = 8.5 pJ/m 
and demanding that �𝐴vf/𝐾�v�� = 22	nm, as is experimentally 
found, we estimate 𝐾�v�� ≅ 1.8 ´ 104 J/m3. This corresponds to 
an increase by a factor of about 4 compared to the 
(magnetocrystalline) value reported in Ni single crystal. In line 
with the HPT process and with the finding of an increased 
coercivity, the above value of 𝐾�v�� indicates a significant 
contribution to the magnetic anisotropy due to magnetoelastic 
effects; this hypothesis is consistent with the strain observed 
in the HPT sample (see Table 1). The value of 2𝐾�v��/𝑀y self-
consistently evaluates to 𝜇/𝐻∗ ≅ 73	mT (using	𝑀y =
482	kA/m [taken from Table 1 and assuming a mass density 
of 8.912 g/cm3]), in agreement with the experimental result. 
 
To support and graphically illustrate our experimental 
findings, we simulated the real-space distribution of the 
magnetization vector field 𝑴(𝒓)	around a spherical 
nonmagnetic defect embedded in a ferromagnetic Ni-phase 
(magnetic hole or pore). The open-source software package 
MuMax3 (Ref. [34]) was used for this purpose. Figure 5 
displays the simulation results for two selected applied fields, 
namely 0.05 T and 2 T. As can be seen, a localized 
perturbation of the magnetization (top panel) is observed 
around the defect at 0.05 T. This magnetization inhomogeneity 
is caused by the magnetodipolar stray field which is related to 
the jump of the magnetization magnitude at the pore-matrix 
interface (µ/∆𝑀 = 0.62 T). In our experimental results the 
spatial extent of such a magnetization gradient is (at a given 
field) represented by 𝑙m. An applied field of 2 T largely 
suppresses the stray-field-torque related spin disorder. This 
can be seen in the bottom panel of Fig. 5, which compares the 
perpendicular component 𝑀�		at both fields. The scenario 
which is displayed in Fig. 5 illustrates how the nanoscale 
magnetization inhomogeneity, which is associated with a 
particular lattice defect, is related to a contrast for magnetic 
SANS. In real HPT samples, in addition to magnetostatic stray 

fields around voids, the magnetic anisotropy field generated 
by other microstructural defects such as vacancies, 
dislocations, and grain boundaries may contribute to the spin-
misalignment scattering [35,36]. 
 
Computing the correlation function and correlation length 
from such numerical micromagnetic calculations and to 
compare them to experimental results would be desirable. 
However, this requires a more realistic description of the 
defect structures in micromagnetic codes. In the present HPT 
Ni sample, the dominating defects are dislocations, which are 
at the origin of the spin disorder seen by SANS. At the 
moment, such line defects cannot be adequately modeled in 
the micromagnetic framework, since this would require 
(among other things) the knowledge and implementation of 
the strain tensor. 
 
To systematically correlate the macroscopic magnetic 
properties (e.g., the coercivity) to the outcome of the neutron-
data analysis (e.g., defect size, range of the correlation) one 
should perform a series of measurements for different degrees 
of deformation (HPT straining). Such experiments are 
underway and could further establish the SANS technique as 
an important pillar for the characterization of ultrafine-grained 
materials in the bulk and on the relevant mesoscopic length 
scale. 
 
A final comment relates to the role of unpolarized versus 
polarized neutrons for the study of magnetic materials. The 
present results clearly demonstrate that for nanocrystalline 
defect-rich materials, which exhibit a strongly field-dependent 
SANS signal, it is not necessary to resort to polarized neutrons, 
if the aim is to study the (polarization-independent) spin-
misalignment scattering. Polarized neutrons only provide 
additional information via the chiral scattering term in the 
cross section. A recent paper [37] suggests that the local 
symmetry-breaking at defect sites gives rise to an asymmetric 
polarization-dependent contribution to the SANS cross 
section. In this respect, it would of interest to carry out half-
polarized SANS experiments or even a one-dimensional 
polarization analysis on HPT samples. 
 
 
5. Conclusion 
We employed magnetometry and unpolarized magnetic SANS 
to investigate the influence of crystal defects on the magnetic 
microstructure and the macroscopic magnetic properties of 
nanocrystalline Ni prepared by HPT. The magnetometry data 
confirms a significant change of the macroscopic magnetic 
properties of the deformed sample (i.e., a slight decrease of 
𝑀x	and a strong increase of 𝐻m) which can be attributed to the 
induced structural defects. The analysis of the field-dependent 
magnetic SANS data suggests the presence of strong spin 
misalignment on the mesoscopic length scale. In fact, the 
computation of the magnetic correlation function and the 
correlation length confirmed the presence of spin disorder on 
a scale smaller than the average crystallite size of 60 nm. The 
phenomenological model, Eq. (5), provides an excellent 
description of the field dependence of the spin-misalignment 
correlation length. We estimated the defect size to be around 
11 nm and the penetration depth of the spin misalignment into 



 
 

the pure Ni phase in the remanent state to be around 22 nm. 
Under certain assumptions, the analysis of the penetration 
depth allows one to conclude on the magnitude of the effective 
magnetic anisotropy. For HPT Ni, we find an increased 
anisotropy (factor of 4), presumably due to magnetoelastic 
interactions, relative to the single-crystalline ground state. Our 
findings are supported by micromagnetic simulations which 
highlight that microstructural defects (such as pores) can 
induce significant nanoscale spin disorder, representing a 
contrast for magnetic SANS. The presented neutron-data 
analysis procedure is particularly useful for defect-rich 
materials and may pave the way to tune magnetic properties 
through defect engineering as proposed e.g. for magnetic 
nanostructured materials such as nanoparticles [38]. 
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Table 1 
Parameters HPT Ni nd Ni Units 

D 60 ± 5 >	100 nm 
〈𝜀?〉o/? 0.12 %  − − 
𝑀x 54.1 ± 0.1 55.4 ± 0.1 Am2/kg 
𝑀z 5.5 ± 0.1 0.3 ± 0.1 Am2/kg 
µ/𝐻m 5.0 ± 0.1 0 ± 0.1 mT 

 
Table 1: Structural and magnetic parameters of HPT Ni and nondeformed Ni (nd Ni). The average crystallite size (D) and the 
root mean square strain (〈𝜀?〉o/?) have been determined from the XRD data refinement using the Le Bail fit method implemented 
in the Fullprof software. The saturation magnetizations (𝑀x), remanent magnetizations (𝑀z), and the coercive fields (𝐻m) have 
been estimated from the magnetization curves shown in Fig. 1(b). 

 

  



 
 

Figure 1 

 
Figure 1: (a) X-ray diffractogram of HPT Ni (black solid line) and of nondeformed (nd) Ni (blue dashed line) (Cu Ka radiation). 
Red solid line: XRD data refinement using the Le Bail fit method implemented in the Fullprof software. The bottom orange 
solid line represents the difference between the calculated and observed intensities. (b) Room-temperature magnetization curves 
of HPT Ni and of nd Ni. Inset in (b): zoom of the magnetization curves between ± 20 mT. (c) Semi-logarithmic plot of the upper 
right branch of the magnetization curves plotted in Fig. 1(b). The large data points in (c) correspond to the field values (see 
inset) where the SANS measurements have been carried out. Horizontal dashed line: saturation magnetization Ms = 55.5 Am2/kg 
of bulk Ni [39].  



 
 

Figure 2 

 
Figure 2: (a) Magnetic-field dependence of the (over 2π) azimuthally-averaged total (nuclear + magnetic) SANS cross section 
dΣ(𝑞,𝐻/) dΩ⁄  and (b) of the purely magnetic SANS cross section	dΣ()*(𝑞, 𝐻/) dΩ⁄  (log-log scale). Dashed lines in (b): 
Extrapolation of	dΣ()*(𝑞, 𝐻/) dΩ ∝ 1/𝑞g⁄  from 𝑞()f to infinity and of dΣ()*(𝑞,𝐻/) dΩ	⁄ ∝ 𝑎 + 𝑏𝑞? from 𝑞(ij to q = 0. Inset 
in (b): Field dependence of the asymptotic power-law exponent n of the magnetic SANS cross section 	dΣ()*(𝑞, 𝐻/) dΩ⁄  on a 
semi-logarithmic scale.

   



 
 

Figure 3 

 
Figure 3: Magnetic-field dependence of the normalized magnetic correlation function 𝐶(𝑟, 𝐻/). The correlation functions were 
numerically computed by a direct Fourier transformation [Eq. (3)] of dΣ()*(𝑞,𝐻/) dΩ⁄  shown in Fig. 2(b). Inset: Plot of 
𝐶(𝑟, 𝐻/) on a semi-logarithmic scale, emphasizing the non-exponential decay of the correlations.

  



 
 

Figure 4 

 
Figure 4: Field dependence of the magnetic correlation length	𝑙m(𝐻/), determined from the computed 𝐶(𝑟,𝐻/) data 
shown in Fig. 3 (log-log scale). Dashed line: Fit of the 𝑙�(𝐻/) data using Eq. (5).  

 

  



 
 

Figure 5 

 
Figure 5: Illustration of the spin-misalignment correlations around defects. Shown are the results of micromagnetic 
simulations for a spherical defect (magnetic hole) embedded in a uniform Ni matrix. Applied-field values (H0 is parallel 
to the z-direction): (a) 0.05 T and (b) 2 T. Top panel: projections of the three-dimensional magnetization distribution 
𝑴(𝒓) into the y-z-plane. Bottom panel: perpendicular magnetization component 𝑀�. The black arrows and color bars in 
(b) indicate the strength and orientation of 𝑀� (arbitrary units). Materials parameters of Ni were used (Ref. [40]). 
 


